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Abstract. For a closed cone C in Rn, the completely positive cone of C is the convex cone K
in Sn generated by {uuT : u ∈ C}. Completely positive cones arise, for example, in the conic LP

reformulation of a nonconvex quadratic minimization problem over an arbitrary set with linear and

binary constraints. Motivated by the useful and desirable properties of the nonnegative orthant and

the positive semidefinite cone (and more generally of symmetric cones in Euclidean Jordan algebras),

in this paper, we investigate when (or whether) K can be self-dual, irreducible, or homogeneous.
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1. Introduction. Consider Rn with the usual inner product. Given a closed

cone C in Rn that is not necessarily convex, we consider two related cones in the

space Sn of all n× n real symmetric matrices:

The completely positive cone of C defined by

K :=
{∑

uuT : u ∈ C
}
,(1.1)

where the sum denotes a finite sum, and the copositive cone of C given by

E := {A ∈ Sn : A is copositive on C}.(1.2)

When C = Rn, these two cones reduce to Sn+, which is the underlying cone in

semidefinite programming [16] and semidefinite linear complementarity problems [13],

[12]. In the case of C = Rn
+, these cones reduce, respectively, to the cones of com-

pletely positive matrices and copositive matrices which have appeared prominently in

statistical and graph theoretic literature [3] and in copositive programming [7]. In a

path-breaking work, Burer [4] showed that a nonconvex quadratic minimization prob-

lem over the nonnegative orthant with some additional linear and binary constraints

can be reformulated as a linear program over the cone of completely positive matri-

ces. Since then, a number of authors have investigated the properties of the cone of
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completely positive matrices, specifically describing the interior and facial structure

of the cones of completely positive and copositive matrices, see [8], [5], [6].

The work of Burer has been recently extended to case of an arbitrary set (in

place of the nonnegative orthant) by Eichfelder and Povh [10]. To elaborate, let

M ∈ Sn, A ∈ Rm×n, b ∈ Rm, c ∈ Rn, S be an arbitrary nonempty set in Rn, and let

J ⊆ {1, 2, . . . , n}. It is shown in [10] that the quadratic optimization problem

min xTMx+ 2cTx

such that

Ax = b,

xj ∈ {0, 1} for all j ∈ J,
x ∈ S,

under a mild assumption, can be reformulated as linear programming problem over a

cone in Sn+1:

min 〈M̂, Y 〉
L(Y ) = B

Y ∈ K,

where M̂ =

[
0 cT

c M

]
and the closed convex cone K is given by

K = closure

{∑
k

λk

(
1

xk

)(
1

xk

)T

: λk ≥ 0 , xk ∈ S

}
.(1.3)

Since this cone is, see Lemma 1.4 in [10],{∑
uuT : u ∈ cone({1} × S)

}
(with cone({1} × S) = R+×S when S is a closed cone), we see that the linear program

defined above is over a completely positive cone corresponding to the closed (possibly

nonconvex) cone C = cone({1} × S).

The above reformulation demonstrates the importance of studying completely

positive cones K that come from (general) closed cones C in Rn. Motivated by the

useful and desirable properties (such as self-duality and homogeneity) of the nonneg-

ative orthant and the positive semidefinite cone (and more generally of symmetric

cones in Euclidean Jordan algebras [11]), in this paper, we address the questions

of when or whether K can be self-dual, irreducible, or homogeneous. We show, for

example,

• K is self-dual if and only if Rn = C ∪ −C,
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• K is irreducible when C has nonempty interior, and

• K is non-homogeneous when C is a proper (convex) cone.

The non-homogeneity of K is proved via a recent result in [14] where it is shown that

under certain conditions on C (for example, C is a proper cone), every automorphism

of K is of the form

X 7→ QXQT ,

where Q is an automorphism of C.

2. Preliminaries. Throughout this paper, H denotes either Rn or Sn. In the

case of Rn, vectors are regarded as column vectors and the usual inner product is

written as 〈x, y〉 or as xT y. The space Sn – consisting of all real n × n symmetric

matrices – carries the trace inner product 〈X,Y 〉 = trace(XY ), where the trace of a

matrix is the sum of its diagonal elements. Rn
+ denotes the nonnegative orthant in

Rn and Sn+ denotes the set of all positive semidefinite matrices in Sn.

For a set K in H, int(K), K, and K⊥ denote, respectively, the interior, closure,

and orthogonal complement of K. The dual of K is given by

K∗ := {y ∈ H : 〈y, x〉 ≥ 0 ∀x ∈ K}.

A nonempty set K is a cone if for all λ ≥ 0 in R and x ∈ K, we have λx ∈ K. A

closed cone K is said to be pointed if K ∩ −K = {0}; it is said to be a proper cone

if K is convex, pointed, and has nonempty interior. For a convex cone K, we denote

the set of all extreme vectors by Ext(K). Recall that a nonzero vector x in K is an

extreme vector if the equality x = y + z with y, z ∈ K holds only when y and z are

nonnegative multiples of x.

With L(H) denoting the Banach space of all (bounded) linear transformations on H

with operator norm, we let, for any set K in H,

• Π(K) := {L ∈ L(H) : L(K) ⊆ K}.
• Aut(K) := {L ∈ L(H) : L is invertible and L(K) = K}.

We denote the closure of Aut(K) in L(H) by Aut(K).

Throughout this paper, we assume that

• K is a generic nonempty set in H,

• C is a closed cone in Rn that is not necessarily convex, and

• the associated cones K and E in Sn are given, respectively, by (1.1) and (1.2).

While all our results are valid for any proper cone C and the corresponding com-

pletely positive cone, in order to have some generality, we impose weaker conditions
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on the closed cone C such as: (i) C is pointed, (ii) C has interior, (iii) C∗ has interior,

(iv) C\{0} is connected, (v) int(C) is connected.

We begin by presenting some lemmas that are needed in the paper. The first

lemma is well known and easy to prove (see the proof of Theorem 2.2 in [5]).

Lemma 2.1. Suppose C is a closed cone in Rn with nonempty interior and A ∈ E.
Let u ∈ int(C) with uTAu = 0. Then A ∈ Sn+ and Au = 0.

Lemma 2.2. Suppose K is a closed pointed cone in H with interior and L ∈
Π(K). If L(u) = 0 for some u ∈ int(K), then L = 0.

Proof. Let x ∈ H and u ∈ int(K) with L(u) = 0. Then for all small ε > 0,

u + ε x, u − ε x ∈ K. Since L ∈ Π(K), we must have εL(x) = L(u + ε x) ∈ K and

−εL(x) = L(u− ε x) ∈ K. Thus, L(x) ∈ K ∩ −K = {0}. Since x is arbitrary, we see

that L = 0.

Lemma 2.3. Let K be closed cone in H such that K and K∗ have nonempty

interiors. Suppose L ∈ Aut(K) such that for some d ∈ int(K), L(d) ∈ int(K). Then

L ∈ Aut(K). In particular, this conclusion holds if K is a proper cone.

Proof. Let Lk ∈ Aut(K) such that Lk → L in L(H). Then LT
k → LT . Note that

Lk ∈ Aut(K) ⇒ LT
k ∈ Aut(K∗). Fix u ∈ int(K∗) and let xk := (LT

k )−1(u) so

that xk ∈ K∗ and LT
k (xk) = u for all k = 1, 2, . . . . We claim that the sequence xk

is bounded. Assuming the contrary, let, without loss of generality, ||xk|| → ∞ and

lim xk

||xk|| = y ∈ K∗. Then LT (y) = 0 and 0 = 〈LT (y), d〉 = 〈y, L(d)〉 > 0 (the last

inequality holds since K is a closed cone, 0 6= y ∈ K∗ and L(d) ∈ int(K)), which is

a contradiction. Now, as xk is bounded, we may assume that xk → x ∈ K∗. Then

LT (x) = u. This means that the range of LT contains an open set and hence LT is

invertible. It follows that L is invertible. From Lk → L and L−1k → L−1, we see that

L ∈ Aut(K).

As a simple consequence, we have

Corollary 2.4. Suppose C is a closed cone in Rn (n > 1), such that C and C∗
have nonempty interiors. Then for any v ∈ int(C), vvT 6∈ Aut(C).

Remark. The above Lemma and its corollary may not hold for a closed cone whose

dual has empty interior. For example, when K is the closed upper-half plane in R2,

every element of Aut(K) is of the form (see Example 4 in [14])

A =

[
a b

0 c

]
,
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where a 6= 0 and c > 0. Clearly the coordinate vector e2 ∈ int(K) and e2e
T
2 ∈ Aut(K),

but not invertible.

3. Some general properties. In this section, we collect some elementary prop-

erties of the completely positive cone K.

Proposition 3.1. Let C be a closed cone in Rn. Then the following statements

hold:

(i) E and K are closed convex cones in Sn, and K ⊆ Sn+ ⊆ E.
(ii) K is pointed.

(iii) E is the dual of K.
(iv) If C has nonempty interior, then K and E are proper cones. Converse holds

if C also convex.

Proof. All four statements except the converse in (iv) are covered in [14], Prop. 5.

Suppose C is convex and let E be proper. If C does not have any interior, then (the

subspace) C − C 6= Rn. Let 0 6= v ∈ (C − C)⊥ and A := vvT . Then A is nonzero and

〈A, uuT 〉 = 0 for all u ∈ C. This implies that A,−A ∈ (K)∗ = E contradicting the

properness of E . Hence C must have interior.

The proof of the following result is similar to the one given for the completely

positive cone of Rn
+, see [3], [8], [5]. For the sake of completeness, we include a proof.

Theorem 3.2. Let C be a closed cone. Then

Ext(K) =
{
uuT : 0 6= u ∈ C

}
.

Moreover, if C has nonempty interior, then int(K) =M, where

M =

{
N∑
1

uiu
T
i : span{u1, . . . , uN} = Rn, ui ∈ C ∀ i and uj ∈ int(C) for some j

}
.

Proof. The statement about the extreme vectors of K is covered in [14], Prop.

7. Now suppose that C has nonempty interior. Note that M ⊆ K. Consider any

nonzero A ∈ E . Then 〈A,X〉 ≥ 0 for all X ∈ M. If 〈A,X〉 = 0, say, for some

X =
∑N

1 uiu
T
i ∈ M, then uTi Aui = 0 for all i; As some uj ∈ int(C), by Lemma 2.1,

A ∈ Sn+ and hence (whether ui belongs to int(C) or not), Aui = 0 for all i. Since the

vectors ui span Rn, we must have A = 0, contradicting our choice of A. Thus, for

any nonzero A ∈ E , 〈A,X〉 > 0 for all X ∈M. As K∗ = E and both cones are proper

(by the previous result) , we must have (see [2], page 3)

int(K) = {Z : 〈A,Z〉 > 0 ∀ A ∈ E \ {0}}
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and so M ⊆ int(K). Now to see the reverse inclusion, let Y ∈ int(K), X ∈ M,

X 6= Y . Since K is convex, we can extend the line segment joining X and Y (slightly)

beyond Y to get Z ∈ K such that Y is a convex combination of X and Z. Because of

the form of X and Z, this convex combination is inM. This completes the proof.

Remark. By using Lemma 3.7 in [5], we can actually state the following.

When the closed cone C has nonempty interior,

int(K) =

{
N∑
1

uiu
T
i : span{u1, u2, . . . , uN} = Rn, ui ∈ int(C) for all i

}
.

4. Irreducibility. A closed cone K in H is said to be reducible in H if there

exist nontrivial (i.e., nonzero) closed cones K1 and K2 and subspaces H1 and H2 in

H such that K1 ⊆ H1, K2 ⊆ H2, with

K = K1 +K2, H = H1 +H2, and H1 ∩H2 = {0}.

If K is not reducible, we say that it is irreducible.

Theorem 4.1. Let C be a closed cone in Rn. If C has nonempty interior, then

K is irreducible.

Proof. Suppose int(C) is nonempty and, if possible, K is reducible. Let Ki and Hi

be as in the definition of reducibility with H = Sn. For any 0 6= u ∈ C, uuT ∈ K.

If uuT = x1 + x2, where xi ∈ Ki ⊆ K for i = 1, 2, then, because uuT is an extreme

vector of K and K1∩K2 = {0}, we must have x1 = uuT (say) and x2 = 0. This shows

that each uuT belongs to K1 or to K2. Let

C1 := {u ∈ C : uuT ∈ K1} and C2 := {u ∈ C : uuT ∈ K2}.

It is clear that C1 and C2 are closed and C = C1 ∪ C2. Since C has nonempty interior,

one of the sets, say, C1 has nonempty interior in C as well as in Rn. (This follows

from, for example, Baire category Theorem.) Then the completely positive cone K1

generated by C1 within Sn is proper (by Prop. 3.1), and in particular, K1−K1 = Sn.

This implies that K1 − K1 = Sn, H1 = Sn, and H2 = {0}. This contradiction

completes the proof.

Remark. The result may not hold if C has empty interior: In R2, consider the

standard unit vectors e1 and e2 and let C = {λ e1, µ e2 : λ, µ ≥ 0} so that the

corresponding completely positive cone is given by K = {λ e1eT1 + µ e2e
T
2 : λ, µ ≥ 0}.

Clearly, K is reducible.
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5. Self-duality. Recall that a cone K is self-dual in H if K∗ = K.

Theorem 5.1. Let C be a closed cone in Rn. Then K is self-dual if and only if

Rn = C ∪ −C.

Proof. Suppose K is self-dual. Then the inclusions K ⊆ Sn+ ⊆ E imply that K =

Sn+ = E . Now consider any nonzero x ∈ Rn. Then xxT ∈ Ext(Sn+) = Ext(K). By a

known characterization of Ext(K), see Prop. 7 in [14], xxT = uuT for some 0 6= u ∈ C.
By Prop. 6 in [14], x = ±u ∈ C. Thus, every x in Rn belongs to C ∪ −C.
Now conversely, suppose Rn = C ∪ −C. Then the completely positive cone of C, by

the spectral theorem for real symmetric matrices, is Sn+ which is self-dual.

Corollary 5.2. Suppose n > 1 and C is a closed pointed cone. Then K cannot

be self-dual.

Proof. If K is self-dual, then Rn = C ∪ −C and so Rn \ {0} = C \ {0} ∪ −(C \ {0}).
As the sets C \ {0} and −(C \ {0}) are separated (in the sense that each set is disjoint

from the closure of the other) and Rn \ {0} is connected, we reach a contradiction.

Remark. Suppose C is a closed convex cone. Then Rn = C ∪ −C if and only

if C = Rn or C is a closed half-space. This statement is well-known and easy to

prove: If the origin is an interior point of C, then C = Rn. Now suppose that the

origin is a boundary point of C so that there is a supporting hyperplane induced

by a nonzero vector d ∈ Rn, that is, C ⊆ {x ∈ Rn : 〈x, d〉 ≥ 0}. Now for any

y ∈ {x ∈ Rn : 〈x, d〉 ≥ 0} \ C we have −y ∈ C and so −〈y, d〉 ≥ 0. For any such

y, 〈y, d〉 = 0. Now, the sequence y + 1
kd belongs to {x ∈ Rn : 〈x, d〉 ≥ 0} and is not

orthogonal to d. Thus, y + 1
kd ∈ C for all k and taking limits, we see that y ∈ C,

which is a contradiction. Thus, C = {x ∈ Rn : 〈x, d〉 ≥ 0}.

6. Homogeneity. Recall that a closed convex cone K in H with a nonempty

interior is said to be homogeneous if for every x, y ∈ int(K), there exists A ∈ Aut(K)

such that Ax = y. For a detailed study of homogeneous cones, see [17]. When C is a

closed cone with C ∪ −C = Rn, the corresponding completely positive cone (namely,

Sn+) is homogeneous and self-dual (that is, a symmetric cone). Theorem 5.1 shows

that the converse of this statement holds.

We now address the question of (non)homogeneity of the completely positive cone

K.

Theorem 6.1. Suppose C is a closed pointed cone in Rn (n > 1) such that C and

C∗ have nonempty interiors and C\{0} is connected. Then K cannot be homogeneous.

In particular, this conclusion holds if C is a proper cone.
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Proof. Suppose that K is homogeneous. Pick u1, u2, . . . , un and v in int(C) such

that {u1, u2, . . . , un} and {v, u2, . . . , un} are bases in Rn. Put X := u1u
T
1 + u2u

T
2 +

· · ·+ unu
T
n and for any natural number k, Yk := vvT + 1

k (u2u
T
2 + · · ·+ unu

T
n ). Then,

by Theorem 3.2, X and Yk are in int(K). By assumption, there exists Lk ∈ Aut(K)

such that Lk(X) = Yk for all k. Since C is a closed pointed cone such that int(C) is

nonempty and C\{0} is connected, by Theorem 2 in [14], there exists Qk ∈ Aut(C)
such that Lk(Z) = QkZQ

T
k for all Z ∈ Sn; in particular, Lk(X) = QkXQ

T
k . This

implies

Qk(u1u
T
1 + u2u

T
2 + · · ·+ unu

T
n )QT

k = vvT +
1

k
(u2u

T
2 + · · ·+ unu

T
n )

for all k. We now consider two cases.

Case (i) : The sequence Qk is unbounded.

In this case, we may let ||Qk|| → ∞ and Qk

||Qk|| → Q ∈ Aut(C). This leads to

Q(u1u
T
1 + u2u

T
2 + · · ·+ unu

T
n )QT = 0

and, upon simplification, to Qui = 0 for all i. As {u1, u2, . . . , un} spans Rn, we see

that Q = 0 leading to a contradiction (as norm of Q is one). Thus, this case cannot

happen.

Case (ii): The sequence Qk is bounded.

In this case, we may assume that Qk → Q ∈ Aut(C). This leads to

Q(u1u
T
1 + u2u

T
2 + · · ·+ unu

T
n )QT = vvT .

Now, vvT ∈ Ext(K) (see Theorem 3.2) and Qui ∈ C for every i. (Note that Qk(ui) ∈ C
for each i.) Thus, by definition of extreme vector, Qui is a multiple of v for each i.

Since Q 6= 0 and {u1, u2, . . . , un} spans Rn, the range of Q is one-dimensional and so

Q is of rank one. Let Qu1 = λv. Then λ 6= 0 by Lemma 2.2 (applied to C and Q

in place of K and L). Also, the pointedness of C implies that λ cannot be negative.

Thus, Qu1 ∈ int(C) and Q ∈ Aut(C). As u1 ∈ int(C), by Lemma 2.3 (applied to C
and Q in place of K and L), Q is invertible. But this cannot happen as Q has rank

one and n > 1. Thus, even this case cannot happen. We conclude that K is not

homogeneous.

To illustrate the above result, we consider the following example, where the un-

derlying cone C is not convex.

Example 1. Let S (inside R2
+) be the union of two closed convex cones S1 and S2,

where S1 is generated by (1, 0) and (2, 1), and S2 is generated by (0, 1) and (1, 2).

Then C = {1} × S = R+ × S (that appears in the Introduction) is pointed, has

nonempty interior, C\{0} is connected, and int(C∗) = R++ × int(S∗) is nonempty.
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The following corollary is immediate from the above theorem. However, we give

an independent and slightly different proof.

Corollary 6.2. For any n > 1, the completely positive cone of Rn
+ is not

homogeneous.

Proof. Let X = [xij ] and Y = [yij ] be in int(K), where K is the completely positive

cone of Rn
+ and assume that there is an automorphism L ∈ Aut(K) such that L(X) =

Y . By Theorem 2 in [14], there is a Q ∈ Aut(Rn
+) such that L(Z) = QZQT for all

Z ∈ Sn; in particular, Y = L(X) = QXQT . Since every element of Aut(Rn
+) is a

product of a permutation and a diagonal matrix with positive diagonals, we must

have, for some i 6= j and positive numbers ri and rj ,[
r2i xii rirjxij
rirjxij r2jxjj

]
=

[
y11 y12
y12 y22

]
.

This implies (as all entries of X and Y are positive) that

y11y22
y212

∈

{
xiixjj
x2ij

: i 6= j

}
.(6.1)

Now, we construct specific X and Y violating this property.

Let e1, e2, . . . , en denote the standard coordinate vectors in Rn, and let e be the vector

of all ones. Let

X = eeT + e1e
T
1 + e2e

T
2 + . . .+ en−1e

T
n−1

so that X ∈ int(K) and {xiixjj

x2
ij

: i 6= j} = {2, 4}. With f = [1 2 3 · · · n]T , let

Y = ffT + e1e
T
1 + e2e

T
2 + . . .+ en−1e

T
n−1

so that y11y22

y2
12

= 5
2 . For the above X and Y , (6.1) is violated and hence X cannot be

mapped onto Y by any automorphism of K. Thus, K is not homogeneous.

Remark. That the completely positive cone of C = R2
+ is not homogeneous can

also be seen by Vinberg’s classification of homogeneous cones [17]: In R3, there are

two non-isomorphic homogeneous cones, namely, R3
+ and the positive semidefinite

cone S2+ (or the second order cone L3
+). By a comparison of the extreme vectors,

we conclude that the completely positive cone of C = R2
+ is not isomorphic to one of

these.

Consider a closed cone K in H with interior. For each x ∈ int(K), let

[x] := {L(x) : L ∈ Aut(K)} ⊆ int(K)
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denote the orbit of x under the automorphism group Aut(K). Note that int(K) is a

disjoint union of such orbits and K is homogeneous if and only if there is only one

orbit in int(K). The following result, perhaps known, sheds some light on the nature

and number of orbits.

Proposition 6.3. Let K be a closed pointed cone in H such that K and K∗

have nonempty interiors. Then, for any x ∈ int(K), [x] is a closed subset of int(K).

Moreover, if K is not homogeneous and int(K) is connected, then there are an un-

countable number of orbits in int(K). In particular, this conclusion holds when K is

a proper cone.

Proof. Fix x ∈ int(K) and a sequence xk ∈ [x] with limxk = y ∈ int(K). We show

that y ∈ [x].

By definition, there exist Lk ∈ Aut(K) such that Lk(x) = xk and so y = lim Lk(x).

We consider two cases.

Case 1: Assume that the sequence Lk is bounded and let Lk → L ∈ Aut(K). Then,

y = L(x) with x, y ∈ int(K) and L ∈ Aut(K). By Lemma 2.3, L ∈ Aut(K). Thus,

y ∈ [x].

Case 2: Suppose that the sequence Lk is unbounded.

Then we may assume that ||Lk|| → ∞ and Lk

||Lk|| → L ∈ Aut(K) ⊆ Π(K). Then

L(x) = 0. By Lemma 2.2, L = 0, which is clearly a contradiction. Thus, this case is

not possible, and hence [x] is closed in int(K).

Now, suppose that K is not homogeneous and there are a countable number of orbits.

Then, int(K) can be written as a disjoint union of countable number (more than one)

closed sets (orbits) within int(K). Since int(K) is locally compact, by Baire category

Theorem (see [15], Theorem 2.2), there is one orbit whose interior is nonempty in

int(K). By considering the union of images of this interior under various automor-

phisms, we conclude that this orbit is also open in int(K). Thus, this orbit is both

open and closed, contradicting the connectedness of int(K). This proves that there

must be an uncountable number of orbits in int(K). Finally, when K is a proper

cone which is not homogeneous, all the conditions listed in the proposition hold and

the result follows.

The following corollary is immediate.

Corollary 6.4. For any proper cone C in Rn (n > 1), the number of orbits in

int(K) (induced by Aut(K)) is uncountable.

7. The copositive cone of C. Based on the results we have obtained so far, we

can record some properties of the copositive cone E corresponding to a closed cone C.

Theorem 7.1.
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(i) E is self-dual if and only if Rn = C ∪ −C.
(ii) If C has nonempty interior, then E is irreducible.

(iii) If C is a proper cone in Rn (n > 1)), then E is not homogeneous and int(E)

contains uncountable number of orbits (induced by Aut(E)).

Proof. (i) Since E is self-dual if and only if K is self-dual, the result follows from

Theorem 5.1.

(ii) Suppose C is a closed cone with nonempty interior. Then K is irreducible from

Theorem 4.1. Hence its dual E is also irreducible ([2], Page 20).

(iii) Suppose C is a proper cone. Then, by Theorem 6.1, K is not homogeneous. Then

its dual E is also not homogeneous, by a result of Vinberg (Prop. 9 in [17]). The

uncountability of the orbits come from the previous proposition.

Concluding Remarks. In this paper, we studied some properties of a completely

positive cone in Sn that arises from a closed cone in Rn. We discussed self-duality, ir-

reducibility, and homogeneity properties of such a cone. Our results are, in particular,

applicable to the cone K that comes from C = {1} × S (mentioned in the Introduc-

tion). Note that when S is a closed cone, C = {1} × S = R+ × S is a closed cone. In

this setting, one can show that C inherits certain properties of S. For example, if S

is pointed, so is C; if S (S∗) has nonempty interior, so does C (respectively, C∗), etc.

Also, C\{0} is always (path) connected. We end this paper with two examples.

Example 2. Let S in R2 be the union of closed unit disc (centered at the origin) and

a finite set of points outside S. Then S looks like ‘Sun with planets’ and C = {1} × S
looks like an ‘ice-cream cone with whiskers’. In this case, C is pointed, has nonempty

interior, C\{0} is not connected, C∗ has nonempty interior, and int(C) is connected.

Example 3. Let S in R2 be the union of closed unit disc and a finite set of rays

emanating from the origin. Then S looks like ‘Sun with (some) rays’ and C = {1} × S
looks like an ‘ice-cream cone with wings’. In this case, (depending on the rays of S)

C can be pointed, has nonempty interior, C\{0} is connected, C∗ (which is just a ray)

has empty interior, and int(C) is connected.
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