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Abstract—Many real-world dynamic problems have con-
straints, and in certain cases not only the objective functin
changes over time, but also the constraints. However, theris no
research in answering the question of whether current algathms
work well on continuous dynamic constrained optimisation pob-
lems (DCOPs), nor is there any benchmark problem that reflect
the common characteristics of continuous DCOPs. This paper
contributes to the task of closing this gap. We will present ame
investigations on the characteristics that might make DCOB
difficult to solve by some existing dynamic optimisation (DQ and
constraint handling (CH) algorithms. We will then introduce a
set of benchmark problems with these characteristics and &
several representative DO and CH strategies on these probies.
The results confirm that DCOPs do have special characterists
that can significantly affect algorithm performance. The results
also reveal some interesting observations where the presan
or combination of different types of dynamics and constrairis
can make the problems easier to solve for certain types of
algorithms. Based on the analyses of the results, a list of gantial
requirements that an algorithm should meet to solve DCOPs
effectively will be proposed.

Index Terms—Dynamic optimisation, dynamic environments,
dynamic constraints, constraint handling, benchmark prodems,
evolutionary algorithms, performance measures.

|I. INTRODUCTION

This research aims to answer some open questions atf@@lrk problems,

the characteristics, difficulty and solutions of a very coomm
class of problem - dynamic constrained optimisation pnoisle

(DCOPs). DCOPs are constrained optimisation problems t

have two properties: (a) the objective functions, the qaiirsts,
or both, may change over time, and (b) the changes
taken into account in the optimisation procedsis believed
that a majority of real-world dynamic problems are DCO
However, there are few studies on continuous dynamic c
strained optimisation. Existing studies in continuousaiyit

constraint handling only focuses on the stationary commstch
problems.

This lack of attention on DCOPs in the continuous domain
raises some important research questions: What are the-esse
tial characteristics of these types of problems? How welllo
existing dynamic optimisation and constraint handlingtstr
gies perform in dynamic constrained environments if most
of them are designed for and tested in either unconstrained
dynamic problems or stationary constrained problems only?
Why do they work well or not? How can one evaluate if
an algorithm works well or not? And finally, what are the
requirements for a "good” algorithm that effectively save
these types of problems?

As a large number of real-world applications are dynamic
constrained, finding the answers to the questions above is
essential. Such answers would help have better understandi
about the practical issues of DCOPs and to solve this class of
problem more effectively.

The paper is organized as follows. Section Il identifies the
special characteristics from real-world DCOPs and discuss
how the characteristics make this type of problem different
from unconstrained dynamic optimisation problems (DOPs).
Section Il reviews related literature about continuousdie
identifies the gaps between them and real-
world problems and proposes a new set of DCO benchmark
problems. Sections IV and V investigate the possibility of

r%g)gving DCOPs using some representative DO/CH strategies.

Experimental analyses about the strengths and weaknesses,
d the effect of the mentioned characteristics on eactegira
will be undertaken. Based on the experimental results,ta lis

ng requirements that algorithms should meet to solve DCOPs
O(=r'11‘_fectively is proposed. Finally, Section VI concludes agper

and points out future directions.

optimisation only focus on the unconstrained or domain con-
straint dynamic cases (which in this paper both are regarded II. CHARACTERISTICS OF REALWORLD DYNAMIC

as "unconstrained” problems). Likewise, existing reskdrc
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CONSTRAINED PROBLEMS

The presence of constraints in DCOPs from real-world ap-
plications makes them very different from the unconstraioie
domain constraint problems considered in academic rdsearc
In real-world DCOPs the objective function and constraint
functions can be combined in three different types: (a) both
the objective function and the constraints are dynamic [2],
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1This definition is derived from the (more general) definitiohdynamic
optimisation problems in [1, section V].

constraints are static [5], [6], [7]; and (c) the objectivaétion

is static and the constraints are dynamic [8], [9], [10]. Ih a
three types, the presence of infeasible areas can affect how
the global optimum moves, or appears after each change. This



leads to some special characteristics which are not foundviork on DCOPs, and (b) design new algorithms specialising
the unconstrained cases and fixed constrained cases. in DCOPs. Given that a majority of recent real-world DOPs
First, constraint dynamics can lead to changes in tlee DCOPs [16], this can be considered an important gap in
shape/percentage/structure of the feasible/infeasilbémsa DO research.
Second, objective function dynamics might cause the globalThis gap motivates the authors to develop general-purpose
optima to switch from one disconnected feasible region tsenchmark problems to capture the special characteristics
another on problems with disconnected feasible regiong&hwh DCOPs. Some initial results involving five benchmark prob-
are very common in real-world constrained problems, espgems were reported in an earlier study [17]. This paper aden
cially the scheduling problems [11], [12], [13]. Third, imgl- the framework to develop full sets of benchmark problems,
lems with fixed objective functions and dynamic constraintghich are able to capture all characteristics mentioned in
the changing infeasible areas might expose new, betteablothe previous section. Two sets of benchmark problems, one
optima without changing the existing optima. One example ygith multimodal, scalable objective functions and one with
the Dynamic 0-1 Knapsack Problem: significantly increasingnimodal objective functions, have been developed for this
the capacity of the knapsack can create a new global optimugsearch. In this paper the benchmark set with unimodal ob-
without changing the existing optimum. jective functions (many problems in the set still have nplti
In addition to the three special characteristics above, PE€Ogptima due to the constraints) will be discussed in detail.
might also have the common characteristics of constrainB@tailed descriptions of the multimodal, scalable set can b
problems such as global optima in the boundaries of feasiltgind in a technical report [18].
regions, global optima in search boundary, and multiple dis
connected feasible regions. These characteristics arelywid

regarded as being common in real-world applications. B. Generating dynamic constrained benchmark problems
1. A REAL-VALUED BENCHMARK TO SIMULATE DCOPs One useful way to create dynamic benchmark problems is to
CHARACTERISTICS combine existing static benchmark problems with the dygami

rules found in dynamic constrained applications. This can b

. ) ) o ) done by applying the dynamic rules to the parameters of the
In the continuous domain, there is no existing continuoWg,tic problems, as described below.

benchmark that fully reflects the characteristics of DCOPS Giyen a static functiorfp (z) with a set of parameter® =
listed in Section Il. Among existing continuous benchmark 1, ..pr}, one can always generalise (z) to its dynamic
there are only two recent studies that are related to dynanjigsion fp, (x,t) by replacing each static paramejere P
constraints. The first study was [14] in which two simple unizii, 4 time-dependent expressipn(t). The dynamic of the
modal constrained problems were proposed. These prObletWﬁamic problem then depends on hpw(t) varies over time.
take the time variableas_theironly time—dependan_t parametefne can use any type of dynamic rule to represerit),

and hence the dynamic was created by the increase OYRH hence can create any type of dynamic problem. Details
time of ¢. These problems have some important disadvantagShe concept and a mathematical framework for the idea is

which prevent them from being used to capture/simulate thgscribed in [18]. Some additional information is provided
mentioned properties of DCOPs: they only capture a snmqlfg] (Section 3).

linear change. In addition, the two problems do not reflect
common situations like dynamic objective + fixed constiaint
or fixed objective + dynamic constraints and other comman. A dynamic constrained benchmark set

ites of DCOPs. .
pr(_?_l?]zrlseescgnd stud§ was [15]. In that research, a dynamicA set of 18 benchmark problems named G24 was introduced

constrained benchmark problem was proposed by combinii"Y the new procedure describeo_l in the previou_s SUbﬂeCtiO_
an existing “field of cones on a zero plane” dynamic fitnes e general form for each problem in the G24 set is as follows:

function with four dynamic norm-based constraints with the

square/diamond/sphere-like shapes (see Figure 2 in [15]). minimise  f(x)

Although the framework used to generate this benchmark subject to g; (x) <0, 9;(x) €G,i=1,..,n

problem is highly configurable, the current single benchmar

problem generated by the framework in [15] was designed fathere the objective functioffi(x) can be one of the function

a different purpose and hence does not simulate the preperforms set out in equation (1), each constrgintx) can be one

mentioned in Section II. For example, the benchmark problesfithe function forms given in equation (2), agdis the set of

might not be able to simulate common properties of DCOPsconstraint functions for that particular benchmark prahle

such as optima in boundary; disconnected feasible regims; The detailed descriptions ¢f(x) andg; (x) for each problem

moving constraints exposing optima in a controllable way. lare described in Table | and Table 1.

addition, there is only one single type of benchmark problem Equation (1) describes the general function forms for the

and hence it might be difficult to use the problem to evaluatdbjective functions in the G24 set. Of these function forms,

the performance of algorithms under different situations.  f(®)is used to design the objective function for G84 and
The lack of benchmark problems for DCOPs makes @24 8b, and f(!) is used to design the objective functions

difficult to (a) evaluate how well existing DO algorithms wdu for all other problemsf(!) is modified from a static function

A. Related literature



TABLE | . . . .
THE OBJECTIVE FUNCTION FORM OF EACH BENCHMARK PROBLEM mentioned in Section Il and (b) there should always be a pair

- _ of problems for each characteristic. The two problems irheac

Benchmark problem ObJeC“Ve(Qf)U”CI'O” pair should be almost identical except that one has a péaticu

G248a & G248b  f(x)=f | characteristic (e.g. fixed constraints) and the other doeBy

All other problems £ (z) = f() . .

comparing the performance of an algorithm on one problem
TABLE Il with its performance on the other problem in the pair, it is

THE SET OF CONSTRAINT FUNCTION FORMS FOR EACH PROBLEM possible to analyse whether the considered charactehiatic
any effect on the tested algorithm and to what extent thateff

Benchmark problem Se¥ of constraints A

G24.u; G24 uf, G24 2u; G248a G = {0} is significant. o _

G24 6a G={g®,q0®} Based on the two guidelines above, 18 different test prob-

G24 6b G= {g?} \ lems were created (Table 1ll). Each test problem is able to

ggj—gg g: QES;’Q;;% capture one or several of the mentioned characteristics of
L ={9%)g i it

All other problems G = {gV.g®} DCOPs, as shown in Table IV. In addition, the problems and

their relationships are carefully designed so that they lman
arranged in 21 pairs (Table V), of which each pair is a diffiere
proposed in [20] and@is a newly designed function. test case to test a single characteristic of DCOPs (the two
1) _ problems in each pair are almost identical except that ose ha
[ = =X+ Xa) M) a special characteristic and the other does not).

@ = _3exp <_\/, /(X1)2 + (X2)2> IV. CHALLENGES OF APPLYING CURRENT DYNAMIC

OPTIMISATION STRATEGIES DIRECTLY TO SOLVINGDCOPs
whereX; = X; (x;,t) = p; (t) (x; + q; (t));0 < 21 < 3;0 < A. Analysing the performance of some common dynamic op-
9 < 4 with p; (t) andg; (t) (i = 1,2) as the dynamic param- timisation strategies in solving DCOPs
each benchmark problem changes over time. (2) maintaining diversity and (3) tracking the previousioyat.

Equation (2) describes the general function forms for thgnese three are among the four most commonly used strategies
_g(1>andg(2)w?3r)e n(14(;d|f|(eé()j from('é\;vo static functions proposegjiversity-introducing strategy was proposed based on the a
in [20] and ¢, g*", g'*/and g**’are newly designed func- symption that by the time a change occurs in the environment,
tions. an evolutionary algorithm (EA) might have already converge
g = VA48V —8YZ + Y, — 2 (2) toa specific area and hence would lose its ability to deal with
changes in other areas of the search space. Consequently, it

2 = _4ys 3 2 - . ) . . . .
g AV + 32YY — 88Y[ 4 96Y 413 — 36 is necessary to increase the diversity level in the popriati
g = 2Y1+3Y5 -9 either by increasing the mutation rate or re-initialisheg/

@ _ -1 f(0<Y;<lor(2<Y; <3) locating the individuals. This strategy was introducedrgea
g = 1 otherwise ago [21] but is still extensively used [22] [23].

© 1 if(0<Y; <05)0r2<Y; <2.5) The div_ersity-introducing_strategy requirgs that changes
g = 1 otherwise must be visible to the algorithm. To avoid this disadvanfage

the diversity-maintaining strategy was introduced so plogitu-
lation diversity can be maintained without explicitly detiag
changes [24]. This strategy is still the main strategy in ynan
recent approaches [25] [26].
whereY; = Y, (z,t) = r; (t) (x+ 5 (1));0 < z1 < 3;0 < The third strategy, tracking-previous-optima, is used ighe
xe < 4 with r;(t) and s; (t) (i =1,2) as the dynamic the optima might only slightly change. The region surrounidi
parameters, which determine how the constraint functidns the current optima is monitored to detect changes and “track
each benchmark problem change over time. the movement of these optima. Similar to the two strategies

Each benchmark problem may have a different mathemabove, the tracking strategy has also been used for years
ical expression fom; (t), ¢; (t), r; (t) and s; (t). Note that [21] and it has always been one of the main strategies for
although many benchmark problems share the same gensmving DOPs. Recently this strategy has been combined with
function form in equation (1), their individual expressiofor the diversity maintaining/introducing strategy to aclei®etter
p; (t) andg; (t) make their actual dynamic objective functiongerformance. Typical examples are the multi-populatiaritin
very different. Similarly, the individual expressions for(t) swarm approaches, where multiple sub-populations aretosed
ands; (t) make each actual dynamic constraint functions veryaintain diversity and each sub-population/sub-swarmdes
different although they may share the same function formn tracking one single optimum [26] [27].
The individual expressions af; (¢), ¢; (t), r; (t), and s; (t) ) ) )
for each benchmark function are described in Table Ill.  B. Chosen algorithms and experimental settings

Two guidelines were used to design the test problems: (a)l) Chosen algorithms:Two commonly used algorithms:
problems should simulate the common properties of DCOPstaggered hyper-mutation GAHyperM [21]) and random-

-1 if[(0<Y1 <1)and(2 <Y; < 3)]
g©® = or(2<Y; <3)
1 otherwise



TABLE Il

DYNAMIC PARAMETERS FOR ALL TEST PROBLEMS IN THE BENCHMARK
SETG24. EACH DYNAMIC PARAMETER IS A TIME-DEPENDANT
RULE/FUNCTION WHICH GOVERNS THE WAY THE PROBLEMS CHANGE

Prob Parameter settings
G24 u p1(t) =sin(krt+ Z);p2(t) =1,¢:(t) =0
G241 p2()=ri()=1 q(t)=s:(t) =
p1 (t) =sin (krt+ %)
G24 f pi)=ri®) =1, ¢ () =5 () =0
G24_Uf i (t) = 1; Qi (t) =1
i Ert s
G242 it (tmod2=0) { W55
P2(t):{p§(o()iotif t:())
. p1(t)=sin(“F=+5
if (tmod2 # 0) {pg(t):Sin( kr(i=1) +%)
¢ (t)=s,(t)=0;7r;(t) =1
—ai Ernt i
G24 2u it (tmod2=0) { 1VTCE S
P2(t):{p§(o()iotif t:())
. p1(t)=sin(“F=+5
if (tmod2 #0) {pg(t):Sin( kr(i=1) +%)
¢ (t)=0
G243 pit)=ri(t)=1¢ () =s1() =0
59 (t) =924 .22 manzg min
G24 3b p1 (t) = sin (krt + %) ;o p2(t)=1
qi (t) =s1(t) =0; 7 (t) = 1;
52 (t) =94t Z9 max —xg min
G24 3f pi)=ri®)=1q¢ ) =s(01) =0;s2(t) =2
G244 ppB)=rit)=1 ¢t =s()=0
p1(t) =sin (krt+ ) ;82 (b) = t.w
—ai kExt | &
G245 it (tmod2=0) { *(VTE4E)

_ [po(t—1)if £>0
p2(t)f{p§,2(o) if t=0
pr(0=4in( 5+ 5)

if (tmod2 # 0) {pz(t):sm(kﬂ(;—l)Jr%)

g (t) =s1(t) =0; r; (t) = 1;

59 (t) — ¢ Z2max gcvg min
G24 6albic/d  pi (t) =sin (7t + 5 ) ;p2 (t) = 1;

() =si(t)=0ri (1) =1
G247 pi(t)=ri(M)=1; ¢ (t) =51 () =0;

59 (t) — .22 max;wg min
G24 8a pi (t) = —1;q1 (t) = — (c1 + Ta. cos (knt))

q2 (t) = — (c2 + rq.sin (knt)) ;
G24 8b pi (1) = —1;q1 (t) = — (c1 + 7a. cos (k7t))

q2 (t) = — (c2a + rq.sin (kmt));ry (t) =1; s;(¢) =0
k k determines the severity of function changes.

k =1 ~large; k = 0.5 ~ medium;k = 0.25 ~ small
S S determines the severity of constraint changes

S =10 ~large; S = 20 ~ medium;S = 50 ~ small
Cc1,C2,Tq c1 = 1.470561702; co = 3.442094786232;
(G24 8a/b rq = 0.858958496 .
only)

2

1 is the variable index; = 1,2

TABLE IV
PROPERTIES OF EACH TEST PROBLEM IN THE24BENCHMARK SET

Problem ObjFunc Constr DFR SwO bNAO OICB OISB Path
G24 u Dynamic NoC 1 No No No Yes N/A
G241 Dynamic Fixed 2 Yes No Yes No N/A
G24 f Fixed Fixed 2 No No Yes No N/A
G24 uf Fixed NoC 1 No No No Yes N/A
G24 2* Dynamic Fixed 2 Yes No  Yes&No Yes&No N/A
G24 2u Dynamic NoC 1 No No No Yes N/A
G243 Fixed Dynamic 2- No Yes Yes No N/A
G24 3b Dynamic Dynamic 2- Yes No Yes No N/A
G24 3f Fixed Fixed 1 No No Yes No N/A
2
2-
2
1
2
2
2
1

w w

G24 4 Dynamic Dynamic 2- Yes No Yes No N/A

G24 5* Dynamic Dynamic Yes No  Yes&No Yes&No N/A

G24 6a Dynamic Fixed Yes No No Yes Hard

G24 6b Dynamic NoC No No No Yes N/A

G24 6¢ Dynamic Fixed Yes No No Yes Easy

G24 6d Dynamic Fixed Yes No No Yes Hard

G247 Fixed Dynamic No No Yes No N/A

G24 8a Dynamic NoC No No No No N/A

G24 8b Dynamic Fixed 2 Yes No Yes No N/A

DFR number of Disconnected Feasible Regions

SwO Switched global Optimum between disconnected regions

bNAO better Newly Appear Optimum without changing existioiges

OICB  global Optimum is In the Constraint Boundary

OISB  global Optimum is In the Search Boundary

Path Indicate if it is easy or difficult to use mutation to &hv
between feasible regions

Dynamic The function is dynamic

Fixed  There is no change

NoC There is no constraint

* In some change periods, the landscape either is a plateau or
contains infinite number of optima and all optima (including
the existing optimum) lie in a line parallel to one of the axes

W w

random solutions, the algorithm is able to maintain digrsi
throughout the search process to cope with dynamics. RIGA
represents the "maintaining diversity” strategy in DO.

One reason to choose these algorithms for the test is that
their strategies are still commonly used in most currertesta
of-the-art DO algorithms. Another reason is the strategies
these algorithms are very simple and straightforward, naki
it easy to test and analyse their behaviour. In additionabse
these two algorithms are very well studied, using them would
help in comparing new experimental data with existing rssul
Finally, because both algorithms are developed from a basic
GA (actually the only difference between HyperM/RIGA and
a basic GA is the mutation strategy), it would be easier
to compare/analyse their performance. The performance of
HyperM and RIGA was also compared with a basic GA to
see if they work well on the tested problefs.

immigrant GA(RIGA [24]) were chosen to evaluate the per- 2) Parameter settings:Table VI shows the detailed pa-
formance of the three strategies mentioned above in DCORgneter settings for HyperM, RIGA and GA. All algorithms
HyperM is basically a simple GA with an adaptive mechanispise real-valued representations. The algorithms weredest
to switch from a low mutation rate (standard-mutationy&€ 18 penchmark problems described in Section Iil. To create a
a high mutation rate (hyper-mutation-rate, to increas@rmliv fajr testing environment, the algorithms were tested in dewi
sity) and vice versa depending on whether or not there is;ghge of dynamic settings (different values of populatiae,s
degradation of the best solution in the population. It r8pnés  seyerity of change and frequency of change) with five levels:
the "introducing diversity” and "tracking previous optitha small, medium small, medium, medium large, large
strategies in DO.
RIGA is another derivative of a basic GA. After the normaget to similar values or the best known values if possible.
mutation step, a fraction of the population is replaced with

randomly generated individuals. This fraction is detemuin G
by a random-immigrant-rate (also named replacement rat\ggﬁl

The evolutionary parameters of all tested algorithms were

2Note that to save space, some tables/figures in this seciitutie not only
RIGA/HyperM but also another algorithm: GA+Repair. $halgorithm
be introduced in the later sections. This section omguses on the data

By continuously replacing a part of the population withelating to GA, RIGA and HyperM.



TABLE V TABLE VI

THE 21 TEST CASES(PAIRS) TO BE USED IN THIS PAPER TEST SETTINGS FOR ALL ALGORITHMS USED IN THE PAPER
Static problems: Unconstrained vs Fixed constraints Al . Pop_size (popsize) 5, 15 25 (medi“.m)' 5.0’ 10(.)
1 G24.uf (T, noC) Vs G4t (75, 1C) algorlthms E||t|sm_ Elitism & non-e||t|_sm if a_ppllcable
Fixed objectives vs Dynamic objectives éee’ig\if)’t'ons @ﬂ;{fgﬁnmrgfﬁggd U’:‘]gg;m}ga:f foa.filgllng as in [33]
: ggjjj f(ngano (C;ZCB) ve c(;;zzi 1 Eg; PCOC ())ICB) — ?r."sso"%r mettht"d C”thme“diz g'l' —
4 G241 (fF, iC. OICB) vs G242 (dF, fC. ONICB) Ryper frggerec mutate _”'Oog”a‘i% 5 4]a5 in [21].
Dynamic objectives: Unconstrained vs Fixed constraints GA+Repai  Search og. S7e — '.e>< @) .
5 G24u (dF, noC) Vs G241 (dF, TC, OICB) p Referencfé gop e Eé";?iex (175}
6. G24_2u_ (dF, noC) - Vs G2 (dF, fC, ONICB) Replacement rate 0 (default is 0.25 as in [33]).
Fixed constraints vs Dynamic constraints Benchmark— NUmMbar of funs =0
; géi—; Eg:z ;g 8:\512)8) xz ggﬁg %g:z gg 8:\5:'(8:)8) prot_)lem Number of changes 5/k (see below)
9 G241 (fF, fC) vs G247 (fF, dC, NNAO) settings Change frequency evjﬁgiigff' 1000 (med), 2000, 4000
il(()) con(;‘tzrg_ir?tf \(/fslg)(/:rzamic constrain\tl: G243 (fF, dC, NAO) ObjFunc severityk  0.25 (small), 0.5 (med), 1.0 (large)
1 G24u (dF, noC) s Go# (dF, dC, OICE) Constr. severityS 10 (small), 20 (medium),50 (large)
12 G24 2u (dF, noC) VS G24 (dF, dC, ONICB)
13 G24.uf (fF, noC) Vs G247 (fF, dC)
oVing ConStrnts EXpose belter Optma VS 1ol SXeose bt is 0.3-0.8. (iii) Algorithms like RIGA and HyperM also need

4 : VS 4 , dC, . . . .

15 G243 (fF, dC, NAO) vs G243b (dF, dC, NAO) high random-immigrant/hyper-mutation rates to solve DEOP
Connected feasible regions vs Disconnected feasible megio The best results are usually achieved with the rates of @6-0
16 624_65 (1R) vs GZéGS (2DR, Earg) (iv) The suitable range of crossover rate is 0.1-1.0.
g ggi—gc ((%S)R casy) vt GGzzg‘gd ggg' hg;dg 3) Constraint handling:lt is necessary to integrate existing
Optima in constraint boundary vs Optima NOT in constr boupda DO algorithms with a CH mechanism to use these algorithms
19 G241 (dF, fC, OICB) vs G242 (dF, fC, ONICB) for solving DCOPs. That CH mechanism should not interfere
gcl) ggi—gb(‘zgi:df% %I|CCBE2) e g%ﬁﬁgﬁdﬁég'\gﬁ%m with the original DO strategies so that it is possible to eotly
aF— dynamic ot;ject}ve — = — Obje;ﬁve ———— evaluate whether the original DO strategies would still be
dC  dynamic constraints fC fixed constraints effective in solving DCOPs. To satisfy this requirement th
OICB optima in constraint bound ~ ONICB opt. not in constraasund  penalty function approach in [32] was chosen because iEis th
OISB optima in search bound ONISB optima not in search boungimplest way to apply existing unconstrained DO algorithms

NAO better newly appear optima  NNAO No better newly appedr op" - . 3 8
2DR 2 Disconn. feasible regions 1R One single feasible regio directly to solving DCOPs without changing the algorithms.

Easy beasy fordmutation to travel Hard  less easy to travel amongA|so this penalty method can be effective in solving difftcul
etween disconn. regions regions . H o
noC unconstrained problem SwO  Switched optimum betwee!?]umerlcal problems without requiring users to choose any
disconnected regions penalty factor or other parameter [32].
4) Performance measure$:or measuring the performance
of the algorithms in this particular experiment, an exigtin

measure: themodified offline errdi27] was modified. The

_Theh base mutatloln rat? ﬁf tge algorlth_ms is 0.15, Wh'%easure is calculated as the average over, at every ewalpati
Is the average value o t_e es_t mutz_;mon ra’_[es_ commo error of the best solution found since the last change of
used for GA-based algorithms in various existing studlqﬁe environment

on continuous DO, which are 0.1 ([28] [29]) and 0.2 ([27]
[30]). For HYF’e”,V' and RIGA, the bedtyper-mutation-rate environments, it is necessary to modify it to evaluate atgor

an_d_random—|mm|grant—rateparameter values o_bserved n t_h%erformance in constrained environments: At every genera-
original Papers [21] [24] were used. The same ImpIemerrlEltIotion, instead of considering the best errors/fitness vabfes

as descrlped in [21] and [24] were used 1o repraduce th solutions regardless of feasibility as implemented in the
two algorithms. A crossover rate of 0.1 was chosen for ad iginal measure, only the best fitness values / best errors

algorithms because, according to the analysis in [31], t%? feasiblesolutions at each generation are considered. If in

value was one of the few settings where all tested algorithrgrciy generation there is no feasible solution, the measkes ta
perform well on this benchmark set.

the worst possible valu¢hat a feasible solution can have for
A further study of the effect of different values of thethat particular generation. This measure is calledntoelified

base mutation rates, hyper-mutation rates, random-inantgr offline error for DCOPs or offline error for short.

rates and crossover rates on algorithm performance was also 1 rum_of _gen

carried out. Detailed experimental results and discus&ion Eyo=—"—"77+—— Z T emo(y) 3

this analysis can be found in [31] where it was found that num_of_gen —j=1

the overall behaviours of the algorithms are not differeatf wheree o (5) is the besfeasibleerror since the last change

those using the default/best known settings, except fofdkhe at the generatior.

lowings: (i) When the base mutation rate is very low{.01), Five new measures were also proposed to analyse why a

the performance of GA and HyperM drop significantly; (ii)particular algorithm might work well on a particular protyie

generally to work well in the tested DCOPSs, algorithms n@ed The first two measures are thiecovery rate(RR) and the

use high base mutation rates. The range of best mutation rabsolute recovery ratd ARR) to analyse the convergence

Because the measure above is designed for unconstrained



behaviour of algorithms in dynamic environments. The U; D; b ormen
measure is used to analylBew quickly an algorithm recove , 4 wal| X B @gﬁ
from an environmental change and starts convergingto g .- L e o7l O iemren AT
solution before the next change occuthe new solution o PR N . o5 éy"? of,
not necessarily the global optimum. & o5 5 \5?&6 & o f"
I S s (1)~ e 1] 0 7 & - fg‘? P
o m =1p (l) [fbest (27p (2)) - fbest (27 1)] o N Of{? é&‘iﬁo N o @ §¢é¢
LN . 0 Jikedy not \\ﬁg o More likely not é@:o\f
where fiest (i,7) is the fitness value of the best feas onege . conergedyet
solution since the last change found by the tested algc "’ reowersioner F(*; Y g eoersons Eib?; 0 R Teger

until the jth generation of the change periad, m is the

number of changes angd(i),i = 1 : m is the number of Fig. 1. Diagram (a) provides a guideline for analysing the convergence

generations at each change periodhe RR score would be behaviour/recovery speed of an algorithm given its RR/ARBres. These
res can be represented as the x and y coordinations ofna quroithe

1in the best case Whe_re thelalgorlthm is able to recover azfggonal thick line or inside the shaded area. The positibrthe point
converge to a solution immediately after a change, and wouresents the behaviour of the corresponding algorithme. dfoser the point

be close to zero in case the algorithm is unable to recov@to the right, the faster the algorithm was in recovering eeconverging,
from the Change at af and vice versa. In addition, if the point lies on the thickgtinal line (where

o . . . RR = ARR) like point A, the algorithm has been able to recover from the

The RR measure only indicates if the considered algorithéRange and converged to the new global optimum. Otherwistagi point
converges to a solution and if it converges quickly. It does nlies inside the shaded area, the algorithm either has apesleto a local
A . . . solution (e.g. point C); or has not been converged yet (@mt{® - recover
indicate whether the CO”Yerged s_olutlon IS the global Olp)ﬂl'm. slowly; and point B - recover quickly)Diagram (b) shows the mapping of
For example, RR can still be 1 if the algorithm does nothinge RR/ARR scores of GA, RIGA, and HyperM to the RR-ARR diagra
but keep re-evaluating the same solution. Because of that,

another measure is needed: #iesolute recovery ratARR).

This measure is very similar to the RR but is used to analyse analyse the behaviour of algorithms using triggered-
how quick_ it is for an algorithm to start converging {0 & ation mechanisms such as HyperM, a fourth measure:
global optimum before the next change occurs triggered-time countwhich counts the number of times the
1 —m Zé’g [frest (1,7) — frest (i,1)] hyper-mutation-rate is triggered by the algorithm, and  fif
ARR = m Zi:l DU () — frest (6, 1)] (5) measuredetected-change coynthich counts the number of
o P ) best 11 ) triggers actually associated with a change, are also peabos
where fes: (i, 7) .1, j,m, p(i) are the same as in Eq. 4 and=q, Hynerwm, triggers associated with a change are those that
f* (i) is the global optimal value of the search space at thge inyoked by the algorithm within generations after a
ith chang_e. Th_e ARR score would be 1 in the best case w nge, where is the maximum number of generations (five
the algorithm is able to recover and converge to the globg! s implementation) needed for HyperM to detect a drop
optimum immediately after a change, and would be zero j§ herformance. These two measures indicate how many times
case the algorithm is unable to recover from the change gt algorithm triggers its hyper-mutation; whether eaciger
all. Note that the score of ARR should always be less thaf,e corresponds to a new change; and if there is any change
or gqual to that of RR. In the ideal case (converged to glohgl; goes undetected during the search process.
optimum), ARR should be equal to RR. _Note that the five measures above are all needed for our
_ The RR and ARR measures can be used together to indicgig, sis because they are used to investigate differertesp
if an algorithm is able to converge to the global optimurgs the aigorithms. Furthermore, all of the measures usee her
within the given time frame between changes and if so hoye gpecifically designed for dynamic problems. This ceeate
quickly it takes to converge. ThRR-ARR diagrann Figure 5 hroplem for the experiments in this paper because in the

1 shows some analysis guidelines. G24 benchmark set there are not only dynamic problems but

A third measure,percentage of selected infeasible indiy s, stationary problems. To overcome this issue, in thidyst

vidua!s_ is prOPosed tf) analyse algorithm abilij[y to b‘r_"!anC&ationary problems are considered a special type of dymami
exploiting feasible regions and exploring infeasible o&gi in problem which still have "changes” with the same change
DCOPs. This measure finds the percent of infeasible indiViﬂ"equency as other dynamic problems. However, in stationar

uals selected for the next generation. The average (Over;ﬂ%blems the "changes” do not alter the search space
tested generations) is then compared with the percentage of

infeasible areas in the search space. If the consideredtalgo
is able to accepinfeasiblediversified individuals in the same
way as it acceptseasiblediversified individuals (and hence The full offline-error results of the tested algorithms on all
to maintain diversity effectively), the two percentageuwas 18 benchmark problems for all test scenarios are presented
should be equal. in the tables in [34]. These data were further analysed from
different perspectives to achieve a better understanding o
SNote that RR will never be equal to zero because there is at ke how existing DO strategies work in DCOPs and how each
generation Wherqbest (Zv.]) = fbest (ivp (Z)) )
“Note that to use the measure ARR it is necessary to know thealglo Ch?r?Cte”St'C of .DCOPS_WOUId affect the performance of
optimum value at each change period. existing DO algorithms. First of all, the average perforcan

C. Experimental results and analyses
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of the tested algorithms on each major group of problems base,_err/ e e e e e

under different parameter settings and dynamic ranges were | u:é%lr;ii;:rric B GAnoElit @ RIGA-oEIit

summarised to have an overall picture of algorithm behaviou Nibgpedinobt HOikelt
. . 0. .RIGA-elit B _HyperM-elit

on different types of problems (see Figure 2). Then the effec m.GA+Repair

of each problem characteristic on each algorithm was aedlys

in 21 test cases (each case is a pair of almost identical

problems, one with a particular characteristic and oneawith

as shown in Table V of Section Il (see test results in Figures | '" P —

3 and 4). For each particular algorithm, some further amralys Sy p——

were also carried out using the five newly proposed measures

mentioned above. Details of these analyses will be destribe

in the next subsections. Only the summarised results are

presented in Figure 2 with different settings (small / mediu

/ large). For other detailed figures and tables, the restuilts w

only be presented in the default settings (all parameteds an

dynamic range are set to medium). For detailed results ieroth FnoC fRIC fRAC dFnoC dRIC dRdC OICE ONICE NAO Swo

Settings, readerS are referred tO [34] i Lowfrequency of change (4000 evals/ change)

A statisticalt-test with a significance level of 0.05 was done
to evaluate the level of siginifance of the possible impéutas
each characteristic of DCOPs can have on the performance| «
of the tested algorithris The summarised results of this
statistical test can be found in Figures 3 and 4.

The experimental results show some interesting, and in |
some cases, surprising findings.

1) The impact of different dynamic ranges on algorithm
performance: The summarised results in groups of problems
(Figure 2) show that (i) generally the behaviour of algarith
and their relative strengths/weaknesses in comparison wit
other algorithms still remain roughly the same when the
dynamic settings change; and (ii) as expected in most cases i i |
algorithms’ performance decrease when the conditionsrheco FnoC G  FAC GFnoC dFfC  dFJC OCB ONICB NAO ~ Swo
more difficult (magnitude of change becomes larger; change
frequency becomes higher; population size becomes much
smaller). Among the variations in dynamic settings, it seem
that the variations in frequency of change affect algorghm o
performance the most, followed by variations in magnitufie o
changes. Variations in population size have the least iinpac
on algorithm performance. ’

2) The effect of elitism on algorithm performanc&he
summarised results in groups of problems (Figure 2) and the |we
pair-wise comparisons in Figure 3 and Figure 4 reveal am-inte
esting effect of elitism on both unconstrained and constei
dynamic cases: the elitism versions of GA/RIGA/HyperM |
perform better than their non-elitism counterparts in most
tested problems. The reason for this effect (with evidence ‘ A |
shown in the next paragraph) is that elitism helps algorithm e i e e i e o SR es EwS
with diversity-maintaining strategies to converge fasfigris Large population size (pop_size=100)
effect is independent of the combined CH techniques.

Two measures proposed in Section |V-Bécovery rate
(RR) andabsolute recovery ratfARR) were used to study the
inefficiency of GA/RIGA/HyperM in the non-elitism case. The
scores of the algorithms on these measures are given ing-igur
1b. The figure shows that none of the algorithms are close to | -
the optimum line, meaning there are problems/ change period o T s 8 B

where the algorithms were unable to converge to the global

Fig. 2. Algorithm performance in groups of problem. Perfanoe (vertical
axis in logarithmic scale) is evaluated by calculating thgor between the
base line(worst error among all scenarios) and the error of each istgor
in each problem to see how many times their performance terbgmaller)
than thebase line Explanations for abbreviations can be found in Table V.
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5t-test is considered robust under the conditions of this mx@mt[35, ch.
37].
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Fig. 3. The effect of twelve different problem charactécston algorithm

performance (medium case). Performance (vertical axig€viduated based

on the ratio between the base line error (described in Figuend algorithm

errors. Each subplot represents algorithm performande ¢padjacent bars)
in a pair of almost identical problems (one has a specialatheristic and
the other does not). The larger the difference between thehdights, the
greater the impact of the corresponding DCOP charactestiperformance.

Subplots’ title represent the test case numbers (in brsckeliowed by an

abbreviated description. Explanations for the abbrenmiatiare in the last rows

of Table V. Pairs where the impact of a characteristic on goriahm isnot
significant (according to a-test with significance level of 0.05) are circledalso be seen in the more accurate pair-wise comparisons in

and in such cases thetest scores are also given to highlight the level o

insignificance.

28

How many times better than baseline error
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Fig. 4. The effect of the other eight different problem pnties on algorithm
performance (medium case). Instructions to read this figarebe found in
Figure 3. All eight characteristics have statisticallyrsfigant impacts on the
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algorithms, and hence there is no bar with circles.

optimum. In addition, for RIGA, its elitism version is clog®
the top-right corner while its non-elitism version is close

the bottom-left corner, meaning that non-elitism makes RIG

converge slower/less accurately. Finally, for GA/Hypethgir

elitism versions are closer to the global optimum while tthel

TABLE VII
AVERAGE percentage of selected infeasible individuals&erR 18 PROBLEMS
THE LAST ROW SHOWS THE AVERAGHercentage of infeasible areas

Algorithms Percent of infeasible solutions
.GA-elit 23.0%
.RIGA-elit 37.6%
.HyperM-elit 26.4%
.GA-noElit 46.3%
.RIGA-noElit 49.1%
.HyperM-noElit 45.3%
Percentage of infeasible areas 60.8%

situation, elitism can be used to speed up the convergence
process. Elite members can guide the population to exploit
the good regions faster while still maintaining diversity.

3) Effect of infeasible areas on maintaining/introducing
diversity: Another interesting observation is that the pres-
ence of constraints makes the performance of diversity-
maintaining/introducing strategies less effective whesedu
in combination with the tested penalty functions. This be-
haviour can be seen in Figure 2 where the performance of
all algorithms in the unconstrained dynamic case (dF+noC)
is significantly better than their performance in all dynami
constrained cases (dF+fC, fF+dC, dF+dC). This behavionir ca

izigure 3 and Figure 4: for each pair of problems in which one
has constraints and the other does not, GA, RIGA and HyperM
always perform worse on the problem with constraints (see
pairs 1, 5, 6, 11, 12, 13 in Figure 3 and pair 21 in Figure 4).
The reason for this inefficiency is the use of tested penalty
functions prevents diversity-maintaining/introducingecha-
nisms from working effectively. In solving unconstrained
dynamic problems, all diversified individuals generated by
the diversity maintaining/introducing strategies arefuisbe-
cause they contribute to either (1) detecting newly appegari
optima or (2) finding the new place of the moving optima.
In DCOPs, however, there are two difficulties that prevent
diversified individuals that are infeasible from being wsef
in existing DO strategies. One difficulty is many diversified
but infeasible individuals might not be selected for thetnex
generation population because they are penalised withrlowe
fitness values by the penalty functions. Consequentlyethes
diversified individuals cannot be used for maintaining ity
unless they are re-introduced again in the next generafmn.
demonstrate this drawback, the previously proposed measur
percentage of selected infeasible individuatss used. As can
be seen in Table VII, in the elitism case the percentage of
infeasible solutions in the population (23 - 37.6%) is much
smaller than the percentage of infeasible areas over thé tot
search space (60.8%). This means only a few of the diversified
infeasible solutions are retained and hence the algoritmas
not able to maintain diversity in the infeasible regiéns.
The second difficulty is that, even if a diversified but

non-elitism versions are closer to the bottom-right cOMEpteasible individual is selected for the next generatitin,
meaning that the non-elitism versions of GA/HyperM are more

suceptible to premature convergence. The results hen@e shdNon-elitism algorithms are able to retain more infeasitidiiduals, of

that the high diversity maintained by the random-immigra

mhich some might be diversified solutions. However, as shim@ubsection
IV-C2, in the non-elitism case this higher percentage ofasfble individuals

ra.te in RIGA and the high mutation rate in_ GA/HyperM COME&mes with a trade-off of slower/less accurate convergewbéch leads to
with a trade-off: the convergence speed is affected. In suchhe generally poorer performance.



. . . TABLE VI
might no longer have its true fitness value. Consequentlyye triggered-time counsCoRES AND THEdetected-change COUBCORES

environmental changes might not be accurately detected ororHYPERM IN A PAIR OF PROBLEMS WITH MOVING CONSTRAINTS

tracked. EXPOSING NEW OPTIMA AFTERL1 CHANGES.
4) Effect of switching global optima (between disconnected G243 (NAGTTE) 5243 (NAGIF)
feasible regions) on strategies that use penalty functidit®e  ,;inms Trigger Count  Detected Change  Trigger count —_ Detected
. . . ount ange Coun
reSUItS ShOW e_XIStIng DO methOds become IeSS effeCUVe Vyhen Value stdDev Value  stdDev Value stdDev Value stdDev
they are used in combination with the tested penalty funetio Hyperm-noEit 18870 840 174 078 19983 588 1100 0.00
hey d b h th d penalty f

. . . H M-elit 0.00 0.00 0.00 0.00 30.43 0.57 11.00 0.00
to solve a special class of DCOPs: problems with disconmeCcterxs - yovy Ampears Soimum

feasible regions where the global optimum switches from oneF/ dF - fixed / dynamic objective Function

region to another whenever a change occurs. In addition, the

more separated the disconnected regions are, the moraldiffic

it is for algorithms using penalty functions to solve. perM either was not able to trigger its hyper-mutation rate
The reason for this difficulty is it is necessary to have #® deal with changes (elitism cas#&jggered-time cour#tO

path through the infeasible areas that separate the discteth & detected-change courl) or was not able to trigger its

regions to track the moving optimum. This path might not bleyper-mutation rate correctly when a change occurs (non-

available if penalty functions are used because penalt@em elitism casefriggered-time count188.7 & detected-change

it unlikely infeasible individuals are accepted. Obvigutie count-1.74). It is worth noting in the non-elitism case, most

larger the infeasible areas between disconnected regioas, of the trigger times are caused by the selection processibeca

harder it is to establish the path using penalty methods. in non-elitism selection the best solution in the populati®
Three test cases (pairs of almost identical problems) 1®t always selected for the next generation.

17, 18 in Table V were used to verify the statement above. InTable VIII also shows that in problem G22b, which is

all three test cases the objective functions are the same ahgost identical to G243 except it has its existing optima

the global optimum switches between two locations whenewtanged, HyperM was able to detect changes and hence trigger

a change occurs. However, each case represents a diffefténityper-mutation timely whenever a change occurs. It show

dynamic situation. Case 16 tests the situation where in ohigperM only becomes less effective where environmental

problem of the pair (G246b) there is a feasible path connectchanges do not change the value of existing optima.

ing the two locations and in the other problem (G@&4) the

path is infeasible, i.e., there is an infeasible area sépara p. Possible suggestions to improve current dynamic optimi-
two feasible regions. Case 17 is the same as case 16 exegiion strategies in solving DCOPs

that the infeasible area separating two feasible regiomss haThe experimental results suggest some directions for ad-

a different shape. Case 18 t_ests a different S|tuat|qn Whetﬁeessing the drawbacks listed in the previous subsections:
in one problem (G246¢) the infeasible area separating the (i) Based on the observation that elitism is useful for

two feasible regions is small whereas in the other prObleﬁri\/ersity-maintaining strategies in solving DCOPs, it htig

(G24.6d) th's. infeasible area Is large. be useful to develop algorithms that support both elitisrd an
The experimental results in these three test cases (p Nersity maintaining mechanisms

1h6’ &7’ .18. in Ffigl:]r.e 4) bconfi.rm t:'1e hypothfges Ztai[sd In(ii) Given that methods like HyperM are not able to detect
the beginning of this su secuop. n cases an | ﬁanges because they mainly use change detectors (the best
performance of the tested algorithms did decrease when

th betw the t . is infeasible. | 18 ¢ fution in case of HyperM) in the feasible regions, it might
pa etween the two regions 1S Infeasible. In case 19, Wgafy| 1o use change detectors in both regions and infeasibl
larger the infeasible area separating the two regions, thrsev

the perf f the tested algorith regions.
€ performance ot the tested aigorithms. . (iii) Because experimental results show that tracking the
5) Effect of moving infeasible areas on strategies th%g(

K th . imaAlaorith Vi K isting optima might not be effective in certain cases of
track the previous optimaAlgorithms relying on tracking DCOPs, it might be useful to track the moving feasible region

previous global optimum such as HyperM might become legg,o 4 ‘Because after a change in DCOPs the global optimum

effgctlve yvhen the moving con_st_r aints EXpose new, bet (/vays either moves along with the feasible areas or appears
optima without changing the existing optima. The reason j§ ;e\ feasible area, an algorithm able to track feasible

HyperM cannot to detect[ changes in such DC.OPS and h?%?gas would have higher chance of tracking the actual global
might not be able to trigger its hyper-mutation rate. With .

. . ptimum.

the currently chosen base mutation of 0.15, HyperM is still
able to produce good results because the mutation is high
enough for the algorithm to maintain diversity. Howeverain
previous study [17], when a much smaller base mutation rate . ]
was used, HyperM becomes significantly worse comparedAe Difficulties in handling dynamics
other algorithms in solving problems like G231 The most obvious reason for the difficulties in applying

To illustrate this drawback, the newly proposed measuresisting CH strategies to solving DCOPs is these strategies
triggered-time countind detected-change coumtere used to are not designed to handle environmental dynamics. Onetmigh
analyse how the triggered-hypermutation mechanism worlkeen question whether these difficulties can be overcome by
on problem G243. As can be seen in Table VIII, Hy-combining existing CH strategies with existing DO stra¢sgi

V. CHALLENGES OF SOME CONSTRAINT HANDLING
STRATEGIES IN SOLVINGDCOPs
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Unfortunately, as will be shown below, not all difficultiessome existing CH techniques might make change detection
can be resolved by combining existing CH strategies wittased on performance drop, a common DO technique, less
existing DO strategies. In addition, this combination ntigheffective. As already mentioned in Section IV-B, algorithm
also bring some new challenges due to the conflict of thike HyperM assume that during the search process, if there |
optimisation goals of the two types of strategies. These aalegradation in the fitness values of the best solution faund
the challenges in maintaining diversity, introducing dsity, each generation, there might be a change in the search space.
and detecting changes based on performance drop. However, when DO algorithms are combined with some CH

1) Impacts on maintaining/introducing diversityAs al- techniques to solve DCOPs, such degradation in best fithess
ready discussed, one of the important strategies in DO values might no longer be caused by an actual change in the
to maintain/introduce diversity in the whole search space search space. Instead, the degradation might be caused eith
detect changes and to find newly-appearing/moving optintay an increase in penalty values or by the elimination of the
However, diversity might no longer be maintained this wagurrent good solutions from the population.
when combined with some CH techniques. One example can be found in some CH techniques such as

In many CH techniques, the original space is specificaljynamic penalty or adaptive penalty [42], [43], [44], where
transformed so algorithms only focus on certain areasadstehe degradation of (modified) fitness values is not caused
of the whole original space. In such cases, even if a diyersitoy environmental changes but by the increase over time of
introducing strategy such as HyperM is used to generdtee penalty values. The consequence of this dynamic/agapti
individuals in the whole search space, diversified indigidu scheme is that if the detector solutions used by the change
generated in the unfocused areas might be neglected by die¢ection method are infeasible or become infeasible, over
algorithms and hence do not contribute to maintaining diveime their fitness value will decrease.
sity. Typical examples of CH strategies that adopt thisgdear In some other CH techniques which use ranking-based
space transformation approach are penalty methods wherertiethods [38], [39], [40], during the selection process the
constrained search space is transformed to an unconstraioerrent better solutions might be dropped in favour other
search space with penalised fitness values. Another examgiutions, which might have worse fithess values but are more
is some approaches use special representations/opetatorsiseful for the CH process. In these situations there might al
these approaches, the algorithms might be restricted tatseabe a drop in the values of the best solutions at each generatio
ing only in the feasible regions, in a transformed feasible The drop in fitness values of the detector solutions in both
search space, or in the boundaries of feasible regionsil@ktacases above might be incorrectly considered by DO stragegie
reviews/references for representative penalty appreaaahd like HyperM to be a change in the environment and this might
special representations/operators approaches can bd founconsequently trigger the DO strategies to react inappatgdyi.

[36], [37].

In some other CH techniques, individuals are selected pificulties in handling constraints (empirical evidenc
not exclusively based on their actual fithess values but al§ﬁown in Section V-D)

on some special specifications. For example, in StOChaStlQl'he difficulties of applying some existing CH strategies
Ranking [38] infeasible individuals might h bettermta . : o
anking [38] infeasible individuals might have a better Asolvmg DCOPs are also caused by that their CH ability

of being accepted based on the given stochastic parameteEt.gecome less effective. This is due (0 WO FeASONS
contrary example can be found in Simple Multimembered ; : ) . )
4 P P 1) The issue of outdated informatiorin DOPs, after a

[39] where infeasible solutions are less likely to be aceépt Qange, all existing information that an algorithm has i

even if they have higher fitness values than the feasidi has b . bout th bl iaht b tdated
ones. Another example is in a CH multi-objective approaccf{ as been given about tne prob'em might become outdate

[40] where individuals are ranked not entirely based onrthe"j}nd consequently make the algorithm less effective. Famexa

original fithess but also on the number of violated constsainple’ in algorithms using strictly feasible reference induals
like Genocop Il [45], [33], after a change some reference

In CH techniques like these, diversified individuals getesta .~ ; i o ) N
by DO strategies might not be selected in the same WayI widuals may become mfeas_lble. S'm""?‘”y' N some de-
they were originally designed for, i.e., the number of iisibte coder” methods the reference lists for ordinal represemtat

diversified individuals might become too large or too smalg'g' the ordered lists of cities (TSP [46])/ ordered lists o

The way a diversity maintaining strategy works might not b napsack items (KSP [47]) / order lists of tasks (scheduling
the same as in the unconstrained case 48]) ) might no longer be in order after a change because the

Experimental evidence for the inefficiency mentioned abo\(/‘étleshtems/tas_ks have <_:hanged_ their values. Anothempie
has already been shown in Section IV-C, where the diversi an be found in dynamic/adaptive penalty methods (e.g. [43]

maintaining/introducing strategies become less effeatifien 4.4]) where the penalty parameters learnt by the methods
combined with the tested penalty methods. might no longer be suitable because the balance between

In [31], it was shown that current state-of-the-art in C|_f|ea3|ble and infeasible solutions has changed.

such as SRES [38]' [41] and SMES [39] become much IessOf course, in penalty methods, if change detections are noex¢he

effective in DCOPs and could not maintain enough diversityiginal fitness instead of on the penalised fitness, theearser of penalty

to deal with the dynamics in DCOPs. values will not have any impact on detecting changes. Howévehis case,
change detection might suffer from another problem: charigeconstraint

2) ImPa.CtS on change QetecFioAnother pOS_SibI? difﬁCUIty functions will go undetected unless additional improvetaeare made to
of combining CH strategies with DO strategies is the use 6étect constraint changes explicitly.
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2) The issue of outdated strategyfhe CH strategies c) Pay special attention whenever changes are de-

themselves can also be outdated when solving DCOPs. This tected by monitoring the fithess values of current
might occur when the CH strategies have problem-dependent individuals (it is necessary to check to see if a drop
parameters, whose values might be tailored to work best in in performance is really caused by an environmen-
only one (class of) stationary environment, to solve a DCOP. tal change).

In such cases, if the parameters are fine-tuned for the proble 2) Make sure that the algorithm is updated whenever a
before change, the algorithm might only work well until a change occurs. Particularly:

change occurs. Typical examples are penalty methods with
pre-defined penalty factors and/or other pre-defined pamame
that control how the penalty is defined. Other examples are whenever a change occurs.
some combinatorial repair methods, methods with special n algorithm needs to handle both environmental dynamics
operators, or decoder methods. Detailed reviews are in [3a7 d constraints effectively to work well in DCOPs. This mean
and [49]). . . . that a "good” algorithm for DCOPs needs to satisfy not only
_ Strategy-being-outdated might also occur with many adap, requirements for CH above but also the four requirements
tive CH strategies that are not problem-dependent becalfl

) e . 5 DO identified in Section IV-D.
these strategies rely on some specific assumptions that are

only true in stationary problems.

Typical examples are self-adaptive fithess formulatior [5
and stochastic ranking [38]. The general approach of theséAn experimental analysis was carried out to test the per-
strategies is to balance feasibility/infeasibility baseml the formance of theepair method a representative CH strategy,
performance of the current population, assuming that te® the G24 benchmark set. The purpose is to answer three
population always reflects a "memory” of information abouguestions: (i) what is the usefulness of the repair method
the search space and the convergence process. This assumjiti solving DCOPs; (i) whether the hypothesis about the
is not true in dynamic environments. When a change occugfficulties of DCOPs toward CH strategies, as mentioned in
the search space might change its shape and consequenthySg@tion V-B, is true; (iii) if the hypothesis is true, would
"memory” of the population no longer reflects the propertthese difficulties affect the performance of CH strategias (
of the new search space but only a small area where ticular the repair method) in solving DCOPs. These tssul
population currently is. This disadvantage has been obderwould help gain more understanding about how to design
in [31] for the case of the state-of-the-art SRES. better algorithms to solve DCOPs.

Another type of CH strategies relying on outdated as- 1) Chosen constraint handling technique for the analysis:
sumptions are dynamic/adaptive methods that use the rgnniror this analysis theepair method[33] was chosen because
time value (e.g. the number of generations so far) to balaniteis representative, simple, easy to implement, problem-
feasibility and infeasibility. CH strategies of this typd2], independent and is designed specifically for the continuous
[43], [51], [52], [39] assume that the population will eveally domain.
converge to the good regions and hence they handle coristrain Repair-based methods, however, also have one disadvan-
by increasingly rejecting more infeasible solutions whiemet tage: they may require a considerable number of feasibility
goes by, or by reducing the mutation step size when tinggecks to find a feasible individual. As a result, repaireloas
goes by, to increase the convergence speed to good regiongnethods might not be suitable for solving problems with very
DCOPs, because after a change good feasible regions mighexpensive constraint functions and problems with very kmal
longer be good or feasible, if the CH strategy still impogss ifeasible areas.
previous balancing mechanism to increase convergence,spee2) Repair algorithms & the method in Genocop I11 [33]:
the algorithm could end up converging to the wrong place and @) GeneralideasThe idea of repairing is, if it is possible
will not be able to track the moving optima. This disadvaetago map (repair) an infeasible solution to a feasible sohytio

has been experimentally confirmed in [31] for the case of tti@en instead of searching the best feasible solution dijrett
state-of-the-art SMES. might be possible to look for an individual that can potdiytia
produce the best repaired solution. The better the repaired

. . . . solution, the higher the fitness value of an individual. Irt@i@
C. Possible suggestions to improve current constraint han: : : )

. = . cases, the feasible solution created by the repair proaass c
dling strategies in solving DCOPs Ul

_ _ . _ . also be used to replace some of the search individuals.

The discussions in the two previous subsections show thatGenerally, a repair process can be described in three steps:
to. handle constra_unts effectwt_ely in DCOPs,.a CH strategy 1) If a newly created individuak (can be feasible or
might need to satisfy the requirements below: infeasible) needs repair, use a heuristigair () to

1) Make sure that the goal of CH does not conflict with repairs, mappings to a new, feasible individuad.

a) Problem knowledge needs to be updated.
b) The CH strategy might also need to be updated

&- Experimental analyses

the goal of DO. Particularly: 2) The objective valuef (z) of z is used as input to
a) Allow diversified individuals to be distributed in calculate the fitness value &f eval(s) = h(f(2z))
the whole search space. whereh is the mapping from objective values to fitness.

b) Do not reject diversified individuals even if they 3) If the repair approach is Lamarckian, replace one or
do not contribute to CH. more search individuals by
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In the repair method[45], [33] chosen for this experiment,a "memory” of good areas in the search space and directions
the repair () heuristic is as follows: toward these good areas. The higher the fithess value of an

1) The population is divided into two sub-populations: #ndividual, the better the feasible region achieved by irap@

search populatior§ containing normally-evolving in- this individual.

dividuals, which can be fully feasible or only linearly In a dynamic environment, the memory, or fitness values of
feasible, and a reference populatifhcontaining only search individuals, can become outdated right after a @hang
fully feasible individuals. if the objective values of the corresponding repaired smhst

2) During the search process, while each individual 2 change. Particularly, the high fitness values of existirgj-in

is evaluated using their objective function as usual, eagfduals might no longer lead to good repaired solutions and
individual s in S is considered to be repaired based owice versa. Worse, search individuals with high-but-oteda
an individual fromR. Details of the repair routine canfitnessh values might incorrectly bias the selection preces
be found in Algorithm 1. which makes the search process less effective.

It is important to note there are two possible variants of The second type of information that might become outdated
deciding whether a search individuaheeds to be repaired inwhen a change occurs is the set of reference individuals that
Genocop Il (step 2 above). In the first variant [45], a searcife used to repair all other search individuals. The keyrapsu
individual s is repairedonly if s is infeasible. In the secondtion that all reference individuals are feasible and arebist
and latest variant [33], the implementation shows thatctearin the population is only true in stationary environments. |
individuals are repaired regardless of their feasibility. dynamic environments, after a change, some existing neere

In all experiments in this paper, the second variant wadividuals might no longer remain the best in the poputatio
implemented. From now on, unless stated otherwise the te@m might even become infeasible. These outdated reference
repair methodwill be used to refer to the continuous-basethdividuals not only violate the assumption named above but
repair approach proposed in [33]. might also wrongly bias the search and drive more indiviglual

b) Feasibility/infeasibility balancing strategy and prob away from the good regions, making the search process less
lem knowledge in the repair method@he repair method and effective.
other repair approaches have the ability to adaptivelyrtz@la In the following experiments an analysis was made to see
feasibility and infeasibility. This balance is achieved &y- if the above hypotheses are correct and how significant their
cepting both infeasible and feasible individuals, prodidieat effects are.
they can produce good repaired solutions and by updating the3) Experimental settings:
fitness values of search individuals with those of the mapped a) Tested algorithms:In this experiment, the repair
feasible solutions. This way the repair method ensures thagthod was integrated with a basic GA. The integrated versio
infeasible solutions are accepted and they cannot haverbei called GA+Repair and is described in Algorithm 2. This
fitness values than the best feasible solution available. integration makes it possible to analyse the strengths and

The strategy above needs certain problem informatiogeaknesses of the repair strategy because the only ditferen
which is provided by the reference populatiBrand the search between GA and GA+Repair is the repair operator and hence
populationS. R is an essential source of information to direcany difference in performance would be caused by the repair
the algorithm toward promising feasible regions (during thoperato?. In addition, because all other tested strategies are
repair processRepair routine, Algorithm 1), newly repaired integrated with a basic GA, it is natural to integrate theaiep
solutions are always generated in the directions toward refiethod with the GA to compare it with these strategies.
erence individuals)? also provides the balancing strategy Even though the GA+Repair is a simplified version of
with information about the best feasible solution avaafia Genocop IlI, both algorithms have very similar behaviours
their fitness values) so that the strategy can make sure ¢thatwhen solving different groups of DCOPs. This similarity
infeasible individual can have better fitness values thas tlsuggests the result tested with GA+Repair can be genatalise
best feasible solution. to other approaches that use the repair method. For detailed

The search populatiory’ is also an essential source ofesults of Genocop lII's performance in the G24 benchmark
problem information. It helps indicate which point in theset and a comparison of its performance with other existing
search space would lead to potentially promising feasibigyd new algorithms, readers are referred to the study in [31]
regions (via repair). In the selection phase the balancing p) parameter settings:The tested algorithms use the
strategy then uses this information to select those indalsl same parameter settings as the previously tested GA, RIGA,
that would potentially lead to the most promising regions. and HyperM except that the population now is divided into a

¢) How can the characteristics of DCOPs affect the
repair method?:The repair method suffers from the problem st is more difficult to analyse the effect of the repair stgtén the original
of outdated information, which in turn makes the feasibilsenocop Iil because this algorithm implements multiple @dtegies (beside

ity/infeasibility balancing strategy outdated the repair operator, there are ten other specialised apsrai handle linear
’ constraints)

The first type Of_'nforma_t'on might become OUtda_teO! When °It should be noted that while Genocop IIl allows 25% of theaiegd
a change occurs is the fithess values of search individuaidsividuals to replace individuals in the population (Lawidan evolution),

Because the fitness of a search individual is always bade&A+Repair none of the repaired individuals is used toaeplthe original
dividuals (Baldwinian evolution). The reason is that®1] it was found that

L . |
on the ObJ?CUVG value of the correspondlng mapped feasﬂp_ arckian evolution does not significantly increase/ease the performance
solution, it is assumed that the search population alwagsof of Genocop Il in solving DCOPs.



Algorithm 1 routine Repair(Indivs)
1) Randomly pick an individuat € R
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2) Generate individuak in the segment betweenandr

Algorithm 2 GA+Repair

a) a=U(0,1)
b) z=as+(1—a).r
€) While z is infeasible, back to step 2a
d) If a feasiblez is not found afterl00 trials, z = r and
eval (z) = eval (r)
3) a) Evaluatez
b) If (f (z) better thanf (r)): r = z;eval (r) = f (z)
C) Update the fitness value sf eval (s) = f (z)
4) Return the individuak

search population and a reference population (see Table VI)
as implemented in the original Genocop Il [33].

c) Performance measuresThree different measures
were used. The first measure, which is the modified version
of the off-line error measure (see Section 1V-B4), was used to
evaluate/compare the general performance of the GA+Repair
Similar to the previous experiment, using this measure the
average performance of GA+Repair was also summarised in
each major group of problems (see results in Figure 2) and
the effect of each problem characteristic on GA+Repair was
analysed in 21 test cases shown in Table V of Section Il (see
results in Figure 3 and Figure 4).

The second and third measures were specifically proposed
for this experiment. The second measure, narfedkible
reference individualswas used to analyse the behaviour of
the repair methodwhen some reference individuals become
outdated due to environmental changes (see Figure 5). The
third measure, namddasible individuals in each disconnected
region, was used to analyse the ability of repair methods to
balance feasibility and infeasibility on problems with iopa
switching between disconnected feasible regions (seeré-igu
6). Details of these two measures will be described later.

4) The impact of outdated information/strategy on the per-
formance of the repair method :

a) Overall observation of performance in groups of prob-
lems: In the group ofstationary constrained problentf~, fC),
the results in Figure 2 show that, as expected, a specidlised
technique such as the repair method in GA+Repair performs
significantly better than methods not designed for handling
constraints like the existing DO algorithms. Bbtationary
unconstrained grougfF, noC), also, as expected, the repair
method in GA+Repair is no longer particularly useful. Fig@r
shows that GA+Repair performs worse than all other methods
in dynamic, unconstrained problems (dF, noC).

In the groups ofDCOPs (fF+dC, dF+fC, dF+dC), things
are different. As can be seen in Figure 2, in DCOPs the
difference between GA+Repair and GA is no longer as signif-
icant as it is in the stationary constrained case, meaniag th
the performance of GA+Repair significantly decreases. This
happens in all three cases of DCOPs where only the congtraint

Note:
1) Initialise:

It is assumed that the problem is maximisation

a) Randomly initialisern individuals in search pog
b) Initialise n individuals in the reference populatiai
i) Randomly generate points until a feasiblés found
ii) Update fitnesseval (r) = f (r) & add r to R
iii) Repeat step 1(b)i untik individuals are found

2) SearchFori=1:m

a) p1 =U(0,1);p2 =U(0,1)
b) CrossoverIf (p1 < Pxover)
i) Use nonlinear ranking selection to choose a pair of
parents fromS
ii) Crossover an offspring from the chosen parents
iil) Evaluates and repairs using Repair (s)
iv) Use nonlinear ranking selection to replace one of the
worst individuals inS by s
c) Mutatiort If (p2 < Parutate)
i) Use nonlinear ranking-selection to choose a parent
from S
i) Mutate an offsprings from the chosen parent
iii) Evaluates and repairs using Repair (s)
iv) Use nonlinear ranking selection to replace one of the
worst individuals inS by s
d) Otherwise If (p1 > Pxover) and (p2 > Parutate)
i) Use nonlinear ranking-selection to choose an indi-
vidual s from S
i) If s has not been evaluated since last generation,
evaluates
iil) Repairs using the routineRepair (s)
iv) Using nonlinear ranking selection to replace one of
the worst individuals inS by s

3) Evolve the reference population after eabth0 evaluations:

Fori=1:n
a) Crossover If (U (0,1) < Pxouer)
i) Use nonlinear ranking-selection to choose a pair of
parents fromR
ii) Crossover an offspring from the parents
i) If ris feasible
A) Evaluater andx,the better of the two parents
B) If f (r) better thanf (x) thenx = r and fitness
valueeval (x) = f (r)
b) Mutation If (U (0,1) < Parutation)
i) Nonlinear ranking-selection to choose a parent
from R
i) Mutate an offspringe from x
iii) If ris feasible
A) Evaluater andx
B) If f (r) better thanf (x) thenx = r and fitness
valueeval (x) = f (r)

are dynamic (fF, dC), where only the objective functions are 4) Return to step 2

dynamic (dF, fC) and where both constraints and objective
functions are dynamic (dF, dC).
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(a) G24-4 (b) G24-5 (c) G24-7

&)

Details of theimpact of dynamic objective functions the
repair method can be seen in pair-wise comparisons in
9 and 14 of Figure 3 where GA+Repair is tested in f
of almost identical constrained problems except that ors
a fixed and the other has a dynamic objective function
can be seen in these plots, the performance of GA+R
significantly decreased in case the objective function is % 12345676010 123456789101234506780910

A . i ) change no. change no. change no.
namic. The difference in performance of GA+Repair between
the two problems of each pair is significantly larger thart thaig. 5.  This figure shows how GA+Repair maintains feasibleremce
of GA and existing DO algorithms, meaning that the presen'@?ividuals in problems with moving infeasible regions. eTtotal number
fd . biective f . h ! h . of reference individuals is five. The plot in the figures shoamong these
0 ynam'c objective functions has a r_nu_c greater Impact Qi reference individuals, how many are actually feasihleirg) the search
the repair method than on GA and existing DO methods. process.

Details of theimpact of dynamic constraintsn the repair

method can be seen in the pair-wise comparisons in plot i

of Figure 3 and plot a of Figure 4 (pairs of almost identical

problems except that one has fixed and the other has dynaﬁ'ﬁ@rbea%h change t.h? prgg:ous b.eSt ?ﬁs'ble solugoenzsf;re h
constraints). Similar to the previous case, the results gliew en by the moving infeasible region. They are G2 =

that the performance of GA+Repair is significantly decrdas dF’_ dC) and G247 (fF, dC). As discussed earlier (_see Figure
in case the constraints are dynamic and the presence( iN bath groups the performance of GA+Repair decreases

dynamic constraints has a much greater impact on the re gnificantly compared to the case where the constraints are
method than on existing DO methods. .f|xe.d. (fF,fC). In these proble_ms, if one or more referencg
However, although the presence of environmental dynamf gmduals do become |pfea5|ble, therg shquld be a drqp n
does significantly decrease the performance of GA+Re|cuair,t e total number of feas_|ble referen_ce individuals and i$1_|s
Figure 2 it is interesting to see that the algorithm stillfpemns ane of the reason§ making the r.epf.;ur method less eﬁggtlve.
better than existing DO algorithms in DCOPs (only that the '€ plot of feasible reference individuatf GA+Repair is
difference become significantly smaller compared to thecstadiVen in Figure 5. The figure shows, in all cases the original

constrained case). This shows the repair method has sdfeair method was not able to keep all reference individuals
characteristics that make it promising for solving DCOPs. feasible during the search. The number of feasible referenc

Another interesting, and somewhat counter-intuitive obsdndividuals drops to a very low level when a change occurs and
vation in our experiment is the presence of constraints st of the time the.number of feasible reference indiviglual
not make the problems more difficult to solve by GA+RepailS Much lower than five.

Instead, the presence of constraints always helps GA+RepaiThe results confirm the hypothesis that after a change, the
work better. Evidence can be found in the pair-wise compaRopPulation of reference individuals has become outdatexl du
sonin pairs 1, 5, 6, 11, 12, 13 of Figure 3 and in pair 21 of Fig0 the moving infeasible regions.

ure 4 where GA+Repair always performs better on the problem ¢) Analyse the behaviours of the outdated balancing
with constraints than on the problem without constraintse T strategy: In Section V-D2, it was suspected that individuals
experiment also shows that GA+Repair performs better whdreing outdated can also have a negative impact on the balanc-
there is an infeasible barrier separating two feasibleoregyi ing strategy, which balances feasibility and infeasipitit the
Moreover, the larger the barrier, the better the perforraanfc repair method. To test if the algorithm is still able to balen
GA+Repair (see pairs 17, 18 in Figure 4). feasibility/infeasibility properly in dynamic environmts, the

The experimental results confirm dynamics do have pioposed measurdéeasible individuals in each disconnected
significant effect on the performance of the repair methotkgionwas used to monitor the number of feasible individuals
Following is a further analysis to investigate if this effég in each disconnected feasible region and the ratio of fétasib
indeed caused by the outdated problem information (reéererity/infeasibility. The balancing mechanism should be atole
individuals and search individuals) and by the outdatealt-strmanage a good distribution of individuals so that the better
egy as suspected by our hypothesis. feasible regions should have more feasible individuald if i

b) Analyse the behaviours of outdated reference indiorks well in the DCOP case.
viduals: As mentioned earlier, outdated information might The most suitable environments to test this behaviour are
be caused by reference individuals having their objectn®COPs with two disconnected feasible regions where the
values changed or even become infeasible after a change. lodbal optimum keeps switching from one region to another
previously proposed measuréeasible reference individuals after each change or after some consecutive changes. They
was used to test if the algorithm is able to update the reéererare G241, G24 2, G24 3b, G244, G245, G24 6a, G246c,
individuals properly. If the algorithm is able to update th&24 6d, and G248b. All these problems belong to the group
reference individuals properly, it should be able to mamtaSwO in Figure 2, where the performance of existing CH
a reference population of all feasible individuals durithg t algorithms significantly decreases compared to the statjon
search process. constrained case (fF, fC). On such SwO problems, if the

The most suitable environments to test this behaviour balancing mechanisms work well, at each change period the
the repair method are DCOPs with dynamic constraints wheakgorithm should be able to focus most feasible individuals

IN
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no. of feasible reference individuals
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on the region where the global optimum is currently in whilperformance in DCOPs, seven new measures have been pro-
still maintaining the same ratio of feasibility/infeadityi for posed to evaluate the performance / analyse the behaviours
diversity purpose. of algorithms on dynamic unconstrained/constrained rois|
Theplot of feasible individuals in each disconnected regioand one existing measure has also been modified to make it
for GA+Repair is given in Figure 6. The figure shows thatsable in DCOPs.
in all cases except G28b, the repair method was not able Using the newly proposed benchmark problems and mea-
to focus most feasible individuals on the region where ttsures, some literature reviews and detailed experimentd! a
global optimum is currently in. Instead, the majority of$éde yses have been carried out to investigate the strengths and
individuals still remained in one single region (region Phe weaknesses of existing DO strategies (GA/RIGA/HyperM)
number of individuals in the other region (region 1) remdineand CH strategies (repair methods) in solving DCOPs. The
low regardless of where the global optimum is. This is duexperimental analyses reveal some interesting findingsitabo
to that, although the global optimum has switched to regidghe ability of existing algorithms in solving DCOPs. These
1, many individuals in region 2 were not updated and stifindings can be categorised as follows.
have the outdated fithess values which might be even higheFirst, three interesting findings about the performance of
than the new global optimum value. These outdated indivgduaxisting DO strategies in DCOPs have been identified: (a) the
incorrectly attract a large number of individuals to the oldse of elitism might have a positive impact on the perforneanc
feasible region. These results show that, due to its ouddats existing diversity-maintaining strategies and but niilgave
strategy, the algorithm was not able to follow the switching negative impact on the performance of diversity-intraadgc

optimum well®. strategies if they are not used with diversity-maintairstrgte-
gies; (b) the presence of infeasible areas has a negative im-
20 (8) GA+Repair in G24-1 (6) GA+Repdir in G24-30 pact on the performance of diversity-introducing/mainitag

—e—no. of indivs in region 1

strategies; and (c) the presence of switching optima (kertwe
disconnected regions) has a negative impact on the perfor-
mance of DO strategies if they are combined with penalty
functions.

Second, it has been found that even if CH strategies can
be combined with DO strategies, there might be two types
of difficulties in applying existing CH strategies to solgin
DCOPs: (a) difficulties in handling dynamics, in particljar
+REpalr I G24- maintaining diversity and detecting changes; and (b) diffic

15 ties in handling constraints, which are caused by outdatéd C
" W strategies and problem-knowledge.

.‘ Wm Third, some counter-intuitive behaviours were observed:
Jhed ed 0 T the presence of constraints and dynamics in DCOPs might
0L 2 meno s O OB e 0 not always make the problems harder to solve. For example,

the presence of constraints helps algorithms using therrepa
Fig. 6. This figure shows how the balance strategy of GA+Refisiributes 3 athqq jike GA+Repair work better in the tested problems.
its feasible individuals in disconnected feasible regiofise problems tested . -
in this figure are those with global optima switching betwaea disconnected ~ Finally, based on the findings about the strengths and
feasible regions'? weaknesses of some existing DO and CH strategies, a list
of possible requirements that DO and CH algorithms should
meet to solve DCOPs effectively have been suggested. This
VI. CONCLUSION & FUTURE RESEARCH list of requirements can be used as a guideline to design new

In thi h identified ial and alllgorithms to solve DCOPs in future research.
n this paper we have identified some special and not Welltpg gt in this paper raise some open questions for

studied characteristics of DCOPs that might cause S‘i(~:lmﬁcefuture research. One direction is to develop new algorithms

challenge_s to existing DO an_d CH strategies. Although_theéﬁecialised in solving DCOPs based on our suggested list of
characteristics are common in real-world applicationsthia

) d " thev h b dered i reguirements. Another direction is to investigate the iotud
continuous domain they have not been considered In M@REGpg characteristics on other state-of-the-art CH and DO

existing DO studies and they have not been captured éﬂategies. We are interested in investigating the perdoa

existing continuous DO benchmark problems. f oth daptive feasibility/infeasibility balancinarateai
A set of dynamic constrained benchmark problems f(gr pifer aiapive “easioil ynisasiiity baancinga=gies,

. i . .g. [38], [53] in DCOPs. We also plan to study the situations
simulating the characteristics of DCOPs have been proposgfle e the presence of constraints and dynamics would make
to help close this gap. To help researchers assess algorig

Wasier for certain classes of algorithms to solve DCOPs.
10Note that in the G24 set, individuals being outdated mightatways be The research has some limitations to be |mproved n fUt_ure
totally harmful because the changes in many problems af&aed hence research: memory-based approaches have not been codsidere
the outdated individuals might actually play the role of nogyelements 10 in oqur ana|y5is; the algorithms and methods used to ana|yse

recall the previous good solutions. However, it is not cleaw beneficial such . . .
memory elements could be, because the experiments shovGtheRepair representative DO and CH strategies are very basic to keEp

still becomes less effective in the presence of environatedytnamics. the analysis at a manageable level; the analysis has been

20 (€) GA+Repair in G24-4

number of feasible individuals




tested only in a benchmark problems with unimodal objectiyes)
functions; the types of changes are limited to linear and

sinuous/cyclic changes and there was no consideration of
hard/soft constraints. It would be interesting to extend this)
analysis on the multimodal set of benchmark problems in [18]

and apply other types of changes such as random, chaotic and
non-linear changes. [16]
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