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Abstract

We obtain sufficient and/or necessary conditions for global/local error bounds for the
distances to some sets appeared in set optimization studied with both the set approach
and vector approach (sublevel sets, constraint sets, sets of all Pareto efficient/ Henig proper
efficient/super efficient solutions, sets of solutions corresponding to one Pareto efficient/Henig
proper efficient/super efficient value) and sufficient conditions for metric subregulatity of a
set-valued map at efficient solutions. All criteria except one are described in terms of the
Mordukhovich coderivative and coderivative of convex analysis. Our techniques are based on
scalarization by mean of the Hiriart-Urruty signed distance function, on exploiting criteria in
terms of subdifferentials for error bounds of a lower semicontinuous function and estimates
for subdifferentials of marginal functions. We also consider the single-valued case and provide
illustrating examples.
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1 Introduction

During the last two decades, the problem of error bounds for a lower semicontinuous (l.s.c.)
function has received a lot of attention of researchers. It can be stated as follows, see [3, 4, 10].
Let X be a metric space and f : X → R ∪ {+∞} be a l.s.c. function. Denote domf := {x ∈
X |f(x) 6= ∞}. We say that f has a global error bound at the level α if there exists a scalar
τ > 0 such that

τd(x; [f ≤ α]) ≤ [f(x)− α]+ for all x ∈ X

and that f satisfies the error bound property at x̄ ∈domf or the distance to the set [f ≤ f(x̄)]
has a local error bound at x̄ if there exists a scalar τ > 0 such that

τd(x; [f ≤ f(x̄)]) ≤ [f(x)− f(x̄)]+ for all x near x̄.

Here, [f ≤ α] := {x ∈ X |f(x) ≤ α}, [α]+ := max{0, α} and for a set U ⊂ X, d(x;U)
denotes the distance from x to U . In the special case α = minX f with x̄ ∈ argminf := {x ∈
X |f(x) = minX f}, one is concerned with the global/local error bounds of the distance to the
set of minimizers of f

τd(x; argmin f) ≤ f(x)−min
X

f.
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Error bound properties have important applications in subdifferential calculus, optimality
conditions, sensitivity analysis and convergence of numerical methods. A huge literature deals
with criteria for them in terms of various derivative-like objects defined either in the primal space
(directional derivatives, slopes, etc.) or in the dual space (different kinds of subdifferentials),
see [3, 4, 6, 10, 39] for an overview.

Closely related to error bounds is the notion of metric subregularity of a set-valued map F
acting between normed spaces X and Y . Following Dontchev and Rockafellar [8], F is said to
be metrically subregular at x̄ for ȳ ∈ F (x̄) if there exists κ ∈]0,∞[ such that

d(x;F−1(ȳ)) ≤ κd(ȳ;F (x)) for all x naer x̄.

The metric subregularity property for the set-valued map F was introduced by Ioffe [23, 24] using
the terminology “regularity at a point” and has been widely considered especially in connection
with feasibility problems (constraint sets, generalized equations...) and their associated maps,
see [9, 13, 20, 24, 25, 41, 42].

The aim of this paper is to study error bounds in relation to set-valued optimization problems
with data being a set-valued map F from a metric (or normed) space X into a normed space
Y partially ordered by a closed convex cone K. We obtain criteria for error bounds for the
distances to sublevel sets, constraint sets, different solutions sets and for metric subregularity of
F at some efficient solutions.

Our main results are the following (for the definitions, see Section 2):
1. We establish a sufficient condition for error bounds for the distance to a sublevel set

τd(x; [F �l A]) ≤ [sup
a∈A

inf
y∈F (x)

∆−K(y − a)]+ for all x ∈ X,

where �l is an order relation induced by K on 2Y (this order relation has been considered in
the set approach to set optimization in the first time by Kuroiwa [29]), A ⊂ Y is a nonempty
set, [F �l A] := {x ∈ X | F (x) �l A} and ∆−K is the Hiriart-Urruty signed distance associated
to the cone −K.

2. We obtain sufficient and/or necessary conditions in terms of the Mordukhovich coderiva-
tives and coderivative of convex analysis for global/local error bounds for the distances to some
sets appeared in set optimization

τd(x;S) ≤ [ inf
y∈F (x)

∆−K(y − ȳ)]+ for all x ∈ X or x near x̄,

where S is one of the sets: (i) a special sublevel set [F �l ȳ]; (ii) the constrain set of the form
{x ∈ X | G(x)∩C 6= ∅} with G being a set-valued map and C being a closed convex cone; (iii) the
set of of solutions of a unconstrained set-valued optimization problem (P) corresponding to one
Pareto efficient/Henig proper efficient/super efficient value ȳ or the set of all Pareto efficient/
Henig proper efficient/super efficient solutions of (P).

3. We show, by the way, that some obtained sufficient conditions for local error bounds are
in fact sufficient for the metric subregularity of the map F at a Pareto efficient/ Henig proper
efficient/super efficient solution.

Our techniques are based on scalarization by mean of the Hiriart-Urruty signed distance
function [22], on exploiting criteria in terms of subdifferentials for error bounds of a l.s.c. function
[3, 4, 10] and estimates of subdifferentials of marginal functions [15, 36, 37].

Note that, to the best of our knowledge, there are quite a few attempts in considering error
bounds for maps with values in partially ordered spaces even in the single-valued case: Bernar-
czuk and Kruger [11] obtained some conditions in terms of various slopes and subdifferentials
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of the distance functions to several level sets corresponding to Pareto or weak Pareto efficiency
while Liu, Ng and Yang [34] considered a linear vector-valued map. The cases with Henig prop-
erly efficient solutions and super efficient solutions have not been considered yet even for vector-
single-valued maps.

The paper is organized as follows. In Section 2 we present preliminaries from set optimization,
variational analysis and some known results about error bounds of a l.s.c. function. In Section
3 we establish a sufficient condition for the error bound for distances to a sublevel set [F �l A].
In Section 4, we prove sufficient and/or necessary conditions for the error bound for distances
to a special sublevel set [F �l ȳ] and provide examples in case with constraint sets. Section
5 is devoted to error bounds for the distances to different efficient solution sets and for metric
subregularity at different efficient solutions.

2 Preliminaries

2.1 Set-valued Optimization Problems

Let Y be a topological vector space (t.v.s.) with the dual Y ∗. For a nonempty set U , by intU ,
clU , coneU and convU we mean the interior, the closure, the conic hull and the convex hull of U ,
respectively. A closed unit ball in a normed space Y is denoted by BY . Let K ⊂ Y be a nonempty
closed pointed convex cone with apex at zero (pointedness means K ∩ (−K) = {0}). The cone
K induces a partial order ≤K on Y : for y1, y2 ∈ Y , we write y1 ≤K y2 if y2 − y1 ∈ K. Denote
K+ = {y∗ ∈ Y ∗ | y∗(k) ≥ 0 for all k ∈ K} and K+i = {y∗ ∈ Y ∗ | y∗(k) > 0 for all k ∈ K \{0}}.
A convex set Θ ⊂ Y is called a base for K if 0 /∈ clΘ and K = {tθ | t ∈ R+, θ ∈ Θ}. When
Θ is bounded, we say that K has a bounded base. It is known that K+i 6= ∅ iff K has a base,
the nonnegative orthants in Rn, C[0,1], L

p
[0,1], l

p (1 ≤ p < ∞) have bases and the nonnegative
orthants in Rn, L1

[0,1], l
1 have bounded bases [28]. Assuming that Y is a normed space and Θ is

a base of K, denote
δ := inf{‖θ‖ | θ ∈ Θ} > 0 (1)

and let Kη (with η ∈]0, δ[) be a convex pointed closed cone defined by

Kη = cl cone(Θ + ηBY ). (2)

We recall some concepts of efficienct points of a set [12, 19, 27].

Definition 2.1. Let A be a nonempty subset of Y and ā ∈ A. We say that

(i) ā is a Pareto efficient point of A w.r.t. the cone K if a 6≤K ā for all a ∈ A, a 6= ā or,
equivalently, (A− ā) ∩ (−K \ {0}) = ∅.

(ii) supposing that Y is a normed space and K has a base Θ, ā is a Henig properly efficient
point of A w.r.t. the cone K if there exists η ∈]0, δ[ such that clcone(A−a)∩(−Kη) = {0}.

(iii) supposing that Y is a normed space, ā is a super efficient point of A if there exists ρ > 0
such that clcone(A− ā) ∩ (BY −K) ⊂ ρBY .

Denote the sets of efficient points defined in Definition 2.1 by Min(A,K), He(A,K) and
SE(A,K), respectively. It is known that SE(A,K) ⊂ He(A,K) ⊂ Min(A,K) and that if K
has a bounded base then SE(A,K) = He(A,K). Moreover, ā ∈ He(A,K) iff ā ∈ Min(A,Kη)
for some η ∈]0, δ[ [17, Proposition 3.3].

Throughout the paper, F is a set-valued map from a set X into t.v.s. Y . In set optimization,
one considers a unconstrained set-valued optimization problem (P)

Minimize F (x) subject to x ∈ X
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and a constrained set-valued optimization problem (CP) with X being replaced by a constraint
set

Minimize F (x) subject to G(x) ∩ C 6= ∅,

where G is a set-valued map from a set X into a t.v.s. Z, and C ⊂ Z is a closed convex cone
(C 6= {0}).

In this paper, we will be concerned with sets of solutions of (P) and sublevel sets defined
by the set-valued map F as well as with the constraint set of (CP) defined above. Let us note
that there are two approaches, the vector approach and the set approach, to defining main
concepts in set optimization (efficient solutions, sublevel sets). In the vector approach, efficient
solutions of (P) are defined through the corresponding concepts of efficient points for a set given
in Definition 2.1.

Definition 2.2. We say that x̄ ∈ X is an “N” efficient solution of (P) if there exists ȳ ∈ F (x̄)
called an “N” efficient value of (SP) such that ȳ is an “ N” efficient point of F (X) := ∪x∈XF (x),
where “ N” may be Pareto, Henig properly, super.

The set approach proposed by Kuroiwa in [29] is based on an order relation �l induced by
the cone K on the power set 2Y of all nonempty subsets of Y : for two nonempty sets A and B

A �l B if and only if B ⊆ A+K (3)

and x̄ ∈ X is said to be a minimal solution of (P) w.r.t. the order �l if

F (x) �l F (x̄) for some x ∈ X implies F (x̄) �l F (x).

With this order relation in hand, one considers a sublevel set [F �l A] of F at the level A ∈
2Y defined by

[F �l A] := {x ∈ X | F (x) �l A}.

Note that Kuroiwa’s set approach has been used by many authors and we mention several
works [1, 16, 18, 21, 30, 31, 32] devoted to this approach.

2.2 Subdifferentials and coderivatives

In this subsection, we recall the notions of subdifferentials and coderivatives [2, 36, 38], some
estimates of subdifferentials of a marginal function [15, 36, 37], the Hiriart-Urruty signed distance
function [22] and prove some properties of this function.

In this subsection, let X and Y be normed spaces with the duals X∗ and Y ∗. Let Ω ⊂ X be
a nonempty set. The Fréchet normal cone to Ω at x, denoted by NF (x; Ω), is given by

NF (x; Ω) := {x∗ ∈ X∗ | lim sup
x′

Ω→x

〈x∗, x′ − x〉
‖x′ − x‖

≤ 0}.

The Mordukhovich normal cone to Ω at x, denoted by NM (x; Ω), is defined in Asplund space
settings by

NM (x; Ω) := lim sup
x′

Ω→x

NF (x′; Ω),

where the limit in the right-hand side means the sequential Kuratowski-Painlevé upper limit with
respect to the norm topology in X and the weak-star ω∗ topology in X∗. Recall that a Banach
space is Asplund if every continuous convex function defined on it is Fréchet differentiable on a
dense set of points. Examples of Asplund spaces are Rn, Lp[0,1] and lp (1 < p <∞).
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Note that when Ω is convex, the Mordukhovich normal cone reduce to the normal cone of
convex analysis, denoted by N(x; Ω)

N(x; Ω) := {x∗ ∈ X∗ | 〈x∗, v〉 ≤ 0 for all v ∈ cl(∪t>0
1
t
(Ω− x))}.

Let f : X → R ∪ {+∞} be a l.s.c. function. The Mordukhovich subdifferential ∂Mf(x) of f
at x ∈domf is defined by mean of the Mordukhovich normal cone to its epigraph as follows

∂Mf(x) := {x∗ ∈ X∗ | (x∗,−1) ∈ NM ((x, f(x)); epif)}.

When f is convex, the Mordukhovich subdifferential coincides with the subdifferential of convex
analysis, denoted by ∂f , which can be defined either through the normal cone of convex analysis
or by

∂f(x) := {x∗ ∈ X∗ | 〈x∗, x′ − x〉 ≤ f(x′)− f(x) for all x′ ∈ domf}.

We recall a version of chain rules to be used in our study.

Proposition 2.3. Assume that X and Y are Asplund spaces, f : X → Y is a strictly differen-
tiable map and φ : Y → R is a convex Lipschitz function. Then

∂M (φ ◦ f)(x) = {[∇f(x)]∗(y∗) | y∗ ∈ ∂φ(f(x))}.

Here, ∇f(x) and [∇f(x)]∗ are the strict derivative of f at x and its adjoint, and (φ◦f)(x) :=
φ(f(x)). Proposition 2.3 is a consequence of [36, Theorem 3.41(iii)].

Let F : X ⇒ Y be as before a set-valued map. Denote by domF the domain of F , i.e.
domF := {x ∈ X | F (x) 6= ∅} and by grF its graph, i.e., grF := {(x, y) | y ∈ F (x)}. We
say that F is closed if its graph is closed and F is convex if its graph is convex. We always
assume that the set-valued map F is closed. The Mordukhovich coderivative D∗MF (x, y) of F
at (x, y) ∈grF is defined by mean of the Mordukhovich normal cone to its graph as follows: for
y∗ ∈ Y ∗

D∗MF (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ NM ((x, y)); grF )}.

When F is convex, the coderivative of convex analysis D∗F (x, y) of F at (x, y) ∈grF is defined
by mean of the normal cone of convex analysis to its graph in the similar way.

Note that in [35] Mordukhovich introduced the notion of coderivative of a set-valued map
regardless of the normal cone used. After he suggested this approach to differentiability of
maps, we may consider different specific coderivatives for set-valued maps generated by different
normal cones to their graphs. We refer the reader to Mordukhovich’s book [36] for the history
of coderivatives.

Next, we recall some estimates of subdifferentials of a marginal function which play an
essential role in our study. Let be given a function ϕ : Y → R. We associate with F and ϕ the
marginal function m : X → R̄ := R ∪ {∞}

m(x) := inf{ϕ(y) | y ∈ F (x)}

and the minimum set
V (x) := {y ∈ F (x) | ϕ(y) = m(x)}

with the convention that inf ∅ = ∞ and V (x) = ∅ when x /∈ domF . It is easy to see that if
F (x) is compact and ϕ is l.s.c. at x ∈domϕ, then V (x) 6= ∅. Moreover, it is well known that,
under natural hypotheses, the function m inherited continuity and convexity properties from F
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and ϕ. In the remaining of this subsection, unless otherwise specified, X and Y are Banach
spaces. Recall that V is lower semicompact at x [37] if there exists a neighborhood U of x
such that for any sequence xn → x there is a sequence yn ∈ V (xn) that contains a subsequence
convergent in the norm topology of Y . Lower semicompactness is useful for dealing with the
infinite-dimensional case and is often satisfied in finite-dimensional spaces.

The first estimate is a special Lipschitz case of [37, Theorem 6.1].

Proposition 2.4. Assume that X and Y are Asplund spaces, F is u.s.c. compact-valued, ϕ
is Lipschitz and V is lower semicompact at x ∈ dom m. Then for any yx ∈ V (x), we have
∂Mm(x) ⊆ ∪y∗∈∂Mϕ(yx)D

∗
MF (x, yx)(y∗).

In the convex case, we have a stronger conclusion, see [15, Theorem 3.3].

Proposition 2.5. Assume that F is convex u.s.c. compact-valued, ϕ is convex and continuous
at a point in F (X). Assume further that either X is separable or ϕ is l.s.c. on its domains.
Then for any yx ∈ V (x), we have ∂m(x) = ∪y∗∈∂ϕ(yx)D

∗F (x, yx)(y∗).

Remark 2.6. The assertion of Proposition 2.5 remains true if we relax the convexity assumption
on F while retaining convexity of the function m.

The reader is referred to [15] for examples and comments on the above estimates.

We conclude this subsection with some properties of the Hiriart-Urruty signed distance
function [22]. To a nonempty set U in a Banach space Y we associate a function ∆U given by

∆U (y) := d(y;U)− d(y;Y \ U).

This function possesses nice properties, especially when U has a nonempty interior, and has been
used for scalarization in vector optimization in several works [7, 14, 15]. We list some known
properties of this function [15, 22].

Proposition 2.7. Let U be a nonempty subset of Y .

(a) The function ∆U is Lipschitz of rank 1 on Y .

(b) If U is closed then for any y ∈ Y , y /∈ U iff ∆U (y) > 0.

(c) If U is convex then ∆U is convex, if U is a cone then ∆U is positively homogeneous and if
U is a closed convex cone then ∆U satisfies the triangle inequality, i.e., for any y1, y2 ∈ Y ,
one has ∆U (y1 + y2) ≤ ∆U (y1) + ∆U (y2).

We establish some useful properties of the subdifferential of the function ∆−K .

Proposition 2.8. Let K be a closed convex cone in a Banach space Y . Then

(a) ∂∆−K(u) ⊆ K+ ∩ BY ∗ for any u ∈ Y .

(b) 0 /∈ ∂∆−K(u) if u 6∈ −K or intK 6= ∅.

(c) 0 ∈ ∂∆−K(u) for any u ∈ −K iff intK = ∅.

Proof. (a) Let y∗ ∈ ∂∆−K(u). The triangle property of the function ∆−K (Proposition 2.7(c))
implies that for any k ∈ K one has 〈y∗,−k〉 ≤ ∆−K(u−k)−∆−K(u) ≤ ∆−K(−k) = d(−k;−K)−
d(−k;Y \(−K)) ≤ 0. Thus, 〈y∗, k〉 ≥ 0 for all k ∈ K. Since the cone K is closed, we get y∗ ∈ K∗.
Further, Proposition 2.7(a) implies that ∂∆−K(u) ⊂ BY ∗ .
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(b) Let u ∈ Y . If u 6∈ −K then ∆−K(u) > 0 = ∆−K(0) and if K has a nonempty interior
with k ∈ intK then ∆−K(−k) < 0 and ∆−K(−tk) tends to −∞ as t→∞. Thus, in both cases,
the convex function ∆−K does not attain its minimum at u and hence, 0 /∈ ∂∆−K(u).

(c) By (b), we need only to prove the “ if” part. Since ∆−K(u) > 0 for u /∈ −K and
∆−K(u) = 0 for u ∈ −K, the convex function ∆−K attains its minimum at u and hence,
0 ∈ ∂∆−K(u).

Example 2.9. Let Y = R2, K = R2
+. Then

∂∆−K(y, z) =


{(u, v) ∈ R2

+ | u2 + v2 ≤ 1 ≤ u+ v} if y = z = 0
{(y/

√
y2 + z2, z/

√
y2 + z2} if y > 0, z > 0

{(0, 1)} if y ≤ 0, y − z < 0
{(1, 0)} if z ≤ 0, y − z > 0
conv{(0, 1), (1, 0))} if y = z < 0

To characterize the subdifferential of the function ∆−Kη , we need the following result about
relations between the dual cones of Kη and K.

Proposition 2.10. Let δ be the scalar defined by (1) and Kη (η ∈]0, δ[) be the cone defined by
(2). Then for the cone K+

η := (Kη)+ one has

K+
η \ {0} ⊂ {y∗ ∈ K+i | inf

θ∈Θ
y∗(θ) ≥ η‖y∗‖} ⊂ K+si

where K+si := {y∗ ∈ K+ | infθ∈Θ y
∗(θ) > 0} and if K has a bounded base then

K+
η \ {0} ⊂ intK+.

Proof. Let y∗ ∈ K+
η \ {0} and θ ∈ Θ. By the definition of the cone Kη, we have θ − ηBY ⊂ Kη.

For all e ∈ BY we have y∗(θ − ηe) ≥ 0 or y∗(θ) ≥ ηy∗(e) and hence, y∗(θ) ≥ η‖y∗‖. It follows
that infθ∈Θ y

∗(θ) ≥ η‖y∗‖ > 0. Now assume that Θ is bounded. Then supθ∈Θ ‖θ‖ = ρ > 0. Let
y∗ ∈ K+

η \ {0}. We have to show that y∗+ rBY ∗ ⊂ K+, where r = η‖y∗‖/(2ρ). Let e∗ ∈ BY ∗ be
an arbitrary vector. For any θ ∈ Θ, we have

(y∗ + re∗)(θ) ≥ y∗(θ)− η‖y∗‖/(2ρ)e∗(θ) ≥ η‖y∗‖ − η‖y∗‖/(2ρ)‖e∗‖‖θ‖
≥ η‖y∗‖ − η‖y∗‖/(2ρ)ρ = η‖y∗‖/2 > 0.

.

Since Θ is a base of K, it follows that y∗ + re∗ ∈ K+ and hence y∗ + rBY ∗ ⊂ K+.

We are ready now to characterize the subdifferential of the function ∆−Kη .

Corollary 2.11. Let δ and Kη (η ∈]0, δ[) be the scalar and the cone defined by (1) and (2),
respectively. Then ∂∆−Kη(u) ⊆ K+si ∩ BY ∗ and if K has a bounded base then ∂∆−Kη(u) ⊂
intK+ ∩ BY ∗ for any u ∈ Y .

Proof. Observe that the pointed convex cone Kη is closed and has a nonempty interior. The
assertion follows from Propositions 2.10 and 2.8.

2.3 Existence of error bounds for a l.s.c. function

In this subsection, we recall some known criteria ensuring error bounds for a l.s.c. function that
will be used to obtain similar ones for the case with a closed set-valued map.

Let X be a complete metric space and f : X → R ∪ {+∞} be a l.s.c. function.
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Definition 2.12. [4, Definition 2.2] (case β =∞) For α ∈ R, we let σα(f) denote the supremum
of the τ ’s in [0,+∞[ such that

τd(x; [f ≤ α]) ≤ f(x)− α for all x ∈ [α < f ],

with the convention σα(f) = 0 if [f ≤ α] = ∅ and σα(f) =∞ if [f ≤ α] = X.

Definition 2.13. [10, Definition 1] For x̄ ∈domf , we let Erf(x̄) denote the supremum of the
τ ’s in [0,+∞[ such that

τd(x; [f ≤ f(x̄)]) ≤ [f(x)− f(x̄)]+ for all x near x̄.

In case of a l.s.c. function, the following conditions are known to provide sufficient and/or
necessary criteria for the error bound property.

Theorem 2.14. Let X be a complete metric space, f : X → R∪{∞} be a proper l.s.c. function.
Assume that for all x ∈ [α < f ] there exists x′ ∈ [α ≤ f ], x′ 6= x such that f(x′)+d(x;x′) ≤ f(x).
Then [f ≤ α] 6= ∅, and d(x; [f ≤ α]) ≤ [f(x)− α]+ for all x ∈ domf .

Theorem 2.15. Let X be a Banach space and f : X → R ∪ {+∞} be a proper l.s.c. function.

(a) Suppose that X is an Asplund space. Then we have σα(f) ≥ infx∈[α<f ] dM (0; ∂f(x)).

(b) (convex case) Suppose that f is convex. Then we have σα(f) = infx∈[α<f ] d(0; ∂f(x)).

Theorem 2.16. Let X be a Banach space and f : X → R ∪ {+∞} be a proper l.s.c. function.
Let x̄ ∈ domf .

(a) Suppose that X is an Asplund space. Then function f has an error bound at x̄ if
lim inf(x,f(x))→(x̄,f(x̄)) dM (0; ∂f(x)) > 0.

(b) (finite-dimensional case) Suppose that X is a finite-dimensional space. Then the function
f has an error bound at x̄ if 0 /∈ ∂Mf(x̄),

(c) (convex case) Suppose that, in addition, f is convex. The function f has an error bound
at x̄ if 0 /∈ ∂f(x̄). Moreover, we have

lim inf
(x,f(x))→(x̄,f(x̄))

d(0; ∂f(x)) > 0⇐⇒ Erf(x̄) > 0.

Note that Theorem 2.14 is Theorem 1.3 of [3] , the assertions (a) of Theorem 2.15 is a special
case of [4, Proposition 4.1, Corollary 4.1 and Remark 4.1 (b)] (β =∞, γ = α) and the assertion
(b) of Theorem 2.15 is immediate from [4, Theorems 3.1 and 3.2] while conclusions of Theorem
2.16 are the conditions C6, C9, C13 and C14 of [10].

3 A sufficient condition for a global error bound of the distance
to a sublevel set

From now on, unless otherwise specified, Y is a normed space and K ⊂ Y is a closed convex
cone inducing the order relation �l by (3). In this section, we assume that X is a complete
metric space and A ⊂ Y is a nonempty set. A sufficient condition for the existence of a global
error bound for the distance to the sublevel set [F �l A] reads as follows.

Theorem 3.1. Suppose that
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(i) K0 ⊂ K is a set such that infk0∈K0 d(k0;Y \K) ≥ 1.

(ii) The set A is bounded.

(iii) The set-valued map F is K-upper semicontinuous and has compact values.

(iv) For any x /∈ [F �l A] there exists x′ /∈ [F �l A], x′ 6= x such that

F (x′) + d(x, x′)K0 �l F (x).

Then [F �l A] 6= ∅ and

d(x; [F �l A]) ≤ [sup
a∈A

inf
y∈F (x)

∆−K(y − a)]+ for all x ∈ X. (4)

Recall that F is K-upper semicontinuous (K-u.s.c.) at x̄ ∈ X [33] if for any open set V such
that F (x̄) ⊂ V , there exists an open neighborhood U of x̄ such that F (x) ⊂ V+K for any x ∈ U .
It is clear that if F is upper semicontinuous (u.s.c.) then it is K-u.s.c.

Note that (4) reduces to the classical scalar form

d(x; [f ≤ a]) ≤ [f(x)− a]+ for all x ∈ X

when Y = R, K = R1
+, F is a (single-valued) function f : X → R and A = {a}.

To prove Theorem 3.1, we will apply a scalarization technique and Theorem 2.14. We
associate to the map F and the set A a function g : X → R defined by

g(x) := sup
a∈A

inf
y∈F (x)

∆−K(y − a). (5)

Some properties of the function g is formulated in the following.

Proposition 3.2. (a) Suppose that F (x) and A are bounded sets. Then −∞ < g(x) < +∞.

(b) If F is K-u.s.c. at x̄ then g is l.s.c. at x̄.

Proof. As the function ∆−K is Lipschitz of rank 1, the assertion (a) follows from the boundedness
of the sets F (x) and A. To prove (b), we show that ga(x) := infy∈F (x) ∆−K(y − a) is l.s.c. at x̄
for every a ∈ A. Since F is K-u.s.c. at x̄, for ε > 0 there exists δ > 0 such that

F (x) ⊂ F (x̄) + εBY +K for any x ∈ X such that d(x; x̄) ≤ δ.

Fix x ∈ X such that d(x; x̄) ≤ δ. For any y ∈ F (x) there exist e ∈ BY , ȳ ∈ F (x̄) and k ∈ K
such that y = ȳ− εe+ k. Properties of the signed distance function (see Proposition 2.7) imply

∆−K(y − a) = ∆−K(ȳ − εe+ k − a) ≥ ∆−K(ȳ − a)−∆−K(εe− k) ≥ ∆−K(ȳ − a)−
−∆−K(εe)−∆−K(−k) ≥ ∆−K(ȳ − a)−∆−K(εe) ≥ ∆−K(ȳ − a)− εe

≥ infy′∈F (x̄) ∆−K(y′ − a)− ε = ga(x̄)− ε,

which gives ga(x) − ga(x̄) ≥ −ε for any x ∈ X such that d(x; x̄) ≤ δ. Therefore, ga is l.s.c.
at x̄ for every a ∈ A. Finally, since g(x) = supa∈A ga(x), the lower semicontinuity of g at x̄ is
immediate from the one of the functions ga at this point.

Proposition 3.3. (a) F (x) �l A implies g(x) ≤ 0.

(b) Suppose that F (x) is compact. Then g(x) ≤ 0 implies F (x) �l A.
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Proof. (a) Fix a ∈ A. Since F (x) �l A, there exist y ∈ F (x) and k ∈ K such that a =
y + k. Then we have ∆−K(y − a) = ∆−K(−k) = −d(−k;Y \ (−K)) ≤ 0. It follows that
infy∈F (x) ∆−K(y − a) ≤ 0 and hence, g(x) = supa∈A infy∈F (x) ∆−K(y − a) ≤ 0.

(b) Suppose to the contrary that g(x) ≤ 0 but F (x) 6�l A or A 6⊆ F (x)+K. Then there exists
a ∈ A such that a /∈ F (x)+K. For any y ∈ F (x) one has y−a ∈ Y \(−K) and since K is closed,
one gets that ∆−K(y−a) = d(y−a;−K) > 0. Since F (x) is compact, infy∈F (x) ∆−K(y−a) > 0.
Thus, we have ga(x) > 0 for some a ∈ A, and hence we obtain g(x) > 0, a contradiction.

Corollary 3.4. If F has compact values then [F �l A] = [g ≤ 0].

Proposition 3.5. Let K0 ⊂ K be a set such that infk0∈K0 d(k0;Y \K) ≥ 1. Then

F (x′) + d(x;x′)K0 �l F (x) implies g(x′) + d(x;x′) ≤ g(x).

Proof. Observe that for any k0 ∈ K0, we have ∆−K(−k0) = −d(−k0;Y \ (−K)) = −d(k0;Y \
K) ≤ −1. Now, suppose that F (x′) + d(x;x′)K0 �l F (x). By the definition, we have F (x) ⊆
F (x′) + d(x;x′)K0 + K. Fix a ∈ A. For any y ∈ F (x), there exist y′ ∈ F (x′), k0 ∈ K0 and
k ∈ K such that y = y′ + d(x;x′)k0 + k. The properties of the signed distance function (see
Proposition 2.7) imply

∆−K(y − a) = ∆−K(y′ + d(x;x′)k0 + k − a) ≥ ∆−K(y′ − a)−∆−K(−d(x;x′)k0)−
−∆−K(−k) ≥ ∆−K(y′ − a) + d(x;x′) ≥ infu∈F (x′) ∆−K(u− a) + d(x;x′).

Since y ∈ F (x) and a ∈ A are arbitrarily chosen, we obtain

sup
a∈A

inf
y∈F (x)

∆−K(y − a) ≥ sup
a∈A

inf
u∈F (x′)

∆−K(u− a) + d(x;x′),

which means that g(x′) + d(x;x′) ≤ g(x).

Now we are ready to prove Theorem 3.1.

Proof. Observe that by Proposition 3.2, the function g is l.s.c. and by Proposition 3.5, the
assumption (d) becomes

For any x ∈ [g > 0] there exists x′ ∈ [g > 0], x′ 6= x such that g(x′) + d(x;x′) ≤ g(x).
Theorem 2.14 applied to the function g implies that [g ≤ 0] 6= ∅ and d(x; [g ≤ 0]) ≤ [g(x)]+ for
all x ∈ X. The assertion follows from Corollary 3.4 and (5).

4 Error bounds for the distances to a special sublevel set and
to a constraint set

Throughout the section, unless otherwise stated, we assume that X and Y are Banach spaces.
The sublevel set under consideration is of the form (here, �l ȳ stands for �l {ȳ})

[F �l ȳ] := {x ∈ X | F (x) �l ȳ}. (6)

The class of sublevel sets of the form (6) covers the constraint set

{x ∈ X | G(x) ∩ (−C) 6= ∅}

and, as it will be shown in Section 5, some efficient solution sets of (P). In this section, we
formulate criteria for error bounds for the distance to the sublevel set and illustrate them by
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examples about the constraint set and postfone the cases with efficient solution sets to Section
5.

In what follows, by g we mean the scalarizing function

g(x) := inf
y∈F (x)

∆−K(y − ȳ)

and by V (x) we mean the minimum set

V (x) := {y ∈ F (x) | ∆−K(y − ȳ) = g(x)}.

4.1 Global error bounds

Following Definition 2.12, the global error bound σ(g) of the function g at the level α = 0 can
be defined as follows

σ(g) := sup{τ > 0 | τd(x; [g ≤ 0]) ≤ [g(x)]+ for all x ∈ X}.

We define a global error bound for the set-valued map F as follows.

Definition 4.1. The global error bound σ(F ) for the set-valued map F at the level ȳ is the
supremum of the τ ’s in [0,+∞[ such that

τd(x; [F �l ȳ]) ≤ [ inf
y∈F (x)

∆−K(y − ȳ)]+ for all x ∈ X,

with the convention σ(F ) = 0 if [F �l ȳ] = ∅ and σ(F ) =∞ if [F �l ȳ] = X.

Remark 4.2. Assume that F is compact-valued. If x ∈ [F �l ȳ] then Corollary 3.4 implies that
g(x) ≤ 0. If x /∈ [F �l ȳ] then it is easy to see that g(y) = infy∈F (x) d−K(y − ȳ) > 0. Therefore,
σ(F ) can be equivalently defined as the supremum of the τ ’s in [0,+∞[ such that

τd(x; [F �l ȳ]) ≤ inf
y∈F (x)

d−K(y − ȳ) for all x /∈ [F �l ȳ].

Below is a simple but useful relation between the error bound of F and that of g.

Proposition 4.3. Suppose that F has compact values. Then

σ(F ) = σ(g). (7)

Proof. Corollary 3.4 implies that [F �l ȳ] = [g ≤ 0]. The assertion follows from this equality
and the definitions of g, σ(g) and σ(F ).

The first estimate for σ(F ) in terms of the Mordukhovich coderivative reads as follows.

Theorem 4.4. Suppose that X, Y are Asplund spaces, F is closed K-u.s.c. compact-valued
and V is lower semicompact. Then

σ(F ) ≥ inf
x/∈[F�lȳ]

d(0;∩yx∈V (x) ∪y∗∈∂M∆−K(yx−ȳ) D
∗
MF (x, yx)(y∗)). (8)

Proof. Note that under the assumptions of the theorem, the function g is l.s.c. by Proposition
3.2. Applying Theorem 2.15 (a) to the function g, we obtain

σ(g) ≥ inf
x∈[g>0]

d(0; ∂Mg(x)).
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On the other hand, by Proposition 2.4, we have

∂Mg(x) ⊆ ∩yx∈V (x) ∪y∗∈∂∆−K(yx−ȳ) D
∗
MF (x, yx)(y∗).

Therefore, by Corollary 3.4 we have

σ(g) ≥ infx∈[g>0] d(0;∩yx∈V (x) ∪y∗∈∂∆−K(yx−ȳ) D
∗
MF (x, yx)(y∗))

= infx/∈[F�lȳ] d(0;∩yx∈V (x) ∪y∗∈∂∆−K(yx−ȳ) D
∗
MF (x, yx)(y∗)),

which together with (7) yield (8).

We will illustrate the results obtained in this section by examples with the constraint set
{x ∈ X | G(x) ∩ (−C) 6= ∅} = [G �l 0], where �l is induced by the cone C in 2Z in the way
similar to (3). For the reader’s convenience, we do not change either F by G or K by C.

Example 4.5. Let X = R, Y = R2, K = R2
+. Consider a set-valued map

F (x) =
{
{(u, v) | (u− x− 1)2 + v2 ≤ 1} if x ≥ 0
{(u, v) | (u− 1)2 + v2 ≤ 1} otherwise

One can check that F is u.s.c. and compact-valued. The graph of F is a cylinder “broken” at
the “height” x = 0, i.e. it is not convex but is locally convex around (x, y) ∈grF for any x > 0
and y = (x, 0) ∈ F (x). Consider the constraint set

A := {x ∈ X | F (x) ∩ (−R2
+) 6= ∅} = {x ∈ X | F (x) �l (0, 0)}

(here, ȳ = (0, 0)). Observe that A =] − ∞, 0]. Assume that x /∈ A. One can check that
V (x) = {(x, 0)}, yx = (x, 0), ∂∆−R2

+
(yx) = {(1, 0)} (see Example 2.9) and the normal cone

of convex analysis to the graph of F at (x, yx) is given by N((x, yx); grF ) = {t(1,−1, 0) | t ∈
R+}. Recall that the Mordukhovich coderivative D∗MF (x, yx)(y∗) coincides with the coderivative
D∗F (x, yx)(y∗) of convex analysis. Hence,

∪y∗∈∂∆−R2
+

(yx−ȳ)D
∗F (x, yx)(y∗) = {1}

and Theorem 4.4 implies that σ(F ) ≥ 1.

Let us go to the convex case. Recall that the set-valued map F is convex if its graph is
convex and is K-convex if for any x1, x2 ∈ X and λ ∈ [0, 1] one has

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2) +K.

(F (λx1 + (1− λ)x2) ≤K λF (x1) + (1− λ)F (x2) when F is single-valued).

The following proposition shows that g inherits the convexity property of F .

Proposition 4.6. Suppose that F is either convex or K-convex. Then the function g is convex.

Proof. Let x1, x2 ∈ X and λ ∈ [0, 1] be given. Denote xλ = λx1 + (1− λ)x2. Suppose first that
F is convex. Let ε > 0 be an arbitrary scalar. Let y1 ∈ F (x1) and y2 ∈ F (x2) be such that
g(x1) + ε/2 ≥ ∆−K(y1 − ȳ) and g(x2) + ε/2 ≥ ∆−K(y2 − ȳ). Denote yλ = λy1 + (1− λ)y2. As
F is convex, we have yλ ∈ F (xλ). Sine the function ∆−K is convex (see Proposition 2.7(c)), we
obtain

g(xλ) = infy′∈F (xλ) ∆−K(y′ − ȳ) ≤ ∆−K(yλ − ȳ) = ∆−K(λy1 + (1− λ)y2 − ȳ)
≤ λ∆−K(y1 − ȳ) + (1− λ)∆−K(y2 − ȳ) ≤ λ[g(x1) + ε/2] + (1− λ)[g(x2) + ε/2]
≤ λg(x1) + (1− λ)g(x2) + ε.
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Since ε > 0 is arbitrarily chosen, we deduce that g(λx1 + (1 − λ)x2) = g(xλ) ≤ λg(x1) + (1 −
λ)g(x2), which means that the function g is convex. Now, suppose that F is K-convex. By
the definition, for any y1 ∈ F (x1) and y2 ∈ F (x2) there exist yλ ∈ F (xλ) and k ∈ K such that
λy1 + (1 − λ)y2 = yλ + k. The convexity and the triangle inequality of the function ∆−K (see
Proposition 2.7(c)) imply

g(xλ) = infy′∈F (xλ) ∆−K(y′ − ȳ) ≤ ∆−K(yλ − ȳ)
≤ ∆−K(yλ − ȳ) + dY \(−K)(−k) = ∆−K(yλ − ȳ)−∆−K(−k)
≤ ∆−K(yλ − ȳ + k) = ∆−K(λy1 + (1− λ)y2 − ȳ)
≤ λ∆−K(y1 − ȳ) + (1− λ)∆−K(y2 − ȳ).

Since y1 ∈ F (x1) and y2 ∈ F (x2) are arbitrarily chosen, we deduce that g(λx1 + (1 − λ)x2) =
g(xλ) ≤ λg(x1) + (1− λ)g(x2), which means that the function g is convex.

Let us formulate an estimate in terms of coderivative of convex analysis for the global error
bound σ(F ) in the convex case.

Theorem 4.7. Suppose that one of the following conditions is satisfied.

(i) The set-valued map F is u.s.c. convex/K-convex and compact-valued.

(ii) X is reflexive and the set-valued map F is K-u.s.c. closed convex/K-convex and compact-
valued.

Then for any yx ∈ V (x) we have

σ(F ) = inf
x/∈[F�lȳ]

d(0;∪y∗∈∂∆−K(yx−ȳ)D
∗F (x, yx)(y∗)). (9)

Proof. Note that under the assumptions of the theorem, the function g is l.s.c. by Proposition
3.2 and is convex by Proposition 4.6. Applying Theorem 2.15(b) to the function g, we obtain
σ(g) = infx∈[g>0] d(0; ∂g(x)). On the other hand, by Proposition 2.5, for any yx ∈ V (x) we have
∂g(x) = ∪y∗∈∂∆−K(yx−ȳ)D

∗F (x, yx)(y∗). Corollary 3.4 implies

σ(g) = infx∈[g>0] d(0;∪y∗∈∂∆−K(yx−ȳ)D
∗F (x, yx)(y∗))

= infx/∈[F�lȳ] d(0;∪y∗∈∂∆−K(yx−ȳ)D
∗F (x, yx)(y∗)),

which together with (7) yield (9).

Remark 4.8. Note that for any y∗ in the right-hand side of (8) and (9) one has

y∗ ∈ (K∗ \ {0}) ∩ BY ∗ . (10)

Indeed, when x /∈ [F �l ȳ], Corollary 3.4 implies that g(x) > 0 and, therefore, ∆−K(yx − ȳ) =
g(x) > 0 as yx ∈ V (x). Proposition 2.7(b) yields that yx− ȳ /∈ −K and the desired relation (10)
follows from Proposition 2.8.

Example 4.9. Let X = R, Y = R2, K = R2
+. Consider a set-valued map

F (x) = {(u, v) | (u− x− 1)2 + v2 ≤ 1}.

One can check that F is u.s.c. and compact-valued. The graph of F is a “leaning” cylinder, i.e.
F is convex. Consider the constraint set

A := {x ∈ X | F (x) ∩ (−R2
+) 6= ∅} = {x ∈ X | F (x) �l (0, 0)}

(here, ȳ = (0, 0)). Observe that A =]−∞, 0]. For x /∈ A one has V (x) = {(x, 0)}, yx = (x, 0),
∆−R2

+
(yx) = {(1, 0)} (see Example 2.9) and N((x, yx); grF ) = {t(1,−1, 0) | t ∈ R+}. Hence,

∪y∗∈∂∆−R2
+

(yx−ȳ)D
∗F (x, yx)(y∗) = {1}. Theorem 4.7 implies that σ(F ) = 1.
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Next, we consider the case with a single- vector-valued map f : X → Y . Denote

[f ≤K ȳ] := {x ∈ X | f(x) ≤K ȳ}.

Definition 4.10. For ȳ ∈ Y , we let σȳ(f) denote the supremum of the τ ’s in [0,+∞[ such that

τd(x; [f ≤K ȳ]) ≤ [∆−K(f(x)− ȳ)]+ for all x ∈ X

with the convention σȳ(f) = 0 if [f ≤K ȳ] = ∅ and σȳ(f) =∞ if [f ≤K ȳ] = X.

In such a case, the scalarizing function g has the form g(x) = ∆−K(f(x)− ȳ). Applying the
chain rule recalled in Theorem 2.3 and using the same techniques as above, one can easily derive
from Theorems 2.15 the following result.

Theorem 4.11. Assume that f is strictly differentiable. If X, Y are Asplund spaces, then

σȳ(f) ≥ inf
x/∈[f≤K ȳ]

dM (0; {[∇f(x)]∗(y∗) | y∗ ∈ ∂∆−K(f(x)− ȳ)})

and if f is K-convex, then

σȳ(f) = inf
x/∈[f≤K ȳ]

d(0; {[∇f(x)]∗(y∗) | y∗ ∈ ∂∆−K(f(x)− ȳ)}).

Example 4.12. Let X = R, Y = R2, K = R2
+.

(a) Consider a function f(x) = (x3, x). It is easy to see that f is strictly differentiable (but
it is not R2

+-convex), ∇f(x) = (3x2, 1) and A := [f ≤R2
+

(0, 0)] =]−∞, 0]. Assume that x /∈ A,
i.e. x > 0. Then f(x)− (0, 0) = (x3, x) and

∂∆−R2
+

(f(x)) = {(x3/
√
x6 + x2, x/

√
x6 + x2)} = {(x2/

√
x4 + 1, 1/

√
x4 + 1)}

(see Example 2.9). One can check that U := {[∇f(x)]∗(y∗) | y∗ ∈ ∂∆−R2
+

(f(x))} = {(3x4 +

1)/
√
x4 + 1} and d(0;U) = (3x4 + 1)/

√
x4 + 1 ≥ 1 for all x /∈ A . Theorem 4.11 (a) implies the

existence of τ ∈]0, 1[ such that

τd(x; [f ≤K 0]) ≤ [∆−R2
+

(f(x))]+ for all x ∈ R.

(b) Consider a function

f(x) =
{

(ex − 5,−lnx) if x ≥ 1
(ex − 5, 1− x) otherwise

It is easy to see that f is R2
+-convex strictly differentiable and A := [f ≤R2

+
(0, 0)] = [1, ln5];

moreover, ∇f(x) = (ex,−1/x) if x ≥ 1 and ∇f(x) = (ex,−1), otherwise. Assume that x /∈ A.
If x < 1, then ∂∆−R2

+
(f(x)) = {(0, 1)} (see Example 2.9) and U := {[∇f(x)]∗(y∗) | y∗ ∈

∂∆−R2
+

(f(x))} = {〈(ex,−1), (0, 1)〉} = {−1}. If x > ln5, then ∂∆−R2
+

(f(x))} = {(1, 0)} (see
Example 2.9) and U = {〈(ex,−1/x), (1, 0)〉} = {ex}. It follows from Theorem 4.11 (b) that
σ(0,0)(f) = infx/∈[f≤R2

+
(0,0)] d(0;U) = 1.

14



4.2 Local error bounds

We introduce a concept of a local error bound for the set-valued map F as follows.

Definition 4.13. Let ȳ ∈ F (x̄). We say that F satisfies the (local) error bound property at
x̄ ∈domF w.r.t. ȳ if there exists a positive real number τ such that

τd(x; [F �l ȳ]) ≤ [ inf
y∈F (x)

∆−K(y − ȳ)]+ for all x near x̄

and the local error bound ErF (x̄, ȳ) of F near x̄ w.r.t. ȳ is the supremum of such scalars τ .

Recall that the function g with g(x̄) = 0 is said to satisfy the (local) error bound property
at x̄ if there exists a positive real number τ such that

τd(x; [g ≤ 0]) ≤ [g(x)]+ for all x near x̄

and its local error bound Erg(x̄) near x̄ is the supremum of such scalars τ , see Definition 2.13.
Let us formulate a simple but important fact.

Proposition 4.14. Suppose that F has compact values and ȳ ∈ V (x̄). Then

ErF (x̄, ȳ) = Erg(x̄). (11)

Proof. Observe that ȳ ∈ V (x̄) implies g(x̄) = 0. Corollary 3.4 yields that [F �l ȳ] = [g ≤ 0] =
[g ≤ g(x̄)]. The assertion is immediate from the definitions of g, ErF (x̄, ȳ) and Erg(x̄).

First criterion in terms of the Mordukhovich coderivative for the local error bound property
reads as follows.

Theorem 4.15. Suppose that X and Y are Asplund spaces, the set-valued map F is closed
K-u.s.c. compact-valued and V is lower semicompact. Suppose further that ȳ ∈ V (x̄). Then

(a) The set-valued map F satisfies the local error bound property at x̄ w.r.t. ȳ if

lim inf
x→x̄,yx∈V (x),∆−K(yx−ȳ)→0

d(0;∪y∗∈∂∆−K(yx−ȳ)D
∗
MF (x, yx)(y∗)) > 0. (12)

(b) If in addition, X is a finite-dimensional space, then the set-valued map F satisfies the local
error bound property at x̄ w.r.t. ȳ if

0 /∈ ∩yx̄∈V (x̄) ∪y∗∈∂∆−K(yx̄−ȳ) D
∗
MF (x̄, yx̄)(y∗). (13)

Proof. Note that under the assumptions of the theorem, the map F is closed and the function
g is l.s.c. by Proposition 3.2. Proposition 2.4 implies that

∂Mg(x) ⊆ ∪y∗∈∂∆−K(yx−ȳ)D
∗
MF (x, yx)(y∗)

for any yx ∈ V (x) in the case (a) and

∂Mg(x̄) ⊆ ∩yx̄∈V (x̄) ∪y∗∈∂∆−K(yx̄−ȳ) D
∗
MF (x, yx̄)(y∗)

in the case (b). The relation (12) and (13) yield lim infx→x̄,g(x)→0 d(0; ∂Mg(x)) > 0. in the first
case and 0 /∈ ∂Mg(x̄)) in the second case. In both cases, g satisfies the local error bound property
at x̄ by Theorem 2.16 and hence, the relation (11) implies that F satisfies the local error bound
property at x̄ w.r.t. ȳ.
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Remark 4.16. It should be noted that the relation (13) holds only when the cone K has a
nonempty interior (for instance, when K is the nonnegative orthant in Rn). Indeed, suppose
that intK = ∅. For any yx̄ ∈ V (x̄), one has ∆−K(yx̄ − ȳ) = g(x̄) = 0 and Proposition 2.7
(b) yields that yx̄ − ȳ ∈ −K. Proposition 2.8 (c) then implies that 0 ∈ ∂∆−K(yx̄ − ȳ). Since
0 ∈ D∗MF (x̄, yx̄)(0), we have 0 ∈ ∪y∗∈∂∆−K(yx̄−ȳ)D

∗
MF (x̄, yx̄)(y∗) and (13) cannot hold.

Below is an example illustrating Theorem 4.15 in case of the constraint set.

Example 4.17. (a) Let X = R, Y = R2, K = R2
+ and F be the map

F (x) =


{(u, v) | (u− x− 1)2 + v2 ≤ 1} if x ∈ [0,∞[
{(u, v) | (u+ x− 1)2 + v2 ≤ 1} if x ∈ [−1, 0[
{(u, v) | (u− x− 3)2 + v2 ≤ 1} if x ∈ [−2,−1[
{(u, v) | (u− 1)2 + v2 ≤ 1} if x ∈]−∞,−2[

One can check that F is u.s.c. and compact-valued. Consider the constraint set

A := {x ∈ X | F (x) ∩ (−R2
+) 6= ∅} = {x ∈ X | F (x) �l (0, 0)}

(here, ȳ = (0, 0)). Observe that x̄ = 0 ∈ A = {0} ∪ [−2,∞].
We show first that (12) holds. Observe that for x > 0, one has g(x) = x, V (x) = {(x, 0)},

yx = (x, 0), ∂∆−R2
+

(yx−ȳ) = ∂∆−R2
+

(x, 0) = {(1, 0)} (see Example 2.9), the graph of F is locally
convex near (x, yx) and D∗F (x̄, ȳ)(1, 0) = {1}. Further, for x ∈]0,−1[ , one has g(x) = −x,
V (x) = {(−x, 0)}, yx = (−x, 0), ∂∆−R2

+
(yx − ȳ) = ∂∆−R2

+
(−x, 0) = {(1, 0)} (see Example 2.9),

the graph of F is locally convex near (x, yx) and D∗F (x̄, ȳ)(1, 0) = {−1}. Hence,

lim inf
x→x̄,yx∈V (x),∆−K(yx−ȳ)→0

d(0;∪y∗∈∂∆−K(yx−ȳ)D
∗
MF (x, yx)(y∗)) = 1.

Theorem 4.15 yields that F satisfies the local error bound property at x̄ = 0 w.r.t. ȳ = (0, 0).
Next, we show that (13) does not hold. Indeed, one can check that V (x̄) = {(0, 0)}, yx̄ = (0, 0)

and N((x̄, ȳ); grF ) = {t1(1,−1, 0) − t2(1, 1, 0) | t1, t2 ∈ R+}. Recall that D∗MF (x̄, ȳ)(y∗) =
D∗F (x̄, ȳ)(y∗). Since (0,−1, 0) ∈ N((x̄, ȳ); grF ) and (1, 0) ∈ ∂∆−R2

+
(yx− ȳ) = ∂∆−R2

+
(0, 0) (see

Example 2.9), we have 0 ∈ D∗F (x̄, ȳ)(1, 0).
(b) Let F be the set-valued map of Example 4.5. We are interested in the local error bound

property of F at x̄ = 0 w.r.t. ȳ = (0, 0) or, in other words, in the existence of a local error
bound for the distance to the constraint set

A := {x ∈ X | F (x) ∩ (−R2
+) 6= ∅} = [F �l (0, 0)]

at x̄ = 0. We have ȳ = (0, 0) ∈ V (x̄) = {(0, 0)} and ∆−R2
+

(ȳ− ȳ) = {(u, v) |u2 +v2 ≤ 1 ≤ u+v}
(see Example 2.9). Observe that the graph of F is locally convex near (x̄, ȳ) = (0, 0, 0) and
the Mordukhovich normal cone at that point coincides with the normal cone of convex analysis
N((0, 0, 0); grF ) = {t(1,−1, 0) | t ∈ R+}. Hence, 0 /∈ ∪y∗∈∂∆−R2

+
(0,0)D

∗F (0, 0, 0)(y∗). Thus, the

relation (13) holds and Theorem 4.15 implies that F satisfies the local error bound property at
x̄ = 0 w.r.t. ȳ = (0, 0).

Next, we consider the convex case.

Theorem 4.18. Suppose that one of the following conditions is satisfied.

(i) The set-valued map F is u.s.c., convex/K-convex and has compact values.

(ii) X is reflexive and the set-valued map F is closed K-u.s.c. convex/K-convex and compact-
valued.
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Suppose further that ȳ ∈ V (x̄). Then the set-valued map F satisfies the local error bound property
at x̄ w.r.t. ȳ if

0 /∈ ∪y∗∈∂∆−K(yx̄−ȳ)D
∗F (x̄, yx̄)(y∗), (14)

for some yx̄ ∈ V (x̄). Moreover, we have

lim inf
yx∈V (x),x→x̄,∆−K(yx−ȳ)→0

d(0,∪y∗∈∂∆−K(yx−ȳ)D
∗F (x, yx)(y∗)) > 0⇐⇒ ErF (x̄, ȳ) > 0. (15)

Proof. Note that under the assumptions of the theorem, the function g is l.s.c. by Proposition
3.2 and is convex by Proposition 4.6. Observe that by Proposition 2.5, we have

∂g(x̄) = ∪y∗∈∂∆−K(yx−ȳ)D
∗F (x̄, yx)(y∗),

for any yx̄ ∈ V (x̄). Therefore, the relation (14) implies 0 /∈ ∂g(x̄). We also have

lim infx→x̄,g(x)→0 d(0; ∂g(x)) =
= lim infx→x̄,yx∈V (x),∆−K(yx−ȳ)→0 d(0;∪y∗∈∂∆−K(yx−ȳ)D

∗F (x, yx)(y∗).

The assertions follow from Theorem 2.16 (c) applied to the function g and the relation (11).

Remark 4.19. By the reasons mentioned in Remark 4.16, the relation (14) holds only when
the interior of K is nonempty, for instance, when K is the nonnegative orthant in Rn or C[0,1]

[28]. Another examples of cones with a nonempty interior are Bishop-Phelps cones in Banach
spaces, which are representable in the form K = {y ∈ Y | φ(y) ≥ t‖y‖} for some functional
φ ∈ Y ∗ with ‖φ‖ > 1 and some scalar t > 0 [26].

Let us illustrate Theorem 4.18 by an example.

Example 4.20. Let us return to the set-valued map F in Example 4.5. We are interested in
the local error bound property of F at x̄ = 0 w.r.t. ȳ = (0, 0) or, in other words, in the existence
of a local error bound for the distance to the constraint set

A := {x ∈ X | F (x) ∩ (−R2
+) 6= ∅} = [F �l (0, 0)]

at x̄ = 0 (the order relation �l is induced by the cone R2
+). In this case we have ȳ = (0, 0) ∈

V (x̄) = {(0, 0)} and ∆−R2
+

(ȳ − ȳ) = {(u, v) |u2 + v2 ≤ 1 ≤ u + v} (see Example 2.9). One can
check that N((0, 0, 0); grF ) = {t(1,−1, 0) | t ∈ R+}. Hence, 0 /∈ ∪y∗∈∂∆−R2

+
(0,0)D

∗F (0, 0, 0)(y∗).

Theorem 4.18 implies that F satisfies the local error bound property at x̄ w.r.t. ȳ.

We consider now the case with a single- vector-valued map f : X → Y .

Definition 4.21. f is said to satisfy the local error bound property at x̄ if there exists a positive
scalar τ such that

τd(x; [f ≤K f(x̄)]) ≤ [∆−K(f(x)− f(x̄))]+ for all x near x̄

and its local error bound Erf(x̄) near x̄ is the supremum of such scalars τ .

In this case, the scalarizing function g has the form g(x) := ∆−K(f(x) − f(x̄)). Applying
the chain rule recalled in Theorem 2.3 and the arguments used above, one can easily derive from
Theorem 2.16 the following result.

Theorem 4.22. Assume that f is strictly differentiable.
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(a) Assume that X,Y are Asplund spaces. Then f satisfies the local error bound property at
x̄ if

lim inf
x→x̄

dM (0; {[∇f(x)]∗(y∗) | y∗ ∈ ∂∆−K(f(x)− f(x̄))}) > 0.

(b) Assuming that K has a nonempty interior, if X is a finite-dimensional space or if f is
K-convex, then f satisfies the local error bound property at x̄ if

0 /∈ {[∇f(x̄)]∗(y∗) | y∗ ∈ ∂∆−K(0)}.

(c) If f is K-convex, we have

lim inf
x→x̄

d(0; {[∇f(x)]∗(y∗) | y∗ ∈ ∂∆−K(f(x)− f(x̄))}) > 0⇐⇒ Erf(x̄) > 0.

We assuming that K has a nonempty interior in the assertion (b) of Theorem 4.22 in order
to ensure that 0 /∈ ∂∆−K(0). Below we present an example illustrating this theorem.

Example 4.23. Let X = R, Y = R2, K = R2
+.

(a) Consider a function

f(x) =
{

(2
√
x+ 1− 2, x) if x ≥ 0

(x, x) otherwise

We are interested in the local error bound property of f at x̄ = 0. It is easy to see that f
is strictly differentiable (but it is not R2

+-convex) and 0 /∈ {[∇f(0)]∗(y∗) | y∗ ∈ ∂∆−R2
+

(0, 0)}.
Theorem 4.22 (b) implies that f satisfies the error bound property of f at x̄ = 0.

(b) Let us return to the function f in Example 4.12(b). We are interested in the error bound
property of f at x̄ = 1. One can check that

{[∇f(1)]∗(y∗) | y∗ ∈ ∂∆−R2
+

(0, 0)} = {〈(e,−1), (u, v)〉 | u2 + v2 ≤ 1 ≤ u+ v}.

Since 0 = 〈(e,−1), (u, v)〉 with u = 1/2[1/(1+e)+1/
√

1 + e2], v = e/2[1/(1+e)+1/
√

1 + e2] and
(u, v) ∈ ∂∆−R2

+
(0, 0), one has 0 ∈ {[∇f(1)]∗(y∗) | y∗ ∈ ∂∆−R2

+
(0, 0)}. Therefore, the assertion

(b) of Theorem 4.22 can not be applied. However, we have

lim inf
x→x̄

d(0; {[∇f(x)]∗(y∗) | y∗ ∈ ∂∆−K(f(x)− f(x̄))}) = 1 > 0.

Indeed, for x > 1 we have f(x) − f(1) = (ex − e,−lnx), ∇f(x) = (ex,−1/x), ∂∆−R2
+

(f(x) −
f(1)) = {(1, 0)}, {[∇f(x)]∗(y∗) | y∗ ∈ ∂∆−R2

+
(f(x)−f(1))} = {ex} and for x < 1 we have f(x)−

f(1) = (ex − e, 1− x), ∇f(x) = (ex,−1), ∂∆−R2
+

(f(x)− f(1)) = {(0, 1)}, {[∇f(x)]∗(y∗) | y∗ ∈
∂∆−R2

+
(f(x) − f(1))} = {−1}. The assertion (c) of Theorem 4.22 implies that f satisfies the

error bound property of f at x̄ = 1

5 Error bounds for the distances to sets of efficient solutions
and metric subregularity at efficient solutions

In this section, sufficient and/or necessary conditions ensuring error bounds for the distance to
different solution sets of (P) are formulated from the ones in Section 4 or are obtained by similar
arguments. Some sufficient conditions are shown to be sufficient for metric subregularity at an
efficient solution. In the remaining of the paper, we will use the same notations as in Section 4.

18



5.1 Error bounds for the distance to the set of Pareto efficient/ Henig prop-
erly efficient/superefficient solutions

Firstly, we consider the case ȳ is one known Pareto efficient value of (P), i.e. ȳ ∈Min(F (X),K).
Denote by SPareto

ȳ the set of Pareto efficient solutions corresponding to the Pareto efficient value
ȳ, i.e.,

SPareto
ȳ := {x ∈ X | ȳ ∈ F (x)}

and by SPareto the set of all Pareto efficient solutions of (P), i.e.,

SPareto := {x ∈ X | there exists y ∈Min(F (X),K) such that y ∈ F (x)}.

Let us introduce the notions of error bounds. In the definitions below, S stands for SPareto
ȳ

or SPareto.

Definition 5.1. We define the global error bound σ(S) for the distance d(x;S) by

σ(S) := sup{τ > 0 | τd(x;S) ≤ [ inf
y∈F (x)

∆−K(y − ȳ)]+ for all x ∈ X}

with the convention that σ(S) =∞ if S = X.

Definition 5.2. Assume that x̄ ∈ S . We say that the distance d(x;S) has the (local) error
bound property at x̄ if there exists a positive scalar τ such that

τd(x;S) ≤ [ inf
y∈F (x)

∆−K(y − ȳ)]+ for all x near x̄

and denote by ErS(x̄) the supremum of these τ .

It turns out that SPareto
ȳ can be represented as a sublevel set considered in Section 4.

Proposition 5.3. We have
SPareto
ȳ = [F �l ȳ].

Moreover, for any x ∈ SPareto
ȳ we have V (x) = {ȳ} and g(x) = 0; in particular, we have

V (x̄) = {ȳ}. (16)

Proof. If x ∈ Sȳ then ȳ ∈ F (x) ⊂ F (x) + K and x ∈ [F �l ȳ]. Suppose that x ∈ [F �l ȳ].
Then ȳ ∈ F (x) + K and one can find y ∈ F (x) and k ∈ K such that ȳ = y + k. As ȳ ∈
Min(F (X),K), we deduce that k = 0. Therefore, ȳ ∈ F (x) and x ∈ Sȳ. Further, if x ∈ Sȳ,
then ȳ ∈ Min(F (x),K). Hence,y − ȳ /∈ −K, ∆−K(y − ȳ) > 0 = ∆−K(ȳ − ȳ) for all y ∈ F (x)
and the desired relations follow.

Proposition 5.3 and (16) imply that the results of Section 4 can be applied for obtaining
sufficient and/or necessary conditions ensuring error bounds for the distance d(x;SPareto

ȳ ). It
suffices to replace [F �l ȳ] by SPareto

ȳ , σ(F ) by σ(SPareto
ȳ ) and ErF (x̄) by ErSȳ(x̄) everywhere in

Theorems 4.4, 4.7, 4.15 and 4.18. In case F is a strictly differentiable single-valued map, criteria
for error bounds of the distance d(x;SPareto

ȳ ) can be derived from Theorems 4.11 and 4.22. Note
that by (16), the relation (13) of Theorem 4.15 becomes

0 /∈ ∪y∗∈∂∆−K(0)D
∗
MF (x̄, ȳ)(y∗)

and the relation (14) of Theorem 4.18 becomes

0 /∈ ∪y∗∈∂∆−K(0)D
∗F (x̄, ȳ)(y∗).
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It should be noted, however, that these relations may not be satisfied due to the fact that the
Fermat rule for Pareto efficient solutions holds (under some assumptions), i.e.,

0 ∈ D∗MF (x̄, ȳ)(y∗) or 0 ∈ D∗F (x̄, ȳ)(y∗)

for some y∗ ∈ K+ when ȳ ∈ Min(F (X),K) and ȳ ∈ F (x̄) [5, 40]. In such a situation, criteria
involving information around the point x̄ such as (12) and (15) are more useful.

Now let us return to the set of all Pareto efficient solutions SPareto. Since SPareto
ȳ ⊂ SPareto,

we have
σ(SPareto

ȳ ) ≤ σ(SPareto)

and
ErSPareto

ȳ (x̄) ≤ ErSPareto(x̄).

Therefore, any sufficient conditions for error bounds for the distance to the set SPareto
ȳ is sufficient

for the error bounds for the distance to the set SPareto as well. Below, we formulate two
consequences of Theorems 4.4, 4.15 and illustrate them by examples.

Theorem 5.4. Suppose that X, Y are Asplund spaces, F is closed K-u.s.c. compact-valued
and V is lower semicompact. Then

σ(SPareto) ≥ σ(SPareto
ȳ ) ≥ inf

x/∈Sȳ
d(0;∩yx∈V (x) ∪y∗∈∂M∆−K(yx−ȳ) D

∗
MF (x, yx)(y∗)).

Example 5.5. Let F be the set-valued map of Example 4.5. It is easy to see that ȳ = (0, 0)
is a Pareto efficient point of F (X) and that SPareto

ȳ = SPareto =] −∞, 0]. Observe that SPareto
ȳ

and SPareto coincide with the set A considered in Example 4.5. Results obtained in this example
yield that

σ(SPareto) ≥ σ(SPareto
ȳ ) ≥ inf

x/∈Sȳ
d(0;∩yx∈V (x) ∪y∗∈∂M∆−K(yx−ȳ) D

∗
MF (x, yx)(y∗)) ≥ 1.

Theorem 5.6. Suppose that X and Y are Asplund spaces, the set-valued map F is closed
K-u.s.c. compact-valued and V is lower semicompact. Then the distances d(x;SPareto

ȳ ) and
d(x;SPareto) have the error bound property at x̄ if

lim inf
x→x̄,yx∈V (x),∆−K(yx−ȳ)→0

d(0;∪y∗∈∂∆−K(yx−ȳ)D
∗
MF (x, yx)(y∗)) > 0.

Example 5.7. Let F be the set-valued map of Example 4.17(a). It is easy to see that ȳ = (0, 0)
is a Pareto efficient point of F (X) and that SPareto

ȳ = SPareto = {0}∪] −∞,−2]. Observe that
SPareto
ȳ and SPareto coincide with the set A considered in Example 4.17(a). Results obtained in

this example yield that the distances d(x;SPareto
ȳ ) and d(x;SPareto) have the error bound property

at x̄ = 0.

Now let us go to the cases ȳ is one known Henig properly efficient value or a super efficient
value of (P). In the first case, one can define the set SHe

ȳ of Henig properly efficient solutions of
(P) corresponding to the Henig proper efficient value ȳ, i.e.,

SHe
ȳ := {x ∈ X | ȳ ∈ F (x)}

and the set SHe of all Henig properly efficient solutions of (P). Since ȳ ∈ He(F (X),K) iff
ȳ ∈ Min(F (X),Kη) [17, Proposition 3.3] for some scalar δ defined by (1) and some cone Kη

(η ∈]0, δ[) defined by (2), the global/local error bounds for the distance d(x;SHe
ȳ ) and d(x;SHe)

as well as criteria ensuring these bounds can be defined and formulated in a similar way as for
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the distance d(x;SPareto
ȳ ), d(x;SPareto). In the second case, under the assumption that the base

of K is bounded, Henig efficiency and super efficiency coincide, and we can also consider error
bounds for the set of super efficient solutions. The formulation of the corresponding results in
these cases is left to the reader.

Remark 5.8. In case of Henig properly efficient/super efficient solutions, we can simply assume
F to be K-u.s.c. or K-convex instead of assuming F to be Kη-u.s.c. or Kη-convex. Moreover,
in contrast to Remarks 4.8 and 4.16, in this case by Corollary 2.11 we have estimates y∗ ∈
K+si∩BY ∗ and y∗ ∈ intK+∩BY ∗ which are stronger than the relation (10); moreover, the cone
Kη has a nonempty interior.

5.2 Metric subregularity at efficient solutions

Observe that the set SPareto
ȳ coincides with set F−1(ȳ) appeared in the definition of metric sub-

regularity. The simple relation formulated below allows us to connect the error bound property
of the distance to this set at x̄ and the metric subregularity of the map F at x̄ for ȳ.

Proposition 5.9. The following inequality holds:

[ inf
y∈F (x)

∆−K(y − ȳ)]+ ≤ d(ȳ;F (x)) for all x ∈ X.

Proof. The inequality follows from the fact that the function ∆−K is Lipschizt of rank 1.

It follows from the definition of the error bound property, Definition 5.2, and the definition
of metric subregularity, recalled in Introduction, and Proposition 5.9 that sufficient conditions
in terms of coderivatives of F for the error bound property of the distance to the set SPareto

ȳ

at the Pareto solution x̄ also are sufficient for the metric subregularity of the set-valued map F
near x̄ to ȳ. This conclusion holds true also for case with Henig proper efficiency and, under the
assumption that K has a bounded base, for case with superefficiency.

As noted in [9], a major drawback of metric subregularity is the lack of a norm characteriza-
tion in terms of coderivatives of the considered map except some sufficient conditions in terms
of derivative/coderivative of the inverse map characterizing the calmness of the latter ( metrict
subregularity has been shown to be equivalent to the calmness of the inverse map F−1 [8]), see
[9, 20, 24, 25, 41, 42]. Recently, some first- and second-order characterization for the metrict
subregularity of of F in terms of its derivatives and coderivatives have been obtained in [13].
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[4] D. AZÉ and J.-N. CORVELLEC, Characterizations of error bounds for lower semicontinu-
ous functions on metric spaces, ESAIM Control Optim. Calc. Var., 10 (2004), pp. 409-425.

[5] T. Q. BAO and B. S. MORDUKHOVICH, Relative Pareto minimizers for multiobjective
problems: existence and optimality conditions, Math. Program. , Ser. A, 122 (2010), pp.
301-347.

21



[6] P. BOSCH, A. JOURANI and R. HENRION, Sufficient conditions for error bounds and
applications , Appl. Math. Optim., 50 (2004), pp. 161-181.

[7] M. CILIGOR-TRAVAIN, On Lagrange-Kuhn-Tucker multiplier for Pareto optimization
problems, Numer. Func. Anal. and Optim., 15 (1994), pp. 689-693.

[8] A. L. DONTCHEV and R. T. ROCKAFELLAR, Regularity and conditioning of solution
mappings in variational analysis, Set-Valued Anal., 12 (2004), pp. 79-109.

[9] A. L. DONTCHEV and R. T. ROCKAFELLAR, Implicit Functions and Solution Mappings,
Springer, Dordrecht, 2009.

[10] M. J. FABIAN, R. HENRION, A. Y. KRUGER and J. V. OUTRATA, Error bounds:
necessary and sufficient conditions, Set-valued Var. Anal., 18 (2010), pp. 121-149.

[11] E. M. BERNARCZUK and A. Y. KRUGER, Error bounds for vector-valued functions:
necessary and sufficient conditions, Nonlinear Anal., 75 (2012), pp. 1124-1140.

[12] J. M. BORWEIN and D. ZHUANG, Super efficiency in vector optimization, Trans. Amer.
Math. Soc., 338 (1993), pp. 105-122.

[13] H. GFRERER, First order and second order characterizations of metric subregularity and
calmness of constraint set mappings, SIAM J. Optim., 21 (2011), pp. 1439-1447.

[14] V. V. GOROKHOVICH, Convex and Nonsmooth Problems of Vector Optimization, Nauka
i Tekhnika, Minsk, 1990.

[15] T. X. D. HA, The Ekeland variational principle for set-valued maps involving coderivatives,
J. Math. Anal.Appl., 286 (2003), pp. 509-523.

[16] T. X. D. HA, Some variants of the Ekeland variational principle for a set-valued map, J.
Optim. Theory Appl. , 124 (2005), pp. 187-206.

[17] T. X. D. HA, The Ekeland variational principle for Henig proper minimizers and super
minimizers, J. Math. Anal.Appl., 364 (2010), pp. 156-170.
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