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Abstract

We consider the minimization of a convex function on a compact poly-
hedron defined by linear equality constraints and nonnegative variables.
We define the Levenberg-Marquardt (L-M) and central trajectories start-
ing at the analytic center and using the same parameter, and show that
they satisfy a primal-dual relationship, being close to each other for large
values of the parameter. Based on this we develop an algorithm that
starts computing primal-dual feasible points on the L-M trajectory and
eventually moves to the central path. Our main theorem is particularly
relevant in quadratic programming, where points on the primal-dual L-M
trajectory can be calculated by means of a system of linear equations. We
present some computational tests related to box constrained trust region
subproblems.

Keywords: central path, Levenberg-Marquardt, primal-dual, interior
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Classification code: 90C25; 90C51.

1 Introduction

In this paper we describe a path following algorithm based both on the cen-
tral path and on the Levenberg-Marquardt trajectories for solving the following
problem:
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minimize f(x)
subject to Ax = b

x ≥ 0,
(1)

where f : ℝn → ℝ is a convex continuously differentiable function, A ∈ ℝm×n
and b ∈ ℝm. We denote the feasible set Ω := {x ∈ ℝn∣Ax = b, x ≥ 0} and the
set of interior points Ω0 := {x ∈ Ω∣x > 0}.

We assume that Ω is bounded and Ω0 ∕= ∅. Then the logarithmic barrier
function x ∈ Ω0 7→ plog(x) := −

∑n
i=1 log(xi) is well-defined, as well as the

analytic center of Ω, � = argmin{plog(x) ∣x ∈ Ω0} (see [13]).
To simplify the treatment, we assume that

� = e = (1, 1, . . . , 1) ∈ ℝn.

This assumption is made without loss of generality, as we now show: given
the problem

minimize f0(w)
subject to A0w = b

w ≥ 0
(2)

with the same hypotheses as above but with analytic center wAN > 0, the
format (1) is obtained by defining WAN = diag(wAN ) and scaling the problem
by setting w = WANx, A = A0WAN and for x ∈ ℝn, f(x) = f0(WANx). The
scaled problem inherits the convexity of the original one because WAN is positive
definite, and now the analytic center becomes � = e, because wAN = WANe.
The trajectories. The objective function of (1) will be modified to f(x)+�p(x)
by penalty terms in two ways:
(a) with the logarithmic barrier plog, which determines the primal central path

� > 0 7→ xlog(�) = argmin
x∈Ω0

f(x) + �plog(x).

(b) with the L-M regularization

x ∈ ℝn 7→ pLM (x) := ∥x− e∥2/2,

which defines the primal L-M trajectory

� > 0 7→ xLM (�) = argmin{f(x) + �pLM (x) ∣Ax = b, x ∈ ℝn}. (3)

The idea of this quadratic penalization goes back to [7, 8].
The central path is contained in Ω0 and is scale independent, while the L-M

trajectory is scale dependent and is in general not contained in Ω. Points on
the L-M trajectory may be easy to compute, but are in general feasible only for
large values of �.

The objective of this work is to show that when � grows both trajectories
converge to �, where they share the same tangent. For large values of � they
behave similarly, which will allow the construction of a procedure to initialize

2



an interior point path following algorithm for solving (1) from a point on the
L-M trajectory.

This procedure uses the assumption that the analytic center � is known, and
will be applied to the solution of trust region subproblems, which are described
in Section 2. In Section 3 we define the primal-dual versions of both trajectories
and related concepts. In Section 4 we establish primal-dual relations between
the trajectories, and in Section 5 we present our procedure and numerical results.

2 Trust region subproblems

Our main motivation comes from the solution of trust region subproblems
with the shape

minimize{m(d) ∣Ad = b, ∥d∥ ≤ Δ},

where m(⋅) is convex quadratic and Δ > 0. If the Euclidean norm is used, the
minimizers are points on the L-M trajectory, which may be easy to compute.
The infinity norm gives larger trust regions and are very convenient whenever
box constraints are present in the original problem.

The box-constrained trust region subproblem is stated in the format (1) as
follows: consider the convex quadratic program

minimize
1

2
(z̄ + d)⊤Q̄(z̄ + d) + c̄⊤(z̄ + d)

subject to Ād = 0
−u ≤ d ≤ u,

(4)

where Q̄ ∈ ℝn̄×n̄ is symmetric and positive semidefinite, c̄ ∈ ℝn̄, u ∈ ℝn̄++ and
Ā ∈ ℝm̄×n̄. The logarithmic barrier function for this problem is

−u < d < u 7→ −
n̄∑
i=1

log(ui − di)−
n̄∑
i=1

log(ui + di),

and its minimizer, the analytic center of the feasible set, is d = 0.
The following reformulation of Problem (4) is based on the change of vari-

ables z := u+ d and w := u− d.

minimize
1

2
z⊤Q̄z + (c̄+ Q̄(z̄ − u))⊤z

subject to

[
Ā 0
I I

] [
z
w

]
=

[
Āu
2u

]
z, w ≥ 0.

(5)

Defining U := diag(u) and x := (U−1z, U−1w) ∈ ℝ2n̄ we rewrite Problem (5)
as

minimize
1

2
x⊤Qx+ c⊤x

subject to Ax = b
x ≥ 0,

(6)
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where Q :=

[
UQ̄U 0

0 0

]
, c :=

[
U(c̄+ Q̄(z̄ − u))

0

]
, A :=

[
ĀU 0
U U

]
and

b :=

[
Āu
2u

]
.

One can easily check that (6) inherits the convexity of (4) and that these
problems are in an obvious correspondence with respect to optimality, due to
our change of variables. Moreover, we have that e ∈ ℝn, with n := 2n̄, is the
analytic center of the compact polyhedron Ω := {x ∈ ℝn∣Ax = b and x ≥ 0}.

The following straightforward facts on the geometry of the trajectories are
shown in Fig. 1:
(i) For � > 0, dLM (�) = argmin{m(d) ∣Ad = 0, ∥d∥ ≤ ∥dLM (�)∥},
i.e., dLM (�) is the minimizer of m(⋅) in an Euclidean trust region around 0.
These trust regions are contained in the box for large values of �, and in general
dLM (�) is infeasible for small �.
(ii) For � > 0, dlog(�) = argmin{m(d) ∣Ad = 0, plog(d) ≤ plog(dlog(�))},
i.e., dlog(�) minimizes m(⋅) in a log-barrier trust region around 0. These trust
regions are feasible and approach the feasible set as � decreases, while dlog(�)
converges to an optimal solution of (4).

Fig. 1 shows the evolution of the trajectories and trust regions for an example
with a unit box and non-interior optimal solution. The figures at left and right
show respectively the trust regions for large and small values of �. For large
values of � the trust regions are very similar, as well as the trajectories. As �
decreases, the trajectories branch out.
Remark. Although this is not a subject of this paper, such log-barrier trust
regions may be used in trust region methods for convex programming, avoiding
the need for solving (4) precisely.

3 Preliminaries

In this section we define the primal-dual versions of the central path and
L-M trajectories and neighborhoods of the central path. Consider the Karush-
Kuhn-Tucker (KKT) conditions of Problem (1), given by

PK(A) (∇f(x)− s) = 0 (7)

Ax = b (8)

x ≥ 0 (9)

s ≥ 0 (10)

x ⋅ s = 0. (11)

where P is the Euclidean projection operator, x ⋅ s := (x1s1, . . . , xnsn) ∈ ℝn is
the Hadamard product and K(A) := {x ∈ ℝn∣Ax = 0}. Due to convexity, these
conditions are necessary and sufficient for optimality of (1).

We say that a strictly positive pair (x, s) ∈ ℝn++×ℝn++ is an interior feasible
primal-dual point associated to (1), if it satisfies both the Lagrange condition
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Figure 1: The trajectories.
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(7) and (8). We denote by Γ∘ the set of all interior feasible primal-dual points,
i.e.,

Γ∘ := {(x, s) ∈ ℝn++ × ℝn++∣Ax = b, PK(A) (∇f(x)− s) = 0}.

3.1 The primal-dual central path

The primal-dual central path associated with Problem 1 is the curve

� > 0 7→ (xCP (�), sCP (�)) ∈ Γ∘ such that xCP (�) ⋅ sCP (�) = �e.

Under our hypotheses, [6] ensures that the central path is well defined, and it is
consistent with the former definition of primal central path, as xlog(�) = xCP (�)
for � > 0. The primal central path {xCP (�)∣� > 0} converges to an optimal
solution of Problem 1 as �→ 0+. For related results under weaker assumption,
see [1]. For primal-dual convergence properties of the central path we refer the
reader to [11]. In this paper we are interested in the features of the central path
close to the analytic center, i.e., when � is large.

3.2 Neighborhoods of the central path

Sequences generated by path following algorithms ([3, 4, 10]) remain in the
proximity of the central path along the iterates, in the sense described by prox-
imity measures. The proximity measure we are going to use in the theoretical
treatment is defined by

(x, s) ∈ Γ∘, � > 0 7→ �(x, s, �) :=

∥∥∥∥x ⋅ s� − e
∥∥∥∥ . (12)

Clearly, (x, s) ∈ Γ∘ is the central point associated with � > 0 if and only if
�(x, s, �) = 0.

Low complexity path following algorithms compute sequences (xk, sk, �k)
such that �(xk, sk, �k) ≤ �, where � is a fixed positive tolerance. These points
belong to a neighborhood of the central path

N2(�) := {(x, s, �) ∈ Γ∘ ×R++ ∣�(x, s, �) ≤ �} .

Practical algorithms (with a higher proved complexity) use a larger neighbor-
hood, defined by (see [14], Ch. 5)

N−∞(�) :=

{
(x, s, �) ∈ Γ∘ ×R++ ∣

xisi
�
≥ 1− �, ∀i = 1, . . . , n

}
.

This neighborhood will be used in our implementation. For a study of other
proximity measures, see [5].

The next lemma shows than one can easily get an interior feasible primal-
dual point with its primal part being the analytic center.

Lemma 1 Let se(�) := ∇f(e) + �e. Then, for all sufficiently large � > 0 we
have (e, se(�)) ∈ Γ∘. Moreover, �(e, se(�), �) = �−1∥∇f(e)∥.
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Proof: The proof that (e, se(�)) ∈ Γ∘ for all large � > 0 is straightforward.
Now, note that

�(e, se(�), �) =

∥∥∥∥e ⋅ (∇f(e) + �e)

�
− e
∥∥∥∥ =

∥∥∥∥∇f(e)

�
+ e− e

∥∥∥∥ = �−1∥∇f(e)∥.

□
Note that for large values of �, the point (e, se(�)) is centralized.

3.3 The primal-dual L-M trajectory

Consider the primal L-M trajectory xLM defined in (3).
In our construction, it is easy to verify that for a given � > 0, xLM (�) can

be obtained solving the problem in (3) with pLM replaced by the penalization
1
2∥ ⋅ ∥

2.
For convenience, we define the dual L-M trajectory by taking

sLM (�) := �(2�− xLM (�)), for each � > 0.

This will allow us to relate the primal-dual trajectories in the next section.

4 Primal-dual relations between the L-M and
the central path trajectories

The first lemma in this section describes properties of the trajectory as-
sociated with a general strongly convex penalty function, and will be used to
establish primal relations between the central path and the L-M trajectory.

4.1 An auxiliary result

For each � > 0 consider the problem

minimize f(x) + �p(x)
subject to Ax = b,

(13)

where p : ℝn → ℝ ∪ {∞} is a strongly convex function.

Lemma 2 Let x̄ be the minimizer of p subject to Ax = b and suppose that p
is twice continuously differentiable with a locally Lipschitz Hessian ∇2p(⋅) at x̄.
Assume also that ∇2p(x̄) = I. Then, considering that x(�) denotes the solution
of the optimization problem (13), with � > 0, it follows that:

(i) The trajectory {x(�) ∈ ℝn∣� > 0} is well defined and lim�→∞ x(�) = x̄;

(ii) x(�) minimizes f in the convex trust region {x ∈ ℝn∣p(x) ≤ p(x(�)), Ax =
b} and � > 0 7→ p(x(�)) is a non-increasing function;

(iii) lim�→∞ � (x(�)− x̄) = −PK(A)(∇f(x̄)).
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Proof: For any � > 0, the function f + �p is strongly convex. Hence, (13)
has the unique solution x(�). In particular, {x(�) ∈ ℝn∣� > 0} is well defined.
From the definition of x(�) and x̄ we have, for all � ≥ 1, that

f(x(�)) + p(x(�))− p(x̄) ≤ f(x(�)) + � (p(x(�))− p(x̄))

≤ f(x̄) + � (p(x̄)− p(x̄)) = f(x̄).

This inequality, together with the compactness of the level sets of f +p, implies
that {x(�) ∈ ℝn∣� ≥ 1} is bounded. Consequently, {f(x(�))}�≥1 must be
bounded. Therefore, the second inequality leads to

lim
�→∞

�(p(x(�))− p(x̄)) <∞.

Hence,
lim
�→∞

p(x(�))− p(x̄) = 0.

Then, the strong convexity of p guarantees that

lim
�→∞

x(�) = x̄,

proving (i).
The Karush-Kuhn-Tucker conditions of (13), necessary and sufficient due to

convexity, read as follows

PK(A) (∇f(x(�)) + �∇p(x(�))) = 0; (14)

A (x(�)) = b. (15)

From (14) and (15) we conclude that x(�) minimizes f in the convex set {x ∈
ℝn∣p(x) ≤ p(x(�)), Ax = b}. Moreover, the Lagrange multiplier correspondent
to the inequality constraint is �. Now take 0 < �2 < �1. Then,

f (x(�2)) + �2p (x(�2)) ≤ f (x(�1)) + �2p (x(�1))

f (x(�1)) + �1p (x(�1)) ≤ f (x(�2)) + �1p (x(�2)) .

Adding these inequalities we get p (x(�1)) ≤ p (x(�2)), proving (ii).
Note that if for some �̄ > 0 we have x(�̄) = x̄, the strong convexity of p

and (ii) guarantee that x(�) = x̄ for every � > �̄. In this case, (14) implies
(iii). Therefore, let us assume from now on that x(�) ∕= x̄ for all � > 0. From
Taylor’s formula we have that

p(x)− p(x̄)−∇p(x̄)
⊤

(x− x̄)− 1

2
(x− x̄)⊤∇2p(x̄)(x− x̄) = o(∥x− x̄∥2), (16)

with

lim
x→x̄

o(∥x− x̄∥2)

∥x− x̄∥2
= 0.
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Moreover, from the local Lipschitz continuity of ∇2p around x̄, we know that
there exist L > 0 and � > 0, so that for all x ∈ ℬ(x̄, �) it holds that

∥v(x)∥ ≤ L ∥x− x̄∥2 , (17)

where
v(x) := ∇p(x)−∇p(x̄)−∇2p(x̄)︸ ︷︷ ︸

I

(x− x̄).

Since x̄ is the minimizer of p subject to Ax = b, we conclude that ∇p(x̄) is
orthogonal to K(A). Then, taking also (16) and ∇2p(x̄) = I into account, we
get

p(x(�))− p(x̄) = ∥x(�)− x̄∥2
(

1

2
+
o(∥x(�)− x̄∥2)

∥x(�)− x̄∥2

)
, (18)

for all � sufficiently large. Due to (15) and the feasibility of x̄, it follows that
x(�)− x̄ ∈ K(A), for all � > 0. Then, using the linearity of PK(A) and (14) we
obtain

0 = PK(A) (∇f(x(�)) + �∇p(x(�)))

= PK(A) (∇f(x(�)) + �∇p(x̄) + �(x(�)− x̄) + �v(x(�)))

= PK(A)(∇f(x(�))) + �PK(A)(∇p(x̄)) + �PK(A)(x(�)− x̄) + PK(A)(�v(x(�)))

= PK(A)(∇f(x(�))) + �(x(�)− x̄) + PK(A)(�v(x(�))). (19)

In order to finish the proof we will show that lim�→∞ �v(x(�)) = 0. Note that
the definition of x(�) implies that

0 ≤ �(p(x(�))− p(x̄)) ≤ f(x̄)− f(x(�)).

Using (i) we get
lim
�→∞

�(p(x(�))− p(x̄)) = 0. (20)

Now, multiplying (18) by � and taking limits we obtain

lim
�→∞

�∥x(�)− x̄∥2 = 0. (21)

Using (17) we conclude that lim�→∞ �v(x(�)) = 0. This fact, combined with
(19), implies (iii). □

One can trivially check that plog and pLM satisfy the hypotheses of Lemma
3.1 with x̄ = � = e. Note also that PK(A)(e) = 0.

Hence, item (ii) of Lemma 3.1 implies that xLM (�) and xCP (�) minimize f
subject to Ax = b in the Euclidean ball centered in � = e with radius ∥xLM (�)∥
and in the level set {x ∈ ℝn∣plog(x) ≤ plog(xCP (�))}, respectively.
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4.2 Our theorem

Theorem 1 It holds that:

(i) PK(A) (∇f(xLM (�))− sLM (�)) = 0 for all � > 0;

(ii) �(xLM (�), sLM (�), �) ≤ ∥xLM (�)−�∥2, where � is the proximity measure
given in (12);

(iii) the L-M trajectory and the central path associated with (1) are tangent at
� = e;

(iv) for all � > 0 sufficiently large, (xLM (�), sLM (�)) ∈ ℝn×ℝn is an interior
feasible primal-dual point associated with (1).

Proof: From the linearity of PK(A) and the definition of xLM (�) and sLM (�),
we conclude that

PK(A) (∇f(xLM (�))− sLM (�)) = PK(A) (∇f(xLM (�)) + �xLM (�)− 2��)

= PK(A) (∇f(xLM (�)) + �xLM (�))− 2�PK(A) (�)

= 0− 2�PK(A)(e) = 0.

This proves (i). Let us now prove (ii).
Considering the definition of the proximity measure � given in (12) and

remembering that � = e, we conclude that

�(xLM (�), sLM (�), �) :=

∥∥∥∥xLM (�) ⋅ sLM (�)

�
− e
∥∥∥∥

= ∥xLM (�) ⋅ (2�− xLM (�))− e∥
= ∥(�+ (xLM (�)− �)) ⋅ (�−

(xLM (�)− �))− e∥
= ∥(xLM (�)− �) ⋅ (xLM (�)− �)∥
≤ ∥xLM (�)− �∥2.

Taking into account that plog and pLM satisfy the hypotheses of Lemma 3.1,
item (iii) follows directly from item (iii) in Lemma 2.

Due to item (i), and the fact that AxLM (�) = b, we only need to check the
positivity of xLM (�) and sLM (�) in order to prove (iv). But this follows for
sufficiently large � > 0, since � = e > 0 and lim�→∞ xLM (�) = �. □

Our theorem says basically that the primal-dual L-M trajectory {(xLM (�), sLM (�))∣� >
0} is given by interior primal-dual feasible points associated with Problem (1)
(for all � sufficiently large), that lie close to the primal-dual central path in
terms of the proximity measure �. Furthermore, the primal L-M trajectory is
tangent to the central path at the analytic center � = e. We established these
results for a general convex continuously differentiable function f .
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5 Interior point scheme

We now present a scheme for solving Problem (1) composed of two phases:
phase 1 follows the primal-dual L-M trajectory until a point near the central
path is found; an interior point path following method is then started at this
point. Phase 1 will stop when a point in a neighborhood N (�) is found, where
� is a proximity constant, usually � < 1 and N = N2 or N = N−∞. In the
algorithm below we start following the L-M trajectory at a given value �0 and
increase it.

Phase 1: Primal-dual L-M path following
Set k := 0 and choose �0 > 0, � > 0 and � > 1;
REPEAT

Compute the solution xLM (�) of (3) with � := �k and define
sLM (�k) := �k(2 �︸︷︷︸

e

−xLM (�k));

IF (xLM (�k), sLM (�k)) ∕∈ N (�), set �k+1 := ��k, k = k + 1.
ELSE set (x̂, ŝ) = (xLM (�k), sLM (�k)) and stop.
Phase 2: Path following scheme
Choose and implement a primal-dual interior point method taking (x̂, ŝ) as

the initial point.

Due to Theorem 1 this scheme is well defined and may be applied to any
problem in the format (1).

5.1 Our theorem applied to convex quadratic program-
ming

Theorem 1 is specially interesting when f is quadratic. In this case, one can
calculate points on the L-M trajectory by solving linear systems of equations.
Indeed, if f : ℝn → ℝ is a convex quadratic function given by

f(x) := x⊤Qx+ c⊤x,

where c ∈ ℝn and Q ∈ ℝn×n is positive semidefinite, then the Karush-Kuhn-
Tucker conditions of Problem (3), that define the L-M trajectory, read as follows[

Q+ �I A⊤

A 0

] [
x
�

]
=

[
−c
b

]
. (22)

For each � > 0 this system is always solvable and its unique solution is xLM (�).
Uniqueness in � is ensured if, and only if, A is full rank.

So, in the quadratic case, Phase 1 turns out to be easily implementable,
since the primal-dual L-M trajectory is defined by means of the linear system
(22).
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6 Numerical experiments

We generate instances of Problem (4) for different values of n̄ and m̄, and
solve them by an infeasible path following interior point algorithm using three
different primal-dual starting points: the point given by our scheme, the Mehro-
tra starting point [9], and the analytic center � = e with a dual variable se(�)
given by Lemma 1 for a large value of �. Since the analytic center is known, we
shall see that the third choice is always better than the second.

Each test problem with given n̄ and m̄ is constructed as follows:
Ā is an m× n matrix with random entries in [−1, 1].
Q̄ is obtained by the following procedure: let D be a diagonal matrix with
random entries in [1, 1000], and M a unitary random matrix (constructed using
the Matlab routine qr). Now Q̄ = MDM⊤ is a randomly generated hessian
matrix with eigenvalues diag(D).
The objective function is given by (x − x∗)⊤Q̄(x − x∗)/2, where the global
minimizer x∗ is obtained by projecting a random vector into the null space of
Ā and then adjusting it so that ∥x∗∥∞ = 1.2. This choice is done to stress the
nonlinearity in the examples: if x∗ is in the unit box, the minimization becomes
too easy; if its norm is large, the L-M trajectory becomes nearly straight, again
too easy.

We do not elaborate on the search along the L-M trajectory, studied in non
linear programming texts like [12]. For our series of examples we used the simple
strategy of setting �0 = �̂/2, where �̂ is the parameter value obtained by the
previous example (�0 = 1 for the first example in the series). This is a usual
scheme in trust region algorithms for non-linear programming.

We used Matlab R2012a to implement the infeasible path-following method
for convex quadratic programming presented in [2]. The tolerance for optimal-
ity is fixed at 10−8 and the barrier parameter is reduced by a factor of 10 at
each iteration. As a measure of performance we used the number of iterations
necessary for convergence.

Table 1 lists the results for 56 problems: for each value of n̄ in the first
column and four values of m̄, we run the three strategies. The column LM
displays the number of iterations Phase 1/Phase 2 of our scheme; columns M
and AC correspond to the number of iterations of the interior point method
using respectively the Mehrotra starting point and the analytic center.

From the table we see that for this choice of quadratic objectives, our scheme
spares about 3 iterations from the interior point algorithm. This may be very
significant in trust region algorithms, in which there is no need for a high pre-
cision in the solution of Problem (4).

7 Concluding remarks

The main goal of this paper is to show how the primal-dual L-M and central
trajectories are related for general linearly constrained convex programming
problems, and then to develop an initialization technique for path following
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m̄ = n̄/1.5 m̄ = n̄/2 m̄ = n̄/4 m̄ = 0
n̄ LM M AC LM M AC LM M AC LM M AC
50 7/8 8 8 5/8 12 11 4/7 11 10 0/9 11 11
100 2/6 10 9 1/8 11 11 1/8 11 11 3/9 12 12
150 1/6 10 10 1/6 10 9 3/8 11 10 1/8 12 11
200 3/7 10 10 1/6 9 9 1/8 11 11 2/9 12 11
250 1/7 10 10 4/6 9 9 1/7 11 11 1/9 11 11
300 1/5 9 9 2/6 9 9 3/8 11 11 1/7 11 11
400 2/5 9 9 1/6 8 7 3/8 11 10 4/9 11 11
500 1/5 10 9 1/5 8 8 2/8 11 11 1/9 12 11
600 3/5 9 9 4/5 8 8 2/8 10 10 2/8 11 11
700 3/6 9 9 1/5 8 8 2/8 11 11 2/8 11 11
800 1/6 9 9 2/5 8 8 2/9 11 11 1/7 11 10
900 3/5 9 8 2/5 8 8 2/8 11 10 3/8 11 11
1000 1/5 9 9 2/5 8 8 2/8 11 11 2/8 11 11

Table 1: Number of iterations for the interior point method using the L-M
starting point, the Mehrotra starting point and the analytic center.

methods based on this relationship.
We believe that the main application of this is in trust region methods

for non-linear programming based on trust regions defined by level sets of the
barrier penalty function, which are contained in the unit box, as we remarked
in Section 2.
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