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Abstract
We introduce a new efficient method to solve the continuous quadratic

knapsack problem. This is a highly structured quadratic program that
appears in different contexts. The method converges after O(n) iterations
with overall arithmetic complexity O(n2). Numerical experiments show
that in practice the method converges in a small number of iterations with
overall linear complexity, and is faster than the state-of-the-art algorithms
based on median finding, variable fixing, and secant techniques.
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1 Introduction
In this paper we develop an efficient method to solve the following continuous
quadratic knapsack problem

min
x

1
2 x
′Dx− a′x

s.t. b′x = r (1)
l ≤ x ≤ u
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where x ∈ Rn is the decision variable; D = diag(d) is a diagonal matrix with
positive entries di > 0; a, b are vectors in Rn; r is a scalar; and l < u are
lower and upper bounds, some of which may be infinite. We assume that all the
bi’s are nonzero since for a null coefficient one may use separability to fix the
corresponding variable xi at its optimal value and remove it from the problem.

As D is strictly positive it induces the norm ‖x‖D =
√
x′Dx, so that (1)

amounts to projecting the vector D−1a onto the intersection of the hyperplane
b′x = r and the box defined by the lower and upper bounds. Thus there is a
unique optimal solution as long as the feasible set is nonempty. This simple prob-
lem appears in many settings including resource allocation problems [3, 4, 16],
multicommodity network flows [15, 24, 28], Lagrangian relaxation using sub-
gradients methods [14], and quasi-Newton updates with bounds [8]. A particu-
larly relevant application that requires the repeated solution of high dimensional
problems of type (1) is the training of support vector machines using the spectral
projected gradient method [10].

The continuous quadratic knapsack is a well studied problem. Using simple
duality arguments it can be restated as the solution of a one-dimensional piece-
wise linear equation that is amenable to different solutions strategies. From the
complexity viewpoint the most efficient methods are based on median search
algorithms which attain linear time complexity [6, 8, 9, 16, 19, 21, 25]. An-
other class of algorithms is based on variable fixing techniques [3, 23, 26, 29].
These methods have quadratic complexity though in practice they turn out to
be faster than median search methods. Recently, Dai and Fletcher [10] pro-
posed a specially tailored secant method to solve the equation reformulation of
the problem, also with good practical performance.

In this paper we propose a semismooth Newton method to solve (1). The
approach is similar to Dai and Fletcher’s where we replace the secant step by
a Newton’s step, avoiding the initial bracketing phase required by the secant
method. The method also exploits variable fixing ideas and builds upon the
work of Bitran and Hax [3] and Kiwiel [20] among others. Actually, we show
that the variable fixing methods are closely related to the Newton’s iteration and
even mimic it in some special cases. Our numerical experiments suggest that
the semismooth Newton method is faster than all previous methods, specially
when using hot-starts to solve a sequence of similar problems.

The paper is organized as follows. In Section 2 we present the dual problem
and its reformulation as a piecewise linear equation in a single variable. In
Section 3 we introduce the semismooth Newton method for the case with single
bounds and prove its finite convergence without any globalization strategy. In
Section 4 we extend the method to the case of lower and upper bounds. Section 5
relates the proposed algorithm to previous methods in the literature, unveiling
some interesting connections. Finally, Section 6 reports numerical experiments
comparing the Newton’s method with the fastest methods currently available.
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2 A dual reformulation
As any convex quadratic problem, the continuous quadratic knapsack problem
conforms to strong duality. Hence it is natural to consider the solution of its
dual as a mean to recover the primal solutions.

Taking into account the separability of the objective function and of the box
constraints, we can see that the complicating constraint is the linear one. Hence
it is natural to dualize only this constraint by considering the single variable
dual problem

max
λ

inf
l≤x≤u

{ 1
2 x
′Dx− a′x+ λ(r − b′x)

}
. (2)

The inner infimum that defines the dual objective is easily solved with optimal
solution

x(λ) = mid(l,D−1(bλ+ a), u) (3)
where mid(l, x, u) stands for the component-wise median of the three vectors.
Moreover, the KKT conditions for (1) can be written as

ϕ(λ) := b′x(λ) = r (4)
which is equivalent to primal-dual optimality, so that problem (1) reduces to a
one dimensional equation with

ϕ(λ) =
n∑
i=1

bi mid(li, (biλ+ ai)/di, ui). (5)

An example of the function ϕ(λ) is shown in Figure 1. Since each term of
the sum is piecewise linear and non-decreasing, the same properties hold for ϕ.
The points where it changes derivative, (dili − ai)/bi and (diui − ai)/bi, are
called breakpoints.
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Figure 1: A function ϕ with 6 breakpoints

Note that problem (1) is infeasible if and only if equation (4) does not have
a solution. This can only happen if ϕ(·) is constant up to the first breakpoint
and starts already above r or if it is constant after the last breakpoint but did
not attain the value r.
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3 Newton’s method with single bounds
Let us consider first the special case of problem (1) in which each variable has
either an upper or a lower bound but not both. By a simple change of variables
we reduce to the case with lower bounds only (i.e. ui = ∞ for all i). In this
case the minimizer x(λ) in the dual objective is just

x(λ) = max(l,D−1(bλ+ a)) (6)

and the components of the summation that define ϕ are{
max(bili, (b2

iλ+ biai)/di) if bi > 0
min(bili, (b2

iλ+ biai)/di) if bi < 0
(7)

which consist of two basic “shapes”. The first starts as a constant function and
then after the breakpoint it turns into a linear function with positive slope.
The other starts as an increasing linear functions and flats out after the break-
point. We call the first type of break points positive, because they increase the
derivative of ϕ, and the second type will be called negative. We denote these
breakpoints as zi = (dili − ai)/bi, i = 1, . . . , n.

The derivative ϕ′(λ) is simple to calculate. All one needs is to sum up the
slopes b2

i /di corresponding to positive breakpoints to the left of λ plus the slopes
of negative breakpoints to the right. In the case that λ is itself a breakpoint,
there is change of slope but the right and left derivatives are still well defined
and can be computed by the formulas

ϕ′+(λ) =
∑
bi>0
zi≤λ

b2
i /di +

∑
bi<0
zi>λ

b2
i /di, (8)

ϕ′−(λ) =
∑
bi>0
zi<λ

b2
i /di +

∑
bi<0
zi≥λ

b2
i /di. (9)

With these notations, the proposed Newton’s method is given by Algo-
rithm 1. We claim that the iteration converges globally without any kind of
globalization strategy. To this end we note that since there are at most n
breakpoints the function ϕ(·) has at most at most n+ 1 linear pieces and there-
fore the Newton’s iterates may generate at most n+ 1 distinct points (when the
slope is zero we consider the closest breakpoint as the Newton’s iterate). Thus,
convergence can only fail if the method generates a cycle that repeats indefi-
nitely. In order to show that these cycles can not occur we use the following
simple fact.

Lemma 3.1 Let α < β be two scalars. If γ ∈ (α, β) is a point where ϕ is
differentiable then

ϕ′(γ) ≤ ϕ′+(α) + ϕ′−(β).
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Algorithm 1 – Newton’s method for single bounds

1. Given λk, compute x(λk), ϕ(λk), ϕ′−(λk), ϕ′+(λk).

2. If ϕ(λk) = r: report x(λk) as the optimal solution and stop.

3. If ϕ(λk) < r:

• If ϕ′+(λk) > 0, set λk+1 := λk − ϕ(λk)−r
ϕ′+(λk)

• If ϕ′+(λk) = 0, set λk+1 as the closest breakpoint to the right of λk.
If no such breakpoint exists declare the problem infeasible and stop.

4. If ϕ(λk) > r:

• If ϕ′−(λk) > 0, set λk+1 := λk − ϕ(λk)−r
ϕ′−(λk)

• If ϕ′−(λk) = 0, set λk+1 as the closest breakpoint to the left of λk.
If no such breakpoint exists declare the problem infeasible and stop.

5. Set k := k + 1 and go to 1.

Proof. Let p and n denote respectively the sums of the slopes b2
i /di for the

positive and negative breakpoints in (α, β). Using (8) and (9) it follows that
ϕ′−(β) = ϕ′+(α) + p − n. Moreover, using (8) we see that ϕ′+(α) ≥ n. Hence,
for any γ ∈ (α, β) we have

ϕ′(γ) ≤ ϕ′+(α) + p

≤ ϕ′+(α) + p+ ϕ′+(α)− n
= ϕ′+(α) + ϕ′−(β).

�
Theorem 3.2 Algorithm 1 stops in at most n + 1 iterations with an overall
complexity of O(n2) arithmetic operations.

Proof. We already observed that there are at most n + 1 Newton images so
that all we need to show is that the method cannot cycle. For the sake of a
contradiction, suppose that a cycle is reached. Since the solution set is a closed
interval and Newton’s method is monotone on each side of it, a cycle must have
points both to the left and to the right of the solution set.

Let α be the largest point in the cycle to the left of the solution set and β
the smallest one to the right. Let γ be a point of maximal derivative for ϕ in the
open interval (α, β). Note that the derivative of ϕ can not be constant in this
interval, otherwise the method would yield a solution in one step from either α
or β and there would be no cycle. Moreover, both ϕ′+(α) and ϕ′−(β) must be
non-zero since otherwise the method would move to a breakpoint closer to the
solution set but on the same side, contradicting the definition of α and β.

Now consider the Newton images from α and β, that belong to the cycle.
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From the definition of α and β we get

α− ϕ(α)− r
ϕ′+(α) ≥ β ⇐⇒ ϕ′+(α)(β − α) ≤ −ϕ(α) + r,

β − ϕ(β)− r
ϕ′−(β) ≤ α ⇐⇒ ϕ′−(β)(β − α) ≤ ϕ(β)− r.

Adding these inequalities we get

(ϕ′+(α) + ϕ′−(β))(β − α) ≤ ϕ(β)− ϕ(α)
< ϕ′(γ)(β − α)
≤ (ϕ′+(α) + ϕ′−(β))(β − α)

where the strict inequality in the middle follows from the fact that ϕ′ is not
constant over (α, β), while the last bound comes from Lemma 3.1.

This contradiction proves that no cycle can occur and the method terminates
in no more than n+ 1 iterations. Since the cost of an iteration is dominated by
the evaluation the function and the one-sided derivative all of which takes O(n)
arithmetic operations, the overall complexity is O(n2). �

The worst case bound in the previous result is actually sharp and can be
attained in some specific instances. To this end we note that every piecewise
linear increasing convex function can be written in the form (5) with ui = ∞.
In particular, if we consider the equation ϕ(λ) = 0 for the function

ϕ(λ) := max
i=1,...,n

1
3n−i (λ− i+ 1)

which has positive breakpoints at zi = i+ 1/2 for i = 1, . . . , n−1, the Newton’s
method started from any point λ0 > n − 1/2 will go successively through the
iterates λ1 = n − 1, λ2 = n − 2, . . . , λi = n − i, attaining the solution λn = 0
after exactly n steps. Computing the function values at those points yields an
overall complexity of Ω(n2) arithmetic operations.

4 Newton’s method with lower and upper bounds
Let us consider now the original problem with both lower and upper bounds.
In order to simplify the analysis we assume that the vector b is strictly positive.
Clearly, if bi < 0 for some i, a simple change of variables can revert this sign.
These changes can be done either explicitly in the model data or can be dealt
implicitly in the algorithm implementation.

In this case, each term in the sum that defines ϕ(λ) is constant up to its
first breakpoint z−i = (dili − ai)/bi, where it turns into an increasing linear
function with slope b2

i /di up to the next breakpoint z+
i = (diui − ai)/bi where

it becomes constant again (see Figure 2). Naturally, if some bounds are infinite
the corresponding breakpoints are not present.
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di li−ai
bi

diui−ai
bi

Figure 2: The components of ϕ

In any case ϕ is still a nondecreasing piecewise linear function, though the
key Lemma 3.1 does not hold anymore and Newton’s method may cycle as
illustrated by the following simple example that cycles between -1.0 and 1.0
(see Figure 3)

min 1
2 x
′x

s.t.
√

2x1 + x2 + x3 = 0
− 1√

2 ≤ x1 ≤ 1√
2 ; 0 ≤ x2 ; x3 ≤ 0.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−2

−1

0

1

2

x2k

x2k+1

Figure 3: An example where Newton’s method cycles.

As a matter of fact, the components in Figure 2 can be superposed to repre-
sent any nondecreasing piecewise linear function so that one can build examples
where Newton’s method has cycles of any prescribed length. Thus, we require
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a globalization strategy to ensure convergence. Inspired by the proof of The-
orem 3.2 we let αk be the largest iterate with ϕ(αk) < r computed by the
algorithm up to iteration k, and βk the smallest iterate with ϕ(βk) > r. A cycle
can only occur if the next Newton’s iterate falls outside the current interval
(αk, βk). If this happens we proceed by taking a secant step which leads to a
variation of the original Newton’s method in Algorithm 2 below. This varia-
tion revisits the secant method of Dai and Fletcher [10], replacing the initial
bracketing phase by Newton’s iterations and using Newton whenever possible.

The secant globalization is complemented with the following variable fix-
ing technique that helps to reduce the problem size as the method progresses.
Namely, consider a given λ and suppose that ϕ(λ) < r. If xi(λ) = ui for some
coordinate i then this coordinate is also ui at the optimal solution. The reason
for this is that ϕ(·) is nondecreasing so that the solution of the equation must be
larger than λ, while (6) implies that if xi(λ) is already ui it will remain constant
for larger values of the multiplier. Hence, we can fix the value of the i-th coordi-
nate, update the right hand side of the constraint, and solve a smaller problem.
The same reasoning applies when ϕ(λ) > r in which case the variables that are
mapped to the lower bound are the ones that can be fixed. This variable fixing
strategy is actually very effective and decreases the problem size rapidly. This
technique is the basis of some of the most efficient algorithms (cf. [20]) based
on the pioneering work of Bitran and Hax [3]. We incorporate variable fixing
in the final version of the method as described in Step 6 of Algorithm 2. The
convergence of the method is established in the following theorem.

Theorem 4.1 Algorithm 2 stops in at most 4n + 1 iterations with an overall
complexity of O(n2) arithmetic operations.

Proof. We note that in each iteration the new multiplier λk+1 is different from
al the previous ones, which is ensured by the fact that λk+1 ∈ (αk, βk).

Since there are at most 2n breakpoints, the function ϕ(λ) has has at most
2n + 1 linear pieces which bounds the number of Newton’s iterates. We also
count as Newton’s steps the closest breakpoints obtained in the case of zero
slopes. On the other hand, each modified secant iteration removes at least one
breakpoint from the open bracket interval (αk, βk) so that there can be at most
2n of such steps. Altogether we have at most 4n+1 iterations, each one involving
O(n) arithmetic operations which yields the conclusion. �

Considering the example given in the end of Section 3, we see that the upper
complexity bound is again tight. However, the numerical experiments presented
in Section 6 show a much better practical performance of O(n) arithmetic op-
erations.

Remark. While the proof of Theorem 4.1 shows that there can be at most 2n
secant steps, one can also argue heuristically that such steps should be rare.
Namely, among the lower and upper bounds of each variable only one of them
can be active at the optimal solution, so that eventually the method will behave
as in the case of single bounds where no globalization strategy is needed.
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Algorithm 2 – Newton-secant method for continuous quadratic knapsack

1. Let k = 0, λ0 ∈ R, α−1 = −∞, β−1 = +∞.

2. If ϕ(λk) = r: report x(λk) as the optimal solution and stop.

3. If ϕ(λk) < r:

• Define αk := λk, βk := βk−1,

• If ϕ′+(λk) > 0, set λN := λk− ϕ(λk)−r
ϕ′+(λk) . If λN < βk, define λk+1 := λN

and go to Step 6. Otherwise go to Step 5.
• If ϕ′+(λk) = 0, set λk+1 as the closest breakpoint to the right of αk

and go to Step 6. If no such breakpoint exists declare the problem
infeasible and stop.

4. If ϕ(λk) > r:

• Define αk := αk−1, βk := λk,

• If ϕ′−(λk) > 0, set λN := λk− ϕ(λk)−r
ϕ′−(λk) . If λN > αk, define λk+1 := λN

and go to Step 6. Otherwise go to Step 5.
• If ϕ′−(λk) = 0, set λk+1 as the closest breakpoint to the left of βk

and go to Step 6. If no such breakpoint exists declare the problem
infeasible and stop.

5. Let λS be the secant step in [αk, βk], and α, β the smallest and largest
breakpoints in (αk, βk). If ϕ(λS) < r set λk+1 := max(λS , α) otherwise
set λk+1 := min(λS , β).

6. Use variable fixing to fix as many variables as possible.

7. Set k := k + 1 and go to Step 2.

5 Related work
The semismooth Newton method described above has several points in common
with previous algorithms. In this section we discuss some of these connections,
while in Section 6 we present some numerical experiments comparing their prac-
tical performance.

A first comparison can be made with the semismooth Newton method for
support vector machines developed in [12, Ferris and Munson]. In that paper
the Fisher-Burmeister function is used to reformulate the complementarity con-
ditions for the KKT system as a system of n+1 semismooth nonlinear equations.
The paper solves this system by a semismooth Newton method that requires
in each iteration the choice of a generalized Jacobian, though the authors do
not specify a particular one. In this framework, our Newton’s method can be
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interpreted as the choice of a particular generalized Jacobian which arises natu-
rally from the underlying one-dimensional equation. This specific choice allows
to establish the finite convergence of the method, improving the results in [12]
that prove only convergence of accumulation points with Q-quadratic conver-
gence under appropriate conditions. Note however that [12] is designed to solve
the more general non-diagonal quadratic programs that arise in support vector
machines, so that the comparison is not completely fair.

From the complexity point of view our O(n2) estimate is not competitive
with the linear complexity O(n) attained by median search algorithms. These
methods use a bracketing interval [αk, βk] that contains the solutions of the equa-
tion, and perform a binary search by choosing the median of all the breakpoints
in this interval as a trial point λ to determine the next interval [αk+1, βk+1].
The number of breakpoints in the new interval is cut by half, and the procedure
continues until only 2 breakpoints remain which identifies a linear piece of ϕ(λ)
where the solution can be computed by solving a single linear equation. While
each iteration cuts the work by half, it keeps half of the breakpoints so that
the upper bound complexity coincides with the lower bound. In our Newton’s
method the worst case requires O(n) iterations but in practice we frequently
observe a fixed number of iterations (typically around 5) so that the practical
performance grows linearly with the dimension.

The semismooth Newton method can also be compared to the secant method
of Dai and Fletcher [10]. This method requires an initial phase to find a brack-
eting interval [α0, β0] and then proceeds with secant steps to narrow down the
interval until it reaches a linear piece of ϕ(λ) where the next secant step finds an
exact solution. The Newton’s iteration avoids the initial bracketing phase and
progresses towards the solution from the first iteration. It only uses a secant
step as a globalization strategy when Newton fails to get closer to the solution,
in which case a bracketing interval is already available.

Finally, Newton’s method has an interesting connection with the variable
fixing method of Kiwiel [20]. This method proceeds by momentarily ignoring
the lower and upper bounds and finds the optimal dual solution λ after which
it computes ϕ(λ) and proceeds to fix as many variables as possible based on the
technique described in the previous section. The fixed variables are removed
and the procedure is repeated for the lower dimensional problem. Since each
step fixes at least one variable (usually many more), the method is guaranteed
to converge in at most n iterations. Although the underlying philosophy is
very different from the Newton’s iteration, it turns out that when b > 0 and
only lower bounds or upper bounds are present, both methods coincide. More
precisely

Proposition 5.1 Suppose b > 0 and either ui = ∞ for all i or li = −∞ for
all i. Let xi = (biλ0 + ai)/di be the initial point in the variable fixing method
where the multiplier λ0 is given by λ0 = (r − s0)/q0 with

s0 =
∑n
i=1

aibi

di
; q0 =

∑n
i=1

b2
i

di
.

Then the Newton’s iteration started from λ0 generates exactly the same iterates
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as the variable fixing method.

Proof. We consider only the case of lower bounds, since the other case is sim-
ilar. In this case the function ϕ(·) is convex so that the Newton’s iterates will
approach the solution set monotonically with ϕ(λk) ≥ r for all k ≥ 1.

Let xk, λk be the sequences generated by the variable fixing method (notice
the change of sign with respect to [20] which uses the variable tk = −λk instead).
Let Ik denote the indices of the variables that have not yet been fixed up to the
k-th iteration, so that xki = li for i 6∈ Ik and xki = (biλk + ai)/di for i ∈ Ik. The
method proceeds by fixing all the variables i ∈ Ik such that xki ≤ li and updates
Ik+1 = {i ∈ Ik : xki > li}.

According to [20, Lemma 4.1(c)], we have

ϕ(λk)− r = ∇k −∆k

with ∇k =
∑
i∈Ik

bi(li − xki )+ and ∆k =
∑
i∈Ik

bi(xki − ui)+. Since ui = ∞ we
have in fact ∆k = 0 and therefore ϕ(λk) − r = ∇k ≥ 0. Furthermore, using
formula (25) in [20] it follows that the multipliers λk satisfy the recursion

λk+1 = λk − 1
qk+1
∇k

qk+1 = qk −
∑
i∈Ik\Ik+1

b2
i

di
.

The update for qk iteratively removes from the original sum q0 all the slopes b
2
i

di
of

the variables fixed along the iterations. It is easy to see that this gives precisely
qk+1 = ϕ′−(λk) so that the update of λk coincides with Newton’s iteration

λk+1 = λk − ϕ(λk)−r
ϕ′+(λk) .

�

Remark. Proposition 5.1 does not hold when both upper and lower bounds
are present, or when the coordinates of b have different signs. In such cases
Newton’s method and the variable fixing method generate different iterates.

Remark. The variable fixing method always starts from the specific point λ0,
and coincides with Newton only if we choose the same starting point. In this
sense Newton’s method is more flexible as it can be started from any initial
guess. This can be useful if we have a good solution estimate from a similar
problem solved previously.

6 Numerical Experiments
In this section we present numerical experiments comparing the proposed New-
ton’s method with our implementations of state-of-the-art solvers based on the
secant algorithm [10], median search [19], and variable fixing [20]. All the code
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used in these experiments can be downloaded at http://www.ime.unicamp.
br/~pjssilva/research/quadratic_knapsack_source.zip.

The programs were written in C (ANSI C99) and run on a Desktop with
an Intel Core i7 3930K CPU (3.20GHz). To ensure that the processor will
always work on its rated clock speed, we turned force the Linux system to
use the performance CPU governor. The computer has 64Gb of memory and
runs Ubuntu 13.04 64bit. The compiler used was gcc 4.7.3 with optimization
flags - march=native -O3 –fast-math. The implementation of the algorithm
from [19] depends heavily on the median finding routine. We used Floyd and
Rivest’s SELECT algorithm as implemented by Kiwiel [17]. This code is in
Fortran and was compiled using gfortran version 4.7.3 with the same flags.

A simple vector with the indexes of the free variables and indirect indexing
was used to implement the variable fixing step in the variable fixing and New-
ton’s methods. This simple strategy ensures that iterations of these methods can
still be performed in linear time. In principle, the secant algorithm could benefit
from variable fixing as well, but after preliminary experiments we observed that
this was not beneficial. Variable fixing increases the work per iteration in the
secant method since the function ϕ needs to be recomputed at the end point of
the bracketing interval that was computed in previous iterations. Therefore, we
report the results for the secant method in its pure form described by Dai and
Fletcher in [10].

The main stopping criterion used for the Newton’s and the secant method
in our implementation has the form

|ϕ(λk)− r| ≤ ε
(

n∑
i=1
|bix(λk)i|+ |r|

)
,

for small ε > 0. Since the median search algorithm solves the continuous
quadratic knapsack problem basically exactly, we used a stringent value for
ε, defining it as 10−12. We also adopted a similarly high precision in the stop-
ping criterion suggested for the variable fixing algorithm in [20]. In practice we
observed that all methods solved the problems up to machine precision. Finally,
both the secant and Newton’s methods are initialized with the first multiplier
estimate computed by the variable fixing method. This is the multiplier associ-
ated to the linear constraint in (1) when it is solved ignoring the bounds.

We performed two types of experiments. The first group were randomly
generated instances based on a standard test set for continuous quadratic knap-
sack described in [5, 18, 19, 20], with the addition of a problem from [10]. The
second is the training of support vector machines, also described in [10].

6.1 Randomly generated tests
As in [5, 18, 19, 20], we generated three groups of problems with dimensions
ranging from n = 50000 up to n = 2000000, with data entries chosen by inde-
pendent draws from uniform distributions U [a, b]. The classes are

1. Uncorrelated: ai, bi, ci ∼ U [10, 25];
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2. Weakly correlated: bi ∼ U [10, 25] and ai, di ∼ U [bi − 5, bi + 5];

3. Correlated: bi ∼ U [10, 25] and ai = di = bi + 5.

In all cases li and ui were chosen uniformly in [1, 15], respecting the order, while
r was chosen uniformly in [btl, btu]. The random numbers were computed using
a fast variation of the Mersenne Twister algorithm [22, 27].

The results are presented in Tables 1, 2, and 3. Each line reports the av-
erage, maximum, and minimum number of iterations and running times over
100 randomly generated tests for each dimension. In order to obtain a trustable
estimate for the running time, each random test was repeated 107/n times in
a loop, totalizing roughly 1 second for the slowest method (median) and 0.5
second for the fastest method (Newton). We report the mean time for each
random test. For the Newton’s, Secant, and Variable fixing methods we count
an iteration whenever the function ϕ is evaluated (directly or indirectly). In
particular, the bracketing phase of the secant method counts as at least two
iterations, unless the initial multiplier is the correct solution. The initialization
step of the Newton’s and the variable fixing methods, that involves computing
ϕ at the starting multiplier, is counted as one iteration. For the median search
method one iteration is counted whenever a median search is needed.

The results indicate that the Newton’s method is very effective. It requires
fewer iterations and, what is more important, its running time is the lowest
one. In the largest tests, Newton’s method was about 30% faster than the
others. The median search method is the slowest, although it has the lowest
theoretical complexity. This happens because the other methods do not achieve
their worst case performance. The number of iterations in all these methods is
virtually constant with n, as seen from the average number iterations and their
small deviations. Note, however, that Newton’s method apparent advantage
due to its smaller number of iterations is not fully reflected in its running time
because it needs to calculate both ϕ and its derivative. Moreover the number
of iterations in the median search algorithm is misleading as the final iterations
handle a very small number of breakpoints.

We also performed random experiments that are similar to problems arising
in multicommodity network flows and logistics (see [10], and [25]). In this
case the instances were generated with d1 = 1, dn = 104, di ∼ U [d1, dn] for
i = 2, . . . , n − 1, and ai ∼ U [−1000, 1000], bi = 1, li = 0, ui ∼ U [0, 1000]
all for i = 1, . . . , n, while r was selected uniformly in [btl, btu]. The results
for these tests are presented in Table 4. These results may seem surprising,
with the variable fixing method performing almost identically as Newton. This
happened because in most instances the upper bounds were not binding at the
solution and both Newton’s and the variable fixing algorithms were generating
the same sequence of iterates as suggested by Proposition 5.1 (see also the
remark after Theorem 4.1). The slightly smaller running time for the variable
fixing method is due to its simpler update of the directional derivatives (see
the proof of Proposition 5.1). On the other hand, it is interesting to see that
Newton has a much better performance than the secant method in this case.
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Dimension Iterations Time (msec) Iterations Time (msec)
n avg max min avg max min avg max min avg max min

Newton Secant
50000 4.7 8 3 2.2 2.7 1.8 8.2 12 6 3.3 4.5 2.5

100000 5.2 9 3 4.6 5.4 3.8 8.7 14 6 6.7 9.3 4.8
500000 5.3 9 4 26.0 31.0 21.0 8.6 14 6 34.6 52.0 25.5

1000000 5.2 10 3 51.7 64.0 42.0 8.4 13 6 67.6 97.0 50.0
1500000 5.1 9 3 76.4 93.3 56.7 8.4 14 6 103.4 155.0 76.7
2000000 5.2 11 4 102.2 126.0 84.0 8.5 15 7 139.7 194.0 116.0

Variable fixing Median search
50000 7.8 11 6 2.6 3.0 2.2 16.7 17 16 4.2 4.5 3.6

100000 8.2 11 7 5.2 5.8 4.4 17.7 18 17 8.1 8.6 7.3
500000 8.7 12 7 32.5 36.0 28.0 19.9 20 19 46.4 49.0 41.0

1000000 8.8 12 7 66.6 75.0 56.0 20.9 21 20 94.3 99.0 83.0
1500000 8.9 12 7 100.1 113.3 85.0 21.6 22 21 157.1 165.0 141.7
2000000 8.9 12 7 132.8 152.0 112.0 22.0 22 21 209.0 220.0 186.0

Table 1: Uncorrelated test

Dimension Iterations Time (msec) Iterations Time (msec)
n avg max min avg max min avg max min avg max min

Newton Secant
50000 4.7 8 3 2.2 2.7 1.8 8.2 12 6 3.3 4.5 2.5

100000 5.2 9 3 4.6 5.4 3.8 8.7 14 6 6.7 9.3 4.8
500000 5.3 9 4 26.0 31.0 21.0 8.6 14 6 34.6 52.0 25.5

1000000 5.2 10 3 51.7 64.0 42.0 8.4 13 6 67.6 97.0 50.0
1500000 5.1 9 3 76.4 93.3 56.7 8.4 14 6 103.4 155.0 76.7
2000000 5.2 11 4 102.2 126.0 84.0 8.5 15 7 139.7 194.0 116.0

Variable fixing Median search
50000 7.8 11 6 2.6 3.0 2.2 16.7 17 16 4.2 4.5 3.6

100000 8.2 11 7 5.2 5.8 4.4 17.7 18 17 8.1 8.6 7.3
500000 8.7 12 7 32.5 36.0 28.0 19.9 20 19 46.4 49.0 41.0

1000000 8.8 12 7 66.6 75.0 56.0 20.9 21 20 94.3 99.0 83.0
1500000 8.9 12 7 100.1 113.3 85.0 21.6 22 21 157.1 165.0 141.7
2000000 8.9 12 7 132.8 152.0 112.0 22.0 22 21 209.0 220.0 186.0

Table 2: Weakly correlated test

6.2 Support Vector Machines
A natural application of the continuous quadratic knapsack problem is to per-
form the projections in a gradient projection method for minimizing a general
function subject to quadratic knapsack constraints. Such problems arise nat-
urally, for example, in the training of Support Vector Machines (SVM) where
a general strictly convex quadratic must be minimized [7, 10]. More precisely,
given a labeled training sample of n points

D = {(zi, wi) | zi ∈ Rm, wi ∈ {−1, 1}},

the objective is to find a classification function F : Rm 7→ {−1, 1} of the form

F (z) = sign
(

n∑
i=1

x∗iwiK(z, zi) + b∗

)

which is used to classify new examples z. The map K : Rm×Rm 7→ R is known
as the kernel function. A commonly used kernel, which we also adopt in our
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Dimension Iterations Time (msec) Iterations Time (msec)
n avg max min avg max min avg max min avg max min

Newton Secant
50000 4.8 7 3 2.1 2.3 1.7 8.1 12 6 3.0 4.5 1.9

100000 4.7 9 3 4.3 4.7 3.4 8.0 11 6 6.2 8.9 4.5
500000 5.0 8 3 24.4 30.0 18.5 8.3 12 6 32.4 46.5 23.5

1000000 4.9 8 3 49.6 61.0 37.0 8.2 12 6 64.4 94.0 46.0
1500000 5.0 9 3 73.9 95.0 58.3 8.3 12 6 101.1 138.3 68.3
2000000 4.9 7 3 98.3 114.0 74.0 8.1 11 6 128.1 188.0 92.0

Variable fixing Median search
50000 7.6 9 7 2.5 2.9 2.3 16.7 17 16 4.1 4.2 3.7

100000 7.8 10 6 5.2 5.7 4.5 17.7 18 17 8.1 8.4 7.3
500000 8.1 10 7 31.0 34.0 27.5 19.9 20 19 45.8 48.5 41.5

1000000 8.3 10 7 63.9 70.0 58.0 20.9 21 20 92.9 96.0 86.0
1500000 8.4 11 7 95.6 105.0 88.3 21.6 22 21 155.0 161.7 140.0
2000000 8.3 10 7 128.1 140.0 116.0 21.9 22 21 207.4 216.0 194.0

Table 3: Correlated test

Dimension Iterations Time (msec) Iterations Time (msec)
n avg max min avg max min avg max min avg max min

Newton Secant
50000 5.9 8 4 2.2 2.4 1.6 14.2 18 9 4.1 5.2 2.6

100000 5.8 9 4 4.3 4.9 3.4 14.0 19 9 8.1 11.1 5.7
500000 6.1 9 4 26.0 32.5 19.5 14.2 19 9 43.5 59.5 29.0

1000000 6.2 9 4 53.0 66.0 38.0 14.2 19 9 86.7 119.0 54.0
1500000 6.1 11 4 78.3 100.0 56.7 14.0 21 10 128.5 196.7 91.7
2000000 6.1 8 4 105.3 128.0 76.0 14.2 16 11 173.4 200.0 132.0

Variable fixing Median search
50000 5.9 8 4 2.2 2.4 1.6 16.6 17 16 3.4 3.6 3.2

100000 5.8 9 4 4.3 4.7 3.3 17.7 18 17 6.7 7.0 6.4
500000 6.1 9 4 26.0 32.0 19.0 19.9 20 19 38.6 40.5 36.5

1000000 6.2 9 4 52.7 64.0 37.0 20.9 21 20 78.1 81.0 75.0
1500000 6.1 11 4 78.0 96.7 56.7 21.6 22 21 133.0 138.3 126.7
2000000 6.2 8 4 105.8 126.0 74.0 21.9 22 21 177.6 184.0 172.0

Table 4: Multicommodity flow test

experiments, is given by the Gaussian kernel K(u, v) = exp( 1
2σ2 ‖u− v‖2

2) where
σ > 0.

In order to find the vector x∗ ∈ Rn that defines an optimal classifier, the
SVM framework requires to solve the problem

min 1
2x

tHx− etx
s.t. wtx = 0, (10)

0 ≤ x ≤ Ce,

where the matrix H has entries Hij = K(zi, zj), e ∈ Rn is a vector of ones, and
C is a positive parameter. This matrix is positive definite but not diagonal,
so we cannot use directly the methods described previously. An alternative is
to use a projected gradient algorithm such as the efficient Spectral Projected
Gradient (SPG) method or some of its variants [1, 10]. These methods require
projections onto the feasible set at each iteration, which leads precisely to a
sequence of continuous quadratic knapsack problems.

We also take this opportunity to compare with a very recent method that
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appeared first as the BLGnapsack subroutine in the BLG code from Gonzalez-
Lima, Hager and Zhang [13]. This method was specially developed to solve the
projection problems that arise in projected gradients method like SPG and BLG,
using a heap structure to store and efficiently manipulate the breakpoints. See
details and extensions in the forthcoming report [11]. BLGnapsack exploits the
fact that the projection is Euclidean, that is, the matrix D in (1) is the identity,
and that the vector b is a vector of ones, after the signs of w are converted to
become positive as assumed since Section 3. In order to make the comparison
with the other methods fair, they were adapted to exploit these features using
a specially tailored code generator.

In our experiments we considered the same classification problems used
in [10] to test the secant method. The first problem is based on the MNIST
database of handwritten digits, downloadable from http://yann.lecun.com/
exdb/mnist/. The goal is to design an optimal classifier to decide whether a
20 × 20 pixel image represents the digit 8 or not. We created five instances of
dimensions n ∈ {800, 1600, 3200, 6400, 11702} using as training sample the first
n/2 occurrences of digits 8 and the first n/2 occurrences of other digits. The
first three dimensions were already used in [10]. The parameters for the SVM
were chosen as C = 10 and σ = 5.

The second problem is based on the UCI Adult database downloadable
from http://archive.ics.uci.edu/ml/datasets/Adult. The problem is to
predict, using only the data from the 1994 US Census, whether an adult earns
more than US$ 50,000 per year or not. We extracted instances of dimensions
n ∈ {1605, 2265, 3185, 6370, 12740}, using C = 1 and σ =

√
10 as the parameters

for the SVM.
Our implementation is based on the SPG code from [2] adapted to solve (10).

The SPG method is very sensitive numerically and may generate different iterate
sequences when using the alternative algorithms in the projection step. In order
to compare the relative efficiency of the projection algorithms on the basis of the
same sequence of subproblems, we only considered the SPG iterates generated
by the median search method. At each one of these iterates, the projection sub-
problem is solved using each algorithm (Newton, secant, BLGnapsack, variable
fixing, median search) with 106/n repetitions to get a reliable estimate of the
running times.

The results, presented in Table 5, are not as clear-cut as in the case of random
instances. On the UCI Adult test the variable fixing algorithm outperforms
Newton in the smaller instances, but looses ground in the largest ones. In
MNIST application it is the secant method that has a very similar performance
when compared to Newton, but never really being the fastest.

The previous experiments did not exploit an important feature of the New-
ton’s, secant and BLGnapsack methods. Namely, they methods can speed up
their performance by using hot starts from a good initial guess of the solution,
something which is not natural for the variable fixing and median search meth-
ods. This fact was already used by Dai and Fletcher to speed up the secant
method in the SVM training and it is considered very important for the good
performance of BLGnapsack [11]. Dai and Fletcher used the multiplier of the
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Set n Newton Secant BLGnap. Var. Fix Med. Search
Iter. Time Iter. Time Time Iter. Time Iter. Time

UCI 1065 5.01 0.053 8.24 0.052 0.049 7.90 0.034 11.01 0.203
UCI 2265 5.25 0.141 9.02 0.175 0.184 8.53 0.126 12.58 0.448
UCI 3185 5.23 0.227 8.94 0.303 0.324 8.16 0.234 12.59 0.630
UCI 6370 5.49 0.570 9.52 0.851 0.746 8.71 0.627 13.73 1.269
UCI 12740 5.83 1.258 9.99 1.940 1.617 9.41 1.392 14.65 2.519
MNIST 800 3.15 0.027 6.79 0.029 0.027 5.81 0.035 10.66 0.136
MNIST 1600 3.26 0.057 7.01 0.061 0.084 5.95 0.070 11.83 0.285
MNIST 3200 3.49 0.143 7.13 0.136 0.228 6.38 0.182 12.83 0.585
MNIST 6400 3.45 0.316 7.26 0.324 0.441 6.76 0.471 13.68 1.155
MNIST 11702 3.60 0.637 7.30 0.682 0.768 7.38 0.977 14.60 2.091

Table 5: Results for the projection in SVM training in UCI Adult and MNIST
train sets. The values reported are the average number of iterations and average
computing time in milliseconds among all the projections performed while solv-
ing (10) using the SPG code. Once again, to get a better CPU time estimate,
each projection is repated in a loop 106/n times For BLGnapsack only the time
is reported.

last projection as starting point for the next one [10]. We propose a different
initial point, namely, we only use the last multiplier to determine the active face
of the bound constraints, and compute the multiplier by projecting the current
point onto the hyperplane within this face. This initial multiplier, inspired by
the variable fixing algorithm, combines the information of the last projection by
means of its active face with the information of the current point to be projected.
This multiplier estimate performed better than Dai and Fletcher’s suggestion.

Table 6 reports the results with hot starts and includes a variation of the
Newton method where variable fixing is turned off, called Newton NF. These
results confirm a significant speedup for both Newton variants and the secant
method. In these runs Newton outperforms all the other algorithms. The
Newton variant without variable fixing is even better. The reason for this is
that the number of iterations is so small that it is not worthy to spend time
fixing variables, an O(n) operation. It is better to perform one or two extra
iterations and finish the computation.
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