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Abstract

The approximation of stochastic processes by trees is an important topic in multistage stochastic pro-
gramming. In this paper we focus on improving the approximation of large trees by smaller (tractable)
trees. The quality of the approximation is measured by the nested distance, recently introduced in
[Pflug, Pfl09]. The nested distance is derived from the Wasserstein distance. It additionally takes into
account the effect of information, which is increasing over time.

After discussing the basic relations between processes and trees and reviewing the nested distance
we introduce and analyze an algorithm for finding good approximations. The algorithm, step by
step, improves the probabilities on a tree, and also improves the paths. For the important case of
quadratic nested distances the algorithm, generalizing multistage, k-means clustering, finds locally
best approximating trees in finitely many iterations.

Keywords: Stochastic processes and trees, Wasserstein and Kantorovich Distance, Tree
approximation, Optimal transport, Facility location
2010 MSC: 90C15, 60B05, 90-08

1. Introduction

Stochastic programming is an important methodology for decision making under uncertainty. Typ-
ical formulations may involve minimizing expected loss or maximizing expected profit and can be ex-
tended by risk averse optimization (e.g. using expected utility or coherent risk measures). In addition
it is possible to deal with stochastic constraints e.g. by recourse formulations or by using probabilistic
constraints. See [SDR09] for a recent and comprehensive treatment of the main techniques.

An important subset of stochastic programs is given by multistage stochastic programs, where
decisions have to be taken at multiple points in time. As a simple example we sketch the problem

maximize
(in x) EH (ξ, x)

subject to xt ∈ Xt t ∈ {0, . . . T} ,
xt is measurable with respect to Ft,

(1)

which uses a real valued profit functions H : Ξ ×X → R, a stochastic process (ξt)t, and expectation
utility in the objective. The decision vector x = (x0, x1, . . . , xT ) models decisions at points t ∈
{0, . . . T} in time. Typical constraints are expressed by equations and inequalities and e.g. model
budgeting, bookkeeping or storage constraints and any lower and upper bounds on the decisions (xt ∈
Xt). The measurability constraints refer to a filtration, modeling the increase in information over time,
and express the fact that decisions have to be taken without knowing the future (nonanticipativity).
Because the decisions x also form a stochastic processes, optimization must be done in function spaces.
Unfortunately, only in rare cases an analytic solution can be given.
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In stochastic programming the underlying processes are typically replaced by approximations: The
process ξ is replaced by a finitely valued stochastic scenario process ξ′ and the decisions xt are replaced
by (often high dimensional) vectors x′t. In order to model nonanticipativity, it is assumed that the
decisions x′ are adapted to some suitable filtration F ′, related to the discretized process ξ′. This filtra-
tion usually is modeled by a tree structure, such that all the relevant information (values, probabilities,
decisions) is related to nodes in the tree.

In a tree-based framework it is possible to rewrite problem (1) in straightforward manner

maximize
(in x)

∑
i>0

piH (xi−, ξi)

subject to xi ∈ Xi.

The notation will be clarified later on (Section 4), but it is important to note that the random process
ξ and the random decision process x is now modeled just by real values, sitting on the nodes i of the
tree. This means that optimization can done numerically with xi ∈ Rn for some n.

From this sketch it should be clear that the construction of trees – in fact the approximation of a
process by a tree – is an important topic in multistage stochastic programming. Different approaches
have been used in literature. Besides just simulating trees by Monte Carlo simulation, the most popular
approach consists in constructing trees such that the conditional moments (up to some order) of the
tree are close to the conditional moments of the real process (moment method). This approach was
generalized in [HW01] (cf. also [Kla02]) by minimizing the Euclidean distance between whole collections
of statistical properties. Important work also was done on using probability metrics, e.g. based on
the Wasserstein/ Kantorovich-distances [DGKR03]. The Wasserstein distance is a transportation
distance intending to minimize total costs that have to be taken into account when passing from a
given distribution to a desired one. Other concepts of distances for multistage stochastic programming
emphasize the role of filtrations and use distances between filtrations, as introduced in [Boy71], see
also [Kud74], [HR09]. Recently, [Pfl09] proposed a new type of distance – the nested, or process
distance – that extends in a natural way the Wasserstein distance between probability distributions to
a distance between processes. Both aspects, the distributional and the filtration, are accounted for by
this measure.

The present paper aims at using the process distance for tree construction. We will focus on
improving the distance between a given, big scenario tree (constructed e.g. by simulation or any other
means) and a smaller scenario tree, suitable for solving a stochastic multistage optimization problem.
While this can be done in a relative simple way when using the Wasserstein distance, approximations
and iterative approaches for finding local optima have to be used in the tree-case. We introduce
suitable algorithms, discuss their properties and provide numerical examples.

In order to clarify the notation the concept of trees and their link to stochastic processes and
filtrations are reviewed in Section 2. The Wasserstein distance – as the most similar “ordinary”
probability metric – and its key properties as regards the approximation quality are discussed in
Section 3. This is the basis to introduce the nested distance in Section 4 and elaborate in Section 5
how to improve the values and the probabilities within a given tree structures in order to improve the
approximation quality.

2. Trees and filtrations

When stating stochastic optimization problems it is often advantageous to use the notion of stochas-
tic processes and filtered probability spaces to describe the objects being studied. This is, however,
not adequate when implementing concrete realizations in computer models. Typically the models are
reformulated in terms of finite state spaces. For multistage stochastic decision problems the basic data
structure is given by stochastic trees.

The most important aspect of the nested distance, defined later in Section 4, consists in accounting
for the increase of information over time. Usually this is modeled by a filtration. Let (Ω,FT , P ) be a
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Figure 1: An exemplary finite tree process ν = (ν0, ν1, ν2) with nodes N = {0, . . . 9} and leaves
N2 = {4, . . . 9} at T = 2 stages. The filtrations, generated by the respective atoms, are F2 =
σ ({4} , {5} , . . . {9}), F1 = σ ({4, 5} , {6} , {7, 8, 9}) and F0 = σ ({4, 5, . . . 9}) (cf. [PR07, Section 3.1.1]).

probability space and F = (Ft)t∈{0, 1,...T} a family of sigma algebras. Then F = (Ft)t∈{0, 1,...T} is a
filtration provided that Ft ⊂ Fτ whenever t ≤ τ . A triple (Ω,F , P ), where F = (Ft)t∈{0, 1,...T} is a
filtration, is called filtered probability space or stochastic basis.

Because the nested distance is able to compare processes and their approximating scenario trees,
it is necessary to review the main properties of scenario trees and to carefully discuss the relations
between processes and trees.

Trees

A tree is a directed graph (N , A) without circles. The vertices N will be called nodes (following
[PR07, p. 216]) in the following. A node m ∈ N is a direct predecessor or parent of the node n ∈ N
if (m,n) ∈ A. The parental relation between m and n is denoted by m = n−. The set of direct
successors (or children) of a vertex m is m+, such that m = n− iff n ∈ m+. A node m ∈ N is said to
be a predecessor of n ∈ N – in symbols m ⊃ n – if n− = n1, n1− = n2, and finally nk− = m for some
sequence nk ∈ N . It holds in particular that n− ⊃ n.

In addition we assume that any node n ∈ N is at a certain stage within the tree such that the
following properties are fulfilled:

• Nodes at the same stage t are collected in Nt, such that N is the union of the disjoint subsets
N0, N1, . . .NT , N =

⋃̇T
t=0Nt;

• r ∈ N is a root node if r is a predecessor of all nodes, r ⊃ n (n ∈ N ), and N0 (stage 0) contains
the root node r. By convention, the unique node of a rooted tree (the root node) is denoted by
0, hence N0 = {0};

• i ∈ N is a leaf node if i+ = ∅. NT collects all leaf nodes of the tree, and T is the height of the
tree;

• n ∈ Nt iff n+ ⊂ Nt+1.

In concrete implementations all vertices can be numbered consecutively, starting with 0 for the root
node (cf. Figure 1).



4

Any tree induces a filtration
Any tree with height T and finitely many nodes N naturally induces a filtration F : First use NT

as sample space. For any n ∈ N define the atom1 a (n) ⊂ NT in a backward recursive way by

a (n) :=
{
{n} if n ∈ NT⋃
j∈n+

a (j) else.

Employing these atoms, the related sigma algebra is defined by

Ft := σ (a(n) : n ∈ Nt) .

From the construction of the atoms it is evident that F0 = {∅,NT } for a rooted tree and that F =
(F0, . . .FT ) is a filtration on the sample space NT , i.e. it holds that Ft ⊂ Ft+1. Notice that node m
is a predecessor of n, i.e. m ⊃ n, if and only if

a (m) ⊃ a (n) .

This observation suggests the symbol m ⊃ n introduced in the previous section for the predecessor
relation in a tree structure.

Employing the atoms a (n) a tree process can be defined by

ν : {0, . . . T} × NT → N
(t, i) 7→ n if i ∈ a (n) and n ∈ Nt (i.e. n ⊃ i) ,

such that each

νt : NT → Nt
i 7→ ν (t, i)

is Ft−measurable. Moreover, the process ν is adapted to its natural filtration, i.e.

Ft = σ (ν0, . . . νt) = σ (νt) .

It is natural to introduce the notation it := νt (i) which denotes the state of the tree process for
any final outcome i ∈ NT at stage t. It then holds that iT = i, and moreover that it ⊃ iτ whenever
t ≤ τ , and finally – for a rooted tree – i0 = 0. The sample path from the root node 0 to a final node
i ∈ NT is

(νt (i))Tt=0 = (it)Tt=0 .

Any filtration induces a tree
On the other hand, given a filtration F = (F0, . . .FT ) on a finite sample space Ω it is possible to

define a tree, representing the filtration: Just consider the set At collecting all atoms generating Ft
(Ft = σ (At)), and define the nodes

N := {(a, t) : a ∈ At}

and the arcs
A = {((a, t) , (b, t+ 1)) : a ∈ At, a ⊃ b ∈ At+1} .

(N , A) then is a directed tree respecting the filtration F .

Hence filtrations on a finite sample space and finite trees are equivalent structures up to possibly
different labels, and in the following we will not distinguish between them.

1A F−measurable set a ∈ F is an atom if b ( a implies that P (a) = 0.
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Figure 2: The probabilistic setup: Diagram for the filtered probability space (NT , (Ft)t , P ) (left) ,
and the value process ξ (including the decision process x) (right).

Measures on trees
Let P be a probability measure on FT , such that (NT ,FT , P ) is a probability space. The notions

introduced above allow to extend the probability measure to the entire tree via the definition (cf.
Figure 1)

P ν (A) := P

 ⋃
t∈{0,...T}

ν−1
t (A ∩Nt)

 (A ⊂ N ) .

In particular this definition includes the unconditional probabilities

P ({n}) =: P (n)

for each node. Furthermore it can be used to define conditional probabilities

P ({n}| {m}) =: P (n|m) ,

representing the probability of transition from n to m, if m ⊃ n.

Value and decision processes
In a multi-period, discrete time setup the outcomes or realizations of a stochastic process are of

interest, not the concrete model (the sample space): in focus is the sample space

Ξ := Ξ0 × . . .ΞT
of the stochastic process

ξ : {0, . . . T} × NT → Ξ.
The process is measurable with respect to each Ft = σ (νt), from which follows (cf. [Shi96, Theorem
II.4.3]) that ξ can be decomposed as

ξt = ξt ◦ νt,
(i.e. idt ◦ξ = ξt ◦ νt, where idt : Ξ→ Ξt is the natural projection) as depicted in Figure 1. Notice that
ξt ∈ Ξt is an observation of the stochastic process at stage t and measurable with respect to Ft (in
symbols ξt C Ft), and at this stage t all prior observations

ξ0:t := (ξ0, . . . ξt)

are Ft−measurable as well.
In multistage stochastic programming, a decision maker has the possibility to influence the results

to be expected at the very end of the process by making a decision xt at any stage t of time, having
available the information which occurred up to the time when the decision is made, that is ξ0:t. The
decision has to be taken prior to the next observation ξt+1 (e.g., a decision about a new portfolio
allocation has to be made before knowing next days security prices).

This nonanticipativity property of the decisions is modeled by the assumption that any xt is mea-
surable with respect to Ft (xt C Ft), such that again

xt = xt ◦ νt
(i.e. idt ◦x = xt ◦ νt).
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3. The Wasserstein distance for probability measures – definition and computation

Probability metrics are functionals that quantify distances between random objects like random
variables, random vectors or even random processes. See e.g. [Rac91] for an encyclopedic treatment
or [GS02] for a comprehensive overview of relations between some classical probability metrics. An
important group of probability metrics is given by the Wasserstein, or Kantorovich distances.
Definition 1. Given two probability spaces P := (Ξ,Σ, P ) and P′ := (Ξ′,Σ′, P ′) and a convex function
d : Ξ× Ξ′ → R, the Wasserstein distance of order r ≥ 1 – denoted dr (P, P ′) – is the optimal value of
the optimization problem

minimize
(in π)

(´
d (ξ, ξ′)r π (dξ,dξ′)

) 1
r

subject to π (M × Ξ′) = P (M) (M ∈ Σ) ,
π (Ξ×N) = P ′ (N) (N ∈ Σ′) ,

(2)

where the infimum in (2) is among all bivariate probability measures π ∈ P (Ξ× Ξ′) which are measures
on the product sigma algebra Σ⊗Σ′. Often Ξ = Ξ′ and in typical applications of interest d : Ξ×Ξ′ → R
is a distance function.

Of particular interest is the Wasserstein distance of order r = 2 with a Euclidean norm d (ξ, ξ′) =
‖ξ − ξ′‖2. We shall refer to this combination as the quadratic Wasserstein distance.

The Wasserstein distance was treated first in [Mon81] in an entirely different context. A very
comprehensive summary can be found in [Vil03]. In the Russian literature (cf. [Ver06]) the Wasserstein
distance is rather known under the name Kantorovich distance. As a matter of fact the Wasserstein
distance depends on the sigma algebras Σ and Σ′. This fact is neglected by writing dr (P, P ′).

Basically, (2) can be interpreted as a transportation problem. The resulting functional dr (·, ·) can
be shown to be a full distance. Furthermore, convergence in dr (·, ·) is equivalent to weak conver-
gence plus convergence of the r-th moment (cf. [Vil03]). It has been shown (see e.g. [DGKR03])
that single stage expected loss minimization problems with objective function EξH (ξ, x) are (under
some regularity conditions on the loss function) Lipschitz continuous with respect to the Wasserstein
distance.
Remark 1. It should be noted that the Wasserstein distance is a well-defined distance of probability
measures, even if the sample spaces Ξ and Ξ′ are entirely different. The link between different spaces
is provided by the distance function – or cost function – d.

If P =
∑
i piδξi and P ′ =

∑
j p
′
jδξ′j are discrete measures on a space Ξ (Ξ′, respectively), then the

Wasserstein distance can be computed by the linear program (LP)

minimize
(in π)

∑
i,j d

r
i,jπi,j

subject to
∑
j πi,j = pi,∑
i πi,j = p′j ,

πi,j ≥ 0,

(3)

where di,j is the matrix with entries di,j = d
(
ξi, ξ

′
j

)
.

Remark 2. It can be derived from the complementary slackness conditions for linear programs that
the optimizing transport plan πi,j in (3) is sparse, i.e. it has at most |Ξ| + |Ξ′| − 1 non-zero entries.
This corresponds to the number of entries in one row plus one column of the matrix π or d.

3.1. Scenario approximation with Wasserstein distances
Given a probability measure P one might ask for the best approximating probability measure,

with support Q. The following Lemma 1 reveals that the probability measure P ∗Q, which is the best
approximation of P located just on Q , i.e.

dr
(
P, P ∗Q

)
≤ dr (P, P ′) (P ′ (Q) = 1) , (4)

can be computed in a direct way.
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Lemma 1 (Lower bounds and best approximation). Let P and P ′ be probability measures.
(i) The Wasserstein distance has the lower bound

dr (P, P ′)r ≥
ˆ

min
ξ∈Ξ′

d (ξ, ξ′)r P (dξ) . (5)

(ii) The lower bound in (5) is attained if the transport map T : Ξ→ Ξ′ with T (ξ) ∈ argminξ′ d (ξ, ξ′)
is measurable. The pushforward P ∗ := P ◦T−1 satisfies 2

dr (P, P ∗)r =
ˆ

min
ξ′∈Ξ′

d (ξ, ξ′)r P (dξ) . (6)

(iii) If Ξ = Ξ′ is vector space, then

dr
(
P, P T̃

)
≤ dr

(
P, PT) ,

where T̃ (ξ) := EP
(
ξ̃|T

(
ξ̃
)

= T (ξ)
)
.

Proof of Lemma 1. Let π have the marginals of P and P ′. Thenˆ
Ξ×Ξ′

d (ξ, ξ′)r π (dξ,dξ′) ≥
ˆ

Ξ

ˆ
Ξ′

min
q∈Ξ′

d (ξ, q)r π (dξ,dξ′)

=
ˆ

Ξ
min
q∈Ξ′

d (ξ, q)r P (dξ) .

Taking the infimum leads to (5).
Employing the transport map T, define the transport plan π := P ◦ (idΞ×T)−1 where idΞ is the

identity on Ξ, i.e.

π (A×B) = P ({ξ : (ξ,T (ξ)) ∈ A×B}) = P ({ξ : ξ ∈ A, T (ξ) ∈ B}) .

π is feasible, hence it has the marginals π (A× Ξ′) = P ({ξ : ξ ∈ A, T (ξ) ∈ Ξ′}) = P (A) and π (Ξ×B) =
P ({ξ : T (ξ) ∈ B}) = PT (B). Thusˆ ˆ

Ξ×Ξ′
d (ξ, ξ′)r π (dξ,dξ′) =

ˆ
Ξ
d (ξ,T (ξ))r P (dξ) =

ˆ
Ξ

min
ξ′∈Ξ′

d (ξ, ξ′)r P (dξ) ,

which is (6).
For the last assertion apply the conditional Jensen’s inequality ϕ ◦ E (X|T) ≤ E (ϕ (X) |T) to

ϕ (y) := d (x, y) and obtain

d (x,E (id |T) ◦T) ≤ E (d (x, id) |T) ◦T.

The measure π̃ (A×B) := P
(
A ∩ T̃−1 (B)

)
has marginals P and P T̃, from which follows that

dr
(
P, P T̃

)r
≤
ˆ
d
(
ξ, T̃ (ξ)

)r
P (dξ) =

ˆ
d (ξ,E (id |T) ◦T (ξ))r P (dξ)

≤
ˆ

E (d (ξ, id)r |T) (T (ξ))P (dξ) =
ˆ
d (ξ,T (ξ))r P (dξ) = dr

(
P, PT)r .

It should be noted that the measure P ∗Q does not depend on the order r. Moreover, given a probabil-
ity measure P , Lemma 1 allows to find the best approximation, which is located just on finitely many
points Q = {q1 . . . qn}. For this consider Ξ′ = Q, define p∗j := P (T = qj) (the collection of distinct sets
{T = qj} is a Voronoi tessellation; for a comprehensive treatment see [GL00] and the œuvre of Gilles
Pagès, e.g. [BPP05]) and P ∗Q :=

∑
j p
∗
jδqj , as above. Then dr

(
P, P ∗Q

)r =
´

minq∈Q d (ξ, q)r P (dξ),
and no better approximation is possible by Lemma 1. Usually the qj are called quantizers, which we
will adopt in the following.

2see also [DGKR03, Theorem 2]
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Optimal probabilities
According to Lemma 1 the best approximating measure for P =

∑
i piδξi , which is located on Q,

is P ∗Q =
∑
j p
∗
jδqj . The respective linear program is

minimize
(in π)

∑
i,j d

r
i,jπi,j

subject to
∑
j πi,j = pi,

πi,j ≥ 0,

which is solved by the optimal transport plan

π∗i,j :=
{
pi if d (ξi, qj) = minq∈Q d (ξi, q)
0 else

(7)

such that
p∗j =

∑
i

π∗i,j and dr
(
P, P ∗Q

)r = Eπ∗dr. (8)

Observe as well that the matrix π∗ in (7) has just |Ξ| non-zero entries, which is less than in Remark 3:
In every row i of π∗ there is just one non-zero entry π∗i,j .

Given the support points Q, it is hence an easy exercise to look up the closest points according to
(7), and sum up their probabilities according (8), such that the solution of (4) is immediately obtained
by P ∗Q =

∑
j p
∗
jδqj .

Optimal supporting points – facility location
Given the previous results on optimal probabilities the problem of finding a sufficiently good ap-

proximation of P in the Wasserstein distance reduces to the problem of looking up good locations Q,
that is to minimize the function

{q1, . . . qn} 7→ dr
(
P, P ∗{q1,...qn}

)r
=
ˆ

min
q∈{q1,...qn}

d (ξ, q)r P (dξ) . (9)

This problem is often referred to as facility location [DH02]. It is not convex, and no closed form
solution exists in general, it hence has to be handled with adequate numerical algorithms. Moreover
the facility location problem is NP-hard.

For the important case of the quadratic Wasserstein distance Lemma 1 and its proof give rise for
an adaption of the k-means clustering algorithm (also referred to as Lloyd’s algorithm, [Llo82]). The
approach is described in Algorithm 1.

Theorem 1. The measures P k generated by Algorithm 1 are improved approximations for P , they
satisfy

dr
(
P, P k+1) ≤ dr

(
P, P k

)
.

Algorithm 1 terminates after finitely many iterations.
In the case of the quadratic Wasserstein distance Algorithm 1 terminates at a local minimum

{q1, . . . qn} of (9).

Proof. Algorithm 1 is an iterative refinement technique, which finds the measure

P k =
n∑
j=1

P
(
T kj
)
δqk
j

after k iterations. By construction of (10) it is an improvement due to Lemma 1, (ii) and (iii), and
hence

dr
(
P, P k+1) ≤ dr

(
P, P k

)
.
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Algorithm 1
Facility location for P =

∑
i piδξi in the special case of the Euclidean distance and quadratic Wasser-

stein distance (order r = 2).
Initialization (k = 0):
Choose n points

{
q0
i : i = 1, . . . n

}
, for example by randomly picking n distinct points from {ξi : i}.

Assignment Step:
In each step k assign each ξi to the cluster with the closest mean,

T kj :=
{
ξi :

∥∥ξi − qkj ∥∥ ≤ ∥∥ξi − qkj′∥∥ for all j′ = 1, . . . n
}

and set

P k :=
n∑
j=1

P
(
T kj
)
δqk
j
.

Update Step:
Set

qk+1
j :=

∑
ξi∈Tkj

P (ξi)
P
(
T kj
)ξi. (10)

Iteration:
Set k ← k + 1 and continue with an assignment step until

{
q

(k)
j : j = 1, . . . n

}
is met again.

The algorithm terminates after finitely many iterations because there are just finitely many Voronoi-
combinations Tj .

For the Euclidean distance and r = 2 the expectation EX =
∑
i pixi minimizes the function

q 7→
∑
i

pi · ‖q − ξi‖22 = E ‖q − ξ‖22 .

In this case P k thus is a local minimum of (9).

For other distances than the quadratic Wasserstein distance, P k is possibly a good starting point,
but in general not a local (global) minimum of (9).

4. A nested distance for stochastic processes

The Wasserstein distance basically is a distance for random variables. However, it can be used for
stochastic processes as well:

(Ω,F)

P ##

ξ // (Ξ,Σ)

P ξ=P◦ξ−1
{{

[0, 1]
(a) Diagram for the push-forward mea-
sure P ξ.

NT ×N ′T

id2 $$

ξ◦id1 // Ξ ⊃ Q

N ′T

Eπ(ξ◦id1 | id2)

<<

(b) The conditional process: The diagram is
commutative in the average.

Figure 3: Pushforward measure and the projected process.

A random variable
ξ : (Ω,F)→ (Ξ,Σ)
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on a probability space (Ω,F , P ) naturally induce the push-forward measure

P ξ := P ◦ ξ−1 : Σ→ [0, 1]

on the state space (Ξ,Σ) (cf. Figure 3a and Figure 1), such that in particular the distance dr
(
P ξ, P ′ξ

′
)

is available by employing a distance function

d : Ξ× Ξ′ → R

defined on the state spaces Ξ × Ξ′. If the spaces Ξ and Ξ′ are interpreted as containing the sample
paths of Stochastic processes, it is possible to consider a process as a random variables, and to apply
the Wasserstein distance to the sample paths and their distribution. However, the gradually increasing
information, which is the essential ingredient of stochastic processes, is simply ignored by just having
a look at the final sigma algebra σ (ξ) ⊂ ΣT instead of the entire filtration (Σ0, . . .ΣT ). Figure 4 shows
a situation where similar paths (small ε) lead to a small value of the Wasserstein distance between the
first and the second case, which neglects the fact that in the second case perfect information about
the final outcome is available already at the intermediary step.

These considerations led to the proposal of a nested distance in [Pfl09, PP12].

4.1. Definition of the nested distance
In the following we will use a multistage (nested) distance concept that shares many properties of

the Wasserstein distances but accounts for the effects of filtrations. It was introduced first in [Pfl09]
and analyzed in [PP12]. In order to introduce nested distances we have to generalize the distributional
concepts used so far from random variables to stochastic processes. For this consider the process
(ξt)t∈{0,...T}, where ξt : (Ω,F) → (Ξt,Σt) are random variables with possibly different state spaces
(Ξt, Σt). Define the product space Ξ := Ξ1 × . . .ΞT , which can be equipped itself with the product
sigma algebra Σ := σ (Σ1 ⊗ . . .ΣT ). Then

ξ : (Ω,F)→ (Ξ,Σ)
ω 7→ (ξt (ω))t∈{0,...T}

is a random variable, mapping any outcome ω ∈ Ω to its path (ξt (ω))Tt=0. The law of of the process ξ,

P ξ := P ◦ ξ−1 : Σ→ [0, 1] ,

is the push-forward measure on Ξ = Ξ1 × . . .ΞT . The situation for processes is completely analogous
to random variables, provided that a distance function

d : Ξ× Ξ′ → R

on Ξ = Ξ0 × . . .ΞT and Ξ′ = Ξ′0 × . . .Ξ′T is available. For metric spaces (Ξt, dt) the functions
d (ξ, ξ′) =

∑T
t=0 dt (ξt, ξ′t) or d (ξ, ξ′) = maxt∈{0, . . . T} dt (ξt, ξ′t) are immediate candidates. We shall
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Figure 4: Three tree processes to illustrate three different flows of information: If ε is small the
Wasserstein distance will be small too (cf. [HRS06]).
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call a metric (weighted) Euclidean, if d (ξ, ξ′) =
(∑T

t=0 wt ‖ξt − ξ′t‖
2
2

)1/2
, where wt > 0 are positive

weights and each norm ‖·‖2 satisfies the parallelogram law.
With these preparations the nested distances can be defined as follows:

Definition 2. For two filtered probability spaces P := (Ξ,Σ, P ), P′ := (Ξ′,Σ′, P ′) and a real-valued,
convex function d : Ξ×Ξ′ → R the nested distance of order r ≥ 1 – denoted dlr (P,Q) – is the optimal
value of the optimization problem

minimize
(in π)

(´
d (ξ, ξ′)r π (dξ,dξ′)

) 1
r

subject to π (M × Ξ′ | Σt ⊗ Σ′t) = P (M | Σt) (M ∈ ΣT , t ∈ {0, . . . T}) ,
π (Ξ×N | Σt ⊗ Σ′t) = P ′ (N | Σ′t) (N ∈ Σ′T , t ∈ {0, . . . T}) ,

(11)

where the infimum in (11) is among all bivariate probability measures π ∈ P (Ξ× Ξ′), which are
measures on the product sigma algebra ΣT ⊗ Σ′T . We will refer to the nested distance also as process
distance, or multistage distance. The nested distance dl2 (order r = 2), with d a weighted Euclidean
distance is referred to as quadratic nested distance.

Note that the minimization (2) for the Wasserstein distance dr (P, P ′) is a relaxation of (11). Hence
the Wasserstein distance is always less or equal to the nested distance,

dr (P, P ′) ≤ dlr (P,P′) .

It is possible therefore to decompose the nested distance into the Wasserstein and the effect dlr (P,P′)−
dr (P, P ′) caused by the filtration related to the additional constraints in (11).

The multistage distance dlr (·, ·) also preserves important regularity properties (Lipschitz and Hölder
continuity) of the objective function of multistage stochastic programs (see [PP12, Section 6]).

4.2. The nested distance for trees.
The Wasserstein distance between discrete probability measures can be calculated by solving the

linear program (3). To establish a similar linear program for the nested distance we use trees that
model the whole filtration. Then problem (11) reads

minimize
(in π)

∑
i,j πi,j · dri,j

subject to
∑
j⊂n π (i, j|m,n) = P (i|m) (m ⊃ i, n),∑
i⊂m π (i, j|m,n) = P ′ (j|n) (n ⊃ j, m),

πi,j ≥ 0 and
∑
i,j πi,j = 1,

(12)

where again πi,j is a matrix defined on the samples (i ∈ NT , j ∈ N ′T ) and m ∈ Nt, n ∈ N ′t are
arbitrary nodes. The conditional probabilities π (i, j|m,n) are given by

π (i, j|m,n) = πi,j∑
i′⊂m, j′⊂n πi′,j′

.

The nested structure of the transportation plan π, which is induced by the trees, is schematically
depicted in Figure 5.

The constraints in (12) can be written in more detail

P (i) ·
∑

i′⊂m, j′⊂n
πi′,j′ = P (m) ·

∑
j′⊂n

πi,j′ (m ⊃ i, n) and

P ′ (j) ·
∑

i′⊂m, j′⊂n
πi′,j′ = P ′ (n) ·

∑
i′⊂m

πi′,j (m, n ⊃ j) .
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Figure 5: Schematic structure of the distance matrix d and the transport matrix π, as it is imposed
by the structures of the trees and the respective constraints.

As P and P ′ are given, this shows that (12) is equivalent to the linear program

minimize
(in π)

∑
i,j πi,j · dri,j

subject to P (i) ·
∑
i′⊂m, j′⊂n πi′,j′ = P (m) ·

∑
j′⊂n πi,j′ (m ⊃ i),

P ′ (j) ·
∑
i′⊂m, j′⊂n πi′,j′ = P ′ (n) ·

∑
i′⊂m πi′,j (n ⊃ j),

πi,j ≥ 0 and
∑
i,j πi,j = 1.

Remark 3. As a matter of fact many constraints in (12) are linearly dependent. For computational
reasons (loss of significance during numerical evaluations, which can impact linear dependencies and
the feasibility) it is advisable to remove linear dependencies. This is partially accomplished by the
simpler program

minimize
(in π)

∑
i,j πi,j · dri,j

subject to
∑
j∈(n−)+

π (m, j|m−, n−) = P (m|m−) (m ∈ N\N0) ,∑
i∈(m−)+

π (i, n|m−, n−) = P ′ (n|n−) (n ∈ N ′\N ′0) ,
πi,j ≥ 0 and

∑
i,j πi,j = 1,

(13)

which by [PP12, Lemma 10] is equivalent to (12) and can be reformulated as an LP as well. Further
constraints can be removed from (13) by taking into account that

∑
i−=m−

P (i)
P (m−) = 1. Hence, for

each node m it is possible to drop one constraint out of all
∣∣(m−)+

∣∣ related equations.
It should be noted that instead of solving (13) the nested distance can be calculated in a recursive

way. First define

dlr (i, j) := d
(
ξi, ξ

′
j

)
(14)



13

for i ∈ NT , j ∈ N ′T . Given dlr (i, j) for i ∈ Nt+1 and j ∈ N ′t+1 set

dlr (m,n)r :=
∑

i∈m+,j∈n+

π (i, j|m,n) · dlr (i, j)r (m ∈ Nt, n ∈ N ′t ) (15)

for m ∈ Nt , n ∈ N ′t , where the conditional probabilities π(·, ·|m,n) solve

minimize
in π (., .|m,n)

∑
i∈m+,j∈n+ π (i, j|m,n) · dlr (i, j)r

subject to
∑
j∈n+

π (i, j|m,n) = P (i|m) (i ∈ m+),∑
i∈m+

π (i, j|m,n) = P ′ (j|n) (j ∈ n+),
π (i, j|m,n) ≥ 0.

The values dlr (i, j) can be interpreted as conditional nested distances for the trees starting in nodes
i (j, resp.). Finally the transport plan π on the leaves is recomposed by

π (i, j) = π (i, j| iT−1, jT−1) · π (iT−1, jT−1| iT−2, jT−2) · . . . π (i1, j1| 0, 0)

and the nested distance is given by dlr (P,P′)r = dlr (0, 0).

5. Improving an approximating tree

Lemma 1 and the succeeding remark explain how to approximate a probability measure P by a
measure P ∗Q, which is located just on the points Q = {q1 . . . qn}: the measure P ∗Q =

∑
j P (T = qj) ·δqj

(cf. (7)) was found to be the best choice with respect to the Wasserstein distance, irrespective of the
order r ≥ 1. In this section we address the question of looking up processes, i.e. trees, which are close
in nested distance to a given tree.

As in Section 3 we split the problem in two parts:

(i) Find probabilities on a given tree structure, which improve the nested distance to a given tree;
(ii) facility location: Improve the locations, which are the scenarios of the tree, to again improve the

approximation overall.

5.1. Optimal probabilities
In a multistage context we have to answer the question which probability measure P ∗Q is best to

approximate P = (Ξ,Σ, P ), provided that the states Q ⊂ Ξ′ and filtration Σ′ of the stochastic processes
are given: Knowing the branching structure of the tree, we seek for the best probabilities such that
the multistage distance to P is as small as possible. The best approximation, P ∗Q, satisfies

dlr
(
P,
(
Ξ′,Σ′, P ∗Q

))
≤ dlr (P, (Ξ′,Σ′, P ′)) (P ′ (Q) = 1) ,

where Q = {q1, . . . qn} ⊂ Ξ′.
Compared to the Wasserstein distances it is considerably more difficult to find those optimal prob-

abilities. From (13) it follows that the corresponding transport plan π∗ necessarily satisfies

minimize
(in π∗)

∑
i,j π

∗
i,j · dri,j

subject to
∑
j π
∗ (m, j|m−, n−) = P (m|m−) ,∑

i π
∗ (i, n|m−, n−) =

∑
i π
∗ (i, n| m̃−, n−) , m, m̃ ∈ Nt

π∗i,j ≥ 0 and
∑
i,j π

∗
i,j = 1.

(16)

The constraint ∑
i

π∗ (i, n|m−, n−) =
∑
i

π∗ (i, n| m̃−, n−) (m, m̃ ∈ Nt) (17)
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for nodes m and m̃ at the same stage t in (16) ensures that

P ∗Q (n|n−) :=
∑
i

π∗ (i, n|m−, n−)

is well defined (as it is independent of m), allowing thus to reconstruct a measure P ∗Q by P ∗Q =∑
j δqj ·

∑
i π
∗
i,j .

Unfortunately, problem (16) does not allow an immediate solution in general. Moreover the con-
straints (17), for∑

i⊂m− π
∗
i,n∑

i⊂m−,j⊂n− π
∗
i,j

= π∗ (n|m−, n−) = π∗ (n| m̃−, n−) =
∑
i⊂m̃− π

∗
i,n∑

i⊂m̃−,j⊂n− π
∗
i,j

,

are not linear any more – in fact they are multilinear in π∗.

Recursive computation of the nested distance
Formulation (16) and the fact that the nested distance can be calculated in a recursive way (see

(14) and (15)) leads to the idea of calculating improved probabilities in a recursive way too:
Assume that π is feasible for given quantizers Q. Define

dlr (i, j) := d (ξi, qj) (18)

for i ∈ NT , j ∈ N ′T and, given dlr (i, j) for i ∈ Nt+1 and j ∈ N ′t+1, recursively compute

dlr (m,n)r :=
∑

i∈m+,j∈n+

π∗ (i, j|m,n) · dlr (i, j)r (m ∈ Nt) (19)

for m ∈ Nt , n ∈ N ′t , where the conditional probabilities π∗ (·, ·|m,n) solve

minimize
in π̃ (., .|m,n)

∑
m∈Nt π (m,n) ·

∑
i∈m+,j∈n+

π̃ (i, j|m,n) · dlr (i, j)r

subject to
∑
j∈n+

π̃ (i, j|m,n) = P (i|m) (i ∈ m+),∑
i∈m+

π̃ (i, j|m,n) =
∑
i∈m̃+

π̃ (i, j| m̃, n) (j ∈ n+),
π̃ (i, j|m,n) ≥ 0.

(20)

Recomposing the transport plan π∗ on the leaves i ∈ NT and j ∈ N ′T by

π∗ (i, j) = π∗ (iT , jT | iT−1, jT−1) · π∗ (iT−1, jT−1| iT−2, jT−2) · . . . π∗ (i1, j1| 0, 0) (21)

leads to improved probabilities:

Theorem 2. Let P ′ be the measure related to the feasible transport probabilities π and P ′∗ be related
to the probabilities π∗ by

P ′∗ :=
∑
j

δqj ·
∑
i

π∗ (i, j) .

Then dlr (P,P′∗) ≤ dlr (P,P′) and the improved distance is given by

dlr (P,P′∗) = dlr (0, 0) .

Proof. Observe that the measures π and π∗ have the iterative decomposition

π (i, j) = π (iT , jT )
= π (iT , jT | iT−1, jT−1) · π (iT−1, jT−1| iT−2, jT−2) · . . . π (i1, j1| 0, 0) ,

for all leafs i ∈ NT and i ∈ N ′T (cf. [Dur04, Chapter 4, Theorem 1.6]). The terminal distance (t = T ),
given the entire history up to (i, j), is dlT ;r (i, j) := d (i, j), which serves as a starting value for the
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iterative procedure. To improve a given transport plan π the algorithm in (20) fixes the conditional
probabilities π (m,n) in an iterative step at stage t.

The constraints in (20) ensure, for∑
i∈m+

∑
j∈n+

π∗ (i, j|m,n) =
∑
i∈m+

P (i|m) = 1,

that π∗ again is a probability measure for each m ∈ N ′t , and hence, by (21), π∗ is a probability measure
on NT × N ′T . Furthermore the constraints ensure that π∗ respects the tree structures of both trees:
π∗ is feasible for (7). Finally it holds that∑

i,j

π∗i,jd (i, j)r = dlr (0, 0)r

due to the recursive construction.
As the initial π is feasible as well for all equations in (20) it follows from the construction that

dlr (P,P′∗)r = dlr (0, 0)r = Eπ∗dr ≤ Eπdr.

As π was chosen arbitrarily it follows that

dlr (P,P′∗) ≤ dlr (P,P′) ,

which shows that P ′∗ is an improvement.

5.2. Optimal scenarios – facility location
Consider quantizers

Q = {q1, . . . qn}

where each qj = (qj,0, . . . qj,T ) is a path in the tree. Given a fixed, feasible measure π define

Dπ ({q1, . . . qn})r := Eπdr =
∑
i,j

πi,jd (ξi, qj)r . (22)

The problem of finding optimal quantizers consists in solving the minimization problem

min
q1,...qn

Dπ ({q1, . . . qn}) . (23)

Again it is difficult to solve (23), which can be considered as a facility location problem. However, in
an iterative procedure as proposed in the following, a few steps of significant descent in each iteration
will be sufficient to considerably improve the overall approximation.

In many applications the gradient of function (22) is available as an analytic expression, for example
if d

(
ξi, ξ

′
j

)
=
(∑

t dt
(
ξi, ξ

′
j

)p)1/p. In this situation the derivative of Dπ ({q1, . . . qn})r is given by

∇ξj,tD (ξ′) = Dπ (ξ′)1−r ·
∑
i

πi,jd
(
ξi, ξ

′
j

)r−p · dt (ξi,t, ξ′j,t)p−1 · ∇ξ′
j
dt
(
ξi,t, ξ

′
j,t

)
(j ∈ Nt) .

If in addition the metric at stage t is a norm, dt
(
ξi,t, ξ

′
j,t

)
=
∥∥ξi,t − ξ′j,t∥∥s, then it holds that

∇ξ′
j,t
dt
(
ξi,t, ξ

′
j,t

)
= dt

(
ξi,t, ξ

′
j,t

)1−s · ∣∣ξi,t − ξ′j,t∣∣s−2 ·
(
ξi,t − ξ′j,t

)
which can be obtained by direct computation.

To compute the minimum in (23) a few steps by the steepest descent method will ensure some
successive improvements. Another possible method is the limited memory BFGS (Broyden-Fletcher-
Goldfarb-Shanno) method, cf [Noc80].

In the special case of the quadratic nested distance the facility location problem can be accomplished
by explicit evaluations. This is by far the fastest procedure, and summarized in Algorithm 2, Step 3.
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Theorem 3. For a quadratic nested distance the scenarios

qt (nt) :=
∑

mt∈Nt

π (mt, nt)∑
mt∈Nt π (mt, nt)

· ξt (mt)

(cf. (24)) are the best possible choice to solve the facility location problem (23).

Proof. The explicit decomposition of the nested distance allows for the re-arrangement

dl2 (P,P′)2 =
∑
i,j

πi,jd (ξi, qj)2

=
∑
i,j

πi,j

T∑
t=0

wt · ‖ξit − qjt‖
2
2

=
T∑
t=0

wt ·
∑
nt∈N ′t

( ∑
mt∈Nt

π (mt, nt) ‖ξ (mt)− qt (nt)‖22

)
.

By the same reasoning as in the proof of Theorem 1 the assertion follows for every nt ∈ Nt by
considering and minimizing every map

q 7→
∑

mt∈Nt

π (mt, nt) · ‖ξ (mt)− q‖22

separately.

5.3. The overall algorithm
As it is not possible to improve the probabilities and solve the facility location problem in one single

step Algorithm 2 describes the course of action. Starting with an initial guess for the quantizers (resp.
the scenario paths) and using the related transport probabilities π0 the algorithm iterates between
improving the quantizers (Step 2) and improving the transport probabilities (Step 3). Step 2 goes
backward in time and uses conditional versions dlk+1

r (m,n) of the nested distance, which are related
to nodes m and n, in order to resemble an approximation of the full nested distance. To improve the
locations q, Step 3 either uses classical optimization algorithms for the general case, or a version of
the k-means algorithm in the important case of the quadratic nested distance.

The algorithm leads to an improvement in each iteration step (Theorem 2 and Theorem 3) and
converges in finitely many steps.

Theorem 4. Provided that the minimization (23) can be done exactly – as is the case for the quadratic
nested distance – Algorithm 2 terminates at a stationary dlr

(
P, P k

∗) after finitely many iterations k∗.

Proof. It is possible – although very inadvisable for computational purposes – to rewrite the compu-
tation of dlk+1

r (0, 0) in Algorithm 2 as a single linear program of the form

minimize
in πk+1 c

(
πk+1|πk

)
subject to Aπk+1 = b,

πk+1 ≥ 0,

where the matrix A and the vector b collect all linear conditions from (20), and π 7→ c (π| π̃) is
multilinear. Note that the constraints Π := {π : Aπ = b, π ≥ 0} form a convex polytope, which is
independent of the iterate πk . Without loss of generality one may assume that πk is an edge of the
polytope Π. Because Π has finitely many edges and each edge π ∈ Π can be associated with a unique
quantization scenario q (π), by assumption it is clear that the decreasing sequence

dlk+2
r

(
P,Pk+2) = c

(
πk+2|πk+1) ≤ c (πk+1|πk

)
= dlk+1

r

(
P,Pk+1)

cannot improve further whenever the stationary point is met.
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Algorithm 2
Sequential improvement of the measure P k to approximate P =

∑
i piδξi in the nested distance on the

trees (Ft)t∈{0,...T} ((F ′t)t∈{0,...T}, resp.).
Step 1– Initialization
Set k ← 0, and let q0 be process quantizers with related transport probabilities π0 (i, j) between
scenario i of the original P-tree and scenario q0

j of the approximating P′-tree; P0 := P′.

Step 2 – Improve the quantizers
Find improved quantizers qk+1

j :

• In case of the quadratic Wasserstein distance (Euclidean distance and Wasserstein of order r = 2)
set

qk+1 (nt) :=
∑

mt∈Nt

πk (mt, nt)∑
mt∈Nt π

k (mt, nt)
· ξt (mt) , (24)

• or solve (23), for example by applying the steepest descent method, or the limited memory BFGS
method.

Step 3 – Improve the probabilities
Setting π ← πk and q ← qk+1 use (18), (19), (20) and (21) to calculate all conditional probabilities
πk+1 (·, ·|m,n) = π∗ (·, ·|m,n), the unconditional transport probabilities πk+1 (·, ·) and the distance
dlk+1
r (0, 0) = dlr (0, 0).

Step 4
Set k ← k + 1 and continue with Step 2 if

dlk+1
r (0, 0) < dlkr (0, 0)− ε,

where ε > 0 is the desired improvement in each cycle k.
Otherwise, set q∗ ← qk, define the measure

P k+1 :=
∑
j

δqk+1
j
·
∑
i

πk+1 (i, j) ,

for which dlr
(
P,Pk+1) = dlk+1

r (0, 0) and stop.
Remark. In case of the quadratic nested distance (r = 2) and the Euclidean distance the choice ε = 0
is possible.

The same statement as for the Wasserstein distance holds true here for the nested distance: For
other distances than the quadratic ones P k can be used as a starting point, but in general is not even
a local minimum.

5.4. A numerical example and derived applications

To illustrate the results we have implemented all steps of the discussed algorithms in MATLAB R©.
All LPs were solved using the function linprog. It is a central observation that optimization for Eu-
clidean norms and the quadratic Wasserstein distance is fastest. This is because the facility location
problem can be avoided and replaced by computing the conditional expectation in a direct way. More-
over, when applying the methods, it was a repeated pattern that the first few iteration steps improve
the distance significantly, whereas following steps just give minor improvements of the objective.

The computation times collected in Table 1 have been noted for an iteration step in Algorithm 2
on a customary, standard laptop.
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Stages 4 5 5 6 * 7 7
Nodes of the initial tree 53 309 188 1,365 1,093 2,426
Nodes of the approximating tree 15 15 31 63 127 127
Time/ sec. 1 10 4 160 157 1,044

Table 1: Time to perform an iteration in Algorithm 2.
The example indicated by the asterisk (*) corresponds to Figure 6.

Figure 6: The initial tree with 1093 nodes at 7 stages (left) and a binary, approximating tree, which
has 127 nodes (right). Their nested distance is 2.32. The tree structure is depicted, annotated is the
histogram of the paths.

Figure 6 exemplary depicts the situation of the latter example with 7 stages. The computed
distance of 2.32 allows the rough interpretation, that the scenarios of the initial tree – on average –
can be squeezed into a “pipe” of radius 2.32/ 7= 0.3 along a branch of the approximating tree.

6. Summary and outlook

In this paper we address the problem of approximating stochastic processes in discrete time by
trees, which are discrete stochastic processes. For this purpose we build on the recently introduced
nested distances, generalizations of the well known Wasserstein or Kantorovich distances. In addition
to their properties as classical probability metrics they are able to account for the effects of filtrations
related to stochastic processes.

In particular we use the nested distance to compare trees, which are important tools for discretizing
stochastic optimization problems. The aim is to reduce the distance between a given – usually large
– tree, and a smaller tree supposed to approximate the given tree. This problem is of fundamental
interest in stochastic programming, as the number of variables of the initial process can be reduced
significantly by the techniques and algorithms proposed.

The paper analyzes the relations between processes and trees, reviews the main properties of
Wasserstein distances and nested distances and finally proposes and analyzes an iterative algorithm
for improving the nested distance between trees. For the important special case of nested distances of
order 2 based on Euclidean distances the algorithm can be enhanced by using k-means clustering in
order to improve calculation speed.

While first numerical experiences are encouraging, some interesting issues have to be approached in
future research: As an example the speed of the algorithm could be further increased by parallelization,
as in its Step 3 many conditional distances can be calculated independently and in parallel for each
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stage. Furthermore, we will aim at extending the algorithm to improve distances directly between
stochastic processes and an approximating tree.
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