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A method for weighted projections to the positive definite cone

Tuomo Valkonen∗

Abstract

We study the numerical solution of the problem minX≥0 ‖BX−c‖2, where X ∈ Sm is a symmetric square
matrix, and B : Sm → RN is a linear operator, such that B∗B is invertible. With ρ the desired fractional
duality gap, we prove O(

√
m log ρ−1) iteration complexity for a simple primal-dual interior point method

directly based on those for linear programs with semi-definite constraints, however not demanding the
numerically expensive scalings inherent in these methods to force fast convergence.

Mathematics subject classification: 90C22, 90C51, 92C55.

Keywords: semi-definite, interior point, projection, quadratic programming diffusion tensor imaging.

1. Introduction

Let B : Sm → RN be a linear operator on symmetric m ×m real matrices. Assume that M := B∗B
is invertible. Given c ∈ RN , we study the solution of the problem

min
X∈S+m

‖BX− c‖2, (P)

with S+m := {X ∈ Sm | X ≥ 0} denoting the set of positive semi-definite symmetric m×m matrices.
Setting C := B∗c, this is an instance of the quadratic optimisation problem with positive semi-definite
constraints (quadratic SDP)

min
X∈S+m

1

2
〈X,MX〉 − 〈C,X〉, (Q)

where we assume that the linear operator M : Sm → Sm is self-adjoint and positive definite. More
generally, both (P) and (Q) are instances of semi-definite linear complementarity problems (SDLCPs),
discussed in, e.g., [9, 8].

To motivate the study of the instance (P), we first observe that if BX = vec(X) is the vectorisation
of the matrix X, then ‖BX− c‖2 = ‖X−C‖F , where C := vec−1(c). Thus the solution X̂ of (P) is
simply the projection of C ∈ Sm to the positive semi-definite cone per the Frobenius norm. As a second
source of motivation, we introduce an application from diffusion tensor imaging (DTI). [2, 6, 21] A
diffusion tensor field u ∈ L1(Ω;S3) on a domain Ω ⊂ R3 is determined by the Stejskal-Tanner equation

ai(x) = a0(x) exp(−〈bi ⊗ bi,u(x)〉), (x ∈ Ω), (1.1)

from multiple diffusion weighted MRI (magnetic resonance imaging) measurements ai ∈ L1(Ω), for
varying diffusion gradients bi ∈ R3, (i = 1, . . . , N), as well as the zero gradient b0 = 0. When there are
at least six measurements, such that the matrices Bi := bi ⊗ bi form a (necessarily non-orthogonal!)
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basis of S3, then u(x) can be determined by linear least-squares from (1.1). Namely, at each x ∈ Ω,
we solve

min
X∈S3

N∑
i=1

(〈Bi,X〉 − ci)2,

where ci := − log(ai(x)/a0(x)). Writing BX := (〈B1,X〉, . . . , 〈BN ,X〉) and c := (c1, . . . , cN ), this
problem has the form

min
X∈Sm

‖BX− c‖2. (1.2)

The solution is, of course, X = M−1B∗c, provided M is invertible. This is how the diffusion tensor
u(x) = X is conventionally solved. [2] The only difference between (1.2) and (P) is that in the former
there is no semi-definiteness constraint. But, non-positive-definite diffusion-tensors are non-physical,
and the solution of (1.2) might not be positive definite, or even positive semi-definite. This is why it
should be better, from an application point of view, to solve the problem (P) instead of (1.2). Our
further goal is to incorporate a fidelity function based on (P) directly into the denoising framework
developed in [21], instead of employing (1.2) as a first step. To facilitate massively parallel GPU
(graphics processing unit) implementation, we look for a simple yet fast algorithm to solve (Q), hence
(P), for small m.

Various methods exists for the solution of (Q), and more generally SDLCPs [9, 8, 4, 18, 11, 14, 22].
Many of these methods are rather involved predictor-corrector methods, while others have expensive
steps. One example of a rather simple primal-dual path-following method is presented in [9] for gen-
eral monotone SDLCPs, closely related to methods for linear programming on positive definite cones
(linear SDP). [10, 12, 15, 13] This method employs the standard matrix product in the relaxed com-
plementarity condition XS = σµI between the primal variable X and the dual variable S, and depends
on a skew-symmetric modification of the search direction to ensure existence. Convergence is proved
only in small neighbourhoods (γ < 0.1) of the central path, with complexity O(

√
m log ρ−1), for ρ the

desired fractional duality gap.

In this paper, employing the symmetric product X ◦S := (XS+SX)/2 for the relaxed complemen-
tarity condition X ◦ S = σµI, we derive another simple method for (P), (Q). It is the direct analogue
of the methods [10, 17, 16, 1, 5] for linear SDPs and, more generally, linear programs on general
symmetric cones derived through the Jordan-algebraic [3, 7] approach. Unlike in the linear SDP case,
we will however see that we do not need to perform numerically expensive XS, SX, or Nesterov-Todd
scalings of the primal and dual variables before linearization of the optimality conditions to ensure
O(
√
m log ρ−1) iteration complexity. The precise iteration complexity that we derive will, however, de-

pend on the spread of the eigenvalues of M, namely the ratio Θ/θ, where ΘI ≥M ≥ θI. The studied
method and proofs could also be extended to other symmetric cones. For the sake of conciseness, we
however concentrate on the positive definite cone.

In the rest of this short paper, we first study optimality conditions and search directions for (Q). We
then introduce and study neighbourhoods of the central path in Section 3. We then show convergence
of the proposed method in Section 4. Finally, in Section 5, we briefly present numerical results. Larger-
scale numerical application will follow in an application-oriented follow-up work to [21].

2. Optimality conditions and search directions

We begin with a few definitions and known facts. We denote the symmetric (Jordan algebra) matrix
product by

X ◦ S :=
1

2
(XS + SX).
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For later use, we also define for each X ∈ Sm the corresponding linear operator L(X) : Sm → Sm by

L(X)S := X ◦ S.

We know that L(X) is self-adjoint, 〈L(X)V,W〉 = 〈L(X)W,V〉 for V,W ∈ Sm. It is moreover
positive definite for X ∈ intS+m, where the interior

intS+m = {X ∈ Sm | X > 0}

is the set of positive definite elements in Sm. Hence L(X) is, in particular, invertible for X ∈ intS+m.
[17, 3, 7]

For (Q) we now easily derive the optimality conditions

MX− S = C, X ◦ S = 0 for X,S ∈ S+m, (C)

where we call S the dual variable. To derive a Newton method for the solution of (Q), we first replace
the complementarity condition X ◦ S = 0 in (C) by the perturbed condition X ◦ S = σµI, where I
denotes the identity matrix, and σ, µ > 0 are yet to be determined. This corresponds to replacing
the constraint X ≥ 0 by the barrier function −σµ log det(X) in (P). Thus the perturbed optimality
conditions become

MX− S = C, X ◦ S = σµI for X,S ∈ S+m. (Cµ)

Suppose then that we have X,S ∈ S+m satisfying MX−S = C. We linearise (Cµ) at (X,S), yielding
the system

M∆X−∆S = 0, and (L1)

X ◦∆S + S ◦∆X = σµI−X ◦ S (L2)

for the unknowns ∆X,∆S ∈ Sm. For a yet-undetermined step-size α > 0 we set

X(α) := X + α∆X, and S(α) := S + α∆S, (2.1)

as well as
µ(α) := µ(X(α) ◦ S(α)), (2.2)

where, with a slight abuse of notation, we define

µ(V) :=
∑
j

λj(V)/m, (V ∈ Sm),

for {λi(V)}mi=1 the eigenvalues of V. Striving for a decrease µ(α) < µ(0) we pick σ ∈ (0, 1) and
µ := µ(0) = µ(X ◦ S) in (L2).

The questions now are the following: When is the system (L1), (L2) non-singular? What step-sizes
α are valid to maintain in X(α),S(α) ∈ S+m? How small can we make µ(α)? These bounds depend on
(X,S) lying in a suitable neighbourhood of the central path, which are introduced and studied in the
next section. First we, however, make a few remarks on linear programs and scaling.

Remark 2.1 (Linear programs with semi-definite constraints). We recall that the aforementioned
linear SDPs are of the form

min 〈D,X〉 such that X ∈ S+m, AX = C. (2.3)

The optimality conditions may be expressed

AX = C, A∗y + S = D, X ◦ S = 0 for X,S ∈ S+m, y ∈ RK . (2.4)

3



In (2.4), in contrast to (C), the primal variable X and the dual variable S are coupled only through
the complementarity condition X ◦ S = 0. Moreover, when (2.4) is linearised at (X,S,y), to solve for
the step (∆X,∆S,∆y), the first two conditions become A∆X = 0, and A∗∆y + ∆S = 0. From this
it follows that 〈∆X,∆S〉 = 0. This also fails for (C), and is the crucial ingredient in the established
convergence proofs for established primal-dual interior point methods for (2.3); see [17] among the
other references above. Under mild conditions on the operator M, we will, however, be able to show
fast convergence of the iteration (2.1), (2.2), along similar lines as was taken in [20, 19] to study
convergence properties for optimality conditions of the type

A1X = C, A∗2y + S = D, X ◦ S = 0 for X,S ∈ S+m, y ∈ RK ,

related to diff-convex programming.

Remark 2.2 (Scaling). Choosing a scaling 0 < P ∈ Sm, and defining the quadratic presentation
QP : Sm → Sm of P as

QP(X) := PXP,

we may also write (Cµ) in terms of X̃ := QPX, S˜ := Q−1P X, and M˜ := Q−1P MQ−1P as

M˜X̃− S˜ = C˜ , X̃ ◦ S˜ = σµI for X̃,S˜ ∈ S+m. (C̃µ)

In many primal-dual interior point methods for linear SDPs [10, 17], this type of scaling is typically
performed at each step to force fast convergence. The idea is to choose P such that X and S operator-
commute, L(X)L(S) = L(S)L(X). For the XS-method P = X1/2, for the SX-method P = S1/2,
and for the Nesterov-Todd method P = (QX1/2(QX1/2S)−1/2)−1/2. [17] We will not need this type of
computationally expensive (matrix square root!) scalings for fast convergence. However our bounds
will depend on M. If we did perform scaling, we could obtain bounds that do not depend on M,
following the proof of [17].

Remark 2.3 (An easy special case). Suppose that MX = QA(X) = AXA for some A ∈ intS+m.
Then MS+m = S+m. [17, 3, 7] In the previous remark, let us choose P = A1/2. The optimality conditions
(C̃µ) for µ = 0 then become

X̃− S˜ = C˜ , X̃ ◦ S˜ = 0 for X̃,S˜ ∈ S+m. (2.5)

The solution X̃ of (2.5) is simply the Frobenius-norm projection of C˜ to S+m, and can easily be solved

by projection of the eigenvalues (λ1(C˜ ), . . . , λm(C˜ )) to [0,∞)m. Thus the solution X = QA−1/2(X̃) of
(C) can also be easily calculated in this special case.

3. Neighbourhoods of the central path

Let now P⊥I V := V − Iµ(V) denote the projection of V ∈ Sm to the subspace orthogonal to the
identity I. The spectrum of P⊥I V is then {λi(V)− µ(V)}mi=1.

With this, we now let γ ∈ (0, 1), and define

N ∗• (γ) := {(X,S) ∈ intS+m × intS+m | ‖P⊥I (X ◦ S)‖• ≤ γµ(X ◦ S)} (3.1)

for • ∈ {F, 2,−∞}. These correspond to the short-step, semi-long-step, and long-step neighbourhoods
of S+m × S+m, and are obtained, respectively, with the Frobenius norm

‖V‖F :=
√∑m

i=1 λi(V)2 =
√
〈V,V〉,

4



the operator 2-norm
‖V‖2 := max

i=1,...,m
|λi(V)| = max

x∈Rm
‖Vx‖2/‖x‖2,

and, abusing norm notation for the sake of convenience, the function

‖V‖−∞ := −min
i
λi(V).

For P⊥I V these have expressions

‖P⊥I V‖F =
√∑

i(λi(V)− µ(V))2,

‖P⊥I V‖2 = max
i
|λi(V)− µ(V)|, and

‖P⊥I V‖−∞ = µ(V)−minλi(V). (3.2)

It easily follows that
N ∗F (γ) ⊂ N ∗2 (γ) ⊂ N ∗−∞(γ).

The following proposition is one of the crucial ingredients for our convergence proof.

Proposition 3.1. Suppose (X,S) ∈ N ∗−∞(γ). Then

2(1− γ)µ(X ◦ S) ≤
(

min
i=1,...,m

λi(X + S)
)2
. (3.3)

Proof. We get from (3.2), (3.1) that

(1− γ)µ(X ◦ S) ≤ min
i
λi(X ◦ S). (3.4)

This shows that X ◦ S ∈ S+m, wherefore also

〈Xy,Sy〉 = 〈y, (X ◦ S)y〉 > 0, (y ∈ Rm).

Therefore

min
i
λi(X ◦ S) = min

‖y‖=1
〈y, (X ◦ S)y〉

≤ min
‖y‖=1

1

2

(
‖Xy‖22 + ‖Sy‖22

)
+ 〈Xy,Sy〉

= min
‖y‖=1

1

2

(
‖Xy + Sy‖22

)
=

1

2

(
min
i
λi(X + S)

)2
.

In the final step we have used the fact that X + S ≥ 0. Recalling (3.4), the claim (3.3) follows.

4. The method and its convergence

We now begin to study rates of convergence for the proposed method, consisting of the updates
(2.1), (2.2). We assume that the linear operator M : Sm → Sm is self-adjoint and satisfies for some
0 < θ ≤ Θ <∞ the condition

Θ〈V,V〉 ≥ 〈V,MV〉 ≥ θ〈V,V〉, (V ∈ Sm). (A-M)

We begin by computing bounds on α for staying within N ∗• (γ). With the notation

L := {(X,S) ∈ S+m × S+m |MX− S = C}

for the feasible set, we have the following lemma.
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Lemma 4.1. If (X,S) ∈ N ∗• (γ) ∩ L for some • ∈ {F, 2,−∞}, then (X(α),S(α)) ∈ N ∗• (γ) ∩ L for
α ∈ [0, ᾱ], where

ᾱ := min{1, σγµ/(2‖∆X‖F ‖∆S‖F )}. (4.1)

Proof. This proof follows the outline of the proof of [17, Lemma 32], slightly modifying the proof to
accommodate for the fact that 〈∆X,∆S〉 = 0 does not hold; see also [20, 19].

Clearly (X,S) ∈ L and (L1) imply (X(α),S(α)) ∈ L. For the remainder, it will suffice to prove that

‖P⊥I (X(α) ◦ S(α))‖• < γµ(α) for α ∈ (0, ᾱ]. (4.2)

Indeed, irrespective of the choice of •, (4.2) then holds for • = −∞ as well. Consequently

(1− γ)µ(α) < min
i
λi(X(α) ◦ S(α)) = min

i
λi(X(α)S(α)),

where the last equality holds because SX and XS have the same spectrum for any X,S ∈ Sm. But
then, taking the power of m on both sides, we get

((1− γ)µ(α))m < det(X(α)S(α)) = det(X(α)) det(S(α)).

Now, by the continuity of the involved quantities in α, this condition would be violated if at some point
α ∈ (0, ᾱ] one of the determinants were zero, that is, either X(α) or S(α) reached the boundary ∂S+m.
Thus (4.2) implies that X(α),S(α) ∈ intS+m for α ∈ (0, ᾱ]. Consequently, still by (4.2), (X(α),S(α)) ∈
N ∗• (γ) for every α ∈ [0, ᾱ], as claimed.

It remains to prove (4.2). With the notation Z := ∆X ◦∆S, we have

µ(α) = µ(X ◦ S) + αµ(X ◦∆S + S ◦∆X) + α2µ(∆X ◦∆S)

= µ+ α(σ − 1)µ+ α2µ(Z)

= (1− α)µ+ ασµ+ α2µ(Z).

(4.3)

as well as

P⊥I (X(α) ◦ S(α)) = P⊥I (X ◦ S) + αP⊥I (X ◦∆S + S ◦∆X) + α2P⊥I Z

= P⊥I (X ◦ S) + αP⊥I (σµI−X ◦ S) + α2P⊥I Z

= (1− α)P⊥I (X ◦ S) + α2P⊥I Z.

(4.4)

To approximate the norm ‖P⊥I (X(α) ◦ S(α))‖•, for • = F we can use the triangle inequality on (4.4),
whereas for • = 2,−∞, we apply, respectively, the inequalities

maxλi(V + W) ≤ maxλi(V) + ‖W‖F , and

−minλi(V + W) ≤ −minλi(V) + ‖W‖F , (V,W ∈ Sm).

Therefore, for all • ∈ {F, 2,−∞}, we have the approximation

‖P⊥I (X(α) ◦ S(α))‖• ≤ (1− α)‖P⊥I (X ◦ S)‖• + α2‖P⊥I Z‖F
≤ (1− α)γµ+ α2‖P⊥I Z‖F .

Comparing this approximation against the expansion (4.3) of µ(α), we find that (4.2) holds if

α2‖P⊥I Z‖F < (1− α− |1− α|+ ασ)γµ+ γα2µ(Z).

Minding that µ(Z) > 0 by (L1), and that ‖P⊥I Z‖F ≤ 2‖∆X‖F ‖∆S‖F , this follows if

2α2‖∆X‖F ‖∆S‖F ≤ (1− α− |1− α|+ ασ)γµ.

The latter clearly holds for α ∈ [0, ᾱ] ⊂ [0, 1]. This completes the proof of (4.2) and the lemma.
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The following lemma provides the estimate on the fractional decrease µ(ᾱ)/µ.

Lemma 4.2. Assume the conditions of Lemma 4.1, and suppose 0 < σ < m/(m+ γ). Then

δ := 1− µ(ᾱ)/µ ≥ (1− σ)ᾱ/2

= (1− σ)/2 ·min{1, σγµ/(2‖∆X‖F ‖∆S‖F )}.
(4.5)

Proof. Observe that, thanks to the condition σ < m/(m+ γ), we have

(1− σ)mµ/(2〈∆X,∆S〉) ≥ σγµ/(2〈∆X,∆S〉)
≥ σγµ/(2‖∆X‖F ‖∆S‖F ) ≥ ᾱ.

Therefore, using the expansion (4.3), we may calculate

1− µ(ᾱ)/µ = (1− σ)ᾱ− ᾱ2〈∆X,∆S〉/(mµ) ≥ (1− σ)ᾱ/2. (4.6)

Inserting (4.1) into (4.6) gives (4.5).

Given a lower bound δ̂ ≤ δ, a standard argument (see, e.g., [13]) shows that δ̂−1 log ρ−1 steps
are sufficient to ensure that µ ≤ ρµ for an initial µ > 0 and desired decrease factor ρ ∈ (0, 1). To
obtain the lower bound δ̂, and hence fast decrease in µ, by the previous lemma it suffices to bound
‖∆X‖F ‖∆S‖F /µ from above. The standard proofs (see, e.g., [17]) for the semi-definite programming
problem (2.3) rely at this point on the commutativity of L(X̃) and L(S˜), where X̃ and S˜ are the
scaled variables as in Remark 2.2. We do not do so, as we want to avoid the computationally expensive
scalings (involving matrix square roots), and show that we can avoid them, as do many other methods
for quadratic SDPs and SDLCPs, referenced in the introduction.

Proposition 4.1 below is our most crucial ingredient for the convergence proof, and the main di-
vergence from the proofs in [17] for linear SDPs. We show bounds for the short-step neighbourhood
N ∗F (γ) and the semi-long-step neighbourhood N ∗2 (γ).

Proposition 4.1. Suppose M satisfies (A-M), and (X,S) ∈ N ∗F (γ). Then

‖∆X‖F ‖∆S‖F /µ ≤
((1− σ)

√
m+ γ)2

2(1− γ)
(Θ/θ)2. (4.7)

If (X,S) ∈ N ∗2 (γ), then

‖∆X‖F ‖∆S‖F /µ ≤
(1− σ + γ)2

2(1− γ)
m(Θ/θ)2. (4.8)

Moreover, in both cases, there exists a unique solution (∆X,∆S) to the system (L1), (L2).

Proof. Let us set
A := L(S) + L(X)M.

Assuming that A is invertible, from (L1), (L2), we have

∆X = A−1(σµI−X ◦ S), and ∆S = M∆X. (4.9)

Hence
‖∆X‖F ‖∆S‖F

µ
≤ Θ
‖∆X‖2F

µ
≤ Θ
|A−1|2max‖σµI−X ◦ S‖2F

µ
, (4.10)

where we denote

|A−1|max := max{‖A−1V‖F | V ∈ Sm, ‖V‖F = 1} ≤ 1/|A|min
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and
|A|min := min{‖AV‖F | V ∈ Sm, ‖V‖F = 1}.

We want to bound |A|min from below. Picking V ∈ Sm with ‖V‖F = 1, we calculate

‖AV‖F = ‖L(S + ΘX)L(S + ΘX)−1AV‖F
≥ |L(S + ΘX)|min‖L(S + ΘX)−1AV‖F ,

(4.11)

We know that (see, e.g., [17])

|L(S + ΘX)|min = min
i
λi(S + ΘX).

Observing that (X,S) ∈ N ∗−∞(γ) implies (ΘX,S) ∈ N ∗−∞(γ), and referring to Proposition 3.1, we
thus find that

|L(S + ΘX)|min ≥
√

2(1− γ)Θµ (4.12)

To estimate ‖L(S + ΘX)−1AV‖F , we observe that

L(S + ΘX)−1A = I + L(S + ΘX)−1L(X)(M−ΘI).

By Lemma 4.3 below, we have

|L(S + ΘX)−1L(X)|max ≤ 1/Θ.

Hence, employing (A-M) to estimate

|M−ΘI|max ≤ Θ− θ,

we obtain the bound

‖L(S + ΘX)−1AV‖F ≥ 1− ‖L(S + ΘX)−1L(X)(M−ΘI)V‖F .
≥ 1− |L(S + ΘX)−1L(X)|max|M−ΘI|max

≥ 1− (1/Θ)(Θ− θ)
= θ/Θ.

(4.13)

Since V ∈ J , ‖V‖F = 1 was arbitrary, applying (4.12) and (4.13) in (4.11) yields

|A|min ≥ ‖AV‖F ≥
√

2(1− γ)θ2µ/Θ > 0. (4.14)

As this bound shows that A is invertible, the system (L1), (L2) has the unique solution (4.9). Moreover,
applying (4.14) in (4.10) yields

‖∆X‖F ‖∆S‖F
µ

≤
‖σµI−X ◦ S‖2F

2(1− γ)µ2
(Θ/θ)2. (4.15)

In the case (X,S) ∈ N ∗F (γ), using the fact that ‖X ◦S−µI‖F ≤ γµ, and the triangle inequality, we
have

‖σµI−X ◦ S‖F ≤ ‖σµI− µI‖F + ‖X ◦ S− µI‖F
≤ ((1− σ)

√
m+ γ)µ.

(4.16)

Hence, (4.7) follows from (4.15).

In the case (X,S) ∈ N ∗2 (γ), using ‖X ◦ S− µI‖2 ≤ γµ, we have

‖µI−X ◦ S‖F ≤
√
m‖σµI−X ◦ S‖2 ≤ γµ

√
m,

so that, similarly to (4.16), we obtain

‖σµI−X ◦ S‖F ≤ (1− σ + γ)µ
√
m.

Hence (4.15) shows (4.8), concluding the proof.
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We needed the following lemma to prove Proposition 4.1.

Lemma 4.3. Suppose X,S ∈ intS+m, and let Θ > 0. Then

|L(S + ΘX)−1L(X)|max < 1/Θ.

Proof. We have to prove that

‖L(S + ΘX)−1L(X)V‖F < ‖V‖F /Θ, (V ∈ Sm).

Squaring, expanding, and reorganising, this is written

Θ2〈L(X)L(S + ΘX)−2L(X)V,V〉 < 〈V,V〉, (V ∈ Sm).

Writing V = L(X)−1L(S + ΘX)L(X)W, we get the equivalent condition

Θ2〈L(X)2W,W〉 < 〈L(X)L(S + ΘX)L(X)−2L(S + ΘX)L(X)W,W〉 (4.17)

for all W ∈ Sm. Expanding, we have

L(X)L(S + ΘX)L(X)−2L(S + ΘX)L(X)

= L(X)L(S)L(X)−2L(S)L(X)

+ Θ(L(X)L(S) + L(S)L(X))

+ Θ2L(X)2.

(4.18)

We know from the proof of [5, Corollary 4.4] that

〈
(
L(X)L(S) + L(S)L(X)

)
W,W〉 > 〈L(S ◦X)W,W〉 > 0

under the condition X,S ∈ intS+m. Moreover, clearly by symmetricity

〈L(X)L(S + ΘX)L(X)−2L(S + ΘX)L(X)W,W〉 > 0.

Therefore, the expansion (4.18) shows (4.17), concluding the proof.

We now concentrate on convergence in the case (X,S) ∈ N ∗F (γ). Recalling from (4.5) that

δ ≥ (1− σ)/2 ·min{1, σγµ/(2‖∆X‖F ‖∆S‖F )},

provided that 0 < σ ≤ m/(m+ γ), we now find with (4.7) that

δ ≥ (1− σ)/2 ·min

{
1,

σγ(1− γ)

((1− σ)
√
m+ γ)2

(θ/Θ)2
}
. (4.19)

If we pick σ = 1− γ/
√
m, which can be seen to satisfy 1− γ ≤ σ ≤ m/(m+ γ), we obtain

δ ≥ γ/(2
√
m) ·min

{
1,

(1− γ/
√
m)(1− γ)

4γ
(θ/Θ)2

}
≥ m−1/2 min

{
γ

2
,
(1− γ)2

8
(θ/Θ)2

}
.

If γ = 1/2, we in particular get
δ ≥ m−1/2(θ/Θ)2/32.
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The results of this section are summarised in the following algorithm description and theorem.

Algorithm 4.1. The proposed interior point method is as follows.

1. Choose target accuracy µ > 0, and parameters γ ∈ (0, 1), σ ∈ (0,m/(m + γ)]. Pick an initial
iterate (X0,S0) ∈ N•(γ) ∩ L for some choice of neighbourhood • ∈ {F, 2}. Calculate µ0 =
〈X0,S0〉/m, and set i := 0.

2. Solve ∆Xi from (
L(Si) + L(Xi)M

)
∆Xi = σµiI−Xi ◦ Si, (4.20)

and set
∆Si = M∆Xi.

3. Calculate the step length

ᾱ := min{1, σγµ/(2‖∆Xi‖F ‖∆Si‖F )},

and update Xi+1 := Xi + ᾱ∆Xi, and Si+1 := Si + ᾱ∆Si, as well as µi+1 = 〈Xi+1,Si+1〉/m,
4. If µi+1 < µ, terminate. Otherwise continue from Step 2 with i := i+ 1.

We now state the convergence proof for the short-step neighbourhood NF (γ).

Theorem 4.1. Suppose (A-M) holds. Let (X0,S0) ∈ NF (γ)∩L and ρ := µ0/µ. Choose σ = 1−γ/
√
m.

Then in Algorithm 4.1, µi < µ for i > δ−1 log ρ−1, where

δ = m−1/2 min

{
γ

2
,
(1− γ)2

8
(θ/Θ)2

}
. (4.21)

In particular, if γ = 1/2, then µi < µ for i > 32
√
m(Θ/θ)2 log ρ−1.

Proof. Follows from the discussion above.

Remark 4.1. For the semi-long-step neighbourhood N2(γ) we get for any γ ∈ (0, 1) and σ ∈
(0,m/(m + γ)) by application of (4.5), (4.8) the bound i > ζm(Θ/θ)2 log ρ−1 for some constant
ζ = ζ(γ, σ).

Remark 4.2. In practice, we may perform initialisation as follows. We pick X0 = βI for a yet
unknown β > 0. Then S0 = βMI−C. The condition (X0,S0) ∈ N•(γ), namely

‖P⊥I (X0 ◦ S0)‖F ≤ γµ(X0 ◦ S0)

gives after division by β the condition

‖βP⊥I (MI)−P⊥I C‖F ≤ βµ(MI)− µ(C).

Squaring both sides, we get a second-order polynomial equation on β, from which we get a lower
bound β1 on β. Another lower bound β2 on β is given by the condition S0 ≥ 0. We may then choose
β := max{β1, β2, 0}.

Remark 4.3. An alternative initialisation strategy is to solve X̄0 from MX̄0 = C. Then we check if
already X̄0 ≥ 0 (by Sylvester’s criterion), in which case we may skip Algorithm 4.1. This is crucial for
efficiency in our intended DTI denoising application. If X̄0 6≥ 0, we set X0 := X̄0 +βI for an unknown
β > 0, and S0 := MX0 −C. Then we calculate lower bounds for β analogously to Remark 4.2.
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5. Numerical results

We tested the actual performance of the proposed method on the problem (P) numerically. As a first
test case we took the identity operator M = B = I (in which case we could just use the QR algorithm
to perform projection! – recall Remark 2.3) for varying dimensions m with the parameters γ = 0.5 and
σ = 1−γ/

√
m. The results of these experiments, for a decrease ρ = 0.001 of µ are plotted in Figure 1a,

along with the iteration complexity upper bound from Theorem 4.1. The reported iteration count is
the median over 10 samples of C ∈ Sm, with each component drawn independently from the uniform
distribution on [−1, 1]. The maximum and minimum in the test run have a difference of at most ±1
to the median. As we see, the method performs better than the prediction. However, as m becomes
large, solving the system (4.20) (by LU decomposition) at each step starts to become prohibitively
expensive, so other approaches are needed, such as the inexact steps of [18].

We are, however, mostly interested in the case m = 3, for which we report the iteration counts for
varying parameters γ and σ in Figure 1b. Defining the symmetric presentation PA of

A =

a1,1 a1,2 a1,3
a1,2 a2,2 a2,3
a1,3 a2,3 a3,3

 ∈ S3
by

PA = (a1,1, a1,2, a2,2, a1,3, a2,3, a3,3),

this time we use the fixed operator

M = B∗B ≈ P∗


9.3716 −0.0146 3.3252 0.0064 −0.0062 3.2670
−0.0146 3.3252 0.0107 −0.0062 −0.0028 −0.0008
3.3252 0.0107 9.5023 −0.0028 0.0565 3.2863
0.0064 −0.0062 −0.0028 3.2670 −0.0008 −0.0062
−0.0062 −0.0028 0.0565 −0.0008 3.2863 −0.0711
3.2670 −0.0008 3.2863 −0.0062 −0.0711 9.3691

P

with Θ/θ ≈ 4.9 and B : S3 → R52, constructed from a real DTI measurement setup. The reported data
points are again the median over 10 samples of c ∈ R52, with each component drawn independently
uniformly from [−1, 1]. The difference of the maximum and minimum to the median is still too small
to be observable in the figure. Apparently γ = 0.9 and σ = 0.3 would be a good choice of parameters,
with a very small iteration count of about 20. This is significantly smaller than the theoretical bound
of 147 given by (4.19). The choice σ = 1 − γ/

√
m ≈ 0.48 also does not perform significantly worse.

We may therefore conclude that the method performs very well for our intended purpose of “weighted
projections to the positive definite cone” for small m.
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3. J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford University Press, 1994.

4. L. Faybusovich, Euclidean jordan algebras and interior-point algorithms, Positivity 1 (1997), 331–357,
doi:10.1023/A:1009701824047.

5. ———, Linear systems in Jordan algebras and primal-dual interior-point algorithms, Journal of Computa-
tional and Applied Mathematics 86 (1997), 149–175, doi:10.1016/S0377-0427(97)00153-2.

6. P. Kingsley, Introduction to diffusion tensor imaging mathematics: Parts I-III, Concepts in Magnetic Res-
onance Part A 28 (2006), 101–179, doi:10.1002/cmr.a.20048. 10.1002/cmr.a.20049, 10.1002/cmr.a.20050.

7. M. Koecher, The Minnesota notes on Jordan algebras and their applications, Lecture Notes in Mathematics,
volume 1710, Springer-Verlag, Berlin, 1999.

11

http://dx.doi.org/10.1007/s10107-002-0339-5
http://dx.doi.org/10.1002/nbm.783
http://dx.doi.org/10.1023/A:1009701824047
http://dx.doi.org/10.1016/S0377-0427(97)00153-2
http://dx.doi.org/10.1002/cmr.a.20048


0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

m

it
e
ra

ti
o
n
 c

o
u
n
t

 

 

Result median

Prediction 32 sqrt(m) log ρ
−1

(a) Real and predicted iteration counts for varying m
with M = I with fixed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

σ

it
e
ra

ti
o
n
 c

o
u
n
t

 

 

γ=0.10

γ=0.19

γ=0.28

γ=0.37

γ=0.46

γ=0.54

γ=0.63

γ=0.72

γ=0.81

γ=0.90

(b) Iteration counts for varying γ and σ and fixed m =
3 and non-identity M.

Figure 1: Iteration counts of numerical experiments for ρ = 0.001 fractional decrease of µ. Each data
point is the median over 10 samples of C.

8. M. Kojima, M. Shida and S. Shindoh, Local convergence of predictor-corrector infeasible-interior-point algo-
rithms for SDPs and SDLCPs, Mathematical Programming 80 (1998), 129–160, doi:10.1007/BF01581723.

9. M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone semidefinite linear
complementarity problem in symmetric matrices, SIAM Journal on Optimization 7 (1997), 86–125,
doi:10.1137/S1052623494269035.

10. R. Monteiro, Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based
on the Monteiro and Zhang Family of Directions, SIAM Journal on Optimization 8 (1998), 797–812,
doi:10.1137/S1052623496308618.

11. R. Monteiro and S. Wright, Local convergence of interior-point algorithms for degenerate monotone LCP,
Computational Optimization and Applications 3 (1994), 131–155, doi:10.1007/BF01300971.

12. Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming, SIAM
Studies in Applied Mathematics, SIAM, 1994.

13. Y. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex programming,
Mathematics of Operations Research 22 (1997), 1–42, doi:10.1137/S1052623495290209.

14. J.-W. Nie and Y.-X. Yuan, A predictor-corrector algorithm for QSDP combining Dikin-type and Newton
centering steps, Annals of Operations Research 103 (2001), 115–133, doi:10.1023/A:1012994820412.

15. F. A. Potra and S. J. Wright, Interior-point methods, Journal of Computational and Applied Mathematics
124 (2000), 281 – 302, doi:10.1016/S0377-0427(00)00433-7.

16. S. H. Schmieta and F. Alizadeh, Associative and Jordan algebras, and polynomial time interior-
point algorithms for symmetric cones, Mathematics of Operations Research 26 (2001), 543–564,
doi:10.1287/moor.26.3.543.10582.

17. ———, Extension of primal-dual interior point algorithms to symmetric cones, Mathematical Programming
96 (2003), 409–438, doi:10.1007/s10107-003-0380-z.

18. K.-C. Toh, An inexact primal-dual path following algorithm for convex quadratic SDP, Mathematical Pro-
gramming 112 (2008), 221–254, doi:10.1007/s10107-006-0088-y.

19. T. Valkonen, Diff-convex combinations of Euclidean distances: a search for optima, number 99 in Jyväskylä
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20. ———, A primal-dual interior point method for diff-convex problems on symmetric cones, Optimization
(2011), doi:10.1080/02331934.2011.585465. Published online.

21. T. Valkonen and F. Knoll, Total generalised variation in diffusion tensor imaging, SFB-Report 2012-003,
Karl-Franzens University of Graz (2012).
URL http://math.uni-graz.at/mobis/publications/SFB-Report-2012-003.pdf

22. G. Wang and Y. Bai, Primal-dual interior-point algorithm for convex quadratic semi-definite optimization,

12

http://dx.doi.org/10.1007/BF01581723
http://dx.doi.org/10.1137/S1052623494269035
http://dx.doi.org/10.1137/S1052623496308618
http://dx.doi.org/10.1007/BF01300971
http://dx.doi.org/10.1137/S1052623495290209
http://dx.doi.org/10.1023/A:1012994820412
http://dx.doi.org/10.1016/S0377-0427(00)00433-7
http://dx.doi.org/10.1287/moor.26.3.543.10582
http://dx.doi.org/10.1007/s10107-003-0380-z
http://dx.doi.org/10.1007/s10107-006-0088-y
http://dx.doi.org/10.1080/02331934.2011.585465
http://math.uni-graz.at/mobis/publications/SFB-Report-2012-003.pdf


Nonlinear Analysis: Theory, Methods, & Applications 71 (2009), 3389–3402, doi:10.1016/j.na.2009.01.241.

13

http://dx.doi.org/10.1016/j.na.2009.01.241

