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Abstract

This paper formalizes and adapts the well known concept of Pareto efficiency in the context

of the popular robust optimization (RO) methodology. We argue that the classical RO paradigm

need not produce solutions that possess the associated property of Pareto optimality, and illus-

trate via examples how this could lead to inefficiencies and sub-optimal performance in practice.

We provide a basic theoretical characterization of Pareto robustly optimal (PRO) solutions, and

extend the RO framework by proposing practical methods that verify Pareto optimality, and

generate solutions that are PRO. Critically important, our methodology involves solving opti-

mization problems that are of the same complexity as the underlying robust problems, hence

the potential improvements from our framework come at essentially no computational cost. We

perform numerical experiments drawn from three different application areas (portfolio optimiza-

tion, inventory management, and project management), which demonstrate that PRO solutions

have a significant upside compared with solutions obtained via classical RO methods, at no

extra cost or downside.

1 Introduction

Robust optimization (RO) is a relatively young methodology, developed mainly in the course of

the last 15 years to analyze and optimize the performance of complex systems (refer to the survey

papers Ben-Tal and Nemirovski (2007), Bertsimas et al. (2011a) and the book Ben-Tal et al. (2009)

for a thorough overview of the framework). As a result of its versatility and tractability, recent

years have seen an explosion of applications of RO in management science, ranging from inventory

management to dynamic pricing and revenue management, portfolio optimization, and healthcare
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applications (for a comprehensive list, see Gabrel et al. (2012)1). The goal of this paper is not

to motivate the use of robust (and, more generally, distribution free) techniques, but rather to

introduce a methodological enhancement to this popular modeling approach.

RO deals with decision making problems where some of the parameters are a priori unknown

and/or subject to uncertainty. The standard approach is to assume that all such parameters belong

to particular uncertainty sets, and to take decisions so as to optimize the worst-case performance

among all possible uncertainty realizations. As such, RO is indeed indifferent towards non worst-

case scenarios, and the performance of decisions made under them.

In this paper, we discuss and demonstrate via numerous examples how the inherent focus of RO

on optimizing performance only under worst-case outcomes might leave decisions “un-optimized”

in case a non worst-case scenario materialized. Clearly, this is undesirable, particularly in circum-

stances where these decisions are implemented in practice, as they lead to sub-optimal performance.

To the best of our knowledge, this paper is the first to reveal this extra dimension for optimization

in the classical RO framework, and the first to propose a scalable, tractable method for exploiting

it, in a way that strictly enhances the framework: indeed, our approach comes with no downside

in either performance or computational complexity!

To formalize our findings and the fact that RO might lead to decisions that are “un-optimized”

for non worst-case outcomes, we introduce the concept of Pareto efficiency in RO. The concept

mimics the corresponding one in economics, engineering and multiobjective optimization: a decision

that is Pareto robustly optimal is guaranteed to deliver optimized performance across all possible

scenario realizations, in the same way, for instance, that a Pareto optimal solution in multiobjective

optimization delivers optimized performance across all different objectives. We demonstrate via

examples that decisions made using RO need not have this property. To alleviate this, we propose

methods for verifying whether a decision is Pareto optimal or not, and methods for obtaining

robustly optimal decisions that are provably Pareto optimal as well. Put differently, in this paper,

we introduce an essential property that RO decisions that are to be implemented in practice need

to possess (in a way that parallels the importance of Pareto efficiency in economics), and develop

theory and computational tools pertaining to it. Our methodology enables a decision maker to

1This survey reports 100 papers authored in Operations Research and Management Science between 2007 and
(June) 2012 containing the words “robust optimization” in their title, and a further 762 articles containing either
“robust” or “robustness” in the title.
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compute robustly optimal solutions that are compatible with the classical RO framework, incur no

extra computational cost, and can perform strictly better in practice.

Specifically, we make the following contributions:

(a) We formalize and adapt the well accepted concept of Pareto efficiency to the classical RO

framework. We demonstrate that the framework need not produce solutions that possess the

associated property of Pareto optimality, and illustrate via examples how this could lead to

inefficiencies and sub-optimal performance in practice.

(b) We provide a basic theoretical characterization of Pareto robustly optimal solutions.

(c) We extend the RO framework by proposing practical methods that verify Pareto optimality,

and generate solutions that are also (provably) Pareto. Critically important, all our proposed

methodology involves optimization problems that are of the same computational complexity

as the underlying robust problems, hence the potential improvements from our framework

come at essentially no computational cost.

(d) We perform numerical experiments drawn from three different application areas studied in the

management science literature: portfolio optimization, inventory management, and project

management. The studies demonstrate that Pareto robustly optimal solutions obtained via

our methodology have a significant upside compared with solutions obtained via classical

methods, at no extra cost or downside.

We conclude by noting that our treatment in this paper is restricted to the case of uncertain lin-

ear optimization problems. We make this choice primarily due to the overwhelming preponderance

of linear models in practice, as well as for reasons of simplicity and ease of exposition. However,

we see this as a first step in treating more general optimization problems appearing in the classical

RO framework (Ben-Tal et al. 2009).

1.1 Literature review

Originally introduced in operations research and management science by Soyster (1973), the method-

ology of robust optimization (RO) has been revitalized in the late 1990s and early 2000s through

the seminal work of Ben-Tal and Nemirovski, Bertsimas and Sim, and El-Ghaoui et al. (see the
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review papers Ben-Tal and Nemirovski (2007), Bertsimas et al. (2011a) and the book Ben-Tal et al.

(2009) for a thorough overview of the methodology and contributions).

With a strong emphasis on computational tractability and ability to accomodate a diverse range

of relevant optimization models, the RO methodology has been adopted in many applications of

interest in management science. Such examples include inventory management (Ben-Tal et al. 2005,

Bertsimas and Thiele 2006, Bienstock and Özbay 2008, See and Sim 2010, Bertsimas et al. 2011b),

dynamic pricing and revenue management (Adida and Perakis 2006, Perakis and Roels 2010, Lim

and Shanthikumar 2007), assortment planning (Rusmevichientong and Topaloglu 2011), portfolio

optimization (Goldfarb and Iyengar 2003, Bertsimas and Pachamanova 2008, Fabozzi et al. 2007),

project management (Cohen et al. 2007, Goh et al. 2010, Adida and Joshi 2009), healthcare (Chan

et al. 2006), auction design (Bandi and Bertsimas 2012), and others. The list is by no means

exclusive - the interested reder can refer to the recent review papers Bertsimas et al. (2011a) and

Gabrel et al. (2012), and the book Ben-Tal et al. (2009) for comprehensive references.

Despite its empirical success, however, the robust framework has been known to suffer from

several potential shortcomings. One criticism is that, by focusing exclusively on the worst-case

outcomes, it may result in conservative decisions, with limited potential upside. This has lead to

several alternative proposals of robustness measures, such as absolute or relative regret (Savage

1972), “soft-robustness” (Ben-Tal et al. 2010), “light-robustness” (Fischetti and Monaci 2009), bw-

robustness (Roy 2010, Gabrel et al. 2011), α-robustness (Kalai et al. 2012), and others. Depending

on the exact assumptions and setup, such approaches typically result in the same (or slightly

decreased) generality and the same (or slightly increased) computational complexity as the standard

RO framework. Critically, however, all such approaches trade off some of the robustness (i.e.,

performance in the worst-case) in exchange for potential upside. By contrast, our approach, which

parallels the notion of Pareto efficiency, guarantees the same worst-case outcome, while at the same

time allowing potentially improved upside, at no increase in computational complexity.

A second (and more subtle) criticism is that, by solely focusing on worst-case outcomes, the

minimax/maximin criterion may result in multiple optimal solutions, and hence generate Pareto

inefficiencies in the decision process. This idea has emerged in several research streams, from fair-

ness in resource allocation (Young 1995, Bertsimas et al. 2012), to multiobjective optimization

(Ogryczak 1997, Suh and Lee 2001), but has been, to the best of our knowledge, absent from
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the mainstream RO literature.2 The unifying characteristic in the above settings is that they are

concerned with a finite set of alternative realizations / scenarios (e.g., the multiple parties in a

problem of equitable resource allocation, or the objectives in a multiobjective problem). This case,

however, is typically of limited interest in RO, where the standard setup involves a continuous

uncertainty set, i.e., an infinite number of realizations (Ben-Tal et al. 2009). In this sense, the

proposals for correcting Pareto inefficiencies of the maximin rule in resource allocation and mul-

tiobjective optimization (e.g., the lexicographic max-min fairness scheme (Young 1995), Ogryczak

(1997)) cannot be readily extended to the classical RO framework. By contrast, our definition of

Pareto robustly optimal solutions is applicable to cases with both finite and infinite uncertainty

sets, and hence fully compatible with the RO methodology. Furthermore, our approach still allows

potential multiplicity in the Pareto robustly optimal solutions, hence not eliminating the benefits

of multiplicity in RO (Iancu et al. 2012, Bertsimas et al. 2011c).

Finally, we note that the concepts of “Pareto optimality/efficiency” and “Robust Optimization”

have appeared together before, typically in the area of multiobjective optimization, and in a very

different spirit than that addressed in the present paper. In particular, Gorissen and den Hertog

(2011) discuss the use of RO (and, more broadly, convex optimization) to approximate the Pareto

frontier in multiobjective optimization problems. Several papers have also attempted introducing

robust formulations of multiobjective problems (e.g., Deb and Gupta (2005), Chen et al. (2011),

Luo and Zheng (2008), Cristobal et al. (2006), Ono and Nakayama (2009), Suh and Lee (2001)).

The notions of robustness used are typically different than those in the classical RO framework,

resulting in models that require solving very difficult optimization problems; this usually leads to

the use of various heuristics, such as evolutionary algorithms, polynomial chaos or particle swarm

optimization.

1.2 Notation

We use 1 to denote the vector with all components equal to one. We use ei to denote the unit

vector with 1 in the ith component. The inequality sign for vectors is used for componentwise

inequality.

2The multiplicity of optimal solutions has been typically seen as a positive feature in RO, since it allowed deriving
simple dynamic policies in multi-period problems (Bertsimas et al. 2010, Iancu et al. 2012), or optimizing secondary
objectives (Bertsimas et al. 2011c).
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We use several basic notions of convex analysis (Rockafellar 1970) that we denote as follows.

For a set S ⊂ Rn: we use ext(S) to denote the set of its extreme points; we use conv(S) to denote

its convex hull; we use ri(S) to denote its relative interior; we use S∗ to denote its dual cone.

2 Pareto Robustly Optimal Solutions

In this section, we introduce and formally define the notion of Pareto efficiency in robust opti-

mization (RO). For illustration purposes and to ease exposition, we consider a specific form of RO

problems, for which we present our definitions and the results in Section 3. In Section 4, we discuss

how our findings extend to more general forms of RO problems.

The type of RO problems we consider are linear optimization problems where only the objective

is subject to uncertainty. Specifically, we consider the problem of selecting x from a polyhedral

feasible set X ⊂ Rn so as to maximize pTx. The objective vector p is a priori unknown, and

belongs to a polyhedral uncertainty set U ⊂ Rn. We assume that both sets X and U are bounded

and that their inequality representations are

X = {x ∈ Rn : Ax ≤ b} , and (1a)

U = {p ∈ Rn : Dp ≥ d} , (1b)

where A ∈ RmX×n, b ∈ RmX , D ∈ RmU×n and d ∈ RmU are given. We note that our findings

readily extend to the case where we only have access to a representation of U through its extreme

points.

Although linear models with polyhedral uncertainty sets are a strict subset of the RO method-

ology, we choose them as the focus of our treatment due to the widespread use in practice, and

since they are a natural first step before examining more general convex optimization models.

According to the classical RO paradigm (Ben-Tal et al. 2009), one selects x in the above setting
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by solving the following optimization problem3

maximize
x∈X

min
p∈U

pTx. (2)

Let zRO be the optimal value of this problem. It is easy to check that the optimal set, denoted by

XRO, is given by

XRO =
{
x ∈ X : ∃ y ∈ RmU

+ such that DT y = x, yTd ≥ zRO
}
. (3)

An optimal solution x ∈ XRO of problem (2) is typically referred to as a robustly optimal solution in

this setting. It corresponds to a solution that maximizes the worst-case objective value pTx, under

all possible realizations of the uncertainty p ∈ U . In other words, a robustly optimal solution is

selected under the sole requirement of protecting us against worst-case scenarios. We are guaranteed

that no other solution does better along that requirement. If such a solution is to be used in practice,

however, this raises the following questions:

• How would x perform (in terms of the objective value) in case the uncertainty scenario that

actually materialized did not correspond to a worst-case one?

• Are there any guarantees that no other solution exists that, apart from protecting us from

worst-case scenarios, also performs better overall, under all possible uncertainty realizations?

To better understand the meaning of these questions, we consider a stylized network flow exam-

ple arising in a communication network. The example illustrates that, in general, a robustly optimal

solution x ∈ XRO might perform poorly in case a worst-case scenario did not realize: in fact, we

show that it is sometimes possible to find another robustly optimal solution that outperforms x

under all possible uncertainty realizations.

Example 1. Consider a communication network that consists of multiple links. Any given link is

used to transmit information between two points in the network, at a rate that is determined by the

3Note that this model can also correspond to a distributionally robust setting, where U is a subset of the probability
simplex, denoting ambiguity about the true probability measure, and the goal is to maximize the worst-case expected
outcome (where nature is choosing the distribution adversarially). In this sense, our model can speak to the vast
literature on risk measures and choice under ambiguity (see, e.g., Ben-Tal et al. (2010) or Bertsimas et al. (2011a)
for more references).
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Channel Alink ℓ1

link ℓ0

link ℓ2

x1 = a1

x2 = a2 + b2

a0

a1

a2

Channel Blink ℓ3

link ℓN+2

x3 = b3

xN+2 = bN+2

b2

bN+2

b3

...

...

... ...

Figure 1: An illustration of the network structure in Example 1.

network manager. The links share different capacitated communication channels for transmission;

capacity limitations then affect the information transmission rates of the individual links.

Specifically, consider the following network structure: there are two channels, denoted by A and

B. The channels are of unit capacity and are utilized by N + 3 links, denoted by ℓ0, ℓ1, . . . , ℓN+2,

with N ≥ 3. Links ℓ0 and ℓ1 utilize only channel A. Link ℓ2 utilizes both channels A and B. Links

ℓ3, . . . , ℓN+2 utilize only channel B. Let ai denote the transmission rate of link ℓi over channel A,

i = 0, 1, 2. Accordingly, bi denotes the transmission rate of link ℓi over channel B, i = 2, 3, . . . , N+2.

Vectors a ∈ R3 and b ∈ RN+1 contain the associated values. The structure is depicted in Figure 1.

Links ℓ1, . . . , ℓN+2 are dedicated for emergency purposes, whereas link ℓ0 is used for general

purposes. Let xi be the transmission rate of the emergency link ℓi, i = 1, 2, . . . , N + 2. We have

x1 = a1, x2 = a2 + b2, and xi = bi, i = 3, 4, . . . , N + 2.

In case an emergency transmission needs to be established, this is achieved by utilizing one of the

dedicated links, or a combination thereof. More specifically, let fi be the fraction of the emergency
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transmission routed via link ℓi, i = 1, 2, . . . , N + 2. The net emergency transmission rate is then

fTx =

N+2∑

i=1

fixi.

Fractions f depend on the emergency situation and are uncertain. In particular, f is assumed to

belong to a probability simplex uncertainty set U , i.e.,

U =
{

f ∈ RN+2
+ : 1T f = 1

}

.

The problem for the network manager is then to select rates x, a and b (in case of an emergency)

so as to maximize the net emergency transmission rate. If the manager uses robust optimization,

the rates are selected by solving

maximize min
f∈U

fTx

subject to x1 = a1

x2 = a2 + b2

xi = bi, i = 3, . . . , N + 2

a0 + a1 + a2 = 1

b2 + b3 + . . . + bN+2 = 1

a, b ≥ 0,

(4)

with variables x, a and b. Let X be the feasible set. It is easy to check that the optimal value is

zRO = 1/N and the optimal set is

XRO =

{

(x, a, b) ∈ X : x ≥
1

N
1

}

.

We solved problem (4) using the SeDuMi software package (Sturm et al. 2006), for N = 10,

and obtained the following robustly optimal solution

aSeDuMi =
[

1
3

1
3

1
3

]T

, bSeDuMi =
[

0 1
10 . . . 1

10

]T

, xSeDuMi =
[

1
3

1
3

1
10 . . . 1

10

]T

.
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Note that, for any realization of f drawn from U , we have

fTxSeDuMi ≥ 1/N = 1/10.

An associated worst-case realization of f for which the obtained performance is equal to 1/10 is, for

instance, e3. Consider now a non-worst-case scenario for xSeDuMi, e.g., f = e1. Then, the obtained

objective value is eT1 x
SeDuMi = 1/3.

We now compare the robustly optimal solution we obtained from SeDuMi with the following

solution

a⋆ =
[

0 1
2

1
2

]T

, b⋆ =
[

0 1
10 . . . 1

10

]T

, x⋆ =
[

1
2

1
2

1
10 . . . 1

10

]T

.

It is easy to check that this solution is also robustly optimal, i.e., (x⋆, a⋆, b⋆) ∈ XRO. Hence, it

has the same qualities as the solution obtained from SeDuMi in protecting us from worst-case

realizations of f . However, if f = e1 realizes, this solution yields strictly better performance,

eT1 x
⋆ = 1/2 > eT1 x

SeDuMi = 1/3.

In fact, it is easy to see that x⋆ performs better, or at least equally well, compared to xSeDuMi for

any realization of f drawn from U ! In particular, we have

fTx⋆ ≥ fTxSeDuMi, ∀f ∈ U, and (5a)

fTx⋆ > fTxSeDuMi, ∀f ∈ U ∩ {f : f1 + f2 > 0}. (5b)

The above discussion demonstrates that by focusing only on worst-case scenarios, the classical

RO paradigm allows solutions that are sub-optimal for other uncertainty realizations. Clearly, this

inefficiency is not important in case robust optimization is used only for purposes of assessing

worst-case performance. However, it might negatively affect managers who utilize RO to actually

compute solutions they implement in practice.

To rectify the aforementioned weakness of the classical RO framework, we need to additionally

require from a robustly optimal solution to “perform as well as possible” across all uncertainty
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scenarios that can realize. In particular, for any robustly optimal solution we select, we need

to guarantee that there does not exist another solution that performs at least as well across all

uncertainty realizations and strictly better at some realizations. If such a solution existed, it would

be strictly preferred for all practical considerations.

We call solutions with the above property as Pareto Robustly Optimal (PRO) solutions. For-

mally, we have the following definition:

Definition 1. A solution x is called a Pareto Robustly Optimal (PRO) solution for Problem (2) if

it is robustly optimal, i.e., x ∈ XRO, and ∄ x̄ ∈ X such that

pT x̄ ≥ pTx, ∀p ∈ U, and

p̄T x̄ > p̄Tx, for some p̄ ∈ U.

In the definition above, we say that x̄ Pareto dominates x. As discussed in the Introduction, the

terminology we use borrows from economics and multiobjective optimization: RO can be viewed

as a multiobjective optimization problem with an infinite number of objectives (corresponding to

uncertainty scenarios).

Returning to Example 1, by (5), we have that the solution (x⋆, a⋆, b⋆) Pareto dominates the

SeDuMi solution. Moreover, one can show that the solution (x⋆, a⋆, b⋆) is a PRO solution. In fact,

if we denote the set of all PRO solutions with XPRO, then, for Problem (2) we have

XPRO =

{

(x, a, b) ∈ X : x ≥
1

N
1, x1 + x2 = 1

}

.

Below is another toy example that illustrates the notion of PRO solutions.

Example 2. Consider the following problem, which is of the same form as Problem (2):

maximize min
p∈U
{p1x1 + p2x2 + p3x3}

subject to x1 − x2 = 0

x1 + x3 = 0

x1 ≥ 0

x1 ≤ 1,

(6)
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where U =
{
p ∈ R3 : 1 ≤ p ≤ 2

}
is a hypercube uncertainty set.

For the above problem, it is easy to check that for any x ∈ X, [ 1 1 2 ]T is a worst-case

uncertainty realization, for which [ 1 1 2 ]x = 0. Hence, we have that X = XRO.

We solved problem (6) using IBM CPLEX and obtained the robustly optimal solution xcplex =

[ 0 0 0 ]T . Consider the solution x⋆ = [ 1 1 −1 ]T . For any uncertainty realization different

from the worst-case one we identified above, i.e., p 6= [ 1 1 2 ]T , we have that pTx⋆ > pTxcplex.

For the worst-case realization, both solutions yield an objective value of zero. Hence, solution x⋆

Pareto dominates solution xcplex. In fact, x⋆ is the only PRO solution for problem (6), so that

XPRO = {x⋆}.

There are many interesting questions to be addressed that are theoretically and practically

relevant in view of the notion of PRO solutions we have introduced. Do PRO solutions always

exist and how can we find them efficiently? When is every robustly optimal solution also a PRO

solution? Can we characterize XPRO? Is it a convex set?

Apart from shedding light on the questions raised above, the rest of the paper is devoted to

answering the following two central questions:

1. Given a robustly optimal solution x ∈ XRO, how do we check if x is also PRO? If it is not,

how do we find a PRO solution x̄ ∈ XPRO that Pareto dominates x?

2. How do we optimize over the set of PRO solutions XPRO? From our discussion so far, it

should be obvious that for practical decision making, a manager should always prefer PRO

solutions. In case a manager also has a secondary objective, how can she select a PRO solution

that is optimal with respect to this secondary objective?

3 Finding and Optimizing over PRO Solutions

As suggested at the end of Section 2, several questions of interest can be posed concerning the set

of PRO solutions. The goal of the present section is to provide detailed answers to these questions.

We focus our discussion here on the class of RO problems described by (2), when the feasible set

X and the uncertainty set U are given by (1a) and (1b), respectively. In Section 4, we revisit and

extend our results to several other models of interest.
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3.1 Finding PRO Solutions

In current practice, a decision maker would first formulate a RO model for the particular application

of interest, and then seek to solve the resulting problem, hence determining a robustly optimal

solution x ∈ XRO. However, as suggested by the simple examples in Section 2, the solution x does

not necessarily have to be a PRO solution.

In this context, the first question of interest is how to check whether a given x ∈ XRO is also

PRO, and, if not, how to find an x̄ that is PRO and Pareto dominates x. The following theorem

argues that both of these questions can be answered in a straightforward fashion, by solving a single

linear program (LP) of compact size.

Theorem 1. Given a point x ∈ XRO, consider an arbitrary point p̄ ∈ ri(U), and the following

optimization problem:

maximize
y

p̄Ty

subject to y ∈ U∗

x+ y ∈ X.

(7)

Then, either the optimal value in the problem is zero, in which case x ∈ XPRO, or the optimal value

is strictly positive, in which case x̄ = x + y⋆ Pareto dominates x and x̄ ∈ XPRO, for any optimal

solution y⋆.

Proof of Theorem 1. Note first that y = 0 is always feasible in Problem (7). Hence, the optimal

value is nonnegative. The discussion separates in two disjoint cases.

1. The optimal value is zero. Assume that x /∈ XPRO, i.e., there exists x̃ ∈ X that Pareto

dominates x: (i) pT x̃ ≥ pTx, ∀ p ∈ U , and (ii) ∃ p̂ ∈ U such that p̂T x̃ > p̂Tx. Without loss of

generality, we can additionally take p̂ ∈ ext(U), e.g., as a vertex solution to maxp∈U (x̃− x)T p.

Note that x̃ − x is readily feasible in (7). We claim that p̄T (x̃ − x) > 0. To prove this, recall

that any p̄ ∈ ri(U) has a representation as a strict convex combination of all extreme points of

U (Rockafellar 1970), i.e., ∃λ ∈ R| extU | such that λ > 0, 1Tλ = 1 and p̄ =
∑

i∈I λipi, where

ext(U)
def
= {pi : i ∈ I}. But then,

p̄T (x̃− x) = p̂T (x̃− x)
︸ ︷︷ ︸

>0

+
∑

i∈I : pi 6=p̂

pTi (x̃− x)
︸ ︷︷ ︸

≥0

> 0.
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This immediately leads to the desired contradiction.

2. The optimal value is positive. The conditions in Definition 1 can be directly verified for

x̄, showing that x̄ Pareto dominates x. To see that x̄ ∈ XPRO, consider testing this by solving

problem (7), i.e., with x replaced by x̄ = x+y⋆, and the same p̄. We claim that the optimal solution

to this problem must be zero (which, in turn, implies that x̄ ∈ XPRO). Otherwise, if an optimal

solution ỹ existed, with p̄T ỹ > 0, then y⋆+ ỹ would be feasible and provide a higher objective value

than y⋆ when solving problem (7) to test whether x was PRO, contradicting the fact that y⋆ was

an optimal solution.

Let us comment on the result and its relevance. We claimed that problem (7) is an LP. This

follows since the dual cone U∗ of a polyhedral set U always has a polyhedral representation (Rock-

afellar 1970). For instance, if U is the polytope given by (1b), then, by strong LP duality,

U∗ def
= {y ∈ Rn : yT p ≥ 0, ∀ p ∈ U} = {y ∈ Rn : ∃λ ∈ RmU

+ such that DTλ = y, dTλ ≥ 0}. (8)

This implies that problem (7) can be solved efficiently using standard software (e.g., CPLEX,

Gurobi, SeDuMi, etc.), for sizes that are typical in real-world applications.

Note also that our result is stated for an arbitrary point p̄ in the relative interior of U , so that

problem (7) must only be solved once. Since finding a point in the relative interior of a polyhedron

can be done efficiently by LP techniques (Schrijver 2000), this readily leads to an efficient procedure

for testing whether x ∈ XPRO and (if not) for producing points that Pareto dominate x.

In a different sense, Theorem 1 also confirms that PRO solutions to any robust LP problem

always exist, and suggests the following procedure for finding them.

Corollary 1. Consider an arbitrary point p̄ ∈ ri(U). Then, all the optimal solutions to the problem

maximizex∈XRO p̄Tx are PRO.

The proof follows analogously to that of Theorem 1, and is omitted. It is interesting to note

that finding an x ∈ XPRO is not substantially more difficult than finding an x ∈ XRO – one only

needs to solve an additional LP. Since the potential gains from working with PRO solutions can

be substantial (as illustrated in our examples in Section 5), this suggests that the framework can

have considerable promise in practice.
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The procedure introduced in Corollary 1 also suggests a simple way to generate (potentially

different) solutions in XPRO, by (i) sampling different values p̄ from ri(U), and (ii) solving the

corresponding LP over XRO. The following result confirms that all the points of XPRO can, in

fact, be generated by such a procedure.

Proposition 1. For any x ∈ XPRO, there exists p̄ ∈ ri(U) such that x ∈ argmaxy∈XRO p̄Ty.

Proof of Proposition 1. Let P ∈ Rn×| ext(U)| denote the matrix with columns given by the extreme

points of U , and, without loss of generality, assume that the last | ext(U)| − k columns (where

k ≤ | ext(U)|) correspond to all the points p ∈ ext(U) such that pTx = zRO, ∀x ∈ XRO. Also let

P̄ ∈ Rn×k denote the matrix obtained by keeping the first k columns of P .

Consider any point x ∈ XPRO. To construct the desired p̄ ∈ ri(U), we note that it is enough

to show that ∃λ ∈ Rk such that λ ≥ 1 and x ∈ argmaxy∈XRO yT P̄ λ. The reason is that any

such λ can be extended into λ̃
def
= 1

1T λ+| ext(U)|−k

[
λ
1

]
, which satisfies λ̃ > 0, 1T λ̃ = 1, and x ∈

argmaxy∈XRO yTPλ̃ if and only if x ∈ argmaxy∈XRO yTP
[
λ
0

]
.

To this end, assume (for the purposes of deriving a contradiction) that ∀λ ≥ 1, we have

x /∈ argmaxy∈XRO yT P̄ λ. This implies that

∀λ ≥ 1, ∃ y(λ) ∈ XRO such that
(
y(λ)− x

)T
P̄ λ > 0 ⇒

min
λ≥1

max
y∈XRO

(y − x)T P̄ λ > 0
(∗)
⇔

max
y∈XRO

min
λ≥1

(y − x)T P̄ λ > 0
(∗∗)
⇒

∃ y ∈ XRO : max{1Tµ : µT ≤ (y − x)T P̄ , µ ≥ 0 } > 0.

Step (∗) follows from the minimax theorem in convex analysis, which is applicable here since the

function (y − x)T P̄ λ is bilinear in y and λ, and the set XRO is compact (Rockafellar 1970). Step

(∗∗) follows from strong LP duality, which holds for the given y, since the minimization over λ is

feasible and bounded below. The last step implies that x /∈ XPRO, since y Pareto dominates x.

The previous results also allow formulating conditions under which all the points in XRO are

actually PRO solutions. This is relevant since it would allow a decision maker to not worry about

the issue of Pareto domination, and simply utilize any solution obtained by solving a standard
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robust problem. The next result, whose proof also follows directly from Theorem 1, argues that

this question can also be answered by solving a compact LP.

Corollary 2. Consider any p̄ ∈ ri(U), and the following optimization problem:

maximize
x,y

p̄Ty

subject to x ∈ XRO

y ∈ U∗

x+ y ∈ X.

(9)

Then, XPRO = XRO if and only the optimal value is zero.

Proof of Corollary 2. Let x⋆, y⋆ be optimal solutions of Problem (9). It can be checked that if

the optimal value is positive, x⋆ + y⋆ is PRO and Pareto dominates x⋆ ∈ XRO, implying that

XPRO 6= XRO. The reverse direction follows since an optimal value of zero implies that any

x ∈ XRO is PRO, by Theorem 1.

In practice, it may be relevant to look for simpler conditions guaranteeing XPRO = XRO. By

Corollary 2, one such example is when 0 ∈ ri(U) – in this case, any x ∈ XRO yields the same

objective value of zero, so that XPRO = XRO. It is important to note that this condition applies

to the particular objective used in the robust problem (2), i.e., pTx, where p is uncertain. Clearly,

by suitably translating any uncertainty set U with nonempty relative interior, one may obtain a

new model with objective rTx+ pTx, where r is known exactly, p ∈ Ũ is uncertain, and 0 ∈ ri(Ũ).

For such a model, 0 ∈ ri(Ũ) no longer guarantees that XPRO = XRO. While having zero in the

relative interior may occur in some cases, many of the RO models considered in applications do

not typically satisfy the condition (see our numerical studies in Section 5 and Ben-Tal et al. (2009)

for details). In fact, the condition should never be satisfied if the physical nature of an uncertain

parameter prevented it from switching signs, e.g., if it corresponded to an uncertain yield in a

production process, a probability or a customer demand.

3.2 Optimizing Over the Set of PRO Solutions

The previous section discussed procedures for testing whether a given robustly optimal solution

x ∈ XRO is a PRO, and (more generally) how PRO solutions can be generated. In many settings,
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such results could suffice – if a decision maker was ready to settle for solution x, then using a PRO

solution that Pareto dominates x has essentially no downside. On the contrary, there is considerable

upside, since PRO solutions can perform strictly better when non worst-case scenarios occur.

In practice, however, a manager may have a secondary objective in mind. For instance, choosing

decisions out of XPRO may protect against risk, but the manager may also want to maximize the

performance in a representative scenario r ∈ U (which could, for instance, correspond to the sample

mean, median or mode, obtained from historical data). See, for instance, Bertsimas et al. (2011c),

who use a secondary objective based on fairness.

In this context, a natural question to ask is whether linear objectives can be efficiently optimized

over the set XPRO. More broadly, understanding the structure and properties of the set becomes

relevant. The following example confirms that XPRO is, unfortunately, not a convex set in general.

Example 3 (Non-convexity of XPRO). Consider the following feasible set X and uncertainty set

U :

X = {x ∈ R4 : x1 ≤ 1, x2 + x3 ≤ 6, x3 + x4 ≤ 5, x2 + x4 ≤ 5},

U = conv
({

ei, i ∈ {1, . . . , 4}
})

.

It can be checked that zRO = 1, and XRO = {x ∈ X : x ≥ 1}. Also, x1 =
[
1 2 4 1

]T

and x2 =
[
1 4 2 1

]T
are both PRO solutions (they are the optimal solutions to the problems

of maximizing
[
ǫ ǫ 1 − 3ǫ ǫ

]T
and

[
ǫ 1 − 3ǫ ǫ ǫ

]T
over XRO, respectively, for some small

ǫ > 0). However, the point 0.5x1 + 0.5x2 =
[
1 3 3 1

]T
/∈ XPRO, since it is Pareto dominated by

[
1 3 3 2

]T
∈ XRO.

The non-convex structure of XPRO suggests that solving optimization problems over the set

may be computationally challenging in general. One particular case when this is simple is when

XRO = XPRO, which can be tested using the LP in Corollary 2. When XRO 6= XPRO, the following

result provides some intuition about the structure of the latter set.

Proposition 2. If XRO 6= XPRO, then XPRO ∩ ri(XRO) = ∅.

Proof of Proposition 2. We first argue that, if XRO 6= XPRO, then ∄ p̄ ∈ ri(U) such that p̄Tx =

constant, ∀x ∈ XRO. To see this, note that if such a p̄ existed, then the optimal objective function

in problem (7), for any point x ∈ XRO, would have to be zero, implying that XRO = XPRO.
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Assume now thatXPRO ∩ ri(XRO) 6= ∅, and consider any x in the intersection. By Proposition 1,

there must exist p̄ ∈ ri(U) such that x ∈ argmaxx∈XRO p̄Tx. Furthermore, since p̄Tx is not constant

over XRO, there must exist a y ∈ XRO such that p̄T y < p̄Tx. But then, since x ∈ ri(XRO), there

exists a small enough ǫ > 0 such that x̄
def
= x + ǫ · (x − y) ∈ XRO, for which p̄T x̄ > p̄Tx, a

contradiction.

The previous result shows that the set XPRO is either identical to XRO or is contained in the

boundary of the latter. This result is somewhat encouraging, since it may allow a characterization

of the convex hull of XPRO in particular cases. We do not pursue this further in the present paper.

In a different sense, the results in Corollary 2 also suggest that whether a given x ∈ XRO

(obtained by solving a nominal robust problem) is actually PRO may critically depend on the

solver used. In particular, whenever interior point methods are used4 to obtain x, the resulting

solution may very well not be PRO.

We now return to the main question of interest, i.e., developing a tractable procedure for

optimizing a linear objective over the set XPRO, and present two different approaches for addressing

it. The first involves solving a Mixed-Integer Linear Program (MILP), and is summarized in the

following proposition.

Proposition 3. For any r ∈ Rn and any p̄ ∈ ri(U), let (x⋆, µ⋆, η⋆, z⋆) ∈ Rn×RmX ×R×{0, 1}mX

be an optimal solution of the following MILP

maximize
x,µ,η,z

rTx (10a)

subject to x ∈ XRO (10b)

µ ≤M(1− z) (10c)

b−Ax ≤Mz (10d)

DATµ− d η ≥ Dp̄ (10e)

µ ≥ 0, η ≥ 0, z ∈ {0, 1}mX , (10f)

4This is the case if the solver SeDuMi is used, or if CPLEX is run with the interior point solver selected (as
opposed to the Simplex method). However, even when the Simplex method is used, there is still no reason to a priori

suspect that the optimal solution is a PRO (see Example 2 of Section 2).
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where M is a sufficiently large value. Then, x⋆ is an optimal solution of the problem

maximize
x∈XPRO

rTx.

Proof of Proposition 3. We need to show that x ∈ XRO is PRO if and only if there exist µ ∈ RmX ,

η ∈ R, and z ∈ {0, 1}mX that satisfy (10c)-(10f).

Fix a solution x ∈ XRO. By Theorem 1, x is PRO if and only if, for an arbitrarily chosen

p̄ ∈ ri(U), the optimal value in the problem maximizey {p̄
T y : y ∈ U∗, x + y ∈ X} is zero.

Equivalently, x is PRO if and only if the optimal value in the following primal-dual LP pair is zero:

maximize
λ

p̄TDTλ

subject to dTλ ≥ 0

ADTλ ≤ b−Ax

λ ≥ 0

= minimize
µ,η

µT (b−Ax)

subject to DATµ− d η ≥ Dp̄

µ ≥ 0

η ≥ 0.

To arrive at the primal (maximization), we used the description in (1a) for the set X, the expression

in (8) for the dual cone U∗, and we eliminated the auxiliary variables y. Note that the primal is

trivially feasible, with the choice λ = 0, resulting in an objective value of zero. As such, whenever

its optimal value is (less than or) equal to zero, strong LP duality must hold.

We then have that the optimal value is zero if and only if there exist µ ∈ RmX and η ∈ R

satisfying the constraints of the dual, and such that µT (b −Ax) = 0. This is a bilinear constraint

in variables x and µ. In fact, since µ ≥ 0 and b − Ax ≥ 0, ∀x ∈ XRO, it is equivalent to the

linear complementarity constraints µi · (b− Ax)i = 0, i = 1, . . . ,mX (Luo et al. 1996). The latter

constraint can be modeled using variables z ∈ {0, 1}mX and constraints (10c)-(10d), where M is

sufficiently large.5

The above approach should be very relevant in practice, since large-scale MILPs can be solved

in a matter of seconds using commercially available software, such as CPLEX or Gurobi. In case

this is still an onerous task, one can also resort to the following simple heuristic for optimizing

5Note that we need M ≥ maxi=1,...,mX
max

(

µi, maxx∈X eTi (b − Ax)
)

. The latter term can always be bounded,
since X is compact. The former term may also be bounded, depending on the dual feasible set. In practice, one may
simply choose an increasing sequence of M , stopping when the constraints for µ ≤ M are no longer binding.
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linear functions over XPRO.

Algorithm 1 Sampling procedure for solving the problem maxx∈XPRO rTx

Require: Inequality description for X and U (i.e., A, b, D and d). Number of steps N .
1: X̂PRO ← ∅
2: for i← 1, N do
3: Sample a point p̄ ∈ ri(U).
4: X̂PRO ← X̂PRO ∪ argmaxx∈XRO p̄Tx.
5: end for
6: Solve maximize

x∈X̂PRO rTx.

The central idea behind the algorithm is to use the results in Corollary 1 and Proposition 1,

which suggest that all the PRO solutions can be generated by sampling points p̄ from the relative

interior of U , and solving the LP in Step 4. By keeping track of a set X̂PRO which is a subset of the

true XPRO, this algorithm will always produce a lower bound to the true optimal value. However,

coupled with a suitable upper bound (e.g., obtained by maximizing rTx over XRO) the heuristic

may prove satisfactory in cases where the (exact) MILP in Proposition 3 is difficult to solve.

4 Generalizations

In this section, we discuss several directions for extending our earlier framework and results.

4.1 Uncertainty in the Constraints

Consider a linear optimization problem where the coefficients of the constraints matrix are uncer-

tain. Specifically, consider the following RO formulation

minimize cTx

subject to Ax ≥ b, ∀A ∈ UA,
(11)

where c ∈ Rn and b ∈ Rm are given, and UA ⊂ Rm×n is a bounded polyhedral uncertainty set of the

form typically considered in the RO literature6 (Ben-Tal et al. 2009). Problems with uncertainty

in the vectors c and b can be readily reformulated so as to have the same form as Problem (11).

6The typical modeling assumption is that the matrix A depends affinely on a collection of primitive uncertain
quantities, i.e., A(ξ) =

∑m

i=1 Aiξi, where Ai ∈ Rm×n are known, and ξ ∈ Rm denotes the primitive uncertain param-
eters, assumed to lie in an uncertainty set Ξ ⊂ Rm. As such, whenever Ξ has a compact polyhedral representation,
the corresponding set UA = {A(ξ) : ξ ∈ Ξ} does, as well (see Ben-Tal et al. (2009) for details).
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For instance, in case c is uncertain, one can consider an equivalent epigraph formulation, where the

objective is replaced by an additional variable t and the extra constraint t− cTx ≥ 0 is added.

Let XRO be the optimal set and zRO the optimal value of Problem (11). The vector of slacks

for constraints in (11) for a solution x and uncertainty realization A, denoted by s(x,A), is equal

to

s(x,A)
def
= Ax− b, ∀x ∈ Rn, A ∈ UA.

In view of the above, one can express XRO as follows

XRO =
{
x ∈ Rn : cTx ≤ zRO, s(x,A) ≥ 0, ∀A ∈ UA

}
. (12)

A compact polyhedral description of XRO is readily available whenever such a description is also

available for UA, which we have assumed to be the case here.

According to classical RO, a robustly optimal solution x ∈ XRO in this setting protects us from

worst-case realizations of A ∈ UA, by ensuring that the slacks are nonnegative. Moreover, it does so

at a minimum cost cTx = zRO. That is, by selecting a robustly optimal solution, we are guaranteed

that no other solution exists that yields nonnegative slacks under all uncertainty scenarios, and at

a lower cost than zRO. However, in a similar spirit to our discussion in Section 2, such a selection

criterion does not “optimize slacks” under all possible uncertain realizations – it fails to guarantee

that no other solution exists yielding “larger” slacks, and at the same cost of zRO!

The above observation gives rise to the notion of PRO solutions for formulation (11). In order to

evaluate the slacks provided by different solutions and uncertainty realizations, we introduce a slack

value vector v ∈ Rm that quantifies the relative value of slack in each constraint.7 In particular,

the slacks provided by solution x, under scenario A, are valued at

vT s(x,A) = vT (Ax− b), ∀x ∈ Rn, A ∈ UA.

We have the following definition:

Definition 2. A solution x is called a Pareto Robustly Optimal (PRO) solution for Problem (11)

7We choose to compare two slack vectors by scalarization through the value vector v ∈ Rn, a method that is
common in multiobjective optimization (Boyd and Vandenberghe 2004). However, other multidimensional orderings
may be more suitable in particular settings (for instance, the Lorenz order). Extending our framework to such cases
is an interesting direction, which we do not pursue in the present paper.
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if it is robustly optimal, i.e., x ∈ XRO, and ∄ x̄ ∈ XRO such that

vT s(x̄, A) ≥ vT s(x,A), ∀A ∈ UA, and

vT s(x̄, Ā) > vT s(x, Ā), for some Ā ∈ UA.

Similarly to our discussion in Section 2, PRO solutions in this setting guarantee that slacks

are optimized for all uncertainty realizations A ∈ UA. Compared with robustly optimal solutions,

PRO solutions have the same qualities, i.e., they ensure feasibility at the lowest cost possible,

but, in addition, they also provide potentially higher slacks (as valued through vector v). This is

particularly important for the following reasons:

(a) In the majority of problems of the form (11) that are derived from practical applications,

one of the constraints typically involves the actual realized cost, e.g., due to an epigraph

reformulation.8 As such, slack in that particular constraint immediately translates into lower

actual realized cost. We refer the reader to our Numerical Studies in Sections 5.2-5.3 for

examples.

(b) Solutions that provide zero or low values of slack are potentially vulnerable to unforseen

model mis-specifications that frequently occur in practice. For the value of slack, we refer the

reader for instance to Joshi and Boyd (2009).

Hence, similarly to the notion studied in Section 2, PRO solutions in this setting have no downside

and considerable potential upside.

Methodologically, the conditions of Pareto domination in Definition 2 are equivalent to

(AT v)T x̄ ≥ (AT v)Tx, ∀A ∈ UA, and

(ĀT v)T x̄ > (ĀT v)Tx, for some Ā ∈ UA.

If we let p
def
= AT v and

U
def
=

{
AT v : A ∈ UA

}
, (13)

8Note that an epigraph reformulation is necessary not only in cases where the actual cost vector is uncertain (as
discussed above), but also when the cost of the problem is piece-wise affine, see for instance Bertsimas et al. (2010).
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we arrive at the same formulation of Pareto efficiency as in Definition 1. Using this observation,

one can extend all our findings in Section 3.1. For instance, the extended Corollary 1 would state:

Corollary 3. Consider an arbitrary point p̄ ∈ ri(U), where U is given by (13). Then, all the

optimal solutions to maximizex∈XRO p̄Tx are PRO for Problem (11), where XRO is given by (12).

As such, all the remarks in Section 3.1 pertaining to our results and their practical relevance

hold in the present setting, as well.

4.2 Mixed-Integer Linear Optimization Models

A second direction for extending our results is the case when some of the decisions x are constrained

to be integers. This is of great relevance in practical applications, since many models of real-world

processes involve integrality constraints (see, e.g., Bertsimas and Sim (2003)).

To this end, the present section is concerned with the following problem

maximize
x∈X

min
p∈U

pTx

X =
{
x ∈ Rn : Ax ≤ b, xi ∈ Z, ∀ i ∈ I

}

U =
{
p ∈ Rn : Dp ≥ d

}
,

where I ⊆ {1, . . . , n} is a set of indices, and A, b, D and d are known.

Our goal is to revisit the main results of Section 3, and investigate their validity in the present

setting. As a general overview, all the critical results can be suitably adapted to the new model:

by solving particular MILPs, one can (a) test whether a given x is a PRO solution (and, if not,

obtain a PRO solution x̄ that Pareto dominates it), (b) generate PRO solutions, and (c) optimize

linear objectives over the set of PRO solutions. The sole results of Section 3 that no longer hold

here are Proposition 1 and Proposition 2 – in particular, not all PRO solutions can be recovered by

maximizing linear objectives of the form p̄Tx where p̄ ∈ ri(U), and the set XPRO is not necessarily in

the boundary of XRO when the two are different. For reasons of brevity, we refrain from re-proving

the (new) claims, since the arguments exactly parallel their counterparts in Section 3.

First, note that the representation for the set of robust optimal solutions XRO remains identical
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to expression (3), i.e.,

XRO =
{
x ∈ X : ∃ y ∈ RmU

+ such that DT y = x, yTd ≥ zRO
}
.

Here, however, the optimal (worst-case) value for the problem, zRO, is obtained by solving an MILP

(Bertsimas and Sim 2003), and the set XRO also includes integrality constraints, due to X.

In this context, we can reaffirm our first main result in Theorem 1, which holds true without any

modifications. In particular, to test whether a point x ∈ XRO is also a PRO, one only needs to solve

the optimization problem (7) for an arbitrarily chosen p̄ in ri(U). As before, if the optimal value

is exactly zero, then x ∈ XPRO. Otherwise (i.e., strictly positive optimal value), x + y⋆ ∈ XPRO,

and it Pareto dominates x. We note that the sole change from the result in Section 3.1 is that

problem (7) is now an MILP, instead of an LP. However, the complexity of finding a PRO solution

compared to just finding a solution x ∈ XRO is still the same, as both now require solving MILPs.

As before, this theorem readily leads to a simple procedure for finding points x ∈ XPRO. In

particular, a result analogous to Corollary 1 holds: for any p̄ ∈ ri(U), all the optimal solutions to

the MILP maximizex∈XRO p̄Tx are guaranteed to be PRO points. Furthermore, just as stated in

Corollary 2, determining whetherXRO = XPRO resumes to solving the MILP in (9), and comparing

the optimal value with zero.

This result also brings us to the first main point of departure from Section 3. Recall that,

by choosing different points p̄ ∈ ri(U), the union of the sets argmaxx∈XRO p̄Tx was guaranteed

to contain all PRO solutions for the case without integrality constraints (see Proposition 1 in

Section 3.1). Unfortunately, that is no longer the case here. In particular, there may be points

x ∈ XPRO that lie in the strict interior of the set conv(XRO), and hence cannot be recovered by

maximizing a linear functional over XRO. The following example presents such an instance.

Example 4 (Strictly Interior Point in XRO). Let X = {x ∈ Z2 : x ≥ 0, 1
2x1 +

1
5x2 ≤ 1}, and

U = conv
(
{e1, e2}

)
. It can be checked that

XRO =
{
x ∈ Z2 : x ≥ 2 · 1

}

XPRO =
{
[0 2]T , [5 0]T , [1 2]T

}
.
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In particular, x̄ = [1 2]T ∈ ri
(
conv(XRO)

)
, and therefore ∄ p ∈ ri(U) such that x̄ ∈ argmaxx∈XRO pTx.

The example above also proves that there are cases in which XRO 6= XPRO, and some points

in XPRO lie in the strict (relative) interior of XRO, so that Proposition 2 also does not hold.

Due to the same reason, the heuristic suggested in Algorithm 1 for optimizing a linear functional

over XPRO may not be very effective: one can certainly still apply it, but since sampling points

p̄ ∈ ri(U) is no longer guaranteed to generate all the points in XPRO, one may be unable to recover

the exact (true) optimal value.

However, we note that the problem of optimizing linear objectives over XPRO can nonetheless

be dealt with in a scalable fashion. In particular, the main result in Proposition 3 still holds, and,

for any r ∈ Rn, the optimal value in the problem maximizex∈XPRO rTx can be obtained by solving

the MILP in (10). As a result, optimizing over XPRO when some decisions are integral is as easy

as finding a single x ∈ XRO, unlike the setting discussed in Section 3.2.

5 Numerical Studies

In this section, we evaluate the implications of our findings via numerical studies. We focus on three

application areas in which RO has proven to be very powerful. In particular, we study three classical

problems from the literature drawn from finance, inventory management and project management

applications.

We generate multiple instances of the problems we consider, using random data, with the

purpose of assessing

(a) the frequency at which computed robustly optimal solutions are Pareto dominated by other

solutions, and

(b) the performance gain by considering PRO solutions in practice instead of dominated robustly

optimal solutions.

For every generated instance, we solve an equivalent problem to Problem (9), in order to identify

dominated robustly optimal solutions and associated PRO solutions.

We find that in approximately 15% of the instances we generate (across all three problems) there

exist robustly optimal solutions that are Pareto dominated by other PRO solutions. Moreover, using
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the associated PRO solutions in these cases yields a relative performance gain that can be as high

as 74%, compared to using the dominated robustly optimal solutions.

5.1 Portfolio Optimization

RO has been widely studied and used in financial services applications, and particularly in portfolio

optimization problems. We refer the reader to Ben-Tal et al. (2000), Goldfarb and Iyengar (2003),

Bertsimas and Pachamanova (2008), Natarajan et al. (2008), Calafiore (2007), Ben-Tal et al. (2010),

Gabrel et al. (2012) and the book Fabozzi et al. (2007) for a thorough overview.

In this section, we consider a simple portfolio selection problem that has the form we studied

in Section 2, i.e., a linear program with uncertainty in the objective.

Problem description. A manager wishes to invest her wealth in n+ 1 investment opportunities

or assets. We denote the return of the ith asset with ri, i = 1, . . . , n+1. The (n+1)th asset yields

a known, deterministic return of µn+1, i.e.,

rn+1 = µn+1,

with no associated risk. On the contrary, all remaining assets are risky. In particular, the return

of the ith asset is equal to

ri = µi + σi ζi, i = 1, . . . , n,

where µi is the expected return of the ith asset, ζi is a random, uncertain shock affecting the return

of the ith asset and σi is a volatility parameter. The values of the shocks ζ ∈ Rn are assumed to

be bounded between −1 and 1, and are assumed to sum up to zero. Uncertainty sets of that style

have been introduced and used in Bandi and Bertsimas (2012).

Let x ∈ Rn+1 be the target portfolio composition vector, i.e., xi is the fraction of the wealth

that the manager wishes to invest in the ith asset. We require that (a) no shorting is allowed, i.e.,

x ≥ 0, and that (b) the net fraction of the wealth invested in any of the asset groups {1, . . . , N/4},

{N/4, . . . , N/2}, {N/2, . . . , 3N/4} and {3N/4, . . . , N} does not exceed 25%, for diversification pur-

poses. The objective of the manager is to select a portfolio composition so as to maximize its

worst-case return.

26



A formulation of the above RO problem is as follows:

maximize min
ζ∈U

n+1∑

i=1

ri xi

subject to ri = µi + σi ζi, i = 1, . . . , n

rn+1 = µn+1

(k+1)N
4∑

i=1+ kN
4

xi ≤ 0.25, k = 0, 1, 2, 3

1Tx = 1

x ≥ 0,

with variables r ∈ Rn+1, x ∈ Rn+1 and U = {ζ ∈ Rn : −1 ≤ ζ ≤ 1, 1T ζ = 0}.

Data. We consider 10,000 instances of problems of size n = 8. The expected returns of the risky

assets {µi}
n
i=1 are set to 3%, while the volatility parameters {σi}

n
i=1 are independently sampled

from a uniformly distributed random variable between 1% and 10%. The risk-free return µn+1 is

also independently sampled from the same random variable.

Results. The average number of instances in which a robustly optimal solution was identified that

was not a PRO solution was 31%. For these instances, we computed the maximum performance gap

(in terms of the objective) one could get if the PRO solution were used instead of the dominated

robustly optimal solution we obtained. A histogram of the associated (relative) performance gaps

is depicted in Figure 2(a). The median performance gap recorded was 12%, while the maximum

was as high as 74%.

5.2 Inventory Management

A different stream of applications in which RO has proven particularly useful has been inventory

and supply chain management. For a thorough review and many references, we direct the interested

reader to Ben-Tal et al. (2005), Bertsimas and Thiele (2006), Adida and Perakis (2006), Bienstock

and Özbay (2008), Bertsimas et al. (2010), Bertsimas et al. (2011b), See and Sim (2010), the review

papers Bertsimas et al. (2011a), Gabrel et al. (2012) and the book Ben-Tal et al. (2009).

In this section, we consider a single warehouse multiple retailer setting, where the manager
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Figure 2: Histograms of maximal performance gains by considering PRO solutions in the numerical
studies of (a) Section 5.1 and (b) Section 5.2.

needs to make stocking decisions in the face of uncertain demand. From a RO perspective, the

resulting problem is a two-stage adjustable problem with fixed recourse.

Problem description. Consider a retail network consisting of a single warehouse and N different

retail points, indexed by i = 1, . . . , N , where customer demand is realized. For simplicity, we

consider the case where a single item is offered for sale.

We have C units of the item available in the warehouse that need to be distributed to the retail

points. The ith retail point holds zero initial inventory and is capable of stocking at most ci units.

The transportation costs for distributing, or equivalently stocking inventory at the ith retail point

is ti currency units per unit of inventory. Similarly, we assume that there is an operating cost at

the ith retail point equal to hi currency units per unit of inventory.9 The revenues from sales at

the ith retail point are ri currency units per unit of inventory sold.

Customer demand at each point is uncertain and is driven by nf factors that affect the market.

In particular, we assume that the demand at the ith point, denoted by di, is equal to

di = d0i + qTi z, i = 1, . . . , N,

where d0i is the nominal expected demand, z ∈ Rnf is a vector of the realized values of the nf

9For simplicity, we assume no fixed transportation or operating costs, although one could include them in a
straightforward manner.
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factors, and qi ∈ Rnf is a vector of parameters that measure the exposure of demand di to each of

the market factors. The values of the market factors are uncertain. However, we assume that they

are bounded, as is their sum, as follows:

−b · 1 ≤ z ≤ b · 1, −B ≤ 1T z ≤ B,

where b and B are known parameters.

Let s ∈ RN be a vector containing the stocking decisions for all points. Similarly, y ∈ RN is

a vector with the sales at each point. Customer demand is realized after stocking decisions have

been made. Thus, the sales at the ith point are equal to

yi = min {si, di} , i = 1, . . . , N.

The manager makes the stocking decisions so as to maximize worst-case profits, denoted by P .

The corresponding RO formulation is as follows:

maximize P (14a)

subject to P ≤ rT y − (t+ h)T s (14b)

y ≤ s (14c)

y ≤ d0 +Qz, ∀z ∈ U (14d)

1T s = C (14e)

s ≤ c (14f)

s ≥ 0, (14g)

with variables P ∈ R, y ∈ RN and s ∈ RN , U = {z ∈ RN : −b · 1 ≤ z ≤ b · 1, −B ≤ 1T z ≤ B} and

Q =
[

q1 . . . qN

]T

. Constraint (14b) corresponds to an upper bound on the worst-case profits,

equal to revenues from sales minus transportation and operations costs. According to constraints

(14c)-(14d), sales are less than or equal to available stock and realized demand. Constraints (14e)-

(14f) correspond to net and individual point capacity constraints, respectively.

Problem (14) is an adjustable RO problem, with fixed recourse (sales y and worst-case profits
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P ). To solve it, we approximate it with its Affine Adjustable Robust Counterpart (AARC), a

popular and powerful heuristic (see Ben-Tal et al. (2004), Ben-Tal et al. (2005), Bertsimas et al.

(2010), Iancu et al. (2012) and Ben-Tal et al. (2009)).

The AARC of Problem (14) is obtained by substituting all variables with affine functions of the

uncertainty variables z and new auxiliary variables. The resulting formulation is of the same form

as Problem (11). For our notion of PRO solutions, we require from robustly optimal solutions to

maximize slack of constraint (14b). In other words, we employ our methodology from Section 4.1

using a slack value vector equal to a unit vector, where the component corresponding to constraint

(14b) is equal to one.

Note that slack of constraint (14b) depends on the actual uncertainty realization. If a worst-case

demand scenario realized, the profits on the right-hand side are equal to the worst-case profits P ,

and the slack is zero. For non worst-case realizations however, slack in the constraint is possible,

which then translates to additional profits on top of the worst-case value of P (depending on

the actual demand realization). PRO solutions ensure “optimal performance” under any demand

realization by maximizing this slack, unlike robustly optimal solutions that ignore it.

Data. We consider 10,000 instances of problems of size N = 10. The available inventory is set

to C = 2, 000 units. All other problem data is independently sampled from uniformly distributed

random variables. Inventory capacities at individual points c ∈ RN are drawn between 300 and

500. Transportation t ∈ RN and operations cost rates h ∈ RN are drawn between 1 and 3. Sales

revenues rates r ∈ RN are drawn between 20 and 40.

Nominal demand values d0 ∈ RN are drawn between 100 and 200. We fix the number of market

factors to nf = 2. Exposure parameters Q ∈ RN×nf are drawn between -2 and 2. Parameters b

and B that bound the factor values are set to 5 and 25, respectively.

Results. The average number of instances in which a robustly optimal solution was identified that

was not a PRO solution was 16%. For these instances, we computed the maximum performance gap

(in terms of actual profits) one could get if the PRO solution were used instead of the dominated

robustly optimal solution we obtained. A histogram of the associated (relative) performance gaps

is depicted in Figure 2(b). The median performance gap recorded was 4.8%, while the maximum

was as high as 45%.
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5.3 Project Management

The third application that we consider is focused on robust models for project management. These

have been studied in several papers, including Cohen et al. (2007), Goh et al. (2010), and Adida and

Joshi (2009). Here, we consider a model discussed in Ben-Tal et al. (2009), where a manager needs

to make resource allocation decisions in the face of uncertain processing times. Methodologically,

the resulting problem is a two-stage adjustable RO problem with fixed recourse.

Problem description. Consider a project that involves multiple events and activities or tasks to

be completed. Projects of that kind are typically analyzed and represented using PERT diagrams

(Ben-Tal et al. 2009). A PERT diagram is a directed, acyclic graph consisting of a set of nodes

N , which correspond to the project events, and a set of edges E , which correspond to the project

activities or tasks.

Among the nodes there is a start node S and an end node F that correspond to the start

and end of the project. The graph represents logical precedences between the project tasks and

events as follows. A task, represented by an edge, starts being processed only after the event

that corresponds to the node the task originates from, has occurred. The task is completed after

some uncertain processing time. An event occurs only when all the tasks that correspond to all its

incoming edges have been completed.

We consider the project of creating a factory studied by Ben-Tal et al. (2009). The project

entails the acquirement and delivery of equipment (event A), build of facility #1 (event B) and of

facility #2 (event C). The underlying tasks are as follows: (a) acquiring and delivering of equipment,

(b) building facility #1 and (c) facility #2, (d) installing equipment in facility #1 and (e) in facility

#2, (f) training personell at facility #1 and (g) at facility #2. The associated PERT diagram is

given in Figure 3(a).

To introduce some notation, let task e ∈ E originate from node s(e) and terminate at node f(e).

Its processing time, denoted by τe, is equal to

τe = τ0e + δe, ∀e ∈ E ,

where τ0e is the standard processing time of task e and δe is an unforseen delay. We assume that
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Figure 3: The PERT diagrams of the two projects considered in Section 5.3.

the unforseen delays of all tasks are bounded, as is their sum, i.e.,

∑

e∈E

δe ≤ B, and 0 ≤ δe ≤ b, ∀e ∈ E ,

where B and b are known parameters.

The manager has the ability of expediting some of the tasks by allocating a scarce resource

to them, e.g., by assigning extra workforce or by spending money on purchasing/ upgrading task-

related equipment. Let ze denote the amount of the resource allocated to task e ∈ E . We assume

that the resource is divisible.10 The associated reduction in processing time of task e is then r ze,

where r is the time reduction rate per unit of resource allocated. The maximum resource amount

that can be allocated to any task is equal to c.

The manager has C units of the resource that need to be allocated so as to minimize the worst-

case completion time T of the project. If we denote the time that event ν ∈ N occurs with tν , the

10One could extend our results in case the resource is indivisible, by simply enforcing the variables ze to be discrete.
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following formulation captures the manager’s problem:

minimize T (15a)

subject to tF ≤ T (15b)

tS = 0 (15c)

tf(e) − ts(e) ≥ τ0e + δe − r ze, ∀e ∈ E , ∀δ ∈ U (15d)

1T z = C (15e)

z ≤ c (15f)

z ≥ 0, (15g)

with variables T ∈ R, t ∈ R|N |, z ∈ R|E| and U = {δ ∈ R|E| : 0 ≤ δ ≤ b · 1, 1T δ ≤ B}. Constraints

(15b)-(15c) determine the end and start time of the project. Constraint (15d) enforces logical

precedence of tasks and events as discussed above. Constraints (15e)-(15f) limit the amount of the

resource to be allocated.

Problem (15) is an adjustable RO problem, with fixed recourse (completion times of the project

T and the events t). To solve it, we approximate it with its AARC, similarly to the inventory

management problem in the previous section.

For our notion of PRO solutions, we require from robustly optimal solutions to maximize slack

of constraint (15b), as it translates to potential reduction of the worst-case value of T (depending

on the actual delay realizations). That is, we again employ our methodology from Section 4.1 using

a slack value vector equal to a unit vector, where the component corresponding to constraint (15b)

is equal to one.

We study separately two PERT graphs, depicted in Figure 3:

(a) the topology from Ben-Tal et al. (2009) we discussed thus far, and

(b) a more complicated topology.

Data. We consider 10,000 instances for each case (a) and (b). The standard processing times

τ0 ∈ R|E| are independently sampled from a uniformly distributed random variable (a) between 1

and 10, and (b) between 5 and 20. Parameters B and b that bound the unforseen delays are set

to 6 and 2 for case (a), respectively, and 25 and 5 for case (b). The processing time reduction rate
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Figure 4: Histograms of maximal performance gains by considering PRO solutions in the numerical
studies of Section 5.3.

r is (a) 1 and (b) 5. The maximum allowable resource at each task c is set to 1 for (a). For case

(b), we replace constraint (15f) with τ0e ≥ r ze, ∀e ∈ E , in order to ensure nonnegativity of task

processing times. The resource amount available C is set to (a) 3 and (b) 10.

Results. The average number of instances in which a robustly optimal solution was identified

that was not a PRO solution was 3.5% for case (a) and 7% for case (b). For these instances,

we computed the maximum performance gap (in terms of actual completion time) one could get

if the PRO solution were used instead of the dominated robustly optimal solution we obtained.

A histogram of the associated (relative) performance gaps is depicted in Figure 4. The median

performance gap recorded was (a) 4.5% and (b) 10.5%, while the maximum was as high as (a)

14.5% and (b) 28%.

6 Conclusions

In this paper, we adapted the well known concept of Pareto efficiency in the context of the popular

robust optimization (RO) methodology. We argued that, by focusing exclusively on worst-case

outcomes, the classical RO paradigm need not produce solutions that are also Pareto optimal,

leading to inefficiencies and sub-optimal performance in practice. We provided a basic theoretical

characterization of Pareto robustly optimal (PRO) solutions, and extended the RO framework by
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proposing practical methods that verify Pareto optimality, and generate solutions that are PRO.

Critically important, our approach involves solving optimization problems that are of the same

complexity as the underlying robust problems, hence the potential improvements come at essentially

no computational cost. Our numerical experiments, drawn from three different application areas

(portfolio optimization, inventory management, and project management), demonstrated that PRO

solutions have a significant upside compared with solutions obtained via classical RO methods, at

no extra cost or downside.

References

Adida E, Pradnya J. 2009. A robust optimisation approach to project scheduling and resource allocation.

International J. of Services, Operations and Informatics 4(2) 169–193.

Adida E, Perakis G. 2006. A robust optimization approach to dynamic pricing and inventory control with

no backorders. Math. Prog. 107 97–129.

Bandi C, Bertsimas D. 2012. Tractable stochastic analysis in high dimensions via robust optimization. Math.

Prog. 134 23–70.

Ben-Tal A, Bertsimas D, Brown DB. 2010. A soft robust model for optimization under ambiguity. Oper.

Res. 58 1220–1234.

Ben-Tal A, El-Ghaoui L, Nemirovski A. 2009. Robust Optimization. Princeton Series in Applied Mathematics,

Princeton University Press.

Ben-Tal A, Boaz G, Nemirovski A, Vial J-P. 2005. Retailer-supplier flexible commitments contracts: A

robust optimization approach. Manufacturing & Service Oper. Management 7(3) 248–271.

Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A. 2004. Adjustable robust solutions of uncertain linear

programs. Math. Prog. 99(2) 351–376.

Ben-Tal A, Margalit T, Nemirovski A. 2000. Robust modeling of multi-stage portfolio problems. H. Frenk,

K. Roos, T. Terlaky, S. Zhang, eds., High Performance Optimization. Kluwer Academic Publishers,

303–328.

Ben-Tal A, Nemirovski A. 2002. Robust optimization - methodology and applications. Math. Prog. 92(3)

453–480.

Ben-Tal A, Nemirovski A. 2007. Selected topics in robust convex optimization. Math. Prog. 112(1) 125–158.

Bertsimas D, Caramanis C, Brown DB. 2011a. Theory and Applications of Robust Optimization. SIAM

Review 53(3) 464–501.

35



Bertsimas D, Farias VF, Trichakis N. 2012. On the efficiency-fairness tradeoff. Management Sci. To appear.

Bertsimas D, Iancu DA, Parrilo PA. 2010. Optimality of Affine Policies in Multistage Robust Optimization.

Math. of Oper. Res. 35(2) 363–394.

Bertsimas D, Iancu DA, Parrilo PA. 2011b. A hierarchy of near-optimal policies for multistage adaptive

optimization. IEEE Transactions on Automatic Control 56(12) 2809 –2824.

Bertsimas D, Litvinov E, Sun X, Zhao J, Zheng T. 2011c. Adaptive robust optimization for the security

constrained unit commitment problem. Working paper.

Bertsimas D, Pachamanova D. 2008. Robust multiperiod portfolio management in the presence of transaction

costs. Computers and Oper. Res. 35(1) 3–17.

Bertsimas D, Sim M. 2003. Robust Discrete Optimization and Network Flows. Math. Prog. 98(1-3) 49–71.

Bertsimas D, Thiele A. 2006. A Robust Optimization Approach to Inventory Theory. Oper. Res. 54(1)

150–168.
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