
1

Continuous Dynamic Constrained Optimisation -
The Challenges

Trung Thanh Nguyen,Member, IEEEand Xin Yao,Fellow, IEEE

Abstract—Many real-world dynamic problems have con-
straints, and in certain cases not only the objective function
changes over time, but also the constraints. However, thereis no
research in answering the question of whether current algorithms
work well on continuous dynamic constrained optimisation prob-
lems (DCOPs), nor is there any benchmark problem that reflects
the common characteristics of continuous DCOPs. This paper
contributes to the task of closing this gap. We will present some
investigations on the characteristics that might make DCOPs
difficult to solve by some existing dynamic optimisation (DO) and
constraint handling (CH) algorithms. We will then introduc e a
set of benchmark problems with these characteristics and test
several representative DO and CH strategies on these problems.
The results confirm that DCOPs do have special characteristics
that can significantly affect algorithm performance. The results
also reveal some interesting observations where the presence
or combination of different types of dynamics and constraints
can make the problems easier to solve for certain types of
algorithms. Based on the analyses of the results, a list of potential
requirements that an algorithm should meet to solve DCOPs
effectively will be proposed.

Index Terms—Dynamic optimisation, dynamic environments,
dynamic constraints, constraint handling, benchmark problems,
evolutionary algorithms, performance measures.

I. I NTRODUCTION

This research aims to answer some open questions about
the characteristics, difficulty and solutions of a very common
class of problem - dynamic constrained optimisation problems
(DCOPs). DCOPs are constrained optimisation problems that
have two properties: (a) the objective functions, the constraints,
or both, may change over time, and (b) the changes are
taken into account in the optimisation process1. It is believed
that a majority of real-world dynamic problems are DCOPs.
However, there are few studies on continuous dynamic con-
strained optimisation. Existing studies in continuous dynamic
optimisation only focus on the unconstrained or domain con-
straint dynamic cases (which in this paper both are regarded
as ”unconstrained” problems). Likewise, existing research in

Manuscript received 11-May-2010. This work was supported by an UK
ORS Award and a studentship from School of Computer Science,University of
Birmingham and was partially supported by an EPSRC grant (EP/E058884/1)
on ”Evolutionary Algorithms for Dynamic Optimisation Problems: Design,
Analysis & Applications”.

T.T. Nguyen is with The School of Engineering, Technology and Maritime
Operations, Liverpool John Moores University, L3 3AF, United Kingdom;
email: T.T.Nguyen@ljmu.ac.uk.

X. Yao is with The Centre of Excellence for Research in Com-
putational Intelligence and Applications,(CERCIA), School of Computer
Science,University of Birmingham, B15 2TT, United Kingdom; email:
X.Yao@cs.bham.ac.uk.

1This definition is derived from the (more general) definitionof dynamic
optimisation problems in [1, section V].

constraint handling only focuses on the stationary constrained
problems.

This lack of attention on DCOPs in the continuous domain
raises some important research questions: What are the essen-
tial characteristics of these types of problems? How well would
existing dynamic optimisation and constraint handling strate-
gies perform in dynamic constrained environments if most
of them are designed for and tested in either unconstrained
dynamic problems or stationary constrained problems only?
Why do they work well or not? How can one evaluate if
an algorithm works well or not? And finally, what are the
requirements for a ”good” algorithm that effectively solves
these types of problems?

As a large number of real-world applications are dynamic
constrained, finding the answers to the questions above is
essential. Such answers would help have better understanding
about the practical issues of DCOPs and to solve this class of
problem more effectively.

The paper is organized as follows. Section II identifies the
special characteristics from real-world DCOPs and discuss
how the characteristics make this type of problem different
from unconstrained dynamic optimisation problems (DOPs).
Section III reviews related literature about continuous bench-
mark problems, identifies the gaps between them and real-
world problems and proposes a new set of DCO benchmark
problems. Sections IV and V investigate the possibility of
solving DCOPs using some representative DO/CH strategies.
Experimental analyses about the strengths and weaknesses,
and the effect of the mentioned characteristics on each strategy
will be undertaken. Based on the experimental results, a list
of requirements that algorithms should meet to solve DCOPs
effectively is proposed. Finally, Section VI concludes thepaper
and points out future directions.

II. CHARACTERISTICS OF REAL-WORLD DYNAMIC

CONSTRAINED PROBLEMS

The presence of constraints in DCOPs from real-world ap-
plications makes them very different from the unconstrained or
domain constraint problems considered in academic research.
In real-world DCOPs the objective function and constraint
functions can be combined in three different types: (a) both
the objective function and the constraints are dynamic [2],
[3], [4]; (b) only the objective function is dynamic while the
constraints are static [5], [6], [7]; and (c) the objective function
is static and the constraints are dynamic [8], [9], [10]. In all
three types, the presence of infeasible areas can affect how
the global optimum moves, or appears after each change. This

2

leads to some special characteristics which are not found in
the unconstrained cases and fixed constrained cases.

First, constraint dynamics can lead to changes in the
shape/percentage/structure of the feasible/infeasible areas.
Second, objective function dynamics might cause the global
optima to switch from one disconnected feasible region to
another on problems with disconnected feasible regions, which
are very common in real-world constrained problems, espe-
cially the scheduling problems [11], [12], [13]. Third, in prob-
lems with fixed objective functions and dynamic constraints,
the changing infeasible areas might expose new, better global
optima without changing the existing optima. One example is
the Dynamic 0-1 Knapsack Problem: significantly increasing
the capacity of the knapsack can create a new global optimum
without changing the existing optimum.

In addition to the three special characteristics above, DCOPs
might also have the common characteristics of constrained
problems such as global optima in the boundaries of feasible
regions, global optima in search boundary, and multiple dis-
connected feasible regions. These characteristics are widely
regarded as being common in real-world applications.

III. A REAL-VALUED BENCHMARK TO SIMULATE DCOPS

CHARACTERISTICS

A. Related literature

In the continuous domain, there is no existing continuous
benchmark that fully reflects the characteristics of DCOPs
listed in Section II. Among existing continuous benchmarks,
there are only two recent studies that are related to dynamic
constraints. The first study was [14] in which two simple uni-
modal constrained problems were proposed. These problems
take the time variablet as their only time-dependant parameter
and hence the dynamic was created by the increase over
time of t. These problems have some important disadvantages
which prevent them from being used to capture/simulate the
mentioned properties of DCOPs: they only capture a simple
linear change. In addition, the two problems do not reflect
common situations like dynamic objective + fixed constraints
or fixed objective + dynamic constraints and other common
properites of DCOPs.

The second study was [15]. In that research, a dynamic
constrained benchmark problem was proposed by combining
an existing ”field of cones on a zero plane” dynamic fitness
function with four dynamic norm-based constraints with the
square/diamond/sphere-like shapes (see Figure 2 in [15]).
Although the framework used to generate this benchmark
problem is highly configurable, the current single benchmark
problem generated by the framework in [15] was designed for
a different purpose and hence does not simulate the properties
mentioned in Section II. For example, the benchmark problem
might not be able to simulate common properties of DCOPs
such as optima in boundary; disconnected feasible regions;and
moving constraints exposing optima in a controllable way. In
addition, there is only one single type of benchmark problem
and hence it might be difficult to use the problem to evaluate
the performance of algorithms under different situations.

The lack of benchmark problems for DCOPs makes it
difficult to (a) evaluate how well existing DO algorithms would

work on DCOPs, and (b) design new algorithms specialising
in DCOPs. Given that a majority of recent real-world DOPs
are DCOPs [16], this can be considered an important gap in
DO research.

This gap motivates the authors to develop general-purpose
benchmark problems to capture the special characteristicsof
DCOPs. Some initial results involving five benchmark prob-
lems were reported in an earlier study [17]. This paper extends
the framework to develop full sets of benchmark problems,
which are able to capture all characteristics mentioned in
the previous section. Two sets of benchmark problems, one
with multimodal, scalable objective functions and one with
unimodal objective functions, have been developed for this
research. In this paper the benchmark set with unimodal ob-
jective functions (many problems in the set still have multiple
optima due to the constraints) will be discussed in detail.
Detailed descriptions of the multimodal, scalable set can be
found in a technical report [18].

B. Generating dynamic constrained benchmark problems

One useful way to create dynamic benchmark problems is to
combine existing static benchmark problems with the dynamic
rules found in dynamic constrained applications. This can be
done by applying the dynamic rules to the parameters of the
static problems, as described below.

Given a static functionfP (x) with a set of parametersP =
{p1, ...pk}, one can always generalisefP (x) to its dynamic
versionfPt

(x, t) by replacing each static parameterpi ∈ P

with a time-dependent expressionpi (t). The dynamic of the
dynamic problem then depends on howpi (t) varies over time.
One can use any type of dynamic rule to representpi (t),
and hence can create any type of dynamic problem. Details
of the concept and a mathematical framework for the idea is
described in [18]. Some additional information is providedin
[19] (Section 3).

C. A dynamic constrained benchmark set

A set of 18 benchmark problems named G24 was introduced
using the new procedure described in the previous subsection.
The general form for each problem in the G24 set is as follows:

minimise f(x)
subject to gi (x) ≤ 0, gi (x) ∈ G, i = 1, .., n

where the objective functionf(x) can be one of the function
forms set out in equation (1), each constraintgi (x) can be one
of the function forms given in equation (2), andG is the set of
n constraint functions for that particular benchmark problem.
The detailed descriptions off(x) andgi (x) for each problem
are described in Table I and Table II.

Equation (1) describes the general function forms for the
objective functions in the G24 set. Of these function forms,
f (2)is used to design the objective function for G248a and
G24 8b, andf (1) is used to design the objective functions
for all other problems.f (1) is modified from a static function

3

TABLE I
THE OBJECTIVE FUNCTION FORM OF EACH BENCHMARK PROBLEM

Benchmark problem objective function
G24 8a & G24 8b f (x) = f(2)

All other problems f (x) = f(1)

TABLE II
THE SET OF CONSTRAINT FUNCTION FORMS FOR EACH PROBLEM

Benchmark problem SetG of constraints
G24 u; G24 uf; G24 2u; G24 8a G = {∅}
G24 6a G =

{

g(3), g(6)
}

G24 6b G =
{

g(3)
}

G24 6c G =
{

g(3), g(4)
}

G24 6d G =
{

g(5), g(6)
}

All other problems G =
{

g(1), g(2)
}

proposed in [20] andf (2)is a newly designed function.

f (1) = − (X1 +X2) (1)

f (2) = −3 exp

(

−

√

√

(X1)
2
+ (X2)

2

)

whereXi = Xi (xi, t) = pi (t) (xi + qi (t));0 ≤ x1 ≤ 3; 0 ≤
x2 ≤ 4 with pi (t) andqi (t) (i = 1, 2) as the dynamic param-
eters, which determine how the dynamic objective function of
each benchmark problem changes over time.

Equation (2) describes the general function forms for the
constraint functions in the G24 set. Of these function forms,
g(1)andg(2)were modified from two static functions proposed
in [20] and g(3), g(4), g(5)and g(6)are newly designed func-
tions.

g(1) = −2Y 4
1 + 8Y 3

1 − 8Y 2
1 + Y2 − 2 (2)

g(2) = −4Y 4
1 + 32Y 3

1 − 88Y 2
1 + 96Y1 + Y2 − 36

g(3) = 2Y1 + 3Y2 − 9

g(4) =

{

−1 if (0 ≤ Y1 ≤ 1)or(2 ≤ Y1 ≤ 3)
1 otherwise

g(5) =

{

−1 if (0 ≤ Y1 ≤ 0.5)or(2 ≤ Y1 ≤ 2.5)
1 otherwise

g(6) =







−1 if [(0 ≤ Y1 ≤ 1)and(2 ≤ Y2 ≤ 3)]
or (2 ≤ Y1 ≤ 3)

1 otherwise

whereYi = Yi (x, t) = ri (t) (x+ si (t));0 ≤ x1 ≤ 3; 0 ≤
x2 ≤ 4 with ri (t) and si (t) (i = 1, 2) as the dynamic
parameters, which determine how the constraint functions of
each benchmark problem change over time.

Each benchmark problem may have a different mathemat-
ical expression forpi (t), qi (t), ri (t) and si (t). Note that
although many benchmark problems share the same general
function form in equation (1), their individual expressions for
pi (t) andqi (t) make their actual dynamic objective functions
very different. Similarly, the individual expressions forri (t)
andsi (t) make each actual dynamic constraint functions very
different although they may share the same function form.
The individual expressions ofpi (t), qi (t), ri (t), and si (t)
for each benchmark function are described in Table III.

Two guidelines were used to design the test problems: (a)
problems should simulate the common properties of DCOPs as

mentioned in Section II and (b) there should always be a pair
of problems for each characteristic. The two problems in each
pair should be almost identical except that one has a particular
characteristic (e.g. fixed constraints) and the other does not. By
comparing the performance of an algorithm on one problem
with its performance on the other problem in the pair, it is
possible to analyse whether the considered characteristichas
any effect on the tested algorithm and to what extent that effect
is significant.

Based on the two guidelines above, 18 different test prob-
lems were created (Table III). Each test problem is able to
capture one or several of the mentioned characteristics of
DCOPs, as shown in Table IV. In addition, the problems and
their relationships are carefully designed so that they canbe
arranged in 21 pairs (Table V), of which each pair is a different
test case to test a single characteristic of DCOPs (the two
problems in each pair are almost identical except that one has
a special characteristic and the other does not).

IV. CHALLENGES OF APPLYING CURRENT DYNAMIC

OPTIMISATION STRATEGIES DIRECTLY TO SOLVINGDCOPS

A. Analysing the performance of some common dynamic op-
timisation strategies in solving DCOPs

The strategies being considered are (1) introducing diversity,
(2) maintaining diversity and (3) tracking the previous optima.
These three are among the four most commonly used strategies
(the other strategy is memory-based) to solve DOPs. The
diversity-introducing strategy was proposed based on the as-
sumption that by the time a change occurs in the environment,
an evolutionary algorithm (EA) might have already converged
to a specific area and hence would lose its ability to deal with
changes in other areas of the search space. Consequently, it
is necessary to increase the diversity level in the population,
either by increasing the mutation rate or re-initialising/re-
locating the individuals. This strategy was introduced years
ago [21] but is still extensively used [22] [23].

The diversity-introducing strategy requires that changes
must be visible to the algorithm. To avoid this disadvantage,
the diversity-maintaining strategy was introduced so thatpopu-
lation diversity can be maintained without explicitly detecting
changes [24]. This strategy is still the main strategy in many
recent approaches [25] [26].

The third strategy, tracking-previous-optima, is used where
the optima might only slightly change. The region surrounding
the current optima is monitored to detect changes and ”track”
the movement of these optima. Similar to the two strategies
above, the tracking strategy has also been used for years
[21] and it has always been one of the main strategies for
solving DOPs. Recently this strategy has been combined with
the diversity maintaining/introducing strategy to achieve better
performance. Typical examples are the multi-population/multi-
swarm approaches, where multiple sub-populations are usedto
maintain diversity and each sub-population/sub-swarm focuses
on tracking one single optimum [26] [27].

B. Chosen algorithms and experimental settings

1) Chosen algorithms:Two commonly used algorithms:
triggered hyper-mutation GA(HyperM [21]) and random-

4

TABLE III
DYNAMIC PARAMETERS FOR ALL TEST PROBLEMS IN THE BENCHMARK

SET G24. EACH DYNAMIC PARAMETER IS A TIME-DEPENDANT
RULE/FUNCTION WHICH GOVERNS THE WAY THE PROBLEMS CHANGE

Prob Parameter settings
G24 u p1 (t) = sin

(

kπt+ π
2

)

; p2 (t) = 1; qi (t) = 0
G24 1 p2 (t) = ri (t) = 1; qi (t) = si (t) = 0

p1 (t) = sin
(

kπt+ π
2

)

G24 f pi (t) = ri (t) = 1; qi (t) = si (t) = 0
G24 uf pi (t) = 1; qi (t) = 1

G24 2 if (tmod 2 = 0)
{ p1(t)=sin(kπt

2
+ π

2)

p2(t)=
{

p2(t−1) if t>0
p2(0)=0 if t=0

if (tmod 2 6= 0)
{ p1(t)=sin(kπt

2
+ π

2)

p2(t)=sin
(

kπ(t−1)
2

+ π
2

)

qi (t) = si (t) = 0; ri (t) = 1

G24 2u if (tmod 2 = 0)
{ p1(t)=sin(kπt

2
+ π

2)

p2(t)=
{

p2(t−1) if t>0
p2(0)=0 if t=0

if (tmod 2 6= 0)
{ p1(t)=sin(kπt

2
+ π

2)

p2(t)=sin
(

kπ(t−1)
2

+ π
2

)

qi (t) = 0
G24 3 pi (t) = ri (t) = 1; qi (t) = s1 (t) = 0

s2 (t) = 2 + t.x2 max−x2 min
S

G24 3b p1 (t) = sin
(

kπt+ π
2

)

; p2 (t) = 1
qi (t) = s1 (t) = 0; ri (t) = 1;

s2 (t) = 2 + t.x2 max−x2 min
S

G24 3f pi (t) = ri (t) = 1; qi (t) = s1 (t) = 0; s2 (t) = 2
G24 4 p2 (t) = ri (t) = 1; qi (t) = s1 (t) = 0

p1 (t) = sin
(

kπt+ π
2

)

; s2 (t) = t.x2 max−x2 min
S

G24 5 if (tmod 2 = 0)
{ p1(t)=sin(kπt

2
+π

2)

p2(t)=
{

p2(t−1) if t>0
p2(0) if t=0

if (tmod 2 6= 0)
{ p1(t)=sin(kπt

2
+ π

2)

p2(t)=sin
(

kπ(t−1)
2

+ π
2

)

qi (t) = s1 (t) = 0; ri (t) = 1;

s2 (t) = t.x2 max−x2 min
S

G24 6a/b/c/d p1 (t) = sin
(

πt + π
2

)

; p2 (t) = 1;
qi (t) = si (t) = 0; ri (t) = 1

G24 7 pi (t) = ri (t) = 1; qi (t) = s1 (t) = 0;

s2 (t) = t.x2 max−x2 min
S

G24 8a pi (t) = −1; q1 (t) = − (c1 + ra. cos (kπt))
q2 (t) = − (c2 + ra. sin (kπt)) ;

G24 8b pi (t) = −1; q1 (t) = − (c1 + ra. cos (kπt))
q2 (t) = − (c2 + ra. sin (kπt)) ; ri (t) = 1; si (t) = 0

k k determines the severity of function changes.
k = 1 ∼large;k = 0.5 ∼ medium;k = 0.25 ∼ small

S S determines the severity of constraint changes
S = 10 ∼large;S = 20 ∼ medium;S = 50 ∼ small

c1, c2, ra c1 = 1.470561702; c2 = 3.442094786232;
(G24 8a/b
only)

ra = 0.858958496 .

i i is the variable index,i = 1, 2

immigrant GA(RIGA [24]) were chosen to evaluate the per-
formance of the three strategies mentioned above in DCOPs.
HyperM is basically a simple GA with an adaptive mechanism
to switch from a low mutation rate (standard-mutation-rate) to
a high mutation rate (hyper-mutation-rate, to increase diver-
sity) and vice versa depending on whether or not there is a
degradation of the best solution in the population. It represents
the ”introducing diversity” and ”tracking previous optima”
strategies in DO.

RIGA is another derivative of a basic GA. After the normal
mutation step, a fraction of the population is replaced with
randomly generated individuals. This fraction is determined
by a random-immigrant-rate (also named replacement rate).
By continuously replacing a part of the population with

TABLE IV
PROPERTIES OF EACH TEST PROBLEM IN THEG24BENCHMARK SET

Problem ObjFunc Constr DFR SwO bNAO OICB OISB Path
G24 u Dynamic NoC 1 No No No Yes N/A
G24 1 Dynamic Fixed 2 Yes No Yes No N/A
G24 f Fixed Fixed 2 No No Yes No N/A
G24 uf Fixed NoC 1 No No No Yes N/A
G24 2* Dynamic Fixed 2 Yes No Yes&No Yes&No N/A
G24 2u Dynamic NoC 1 No No No Yes N/A
G24 3 Fixed Dynamic 2-3 No Yes Yes No N/A
G24 3b Dynamic Dynamic 2-3 Yes No Yes No N/A
G24 3f Fixed Fixed 1 No No Yes No N/A
G24 4 Dynamic Dynamic 2-3 Yes No Yes No N/A
G24 5* Dynamic Dynamic 2-3 Yes No Yes&No Yes&No N/A
G24 6a Dynamic Fixed 2 Yes No No Yes Hard
G24 6b Dynamic NoC 1 No No No Yes N/A
G24 6c Dynamic Fixed 2 Yes No No Yes Easy
G24 6d Dynamic Fixed 2 Yes No No Yes Hard
G24 7 Fixed Dynamic 2 No No Yes No N/A
G24 8a Dynamic NoC 1 No No No No N/A
G24 8b Dynamic Fixed 2 Yes No Yes No N/A
DFR number of Disconnected Feasible Regions
SwO Switched global Optimum between disconnected regions
bNAO better Newly Appear Optimum without changing existingones
OICB global Optimum is In the Constraint Boundary
OISB global Optimum is In the Search Boundary
Path Indicate if it is easy or difficult to use mutation to travel

between feasible regions
Dynamic The function is dynamic
Fixed There is no change
NoC There is no constraint
* In some change periods, the landscape either is a plateau or

contains infinite number of optima and all optima (including
the existing optimum) lie in a line parallel to one of the axes

random solutions, the algorithm is able to maintain diversity
throughout the search process to cope with dynamics. RIGA
represents the ”maintaining diversity” strategy in DO.

One reason to choose these algorithms for the test is that
their strategies are still commonly used in most current state-
of-the-art DO algorithms. Another reason is the strategiesin
these algorithms are very simple and straightforward, making
it easy to test and analyse their behaviour. In addition, because
these two algorithms are very well studied, using them would
help in comparing new experimental data with existing results.
Finally, because both algorithms are developed from a basic
GA (actually the only difference between HyperM/RIGA and
a basic GA is the mutation strategy), it would be easier
to compare/analyse their performance. The performance of
HyperM and RIGA was also compared with a basic GA to
see if they work well on the tested problems.2

2) Parameter settings:Table VI shows the detailed pa-
rameter settings for HyperM, RIGA and GA. All algorithms
use real-valued representations. The algorithms were tested on
18 benchmark problems described in Section III. To create a
fair testing environment, the algorithms were tested in a wide
range of dynamic settings (different values of population size,
severity of change and frequency of change) with five levels:
small, medium small, medium, medium large, large.

The evolutionary parameters of all tested algorithms were
set to similar values or the best known values if possible.

2Note that to save space, some tables/figures in this section include not only
GA/RIGA/HyperM but also another algorithm: GA+Repair. This algorithm
will be introduced in the later sections. This section only focuses on the data
relating to GA, RIGA and HyperM.

5

TABLE V
THE 21 TEST CASES(PAIRS) TO BE USED IN THIS PAPER.

Static problems: Unconstrained vs Fixed constraints
1 G24 uf (fF, noC) vs G24f (fF, fC)
Fixed objectives vs Dynamic objectives
2 G24 uf (fF, noC) vs G24u (dF, noC)
3 G24 f (fF, fC, OICB) vs G24 1 (dF, fC, OICB)
4 G24 f (fF, fC, OICB) vs G24 2 (dF, fC, ONICB)
Dynamic objectives: Unconstrained vs Fixed constraints
5 G24 u (dF, noC) vs G241 (dF, fC, OICB)
6 G24 2u (dF, noC) vs G242 (dF, fC, ONICB)
Fixed constraints vs Dynamic constraints
7 G24 1 (dF, fC, OICB) vs G244 (dF, dC, OICB)
8 G24 2 (dF, fC, ONICB) vs G245 (dF, dC, ONICB)
9 G24 f (fF, fC) vs G24 7 (fF, dC, NNAO)
10 G24 3f (fF, fC) vs G24 3 (fF, dC, NAO)
No constraint vs Dynamic constraints
11 G24 u (dF, noC) vs G244 (dF, dC, OICB)
12 G24 2u (dF, noC) vs G245 (dF, dC, ONICB)
13 G24 uf (fF, noC) vs G247 (fF, dC)
Moving constraints expose better optima vs not expose optima
14 G24 3f (fF, fC) vs G24 3 (fF, dC, NAO)
15 G24 3 (fF, dC, NAO) vs G243b (dF, dC, NAO)
Connected feasible regions vs Disconnected feasible regions
16 G24 6b (1R) vs G246a (2DR, hard)
17 G24 6b (1R) vs G246d (2DR, hard)
18 G24 6c (2DR, easy) vs G246d (2DR, hard)
Optima in constraint boundary vs Optima NOT in constr boundary
19 G24 1 (dF, fC, OICB) vs G242 (dF, fC, ONICB)
20 G24 4 (dF, dC, OICB) vs G245 (dF, dC, ONICB)
21 G24 8b (dF, fC, OICB) vs G248a (dF, noC, ONISB)

dF dynamic objective func fF fixed objective function
dC dynamic constraints fC fixed constraints
OICB optima in constraint bound ONICB opt. not in constraintbound
OISB optima in search bound ONISB optima not in search bound
NAO better newly appear optima NNAO No better newly appear opt
2DR 2 Disconn. feasible regions 1R One single feasible region
Easy easy for mutation to travel

between disconn. regions
Hard less easy to travel among

regions
noC unconstrained problem SwO Switched optimum between

disconnected regions

The base mutation rate of the algorithms is 0.15, which
is the average value of the best mutation rates commonly
used for GA-based algorithms in various existing studies
on continuous DO, which are 0.1 ([28] [29]) and 0.2 ([27]
[30]). For HyperM and RIGA, the besthyper-mutation-rate
and random-immigrant-rateparameter values observed in the
original papers [21] [24] were used. The same implementations
as described in [21] and [24] were used to reproduce these
two algorithms. A crossover rate of 0.1 was chosen for all
algorithms because, according to the analysis in [31], this
value was one of the few settings where all tested algorithms
perform well on this benchmark set.

A further study of the effect of different values of the
base mutation rates, hyper-mutation rates, random-immigrant
rates and crossover rates on algorithm performance was also
carried out. Detailed experimental results and discussionfor
this analysis can be found in [31] where it was found that
the overall behaviours of the algorithms are not different from
those using the default/best known settings, except for thefol-
lowings: (i) When the base mutation rate is very low (≤ 0.01),
the performance of GA and HyperM drop significantly; (ii)
generally to work well in the tested DCOPs, algorithms need to
use high base mutation rates. The range of best mutation rates

TABLE VI
TEST SETTINGS FOR ALL ALGORITHMS USED IN THE PAPER.

All Pop size (popsize) 5, 15, 25 (medium), 50, 100
algorithms Elitism Elitism & non-elitism if applicable
(exceptions Selection method Non-linear ranking as in [33]
below) Mutation method Uniform,P = 0.15.

Crossover method Arithmetic,P = 0.1.
HyperM Triggered mutate Uniform,P = 0.5 as in [21].
RIGA Rand-immig. rate P = 0.3 as in [24].
GA+Repair Search pop size popsize× (4/5)

Reference pop size popsize× (1/5)
Replacement rate 0 (default is 0.25 as in [33]).

Benchmark Number of runs 50
problem Number of changes 5/k (see below)
settings Change frequency 250, 500, 1000 (med), 2000, 4000

evaluations
ObjFunc severityk 0.25 (small), 0.5 (med),1.0 (large)
Constr. severityS 10 (small), 20 (medium),50 (large)

is 0.3-0.8. (iii) Algorithms like RIGA and HyperM also need
high random-immigrant/hyper-mutation rates to solve DCOPs.
The best results are usually achieved with the rates of 0.6-0.8;
(iv) The suitable range of crossover rate is 0.1-1.0.

3) Constraint handling:It is necessary to integrate existing
DO algorithms with a CH mechanism to use these algorithms
for solving DCOPs. That CH mechanism should not interfere
with the original DO strategies so that it is possible to correctly
evaluate whether the original DO strategies would still be
effective in solving DCOPs. To satisfy this requirement, the
penalty function approach in [32] was chosen because it is the
simplest way to apply existing unconstrained DO algorithms
directly to solving DCOPs without changing the algorithms.
Also this penalty method can be effective in solving difficult
numerical problems without requiring users to choose any
penalty factor or other parameter [32].

4) Performance measures:For measuring the performance
of the algorithms in this particular experiment, an existing
measure: themodified offline error[27] was modified. The
measure is calculated as the average over, at every evaluation,
the error of the best solution found since the last change of
the environment.

Because the measure above is designed for unconstrained
environments, it is necessary to modify it to evaluate algorithm
performance in constrained environments: At every genera-
tion, instead of considering the best errors/fitness valuesof
any solutions regardless of feasibility as implemented in the
original measure, only the best fitness values / best errors
of feasiblesolutions at each generation are considered. If in
any generation there is no feasible solution, the measure takes
the worst possible valuethat a feasible solution can have for
that particular generation. This measure is called themodified
offline error for DCOPs, or offline error for short.

EMO =
1

num of gen

∑num of gen

j=1
eMO (j) (3)

whereeMO (j) is the bestfeasibleerror since the last change
at the generationj.

Five new measures were also proposed to analyse why a
particular algorithm might work well on a particular problem.
The first two measures are therecovery rate(RR) and the
absolute recovery rate(ARR) to analyse the convergence

6

behaviour of algorithms in dynamic environments. The RR
measure is used to analysehow quickly an algorithm recovers
from an environmental change and starts converging to a new
solution before the next change occurs. The new solution is
not necessarily the global optimum.

RR =
1

m

∑m

i=1

∑p(i)
j=1 [fbest (i, j)− fbest (i, 1)]

p (i) [fbest (i, p (i))− fbest (i, 1)]
(4)

where fbest (i, j) is the fitness value of the best feasible
solution since the last change found by the tested algorithm
until the jth generation of the change periodi , m is the
number of changes andp (i) , i = 1 : m is the number of
generations at each change periodi. The RR score would be
1 in the best case where the algorithm is able to recover and
converge to a solution immediately after a change, and would
be close to zero in case the algorithm is unable to recover
from the change at all3.

The RR measure only indicates if the considered algorithm
converges to a solution and if it converges quickly. It does not
indicate whether the converged solution is the global optimum.
For example, RR can still be 1 if the algorithm does nothing
but keep re-evaluating the same solution. Because of that,
another measure is needed: theabsolute recovery rate(ARR).
This measure is very similar to the RR but is used to analyse
how quick it is for an algorithm to start converging to the
global optimum before the next change occurs:

ARR =
1

m

∑m

i=1

∑p(i)
j=1 [fbest (i, j)− fbest (i, 1)]

p (i) [f∗ (i)− fbest (i, 1)]
(5)

where fbest (i, j) , i, j,m, p(i) are the same as in Eq. 4 and
f∗ (i) is the global optimal value of the search space at the
ith change. The ARR score would be 1 in the best case when
the algorithm is able to recover and converge to the global
optimum immediately after a change, and would be zero in
case the algorithm is unable to recover from the change at
all. Note that the score of ARR should always be less than
or equal to that of RR. In the ideal case (converged to global
optimum), ARR should be equal to RR.4

The RR and ARR measures can be used together to indicate
if an algorithm is able to converge to the global optimum
within the given time frame between changes and if so how
quickly it takes to converge. TheRR-ARR diagramin Figure
1 shows some analysis guidelines.

A third measure,percentage of selected infeasible indi-
viduals, is proposed to analyse algorithm ability to balance
exploiting feasible regions and exploring infeasible regions in
DCOPs. This measure finds the percent of infeasible individ-
uals selected for the next generation. The average (over all
tested generations) is then compared with the percentage of
infeasible areas in the search space. If the considered algorithm
is able to acceptinfeasiblediversified individuals in the same
way as it acceptsfeasiblediversified individuals (and hence
to maintain diversity effectively), the two percentage values
should be equal.

3Note that RR will never be equal to zero because there is at least one
generation wherefbest (i, j) = fbest (i, p (i))

4Note that to use the measure ARR it is necessary to know the global
optimum value at each change period.

Co
nv

er
ge

d t
o g

lob
al

op
tim

um

Recover fasterRecover slower

Cl
os

er
 to

 g
lob

al
op

tim
um

M
or
e
lik
ely

 co
nv

er
ge

d

to
 lo

ca
l o

pt
im

um

More likely not
converged yet

A

B

C
D

Co
nv

er
ge

d t
o g

lob
al

op
tim

um

Recover fasterRecover slower

M
or
e
lik
ely

 co
nv

er
ge

d

to
 lo

ca
l o

pt
im

um

More likely not
converged yet

Cl
os

er
 to

 gl
ob

al

op
tim

um

Cl
os

er
 to

 gl
ob

al

op
tim

um

(a) (b)

Fig. 1. Diagram (a) provides a guideline for analysing the convergence
behaviour/recovery speed of an algorithm given its RR/ARR scores. These
scores can be represented as the x and y coordinations of a point on the
diagonal thick line or inside the shaded area. The position of the point
represents the behaviour of the corresponding algorithm. The closer the point
is to the right, the faster the algorithm was in recovering and re-converging,
and vice versa. In addition, if the point lies on the thick diagonal line (where
RR = ARR) like point A, the algorithm has been able to recover from the
change and converged to the new global optimum. Otherwise, if the point
lies inside the shaded area, the algorithm either has converged to a local
solution (e.g. point C); or has not been converged yet (e.g. point D - recover
slowly; and point B - recover quickly).Diagram (b) shows the mapping of
the RR/ARR scores of GA, RIGA, and HyperM to the RR-ARR diagram.

To analyse the behaviour of algorithms using triggered-
mutation mechanisms such as HyperM, a fourth measure:
triggered-time count, which counts the number of times the
hyper-mutation-rate is triggered by the algorithm, and a fifth
measure:detected-change count, which counts the number of
triggers actually associated with a change, are also proposed.
For HyperM, triggers associated with a change are those that
are invoked by the algorithm withinν generations after a
change, whereν is the maximum number of generations (five
in this implementation) needed for HyperM to detect a drop
in performance. These two measures indicate how many times
an algorithm triggers its hyper-mutation; whether each trigger
time corresponds to a new change; and if there is any change
that goes undetected during the search process.

Note that the five measures above are all needed for our
analysis because they are used to investigate different aspects
of the algorithms. Furthermore, all of the measures used here
are specifically designed for dynamic problems. This creates
a problem for the experiments in this paper because in the
G24 benchmark set there are not only dynamic problems but
also stationary problems. To overcome this issue, in this study
stationary problems are considered a special type of dynamic
problem which still have ”changes” with the same change
frequency as other dynamic problems. However, in stationary
problems the ”changes” do not alter the search space.

C. Experimental results and analyses

The full offline-error results of the tested algorithms on all
18 benchmark problems for all test scenarios are presented
in the tables in [34]. These data were further analysed from
different perspectives to achieve a better understanding of
how existing DO strategies work in DCOPs and how each
characteristic of DCOPs would affect the performance of
existing DO algorithms. First of all, the average performance

7

of the tested algorithms on each major group of problems
under different parameter settings and dynamic ranges were
summarised to have an overall picture of algorithm behaviour
on different types of problems (see Figure 2). Then the effect
of each problem characteristic on each algorithm was analysed
in 21 test cases (each case is a pair of almost identical
problems, one with a particular characteristic and one without)
as shown in Table V of Section III (see test results in Figures
3 and 4). For each particular algorithm, some further analyses
were also carried out using the five newly proposed measures
mentioned above. Details of these analyses will be described
in the next subsections. Only the summarised results are
presented in Figure 2 with different settings (small / medium
/ large). For other detailed figures and tables, the results will
only be presented in the default settings (all parameters and
dynamic range are set to medium). For detailed results in other
settings, readers are referred to [34].

A statisticalt-test with a significance level of 0.05 was done
to evaluate the level of siginifance of the possible impactsthat
each characteristic of DCOPs can have on the performance
of the tested algorithms5. The summarised results of this
statistical test can be found in Figures 3 and 4.

The experimental results show some interesting, and in
some cases, surprising findings.

1) The impact of different dynamic ranges on algorithm
performance:The summarised results in groups of problems
(Figure 2) show that (i) generally the behaviour of algorithms
and their relative strengths/weaknesses in comparison with
other algorithms still remain roughly the same when the
dynamic settings change; and (ii) as expected in most cases
algorithms’ performance decrease when the conditions become
more difficult (magnitude of change becomes larger; change
frequency becomes higher; population size becomes much
smaller). Among the variations in dynamic settings, it seems
that the variations in frequency of change affect algorithms’
performance the most, followed by variations in magnitude of
changes. Variations in population size have the least impact
on algorithm performance.

2) The effect of elitism on algorithm performance:The
summarised results in groups of problems (Figure 2) and the
pair-wise comparisons in Figure 3 and Figure 4 reveal an inter-
esting effect of elitism on both unconstrained and constrained
dynamic cases: the elitism versions of GA/RIGA/HyperM
perform better than their non-elitism counterparts in most
tested problems. The reason for this effect (with evidence
shown in the next paragraph) is that elitism helps algorithms
with diversity-maintaining strategies to converge faster. This
effect is independent of the combined CH techniques.

Two measures proposed in Section IV-B4:recovery rate
(RR) andabsolute recovery rate(ARR) were used to study the
inefficiency of GA/RIGA/HyperM in the non-elitism case. The
scores of the algorithms on these measures are given in Figure
1b. The figure shows that none of the algorithms are close to
the optimum line, meaning there are problems/ change periods
where the algorithms were unable to converge to the global

5t-test is considered robust under the conditions of this experiment[35, ch.
37].

Fig. 2. Algorithm performance in groups of problem. Performance (vertical
axis in logarithmic scale) is evaluated by calculating the ratio between the
base line(worst error among all scenarios) and the error of each algorithm
in each problem to see how many times their performance is better (smaller)
than thebase line. Explanations for abbreviations can be found in Table V.

8

Fig. 3. The effect of twelve different problem characteristics on algorithm
performance (medium case). Performance (vertical axis) isevaluated based
on the ratio between the base line error (described in Figure2) and algorithm
errors. Each subplot represents algorithm performance (pair of adjacent bars)
in a pair of almost identical problems (one has a special characteristic and
the other does not). The larger the difference between the bar heights, the
greater the impact of the corresponding DCOP characteristic on performance.
Subplots’ title represent the test case numbers (in brackets) followed by an
abbreviated description. Explanations for the abbreviations are in the last rows
of Table V. Pairs where the impact of a characteristic on an algorithm isnot
significant (according to at-test with significance level of 0.05) are circled
and in such cases thet-test scores are also given to highlight the level of
insignificance.

0

10

20
(14) NNAO vs NAO (fF)

0

10

20

Ho
w

m
an

y
tim

es
 b

et
te

r t
ha

n
ba

se
lin

e
er

ro
r

(16) 1 FR vs 2 FR

0

10

20
(18) 2 FR(easy) vs 2 FR(hard)

0

10

20

.GA−noElit

.RIGA−noElit

.HyperM−noElit

.GA−elit

.RIGA−elit

.HyperM−elit

.GA+Repair

(20) OICB vs ONICB (dC)

(15) NAO(fF) vs NAO(dF)

(17) 1 FR vs 2 FR

(19) OICB vs ONICB (fC)

.GA−noElit

.RIGA−noElit

.HyperM−noElit

.GA−elit

.RIGA−elit

.HyperM−elit

.GA+Repair

(21) OICB vs ONISB

fF, fC G24−3f
fF, dC G24−3

fF, dC G24−3
dF, dC G24−3b

1R G24−6b
2DR,hard G24−6a

1R G24−6b
2DR,hard G24−6d

2DR,easy G24−6c
2DR,hard G24−6d

dF, fC G24−1
dF, fC G24−2

dF, dC G24−4
dF, dC G24−5

dF, fC, OICB G24−8b
dF, nC, ONISB G24−8a

Fig. 4. The effect of the other eight different problem properties on algorithm
performance (medium case). Instructions to read this figurecan be found in
Figure 3. All eight characteristics have statistically significant impacts on the
algorithms, and hence there is no bar with circles.

optimum. In addition, for RIGA, its elitism version is closer to
the top-right corner while its non-elitism version is closer to
the bottom-left corner, meaning that non-elitism makes RIGA
converge slower/less accurately. Finally, for GA/HyperM,their
elitism versions are closer to the global optimum while their
non-elitism versions are closer to the bottom-right corner,
meaning that the non-elitism versions of GA/HyperM are more
suceptible to premature convergence. The results hence show
that the high diversity maintained by the random-immigrant
rate in RIGA and the high mutation rate in GA/HyperM comes
with a trade-off: the convergence speed is affected. In sucha

TABLE VII
AVERAGE percentage of selected infeasible individualsOVER 18 PROBLEMS.

THE LAST ROW SHOWS THE AVERAGEpercentage of infeasible areas.

Algorithms Percent of infeasible solutions

.GA-elit 23.0%

.RIGA-elit 37.6%

.HyperM-elit 26.4%

.GA-noElit 46.3%

.RIGA-noElit 49.1%

.HyperM-noElit 45.3%
Percentage of infeasible areas 60.8%

situation, elitism can be used to speed up the convergence
process. Elite members can guide the population to exploit
the good regions faster while still maintaining diversity.

3) Effect of infeasible areas on maintaining/introducing
diversity: Another interesting observation is that the pres-
ence of constraints makes the performance of diversity-
maintaining/introducing strategies less effective when used
in combination with the tested penalty functions. This be-
haviour can be seen in Figure 2 where the performance of
all algorithms in the unconstrained dynamic case (dF+noC)
is significantly better than their performance in all dynamic
constrained cases (dF+fC, fF+dC, dF+dC). This behaviour can
also be seen in the more accurate pair-wise comparisons in
Figure 3 and Figure 4: for each pair of problems in which one
has constraints and the other does not, GA, RIGA and HyperM
always perform worse on the problem with constraints (see
pairs 1, 5, 6, 11, 12, 13 in Figure 3 and pair 21 in Figure 4).

The reason for this inefficiency is the use of tested penalty
functions prevents diversity-maintaining/introducing mecha-
nisms from working effectively. In solving unconstrained
dynamic problems, all diversified individuals generated by
the diversity maintaining/introducing strategies are useful be-
cause they contribute to either (1) detecting newly appearing
optima or (2) finding the new place of the moving optima.
In DCOPs, however, there are two difficulties that prevent
diversified individuals that are infeasible from being useful
in existing DO strategies. One difficulty is many diversified
but infeasible individuals might not be selected for the next
generation population because they are penalised with lower
fitness values by the penalty functions. Consequently, these
diversified individuals cannot be used for maintaining diversity
unless they are re-introduced again in the next generation.To
demonstrate this drawback, the previously proposed measure
percentage of selected infeasible individualswas used. As can
be seen in Table VII, in the elitism case the percentage of
infeasible solutions in the population (23 - 37.6%) is much
smaller than the percentage of infeasible areas over the total
search space (60.8%). This means only a few of the diversified,
infeasible solutions are retained and hence the algorithmsare
not able to maintain diversity in the infeasible regions.6

The second difficulty is that, even if a diversified but
infeasible individual is selected for the next generation,it

6Non-elitism algorithms are able to retain more infeasible individuals, of
which some might be diversified solutions. However, as shownin Subsection
IV-C2, in the non-elitism case this higher percentage of infeasible individuals
comes with a trade-off of slower/less accurate convergence, which leads to
the generally poorer performance.

9

might no longer have its true fitness value. Consequently,
environmental changes might not be accurately detected or
tracked.

4) Effect of switching global optima (between disconnected
feasible regions) on strategies that use penalty functions: The
results show existing DO methods become less effective when
they are used in combination with the tested penalty functions
to solve a special class of DCOPs: problems with disconnected
feasible regions where the global optimum switches from one
region to another whenever a change occurs. In addition, the
more separated the disconnected regions are, the more difficult
it is for algorithms using penalty functions to solve.

The reason for this difficulty is it is necessary to have a
path through the infeasible areas that separate the disconnected
regions to track the moving optimum. This path might not be
available if penalty functions are used because penalties make
it unlikely infeasible individuals are accepted. Obviously the
larger the infeasible areas between disconnected regions,the
harder it is to establish the path using penalty methods.

Three test cases (pairs of almost identical problems) 16,
17, 18 in Table V were used to verify the statement above. In
all three test cases the objective functions are the same and
the global optimum switches between two locations whenever
a change occurs. However, each case represents a different
dynamic situation. Case 16 tests the situation where in one
problem of the pair (G246b) there is a feasible path connect-
ing the two locations and in the other problem (G246a) the
path is infeasible, i.e., there is an infeasible area separating
two feasible regions. Case 17 is the same as case 16 except
that the infeasible area separating two feasible regions has
a different shape. Case 18 tests a different situation where
in one problem (G246c) the infeasible area separating the
two feasible regions is small whereas in the other problem
(G24 6d) this infeasible area is large.

The experimental results in these three test cases (pairs
16, 17, 18 in Figure 4) confirm the hypotheses stated in
the beginning of this subsection. In cases 16 and 17, the
performance of the tested algorithms did decrease when the
path between the two regions is infeasible. In case 18, the
larger the infeasible area separating the two regions, the worse
the performance of the tested algorithms.

5) Effect of moving infeasible areas on strategies that
track the previous optima:Algorithms relying on tracking
previous global optimum such as HyperM might become less
effective when the moving constraints expose new, better
optima without changing the existing optima. The reason is
HyperM cannot to detect changes in such DCOPs and hence
might not be able to trigger its hyper-mutation rate. With
the currently chosen base mutation of 0.15, HyperM is still
able to produce good results because the mutation is high
enough for the algorithm to maintain diversity. However, ina
previous study [17], when a much smaller base mutation rate
was used, HyperM becomes significantly worse compared to
other algorithms in solving problems like G243.

To illustrate this drawback, the newly proposed measures
triggered-time countanddetected-change countwere used to
analyse how the triggered-hypermutation mechanism works
on problem G243. As can be seen in Table VIII, Hy-

TABLE VIII
THE triggered-time countSCORES AND THEdetected-change countSCORES

OF HYPERM IN A PAIR OF PROBLEMS WITH MOVING CONSTRAINTS
EXPOSING NEW OPTIMA AFTER11 CHANGES.

Value stdDev Value stdDev Value stdDev Value stdDev
HyperM-noElit 188.70 8.40 1.74 0.78 199.83 5.88 11.00 0.00
HyperM-elit 0.00 0.00 0.00 0.00 30.43 0.57 11.00 0.00
NAO - Newly Appearing Optimum
fF / dF - fixed / dynamic objective Function

Algorithms

G24_3 (NAO+fF) G24_3b (NAO+dF)
Trigger Count Detected Change

Count
Trigger count Detected

Change Count

perM either was not able to trigger its hyper-mutation rate
to deal with changes (elitism case,triggered-time count=0
& detected-change count=0) or was not able to trigger its
hyper-mutation rate correctly when a change occurs (non-
elitism case,triggered-time count∼188.7 & detected-change
count∼1.74). It is worth noting in the non-elitism case, most
of the trigger times are caused by the selection process because
in non-elitism selection the best solution in the population is
not always selected for the next generation.

Table VIII also shows that in problem G243b, which is
almost identical to G243 except it has its existing optima
changed, HyperM was able to detect changes and hence trigger
its hyper-mutation timely whenever a change occurs. It shows
HyperM only becomes less effective where environmental
changes do not change the value of existing optima.

D. Possible suggestions to improve current dynamic optimi-
sation strategies in solving DCOPs

The experimental results suggest some directions for ad-
dressing the drawbacks listed in the previous subsections:

(i) Based on the observation that elitism is useful for
diversity-maintaining strategies in solving DCOPs, it might
be useful to develop algorithms that support both elitism and
diversity maintaining mechanisms.

(ii) Given that methods like HyperM are not able to detect
changes because they mainly use change detectors (the best
solution in case of HyperM) in the feasible regions, it mightbe
useful to use change detectors in both regions and infeasible
regions.

(iii) Because experimental results show that tracking the
existing optima might not be effective in certain cases of
DCOPs, it might be useful to track the moving feasible regions
instead. Because after a change in DCOPs the global optimum
always either moves along with the feasible areas or appears
in a new feasible area, an algorithm able to track feasible
areas would have higher chance of tracking the actual global
optimum.

V. CHALLENGES OF SOME CONSTRAINT HANDLING

STRATEGIES IN SOLVINGDCOPS

A. Difficulties in handling dynamics

The most obvious reason for the difficulties in applying
existing CH strategies to solving DCOPs is these strategies
are not designed to handle environmental dynamics. One might
then question whether these difficulties can be overcome by
combining existing CH strategies with existing DO strategies.

10

Unfortunately, as will be shown below, not all difficulties
can be resolved by combining existing CH strategies with
existing DO strategies. In addition, this combination might
also bring some new challenges due to the conflict of the
optimisation goals of the two types of strategies. These are
the challenges in maintaining diversity, introducing diversity,
and detecting changes based on performance drop.

1) Impacts on maintaining/introducing diversity:As al-
ready discussed, one of the important strategies in DO is
to maintain/introduce diversity in the whole search space to
detect changes and to find newly-appearing/moving optima.
However, diversity might no longer be maintained this way
when combined with some CH techniques.

In many CH techniques, the original space is specifically
transformed so algorithms only focus on certain areas instead
of the whole original space. In such cases, even if a diversity-
introducing strategy such as HyperM is used to generate
individuals in the whole search space, diversified individuals
generated in the unfocused areas might be neglected by the
algorithms and hence do not contribute to maintaining diver-
sity. Typical examples of CH strategies that adopt this search
space transformation approach are penalty methods where the
constrained search space is transformed to an unconstrained
search space with penalised fitness values. Another example
is some approaches use special representations/operators. In
these approaches, the algorithms might be restricted to search-
ing only in the feasible regions, in a transformed feasible
search space, or in the boundaries of feasible regions. Detailed
reviews/references for representative penalty approaches and
special representations/operators approaches can be found in
[36], [37].

In some other CH techniques, individuals are selected
not exclusively based on their actual fitness values but also
on some special specifications. For example, in Stochastic
Ranking [38] infeasible individuals might have a better chance
of being accepted based on the given stochastic parameter. A
contrary example can be found in Simple Multimembered ES
[39] where infeasible solutions are less likely to be accepted
even if they have higher fitness values than the feasible
ones. Another example is in a CH multi-objective approach
[40] where individuals are ranked not entirely based on their
original fitness but also on the number of violated constraints.
In CH techniques like these, diversified individuals generated
by DO strategies might not be selected in the same way as
they were originally designed for, i.e., the number of infeasible
diversified individuals might become too large or too small.
The way a diversity maintaining strategy works might not be
the same as in the unconstrained case.

Experimental evidence for the inefficiency mentioned above
has already been shown in Section IV-C, where the diversity-
maintaining/introducing strategies become less effective when
combined with the tested penalty methods.

In [31], it was shown that current state-of-the-art in CH
such as SRES [38], [41] and SMES [39] become much less
effective in DCOPs and could not maintain enough diversity
to deal with the dynamics in DCOPs.

2) Impacts on change detection:Another possible difficulty
of combining CH strategies with DO strategies is the use of

some existing CH techniques might make change detection
based on performance drop, a common DO technique, less
effective. As already mentioned in Section IV-B, algorithms
like HyperM assume that during the search process, if there is
a degradation in the fitness values of the best solution foundin
each generation, there might be a change in the search space.
However, when DO algorithms are combined with some CH
techniques to solve DCOPs, such degradation in best fitness
values might no longer be caused by an actual change in the
search space. Instead, the degradation might be caused either
by an increase in penalty values or by the elimination of the
current good solutions from the population.

One example can be found in some CH techniques such as
dynamic penalty or adaptive penalty [42], [43], [44], where
the degradation of (modified) fitness values is not caused
by environmental changes but by the increase over time of
the penalty values. The consequence of this dynamic/adaptive
scheme is that if the detector solutions used by the change
detection method are infeasible or become infeasible, over
time their fitness value will decrease.7

In some other CH techniques which use ranking-based
methods [38], [39], [40], during the selection process the
current better solutions might be dropped in favour other
solutions, which might have worse fitness values but are more
useful for the CH process. In these situations there might also
be a drop in the values of the best solutions at each generation.

The drop in fitness values of the detector solutions in both
cases above might be incorrectly considered by DO strategies
like HyperM to be a change in the environment and this might
consequently trigger the DO strategies to react inappropriately.

B. Difficulties in handling constraints (empirical evidence
shown in Section V-D)

The difficulties of applying some existing CH strategies
to solving DCOPs are also caused by that their CH ability
become less effective. This is due to two reasons.

1) The issue of outdated information:In DOPs, after a
change, all existing information that an algorithm has acquired
or has been given about the problem might become outdated
and consequently make the algorithm less effective. For exam-
ple, in algorithms using strictly feasible reference individuals
like Genocop III [45], [33], after a change some reference
individuals may become infeasible. Similarly, in some ”de-
coder” methods the reference lists for ordinal representations
(e.g. the ordered lists of cities (TSP [46])/ ordered lists of
knapsack items (KSP [47]) / order lists of tasks (scheduling
[48])) might no longer be in order after a change because the
cities/items/tasks have changed their values. Another example
can be found in dynamic/adaptive penalty methods (e.g. [43]
[44]) where the penalty parameters learnt by the methods
might no longer be suitable because the balance between
feasible and infeasible solutions has changed.

7Of course, in penalty methods, if change detections are madeon the
original fitness instead of on the penalised fitness, the increase of penalty
values will not have any impact on detecting changes. However, in this case,
change detection might suffer from another problem: changes in constraint
functions will go undetected unless additional improvements are made to
detect constraint changes explicitly.

11

2) The issue of outdated strategy:The CH strategies
themselves can also be outdated when solving DCOPs. This
might occur when the CH strategies have problem-dependent
parameters, whose values might be tailored to work best in
only one (class of) stationary environment, to solve a DCOP.
In such cases, if the parameters are fine-tuned for the problem
before change, the algorithm might only work well until a
change occurs. Typical examples are penalty methods with
pre-defined penalty factors and/or other pre-defined parameters
that control how the penalty is defined. Other examples are
some combinatorial repair methods, methods with special
operators, or decoder methods. Detailed reviews are in [37]
and [49]).

Strategy-being-outdated might also occur with many adap-
tive CH strategies that are not problem-dependent because
these strategies rely on some specific assumptions that are
only true in stationary problems.

Typical examples are self-adaptive fitness formulation [50]
and stochastic ranking [38]. The general approach of these
strategies is to balance feasibility/infeasibility basedon the
performance of the current population, assuming that the
population always reflects a ”memory” of information about
the search space and the convergence process. This assumption
is not true in dynamic environments. When a change occurs,
the search space might change its shape and consequently the
”memory” of the population no longer reflects the property
of the new search space but only a small area where the
population currently is. This disadvantage has been observed
in [31] for the case of the state-of-the-art SRES.

Another type of CH strategies relying on outdated as-
sumptions are dynamic/adaptive methods that use the running
time value (e.g. the number of generations so far) to balance
feasibility and infeasibility. CH strategies of this type [42],
[43], [51], [52], [39] assume that the population will eventually
converge to the good regions and hence they handle constraints
by increasingly rejecting more infeasible solutions when time
goes by, or by reducing the mutation step size when time
goes by, to increase the convergence speed to good regions. In
DCOPs, because after a change good feasible regions might no
longer be good or feasible, if the CH strategy still imposes its
previous balancing mechanism to increase convergence speed,
the algorithm could end up converging to the wrong place and
will not be able to track the moving optima. This disadvantage
has been experimentally confirmed in [31] for the case of the
state-of-the-art SMES.

C. Possible suggestions to improve current constraint han-
dling strategies in solving DCOPs

The discussions in the two previous subsections show that,
to handle constraints effectively in DCOPs, a CH strategy
might need to satisfy the requirements below:

1) Make sure that the goal of CH does not conflict with
the goal of DO. Particularly:

a) Allow diversified individuals to be distributed in
the whole search space.

b) Do not reject diversified individuals even if they
do not contribute to CH.

c) Pay special attention whenever changes are de-
tected by monitoring the fitness values of current
individuals (it is necessary to check to see if a drop
in performance is really caused by an environmen-
tal change).

2) Make sure that the algorithm is updated whenever a
change occurs. Particularly:

a) Problem knowledge needs to be updated.
b) The CH strategy might also need to be updated

whenever a change occurs.
An algorithm needs to handle both environmental dynamics

and constraints effectively to work well in DCOPs. This means
that a ”good” algorithm for DCOPs needs to satisfy not only
the requirements for CH above but also the four requirements
for DO identified in Section IV-D.

D. Experimental analyses

An experimental analysis was carried out to test the per-
formance of therepair method, a representative CH strategy,
on the G24 benchmark set. The purpose is to answer three
questions: (i) what is the usefulness of the repair method
in solving DCOPs; (ii) whether the hypothesis about the
difficulties of DCOPs toward CH strategies, as mentioned in
Section V-B, is true; (iii) if the hypothesis is true, would
these difficulties affect the performance of CH strategies (in
particular the repair method) in solving DCOPs. These results
would help gain more understanding about how to design
better algorithms to solve DCOPs.

1) Chosen constraint handling technique for the analysis:
For this analysis therepair method[33] was chosen because
it is representative, simple, easy to implement, problem-
independent and is designed specifically for the continuous
domain.

Repair-based methods, however, also have one disadvan-
tage: they may require a considerable number of feasibility
checks to find a feasible individual. As a result, repair-based
methods might not be suitable for solving problems with very
expensive constraint functions and problems with very small
feasible areas.

2) Repair algorithms & the method in Genocop III [33]:
a) General ideas:The idea of repairing is, if it is possible

to map (repair) an infeasible solution to a feasible solution,
then instead of searching the best feasible solution directly, it
might be possible to look for an individual that can potentially
produce the best repaired solution. The better the repaired
solution, the higher the fitness value of an individual. In certain
cases, the feasible solution created by the repair process can
also be used to replace some of the search individuals.

Generally, a repair process can be described in three steps:
1) If a newly created individuals (can be feasible or

infeasible) needs repair, use a heuristicrepair () to
repairs, mappings to a new, feasible individualz.

2) The objective valuef (z) of z is used as input to
calculate the fitness value ofs, eval (s) = h (f (z))
whereh is the mapping from objective values to fitness.

3) If the repair approach is Lamarckian, replace one or
more search individuals byz

12

In the repair method[45], [33] chosen for this experiment,
the repair () heuristic is as follows:

1) The population is divided into two sub-populations: a
search populationS containing normally-evolving in-
dividuals, which can be fully feasible or only linearly
feasible, and a reference populationR containing only
fully feasible individuals.

2) During the search process, while each individualr in R

is evaluated using their objective function as usual, each
individual s in S is considered to be repaired based on
an individual fromR. Details of the repair routine can
be found in Algorithm 1.

It is important to note there are two possible variants of
deciding whether a search individuals needs to be repaired in
Genocop III (step 2 above). In the first variant [45], a search
individual s is repairedonly if s is infeasible. In the second
and latest variant [33], the implementation shows that search
individuals are repaired regardless of their feasibility.

In all experiments in this paper, the second variant was
implemented. From now on, unless stated otherwise the term
repair methodwill be used to refer to the continuous-based
repair approach proposed in [33].

b) Feasibility/infeasibility balancing strategy and prob-
lem knowledge in the repair method:The repair method and
other repair approaches have the ability to adaptively balance
feasibility and infeasibility. This balance is achieved byac-
cepting both infeasible and feasible individuals, provided that
they can produce good repaired solutions and by updating the
fitness values of search individuals with those of the mapped,
feasible solutions. This way the repair method ensures that
infeasible solutions are accepted and they cannot have better
fitness values than the best feasible solution available.

The strategy above needs certain problem information,
which is provided by the reference populationR and the search
populationS. R is an essential source of information to direct
the algorithm toward promising feasible regions (during the
repair process (Repair routine, Algorithm 1), newly repaired
solutions are always generated in the directions toward ref-
erence individuals).R also provides the balancing strategy
with information about the best feasible solution available (via
their fitness values) so that the strategy can make sure that no
infeasible individual can have better fitness values than this
best feasible solution.

The search populationS is also an essential source of
problem information. It helps indicate which point in the
search space would lead to potentially promising feasible
regions (via repair). In the selection phase the balancing
strategy then uses this information to select those individuals
that would potentially lead to the most promising regions.

c) How can the characteristics of DCOPs affect the
repair method?:The repair method suffers from the problem
of outdated information, which in turn makes the feasibil-
ity/infeasibility balancing strategy outdated.

The first type of information might become outdated when
a change occurs is the fitness values of search individuals.
Because the fitness of a search individual is always based
on the objective value of the corresponding mapped feasible
solution, it is assumed that the search population always offers

a ”memory” of good areas in the search space and directions
toward these good areas. The higher the fitness value of an
individual, the better the feasible region achieved by repairing
this individual.

In a dynamic environment, the memory, or fitness values of
search individuals, can become outdated right after a change
if the objective values of the corresponding repaired solutions
change. Particularly, the high fitness values of existing indi-
viduals might no longer lead to good repaired solutions and
vice versa. Worse, search individuals with high-but-outdated
fitnessh values might incorrectly bias the selection process,
which makes the search process less effective.

The second type of information that might become outdated
when a change occurs is the set of reference individuals that
are used to repair all other search individuals. The key assump-
tion that all reference individuals are feasible and are thebest
in the population is only true in stationary environments. In
dynamic environments, after a change, some existing reference
individuals might no longer remain the best in the population
or might even become infeasible. These outdated reference
individuals not only violate the assumption named above but
might also wrongly bias the search and drive more individuals
away from the good regions, making the search process less
effective.

In the following experiments an analysis was made to see
if the above hypotheses are correct and how significant their
effects are.

3) Experimental settings:
a) Tested algorithms: In this experiment, the repair

method was integrated with a basic GA. The integrated version
is called GA+Repair and is described in Algorithm 2. This
integration makes it possible to analyse the strengths and
weaknesses of the repair strategy because the only difference
between GA and GA+Repair is the repair operator and hence
any difference in performance would be caused by the repair
operator8. In addition, because all other tested strategies are
integrated with a basic GA, it is natural to integrate the repair
method with the GA9 to compare it with these strategies.

Even though the GA+Repair is a simplified version of
Genocop III, both algorithms have very similar behaviours
when solving different groups of DCOPs. This similarity
suggests the result tested with GA+Repair can be generalised
to other approaches that use the repair method. For detailed
results of Genocop III’s performance in the G24 benchmark
set and a comparison of its performance with other existing
and new algorithms, readers are referred to the study in [31].

b) Parameter settings:The tested algorithms use the
same parameter settings as the previously tested GA, RIGA,
and HyperM except that the population now is divided into a

8It is more difficult to analyse the effect of the repair strategy in the original
Genocop III because this algorithm implements multiple CH strategies (beside
the repair operator, there are ten other specialised operators to handle linear
constraints)

9It should be noted that while Genocop III allows 25% of the repaired
individuals to replace individuals in the population (Lamarckian evolution),
in GA+Repair none of the repaired individuals is used to replace the original
individuals (Baldwinian evolution). The reason is that in [31] it was found that
Lamarckian evolution does not significantly increase/decrease the performance
of Genocop III in solving DCOPs.

13

Algorithm 1 routine Repair(Indivs)
1) Randomly pick an individualr ∈ R

2) Generate individualz in the segment betweens andr

a) a = U (0, 1)
b) z= a.s+(1− a) .r
c) While z is infeasible, back to step 2a
d) If a feasiblez is not found after100 trials, z = r and

eval (z) = eval (r)

3) a) Evaluatez
b) If (f (z) better thanf (r)): r = z; eval (r) = f (z)
c) Update the fitness value ofs: eval (s) = f (z)

4) Return the individuals

search population and a reference population (see Table VI),
as implemented in the original Genocop III [33].

c) Performance measures:Three different measures
were used. The first measure, which is the modified version
of theoff-line error measure (see Section IV-B4), was used to
evaluate/compare the general performance of the GA+Repair.
Similar to the previous experiment, using this measure the
average performance of GA+Repair was also summarised in
each major group of problems (see results in Figure 2) and
the effect of each problem characteristic on GA+Repair was
analysed in 21 test cases shown in Table V of Section III (see
results in Figure 3 and Figure 4).

The second and third measures were specifically proposed
for this experiment. The second measure, namedfeasible
reference individuals, was used to analyse the behaviour of
the repair methodwhen some reference individuals become
outdated due to environmental changes (see Figure 5). The
third measure, namedfeasible individuals in each disconnected
region, was used to analyse the ability of repair methods to
balance feasibility and infeasibility on problems with optima
switching between disconnected feasible regions (see Figure
6). Details of these two measures will be described later.

4) The impact of outdated information/strategy on the per-
formance of the repair method :

a) Overall observation of performance in groups of prob-
lems: In the group ofstationary constrained problems(fF, fC),
the results in Figure 2 show that, as expected, a specialisedCH
technique such as the repair method in GA+Repair performs
significantly better than methods not designed for handling
constraints like the existing DO algorithms. Instationary
unconstrained group(fF, noC), also, as expected, the repair
method in GA+Repair is no longer particularly useful. Figure 2
shows that GA+Repair performs worse than all other methods
in dynamic, unconstrained problems (dF, noC).

In the groups ofDCOPs (fF+dC, dF+fC, dF+dC), things
are different. As can be seen in Figure 2, in DCOPs the
difference between GA+Repair and GA is no longer as signif-
icant as it is in the stationary constrained case, meaning that
the performance of GA+Repair significantly decreases. This
happens in all three cases of DCOPs where only the constraints
are dynamic (fF, dC), where only the objective functions are
dynamic (dF, fC) and where both constraints and objective
functions are dynamic (dF, dC).

Algorithm 2 GA+Repair

Note: It is assumed that the problem is maximisation

1) Initialise:

a) Randomly initialisem individuals in search popS
b) Initialise n individuals in the reference populationR

i) Randomly generate points until a feasibler is found
ii) Update fitness:eval (r) = f (r) & add r to R

iii) Repeat step 1(b)i untiln individuals are found

2) Search: For i = 1 : m

a) p1 = U (0, 1) ; p2 = U (0, 1)
b) Crossover: If (p1 < PXover)

i) Use nonlinear ranking selection to choose a pair of
parents fromS

ii) Crossover an offsprings from the chosen parents
iii) Evaluates and repairs usingRepair (s)
iv) Use nonlinear ranking selection to replace one of the

worst individuals inS by s

c) Mutation: If (p2 < PMutate)

i) Use nonlinear ranking-selection to choose a parent
from S

ii) Mutate an offsprings from the chosen parent
iii) Evaluates and repairs usingRepair (s)
iv) Use nonlinear ranking selection to replace one of the

worst individuals inS by s

d) Otherwise: If (p1 ≥ PXover) and (p2 ≥ PMutate)

i) Use nonlinear ranking-selection to choose an indi-
vidual s from S

ii) If s has not been evaluated since last generation,
evaluates

iii) Repairs using the routineRepair (s)
iv) Using nonlinear ranking selection to replace one of

the worst individuals inS by s

3) Evolve the reference population after each100 evaluations:
For i = 1 : n

a) Crossover: If (U (0, 1) < PXover)

i) Use nonlinear ranking-selection to choose a pair of
parents fromR

ii) Crossover an offspringr from the parents
iii) If r is feasible

A) Evaluater andx,the better of the two parents
B) If f (r) better thanf (x) thenx = r and fitness

valueeval (x) = f (r)

b) Mutation: If (U (0, 1) < PMutation)

i) Nonlinear ranking-selection to choose a parentx

from R

ii) Mutate an offspringr from x

iii) If r is feasible

A) Evaluater andx
B) If f (r) better thanf (x) thenx = r and fitness

valueeval (x) = f (r)

4) Return to step 2

14

Details of theimpact of dynamic objective functionson the
repair method can be seen in pair-wise comparisons in pairs
9 and 14 of Figure 3 where GA+Repair is tested in pairs
of almost identical constrained problems except that one has
a fixed and the other has a dynamic objective function. As
can be seen in these plots, the performance of GA+Repair
significantly decreased in case the objective function is dy-
namic. The difference in performance of GA+Repair between
the two problems of each pair is significantly larger than that
of GA and existing DO algorithms, meaning that the presence
of dynamic objective functions has a much greater impact on
the repair method than on GA and existing DO methods.

Details of theimpact of dynamic constraintson the repair
method can be seen in the pair-wise comparisons in plot i
of Figure 3 and plot a of Figure 4 (pairs of almost identical
problems except that one has fixed and the other has dynamic
constraints). Similar to the previous case, the results also show
that the performance of GA+Repair is significantly decreased
in case the constraints are dynamic and the presence of
dynamic constraints has a much greater impact on the repair
method than on existing DO methods.

However, although the presence of environmental dynamics
does significantly decrease the performance of GA+Repair, in
Figure 2 it is interesting to see that the algorithm still performs
better than existing DO algorithms in DCOPs (only that the
difference become significantly smaller compared to the static
constrained case). This shows the repair method has some
characteristics that make it promising for solving DCOPs.

Another interesting, and somewhat counter-intuitive obser-
vation in our experiment is the presence of constraints do
not make the problems more difficult to solve by GA+Repair.
Instead, the presence of constraints always helps GA+Repair
work better. Evidence can be found in the pair-wise compari-
son in pairs 1, 5, 6, 11, 12, 13 of Figure 3 and in pair 21 of Fig-
ure 4 where GA+Repair always performs better on the problem
with constraints than on the problem without constraints. The
experiment also shows that GA+Repair performs better where
there is an infeasible barrier separating two feasible regions.
Moreover, the larger the barrier, the better the performance of
GA+Repair (see pairs 17, 18 in Figure 4).

The experimental results confirm dynamics do have a
significant effect on the performance of the repair method.
Following is a further analysis to investigate if this effect is
indeed caused by the outdated problem information (reference
individuals and search individuals) and by the outdated strat-
egy as suspected by our hypothesis.

b) Analyse the behaviours of outdated reference indi-
viduals: As mentioned earlier, outdated information might
be caused by reference individuals having their objective
values changed or even become infeasible after a change. The
previously proposed measurefeasible reference individuals
was used to test if the algorithm is able to update the reference
individuals properly. If the algorithm is able to update the
reference individuals properly, it should be able to maintain
a reference population of all feasible individuals during the
search process.

The most suitable environments to test this behaviour of
the repair method are DCOPs with dynamic constraints where

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

change no.

no
. o

f f
ea

si
bl

e
re

fe
re

nc
e

in
di

vi
du

al
s

(a) G24−4

0 1 2 3 4 5 6 7 8 9 10
change no.

(b) G24−5

0 1 2 3 4 5 6 7 8 9 10
change no.

(c) G24−7

Fig. 5. This figure shows how GA+Repair maintains feasible reference
individuals in problems with moving infeasible regions. The total number
of reference individuals is five. The plot in the figures shows, among these
five reference individuals, how many are actually feasible during the search
process.

after each change the previous best feasible solutions are hid-
den by the moving infeasible region. They are G244, G24 5
(dF, dC) and G247 (fF, dC). As discussed earlier (see Figure
2), in both groups the performance of GA+Repair decreases
significantly compared to the case where the constraints are
fixed (fF,fC). In these problems, if one or more reference
individuals do become infeasible, there should be a drop in
the total number of feasible reference individuals and thisis
one of the reasons making the repair method less effective.

The plot of feasible reference individualsof GA+Repair is
given in Figure 5. The figure shows, in all cases the original
repair method was not able to keep all reference individuals
feasible during the search. The number of feasible reference
individuals drops to a very low level when a change occurs and
most of the time the number of feasible reference individuals
is much lower than five.

The results confirm the hypothesis that after a change, the
population of reference individuals has become outdated due
to the moving infeasible regions.

c) Analyse the behaviours of the outdated balancing
strategy: In Section V-D2, it was suspected that individuals
being outdated can also have a negative impact on the balanc-
ing strategy, which balances feasibility and infeasibility of the
repair method. To test if the algorithm is still able to balance
feasibility/infeasibility properly in dynamic environments, the
proposed measure:feasible individuals in each disconnected
regionwas used to monitor the number of feasible individuals
in each disconnected feasible region and the ratio of feasibil-
ity/infeasibility. The balancing mechanism should be ableto
manage a good distribution of individuals so that the better
feasible regions should have more feasible individuals if it
works well in the DCOP case.

The most suitable environments to test this behaviour are
DCOPs with two disconnected feasible regions where the
global optimum keeps switching from one region to another
after each change or after some consecutive changes. They
are G241, G24 2, G24 3b, G24 4, G24 5, G24 6a, G246c,
G24 6d, and G248b. All these problems belong to the group
SwO in Figure 2, where the performance of existing CH
algorithms significantly decreases compared to the stationary
constrained case (fF, fC). On such SwO problems, if the
balancing mechanisms work well, at each change period the
algorithm should be able to focus most feasible individuals

15

on the region where the global optimum is currently in while
still maintaining the same ratio of feasibility/infeasibility for
diversity purpose.

Theplot of feasible individuals in each disconnected region
for GA+Repair is given in Figure 6. The figure shows that
in all cases except G243b, the repair method was not able
to focus most feasible individuals on the region where the
global optimum is currently in. Instead, the majority of feasible
individuals still remained in one single region (region 2).The
number of individuals in the other region (region 1) remained
low regardless of where the global optimum is. This is due
to that, although the global optimum has switched to region
1, many individuals in region 2 were not updated and still
have the outdated fitness values which might be even higher
than the new global optimum value. These outdated individuals
incorrectly attract a large number of individuals to the old
feasible region. These results show that, due to its outdated
strategy, the algorithm was not able to follow the switching
optimum well10.

0

5

10

15

20 (a) GA+Repair in G24−1

0

5

10

15

20

nu
m

be
r

of
 fe

as
ib

le
 in

di
vi

du
al

s

(c) GA+Repair in G24−4

0 1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

change no.

(e) GA+Repair in G24−6a

(b) GA+Repair in G24−3b

(d) GA+Repair in G24−5

0 1 2 3 4 5 6 7 8 9 10 11
change no.

(f) GA+Repair in G24−8b

no. of indivs in region 1
no. of indivs in region 2

Fig. 6. This figure shows how the balance strategy of GA+Repair distributes
its feasible individuals in disconnected feasible regions. The problems tested
in this figure are those with global optima switching betweentwo disconnected
feasible regions.12

VI. CONCLUSION & FUTURE RESEARCH

In this paper we have identified some special and not well
studied characteristics of DCOPs that might cause significant
challenges to existing DO and CH strategies. Although these
characteristics are common in real-world applications, inthe
continuous domain they have not been considered in most
existing DO studies and they have not been captured in
existing continuous DO benchmark problems.

A set of dynamic constrained benchmark problems for
simulating the characteristics of DCOPs have been proposed
to help close this gap. To help researchers assess algorithm

10Note that in the G24 set, individuals being outdated might not always be
totally harmful because the changes in many problems are cyclic and hence
the outdated individuals might actually play the role of memory elements to
recall the previous good solutions. However, it is not clearhow beneficial such
memory elements could be, because the experiments show thatGA+Repair
still becomes less effective in the presence of environmental dynamics.

performance in DCOPs, seven new measures have been pro-
posed to evaluate the performance / analyse the behaviours
of algorithms on dynamic unconstrained/constrained problems
and one existing measure has also been modified to make it
usable in DCOPs.

Using the newly proposed benchmark problems and mea-
sures, some literature reviews and detailed experimental anal-
yses have been carried out to investigate the strengths and
weaknesses of existing DO strategies (GA/RIGA/HyperM)
and CH strategies (repair methods) in solving DCOPs. The
experimental analyses reveal some interesting findings about
the ability of existing algorithms in solving DCOPs. These
findings can be categorised as follows.

First, three interesting findings about the performance of
existing DO strategies in DCOPs have been identified: (a) the
use of elitism might have a positive impact on the performance
of existing diversity-maintaining strategies and but might have
a negative impact on the performance of diversity-introducing
strategies if they are not used with diversity-maintainingstrate-
gies; (b) the presence of infeasible areas has a negative im-
pact on the performance of diversity-introducing/maintaining
strategies; and (c) the presence of switching optima (between
disconnected regions) has a negative impact on the perfor-
mance of DO strategies if they are combined with penalty
functions.

Second, it has been found that even if CH strategies can
be combined with DO strategies, there might be two types
of difficulties in applying existing CH strategies to solving
DCOPs: (a) difficulties in handling dynamics, in particularly
maintaining diversity and detecting changes; and (b) difficul-
ties in handling constraints, which are caused by outdated CH
strategies and problem-knowledge.

Third, some counter-intuitive behaviours were observed:
the presence of constraints and dynamics in DCOPs might
not always make the problems harder to solve. For example,
the presence of constraints helps algorithms using the repair
method like GA+Repair work better in the tested problems.

Finally, based on the findings about the strengths and
weaknesses of some existing DO and CH strategies, a list
of possible requirements that DO and CH algorithms should
meet to solve DCOPs effectively have been suggested. This
list of requirements can be used as a guideline to design new
algorithms to solve DCOPs in future research.

The results in this paper raise some open questions for
future research. One direction is to develop new algorithms
specialised in solving DCOPs based on our suggested list of
requirements. Another direction is to investigate the impact of
DCOPs’ characteristics on other state-of-the-art CH and DO
strategies. We are interested in investigating the performance
of other adaptive feasibility/infeasibility balancing strategies,
e.g. [38], [53] in DCOPs. We also plan to study the situations
where the presence of constraints and dynamics would make
it easier for certain classes of algorithms to solve DCOPs.

The research has some limitations to be improved in future
research: memory-based approaches have not been considered
in our analysis; the algorithms and methods used to analyse
representative DO and CH strategies are very basic to keep
the analysis at a manageable level; the analysis has been

16

tested only in a benchmark problems with unimodal objective
functions; the types of changes are limited to linear and
sinuous/cyclic changes and there was no consideration of
hard/soft constraints. It would be interesting to extend the
analysis on the multimodal set of benchmark problems in [18]
and apply other types of changes such as random, chaotic and
non-linear changes.

ACKNOWLEDGMENT

The authors thank Prof. J. Branke, Prof. Y. Jin, Dr. S. Yang,
C. Li, Dr. P. Rohlfshagen, Dr. T. Ray, Dr. J. Rowe and Dr. A.
Kaban for their fruitful discussions; J. Rees, A. Economides,
H. Maxwell and H. Nguyen for their help in academic writing.
The programs in this paper were developed from the source
code provided by K. Williams[54] and Z. Michalewicz[33].

REFERENCES

[1] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments—a survey,”IEEE Transactions on Evolutionary Compu-
tation, vol. 9, no. 3, pp. 303–317, 2005.

[2] M. Andrews and A. L. Tuson, “Dynamic optimisation: A practitioner
requirements study,” inProceedings of the The 24th Annual Workshop
of the UK Planning and Scheduling Special Interest Group (PlanSIG
2005), London, UK, 2005.

[3] Y. Wang and M. Wineberg, “Estimation of evolvability genetic algorithm
and dynamic environments,”Genetic Programming and Evolvable Ma-
chines, vol. 7, no. 4, pp. 355–382, 2006.

[4] D. M. Prata, E. L. Lima, and J. C. Pinto, “Simultaneous data reconcil-
iation and parameter estimation in bulk polypropylene polymerizations
in real time,” Macromolecular Symposia, vol. 243, no. 1, pp. 91–103,
2006.

[5] L. Araujo and J. J. Merelo, “A genetic algorithm for dynamic modelling
and prediction of activity in document streams,” inGECCO ’07:
Proceedings of the 9th annual conference on Genetic and evolutionary
computation. New York, NY, USA: ACM, 2007, pp. 1896–1903.

[6] P. Tawdross, S. K. Lakshmanan, and A. Konig, “Intrinsic evolution of
predictable behavior evolvable hardware in dynamic environment,” in
HIS ’06: Proceedings of the Sixth International Conferenceon Hybrid
Intelligent Systems. Washington, DC, USA: IEEE Computer Society,
2006, p. 60.

[7] M. Rocha, J. Neves, and A. Veloso, “Evolutionary algorithms for
static and dynamic optimization of fed-batch fermentationprocesses,”
in Adaptive and Natural Computing Algorithms, B. Ribeiro et al., Eds.
Springer, 2005, pp. 288–291.

[8] K. Deb, U. B. Rao, and S. Karthik, “Dynamic multi-objective opti-
mization and decision-making using modified NSGA-II: A casestudy
on hydro-thermal power scheduling,” inEvolutionary Multi-Criterion
Optimization, 4th International Conference, EMO 2007, Matsushima,
Japan, March 5-8, 2007, Proceedings, ser. Lecture Notes in Computer
Science, vol. 4403. Springer, 2007, pp. 803–817.

[9] P. Ioannou, A. Chassiakos, H. Jula, and R. Unglaub, “Dynamic
optimization of cargo movement by trucks in metropolitan areas
with adjacent ports,” METRANS Transportation Center, University of
Southern California, Los Angeles, CA 90089, USA., Tech. Rep., 2002.
[Online]. Available: www.metrans.org/research/final/00-15\ Final.htm

[10] K. Mertens, T. Holvoet, and Y. Berbers, “The DynCOAA algorithm for
dynamic constraint optimization problems,” inAAMAS ’06: Proceedings
of the fifth international joint conference on Autonomous agents and
multiagent systems. New York, NY, USA: ACM, 2006, pp. 1421–1423.

[11] J. M. Thompson and K. A. Dowsland, “A robust simulated annealing
based examination timetabling system,”Computers and Operations
Research, vol. 25, no. 7-8, pp. 637–648, 1998.

[12] U. Aickelin and K. Dowsland, “Exploiting problem structure in a genetic
algorithm approach to a nurse rostering problem,”Journal of Scheduling,
vol. 3, pp. 139–153, 2000.

[13] H. Kim, “Target exploration for disconnected feasibleregions in
enterprise-driven multilevel product design,”American Institute of Aero-
nautics and Astronautics Journal, vol. 44, no. 1, pp. 67–77, 2006.

[14] C. A. Liu, “New dynamic constrained optimization pso algorithm,” in
ICNC ’08: Proceedings of the 2008 Fourth International Conference on
Natural Computation. Washington, DC, USA: IEEE Computer Society,
2008, pp. 650–653.

[15] H. Richter, “Memory design for constrained dynamic optimization prob-
lems,” in Proceedings of the European Conference on the Applications
of Evolutionary Computation 2010, EvoApplications 2010, ser. Lecture
Notes in Computer Science, vol. 6024. Springer, 2010, pp. 552–561.

[16] T. T. Nguyen, “Continuous Dynamic Optimisation Using Evolutionary
Algorithms,” Ph.D. dissertation, School of Computer Science, University
of Birmingham, January 2011, http://etheses.bham.ac.uk/1296 and http:
//www.staff.ljmu.ac.uk/enrtngu1/theses/phdthesis nguyen.pdf.

[17] T. T. Nguyen and X. Yao, “Benchmarking and solving dynamic con-
strained problems,” inProceedings of the IEEE Congress on Evolution-
ary Computation CEC2009. IEEE Press, May 2009, pp. 690–697.

[18] T. T. Nguyen, “A proposed real-valued dynamic constrained benchmark
set,” School of Computer Science, Univesity of Birmingham,Tech.
Rep., 2008. [Online]. Available:\url{http://www.cs.bham.ac.uk/∼txn/
Papers/DCOPbenchmark.pdf}

[19] T. T. Nguyen and X. Yao, “Dynamic time-linkage problem revisited,”
in Proceedings of the 2009 European Workshops on Applicationsof
Evolutionary Computation, EvoWorkshops 2009, ser. Lecture Notes in
Computer Science, M. Giacobini, P. Machado, A. Brabazon, J.McCor-
macket al., Eds., vol. 5484, 2009, pp. 735–744.

[20] C. Floudas, P. Pardalos, C. Adjiman, W. Esposito, Z. Gumus, S. Harding,
J. Klepeis, C. Meyer, and C. Schweiger,Handbook of Test Problems
in Local and Global Optimization, ser. Noncovex Optimization and Its
Applications. Kluwer Academic Publishers, 1999, vol. 33.

[21] H. G. Cobb, “An investigation into the use of hypermutation as an adap-
tive operator in genetic algorithms having continuouis, time-dependent
nonstationary environments,” Naval Research Laboratory,Washington,
USA, Technical Report AIC-90-001, 1990.

[22] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima
by a particle swarm model using speciation.”IEEE Trans. Evolutionary
Computation, vol. 10, no. 4, pp. 440–458, 2006.

[23] I. Moser and T. Hendtlass, “A simple and efficient multi-component
algorithm for solving dynamic function optimisation problems,” inPro-
ceedings of the IEEE Congress on Evolutionary Computation CEC’07.,
2007, pp. 252–259.

[24] J. J. Grefenstette, “Genetic algorithms for changing environments,” in
Parallel Problem Solving from Nature 2, R. Maenner and B. Manderick,
Eds. North Holland, 1992, pp. 137–144.

[25] S. Yang and X. Yao, “Experimental study on population-based incre-
mental learning algorithms for dynamic optimization problems,” Soft
Computing - A Fusion of Foundations, Methodologies and Applications,
vol. 9, no. 11, pp. 815–834, 2005.

[26] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments.”IEEE Trans. Evolutionary Com-
putation, vol. 10, no. 4, pp. 459–472, 2006.

[27] J. Branke, Evolutionary Optimization in Dynamic Environments.
Kluwer, 2001.

[28] H. Richter, “Detecting change in dynamic fitness landscapes,” inPro-
ceedings of the IEEE 2009 Congress on Evolutionary Computation,
CEC2009, 2009, pp. 1613–1620.

[29] H. Richter and S. Yang, “Learning behavior in abstract memory schemes
for dynamic optimization problems,”Soft Computing, vol. 13, no. 12,
pp. 1163–1173, 2009.

[30] D. Ayvaz, H. Topcuoglu, and F. Gurgen, “A comparative study of
evolutionary optimization techniques in dynamic environments,” in
GECCO ’06: Proceedings of the 8th annual conference on Genetic and
evolutionary computation. New York, NY, USA: ACM, 2006, pp. 1397–
1398.

[31] T. T. Nguyen and X. Yao, “Solving dynamic constrained optimisation
problems using repair methods,”IEEE Transactions on Evolutionary
Computation (submitted), 2010. [Online]. Available:\url{http://www.
cs.bham.ac.uk/∼txn/Papers/NguyenYao dRepairGA.pdf}

[32] K. A. Morales and C. Quezada, “A universal eclectic genetic algorithm
for constrained optimization,” inProceedings 6th European Congress
on Intelligent & Soft Computing, EUFIT’98, 1998, pp. 518–522.

[33] Z. Michalewicz, “The second version of Genocop III: a system which
handles also nonlinear constraints,” School of Computer Science,
University of Adelaide, [Accessed February 2009]. [Online]. Available:
{http://www.cs.adelaide.edu.au/∼zbyszek/EvolSyst/gcopIII10.tar.Z}

[34] T. T. Nguyen and X. Yao, “Detailed experimental resultsof GA, RIGA,
HyperM and GA+Repair on the G24 set of benchmark problems,”
School of Computer Science, University of Birmingham, Tech. Rep.,

17

2010, online. [Online]. Available:\url{http://www.cs.bham.ac.uk/∼txn/
Papers/DCOPfulldata.pdf}

[35] H. Motulsky, Intuitive Biostatistics, 1st ed. Oxford University Press,
October 1995.

[36] T. Back, D. B. Fogel, and Z. Michalewicz, Eds.,Handbook of Evolu-
tionary Computation. Bristol, UK, UK: IOP Publishing Ltd., 1997.

[37] C. A. Coello Coello, “Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the state of
the art,”Computer Methods in Applied Mechanics and Engineering, vol.
191, no. 11-12, pp. 1245–1287, January 2002.

[38] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evo-
lutionary optimization,”IEEE Trans. Evolutionary Computation, vol. 4,
no. 3, pp. 284–294, 2000.

[39] E. Mezura-Montes and C. A. C. Coello, “A simple multimembered
evolution strategy to solve constrained optimization problems,” IEEE
Trans. Evolutionary Computation, vol. 9, no. 1, pp. 1–17, 2005.

[40] S. Venkatraman and G. G. Yen, “A generic framework for constrained
optimization using genetic algorithms,”IEEE Trans. Evolutionary Com-
putation, vol. 9, no. 4, pp. 424–435, 2005.

[41] T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary
optimization,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C, vol. 35, no. 2, pp. 233–243, 2005.

[42] J. Joines and C. Houck, “On the use of non-stationary penalty functions
to solve nonlinear constrained optimization problems withgas,” in
Proceedings of the first IEEE Conference on Evolutionary Computation,
D. Fogel, Ed. IEEE Press, 1994, pp. 579–584.

[43] A. B. Hadj-Alouane and J. C. Bean, “A genetic algorithm for the
multiple-choice integer program,”Operations Research, vol. 45, pp. 92–
101, 1997.

[44] S. B. Hamida and A. Petrowski, “The need for improving the exploration
operators for constrained optimization problems,” inProceedings of the
Congress on Evolutionary Computation 2000, CEC’00, vol. 2, 2000, pp.
1176–1183.

[45] Z. Michalewicz and G. Nazhiyath, “Genocop III: A co-evolutionary
algorithm for numerical optimization with nonlinear constraints,” inPro-
ceedings of the Second IEEE International Conference on Evolutionary
Computation, D. B. Fogel, Ed. Piscataway, New Jersey: IEEE Press,
1995, pp. 647–651.

[46] J. J. Grefenstette, R. Gopal, B. Rosmaita, and D. van Gucht, “Genetic
algorithm for the TSP,” inProceedings of the First International
Conference on Genetic Algorithms, 1985, pp. 160–168.

[47] Z. Michalewicz, Handbook of Evolutionary Computation. Oxford
University Press, 1997, ch. Constraint-Handling Techniques : Decoders.,
pp. C5.3:1–C5.3:3.

[48] G. Syswerda, “Schedule optimization using genetic algorithms,” in
Handbook of Genetic Algorithms, L. Davis, Ed. New York: Van
Nostrand Reinhold, 1991, pp. 332–349.

[49] S. Salcedo-Sanz, “A survey of repair methods used as constraint han-
dling techniques in evolutionary algorithms,”Computer Science Review,
vol. 3, no. 3, pp. 175 – 192, 2009.

[50] R. Farmani and J. A. Wright, “Self-adaptive fitness formulation for con-
strained optimization,”IEEE Trans. Evolutionary Computation, vol. 7,
no. 5, pp. 445–455, 2003.

[51] S. B. Hamida and M. Schoenauer, “ASCHEA: new results using adaptive
segregational constraint handling,” inProceedings of the 2002 Congress
on Evolutionary Computation, 2002. CEC’02., vol. 1. Los Alamitos,
CA, USA: IEEE Press, 2002, pp. 884–889.

[52] T. Takahama and S. Sakai, “Constrained optimization byapplying
the alpha; constrained method to the nonlinear simplex method with
mutations,” IEEE Transactions on Evolutionary Computation, vol. 9,
no. 5, pp. 437 – 451, oct. 2005.

[53] Y. Wang, Z. Cai, Y. Zhou, and W. Zeng, “An adaptive tradeoff model
for constrained evolutionary optimization,”IEEE Transactions on Evo-
lutionary Computation, vol. 12, no. 1, pp. 80 –92, feb. 2008.

[54] K. P. Williams, “Simple genetic algorithm (SGA) sourcecode
(in C),” [Accessed December 2008]. [Online]. Available: http:
//www.kenwilliams.org.uk/code/ga2.c

