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Binary programs with a quadratic objective function are NP-hard in general, even if the linear optimization

problem over the same feasible set is tractable. In this paper, we address such problems by computing

quadratic global underestimators of the objective function that are separable but not necessarily convex.

Exploiting the binary constraint on the variables, a minimizer of the separable underestimator over the

feasible set can be computed by solving an appropriate linear minimization problem over the same feasible

set. Embedding the resulting lower bounds into a branch-and-bound framework, we obtain an exact algorithm

for the original quadratic binary program. The main practical challenge is the fast computation of an

appropriate underestimator, which in our approach reduces to solving a series of semidefinite programs. We

exploit the special structure of the resulting problems and adapt an algorithm of Dong (2014) in order to

obtain a tailored coordinate-descent method for their solution. Our extensive experimental results on various

quadratic combinatorial optimization problems show that our approach outperforms both Cplex and the

related QCR method as well as the SDP-based software BiqCrunch on instances of the quadratic shortest

path problem and the quadratic assignment problem.
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1. Introduction

We consider binary quadratic optimization problems of the form

min f(x) := x>Qx+L>x

s.t. x∈X ,
(1)

where Q ∈ Rn×n is a symmetric matrix, L ∈ Rn is a vector and X ⊆ {0,1}n is the set

of feasible binary vectors. Many combinatorial optimization problems can be naturally

formulated in this fashion, e.g., network design problems with reload costs (Amaldi et al.

2011, Gamvros et al. 2012), the angular metric TSP (Aggarwal et al. 1999), or crossing
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minimization problems for bipartite graphs (Buchheim et al. 2010). In this paper, we focus

on combinatorial optimization problems where the linear counterpart of Problem (1),

min c>x

s.t. x∈X ,
(2)

can be solved efficiently for any vector c∈Rn. However, we do not make any assumptions on

how Problem (2) is solved. In particular, any combinatorial algorithm can be used, neither

a compact linear description nor a polynomial-time separation algorithm for conv (X) are

required. From a practical point of view, our approach can also be useful if Problem (2) is

NP-hard but significantly easier to solve than Problem (1), e.g., for the quadratic knapsack

problem. Note that the quadratic problem (1) is usually NP-hard even if the underlying

linear problem (2) is tractable. This is true, e.g., for the unconstrained case X = {0,1}n,

where Problem (1) is equivalent to unconstrained quadratic binary optimization and hence

to the max-cut problem. For another example, the quadratic spanning tree problem is

NP-hard (Assad and Xu 1992), while the linear counterpart can be solved very quickly,

e.g., by Kruskal’s algorithm (Kruskal 1956).

The standard approach for solving problems of type (1) is based on linearization. In a

first step, a new variable yij representing the product xixj is introduced for each pair i, j.

Then the convex hull of feasible solutions in the extended space is usually approximated

either by a polyhedral relaxation or by semidefinite programming (SDP) models, or by

a combination of both. The main focus lies on enforcing the connection between x- and

y-variables. For the unconstrained case, we point the reader to (Palagi et al. 2012) and the

reference therein. In the constrained case, most approaches presented in the literature are

highly problem-specific; only few general techniques have been devised, see e.g. (Caprara

2008). A different approach to binary optimization is the QCR technique (Billionnet et al.

2009). Instead of linearizing the problem, it is reformulated as an equivalent binary opti-

mization problem with a convex quadratic objective function. This allows to apply more

powerful software tailored for convex problems. In particular, it is now possible to solve

the continuous relaxation of the problem efficiently. The QCR approach is designed such

that this relaxation yields as tight lower bounds as possible. Finally, outer approximation

techniques have been devised, but mostly for more general (mixed-)integer versions of (1)

and often assuming convexity; see, e.g., (Bonami et al. 2008, Buchheim and Trieu 2013).
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In this paper, we address Problem (1) by computing underestimators g of the quadratic

objective function f . A lower bound for (1) can then be computed by minimizing g(x)

over x∈X. Unlike the QCR approach, we however do not use convex functions in general,

but separable non-convex functions. The main idea of our approach is to determine a

good separable underestimator g of f in the first step; in the second step we replace the

separable quadratic function by a linear function exploiting the binarity of all variables.

The minimization of g(x) over x ∈ X can thus be performed by solving Problem (2);

convexity of the underestimator is not required. The resulting lower bounds are embedded

into a branch-and-bound scheme for solving Problem (1) to optimality. Compared with

linearization-based methods, the advantage of our approach lies in the fact that we do

not need to add any additional variables. Moreover, we do not require any polyhedral

knowledge about conv (X) and do not use any LP solver at all. At the same time, any

algorithmic knowledge about the linear problem (2) is exploited directly.

In order to obtain a fast branch-and-bound scheme, we compute underestimators that

only depend on the matrix Q, but not on the linear part L of the objective function.

Using an appropriate branching scheme as already proposed in (Buchheim et al. 2012,

2013), we can make sure that only n different matrices Q arise in the entire branch-and-

bound process. For each of the corresponding matrices, an underestimator is computed in

the preprocessing phase by solving an SDP. For this, we developed a tailored coordinate-

descent algorithm exploiting the particular structure of the latter, which is an adaptation

of an algorithm proposed by Dong (2014).

This paper is organized as follows. In the next section, we formalize the main ideas

of our approach. In Section 3, we present strategies to determine best possible separable

underestimators; we also discuss the connection to other SDP-based bounds and a possible

improvement of lower bounds by taking into account valid linear equations or box con-

straints. Details of our branch-and-bound algorithm are given in Section 4. The coordinate-

descent algorithm for computing underestimators is sketched in Section 5. In Section 6, we

evaluate our approach computationally, applying it to instances of the quadratic assign-

ment problem, the quadratic knapsack problem and the quadratic shortest path problem.

We compare our approach with Cplex, with the QCR method, and with BiqCrunch.
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2. Notation and basic idea

Our aim is to derive a lower bound for Problem (1) by solving the linear problem (2) for

an appropriate vector c∈Rn. To this end, for an arbitrary z ∈Rn, we rewrite f(x) as

f(x) = (x− z)>Q(x− z) + (L+ 2Qz)>x− z>Qz . (3)

For a given vector t∈Rn, define

g(t)
z (x) := (x− z)>Diag(t)(x− z) + (L+ 2Qz)>x− z>Qz

=
n∑
i=1

tix
2
i +

n∑
i=1

(−2ziti + li + 2q>i z)xi +

n∑
i=1

z2
i ti− z>Qz ,

where qi denotes the i-th row of Q. Then g
(t)
z (z) = f(z), i.e., the function g

(t)
z touches f

in z. By (3), it is easy to see that the function g
(t)
z is a global underestimator of f if and

only if Q�Diag(t). In this case, the desired lower bound can be obtained as

min g(t)
z (x) s.t. x∈X . (4)

Since g
(t)
z is separable by construction and X ⊆ {0,1}n, we can replace Problem (4) by the

equivalent problem

min l(t)z (x) s.t. x∈X (5)

where the function

l(t)z (x) :=
n∑
i=1

tixi +
n∑
i=1

(−2ziti + li + 2q>i z)xi +
n∑
i=1

z2
i ti− z>Qz

= ((1− 2z) · t+L+ 2Qz)>x+ (z2)>t− z>Qz

is bilinear in x, t∈Rn. Here we use · to denote entrywise multiplication and define z2 := z ·z.

Note that Problem (5) is of type (2).

3. Optimal separable underestimators

The choice of t is crucial for the strength of the lower bound resulting from (5). As discussed

above, this lower bound is valid for each t ∈ Rn with Q � Diag(t). Our objective is to

maximize the lower bound induced by t. In other words, our aim is to solve the problem

max minx∈X l
(t)
z (x)

s.t. Q�Diag(t) .
(6)



Buchheim and Traversi: Quadratic combinatorial optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

We will show that Problem (6) can be solved efficiently with a subgradient method for

an arbitrary choice of the touching point z, while it reduces to an SDP for the particular

choice z = 1
2
1. Before, we note that the bound given by (6) is invariant under any shifting

of weights between diag(Q) and L, provided that the touching point z remains unchanged.

3.1. Invariance under reformulation of the objective function

As we have X ⊆ {0,1}n, minimizing f(x) over x∈X is equivalent to minimizing

fα(x) = x>(Q+ Diag(α))x+ (L−α)>x

over x∈X, for any α∈Rn. One may ask whether the choice of α has an effect on the lower

bounds computed above. The answer is no as long as z does not depend on α. To show

this, let g
(t)
z,α denote the family of underestimators of fα as constructed in Section 2.

Theorem 1. Let z ∈Rn. Then the optimal value of

max minx∈X g
(t)
z,α(x)

s.t. Q+ Diag(α)�Diag(t)
(7)

does not depend on α.

Proof. Choose any α∈Rn. For each x∈X, we have x>Diag(α)x= α>x, which implies

g(t)
z,α(x) = g(t−α)

z (x) .

Consequently, Problem (7) is equivalent to

max minx∈X g
(t−α)
z (x)

s.t. Q�Diag(t−α)

and hence to (6) by translation. �

However, if z depends on α, this result does not hold true in general. To see this, consider

the trivial case where X contains only the zero vector, so that

min
x∈X

g(t)
z,α(x) = g(t)

z,α(0) = z>(Diag(t−α)−Q)z .

Then (7) reduces to

max z>(Diag(t−α)−Q)z

s.t. Q−Diag(t−α)� 0 .
(8)
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Now, for instance, consider the bivariate function fα(x) with

Q=

(
0 1

1 0

)
, L=

(
0

0

)
.

In this case, it can be verified that the optimal value of (8) and hence of (7) is −4z1z2, it

thus depends on the choice of z. In particular, if z is chosen as the stationary point of f ,

the result of Theorem 1 does not hold any more.

3.2. Computation of the lower bound

For general X ⊆ {0,1}n, Problem (6) can be solved by a subgradient method. For this, we

can model the constraint Q�Diag(t) by an exact penalty approach, using the following

result. Here λmin(A) denotes the smallest eigenvalue of a symmetric matrix A.

Theorem 2. Let µ ∈ R such that µ ≥ ||x − z||2 for all x ∈ X. Then Problem (6) is

equivalent to

max minx∈X l
(t)
z (x) +µmin{0, λmin(Q−Diag(t))}

s.t. t∈Rn .
(9)

Proof. It is clear that the optimal value of (9) is greater or equal to the optimal value

of (6), it thus remains to show the converse. For this, let t∗ be an optimal solution of (9).

If Q−Diag(t∗)� 0, then t∗ is also feasible for (6) with the same objective function value,

so we may assume λmin(Q−Diag(t∗))< 0. Consider

t̄ := t∗+λmin(Q−Diag(t∗))1 .

By construction, t̄ is a feasible solution for (6). For each x∈X, we have

l(t̄)z (x) = (x− z)>Diag(t̄)(x− z) + (L+ 2Qz)>x− z>Qz

= (x− z)>Diag(t∗)(x− z) + (L+ 2Qz)>x− z>Qz+λmin(Q−Diag(t∗))||x− z||2

≥ l(t
∗)

z (x) +µλmin(Q−Diag(t∗))

and hence

min
x∈X

l(t̄)z (x) ≥ min
x∈X

l(t
∗)

z (x) +µλmin(Q−Diag(t∗)) ,

which shows that the value of t̄ in the objective function of (6) is greater or equal to the

value of t∗ in the objective function of (9). As t̄ is feasible for (6) and t∗ is optimal for (9),

we obtain that the optimal value of (6) is greater or equal to the optimal value of (9). �
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In particular, we can always choose

µ := max
x∈{0,1}n

||x− z||2 =

n∑
i=1

max{z2
i , (1− zi)2}

in Theorem 2. For the touching point z = 1
2
1, we can thus use µ := 1

4
n to obtain an exact

penalty approach, while for each z ∈ [0,1]n we may use µ := n.

The objective function of (9) is concave, so that a subgradient approach can be used to

solve the problem efficiently. The supergradient of

min
x∈X

l(t)z (x)

at a given point tk can be computed by using the black box (2), as l
(tk)
z (x) is a linear

function in x. Given the optimal solution x̂k, the desired supergradient is the gradient

of l
(t)
z (x̂k), which is easily computed since l

(t)
z (x̂k) is a linear function also in t, thus

∇t l
(t)
z (x̂k) = (1− 2z) · x̂k + (z2) .

A supergradient of the penalty term µmin{0, λmin(Q−Diag(t))} in tk can be calculated as

follows: if λmin(Q−Diag(tk))≥ 0, the zero vector is a feasible choice. Otherwise, we need to

find a supergradient of λmin(Q−Diag(t)) in tk, for this we can use −µv2, where v is a nor-

malized eigenvector corresponding to the eigenvalue λmin(Q−Diag(tk)). The subgradient

algorithm is summarized in Algorithm 1; see also Buchheim and Traversi (2013).

Note that Algorithm 1 can be stopped at any time and the best tk obtained so far can

be used in order to obtain a feasible solution

t := tk + min{0, λmin(Q−Diag(tk))}1

as already observed in the proof of Theorem 2.

In the special case of z = 1
2
1, Problem (6) can be solved more easily: in this case, the

function l
(t)
z can be simplified as

l(t)z (x) =
1

4
1>t+ (L+Q1)>x− 1

4
1>Q1 .

Note that for this particular choice of z, the function l
(t)
z does not contain any product of z

and t. Problem (6) thus becomes

max 1
4
1>t + min (L+Q1)>x − 1

4
1>Q1

s.t. Q�Diag(t) s.t. x∈X
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Algorithm 1: Subgradient algorithm for computing an optimal underestimator

input : function f , set X, touching point z, penalty parameter µ,

procedure for solving Problem (2)

output: a (near-)optimal solution to Problem (6)

t0← λmin(Q)1;

k← 0, STOP← false;

while STOP = false do

solve minx∈X l
(tk)
z (x) using the black box, let x̂k be the optimal solution;

∆tk←
(
∇t l

(t)
z (x̂k)

)
(tk);

λ← λmin(Q−Diag(tk));

if λ< 0 then

choose normalized eigenvector v of Q−Diag(tk) to eigenvalue λ;

∆tk←∆tk−µv2;

end

if ∆tk ≈ 0 then
STOP←true;

else

tk+1← tk + ∆tk; k← k+ 1;

end

end

and hence decomposes. The first problem is an SDP, while the second problem can be solved

by calling the oracle (2) once. In particular, the optimal underestimator only depends on Q

in this case, but not on L. This fact can be exploited in our branch-and-bound algorithm,

as explained in Section 4. A fast algorithm for solving the SDP on the left hand side,

exploiting its specific structure, is discussed in Section 5.

3.3. Comparison with other SDP-based relaxations

For any touching point z ∈ Rn, Problem (6) could be reformulated as an SDP with a

potentially exponential number of constraints as follows:

max β

s.t. β ≤ l(t)z (x) ∀x∈X

Q�Diag(t) .

(10)
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All constraints in (10) except for the last one are linear. The corresponding separation

problem is of type (2) again, as it amounts to checking whether

l(t
∗)

z (x)<β∗

for some x∈X, for fixed t∗ and β∗. The dual of (10) turns out to be

min 〈Q,Y 〉+
∑

x∈X λx((L+ 2Qz)>x)− z>Qz

s.t. diag(Y ) =
∑

x∈X λx(x− z)2

∑
x∈X λx = 1, λx ≥ 0 ∀x∈X

Y � 0 .

(11)

In order to compare our relaxation (6) with other relaxations discussed in the literature,

we consider two special cases for the touching point z again. First assume z = 0. Then the

dual problem (11) simplifies to

min 〈Q,Y 〉+
∑

x∈X λx(L
>x)

s.t. diag(Y ) =
∑

x∈X λxx∑
x∈X λx = 1, λx ≥ 0 ∀x∈X

Y � 0 ,

which is equivalent to

min 〈Q,Y 〉+L>x

s.t. diag(Y ) = x

x∈ convX

Y � 0 .

(12)



Buchheim and Traversi: Quadratic combinatorial optimization
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

This formulation is very similar to the standard SDP relaxation for constrained binary

quadratic optimization, which can be written as

min 〈Q,Y 〉+L>x

s.t. diag(Y ) = x

x∈ convX1 x>

x Y

� 0 ,

(13)

assuming that a complete polyhedral description of convX is known. This shows that our

relaxation is dominated by the standard SDP relaxation in the case z = 0, as the SDP

constraint in (13) implies the SDP constraint in (12), and the same holds for any other

binary point z ∈ {0,1}n by symmetry.

Unfortunately, the stronger SDP constraint of (13) cannot easily be generalized to other

choices of z. However, when using z = 1
2
1 as touching point, the situation changes. The

problem then decomposes again and (11) simplifies to

min 〈Q,Y 〉+
∑

x∈X λx((L+Q1)>x)− 1
4
1>Q1

s.t. diag(Y ) =
∑

x∈X λx
1
4
1∑

x∈X λx = 1, λx ≥ 0 ∀x∈X

Y � 0 ,

which is equivalent to

min 1
4
〈Q,Y 〉+ minx∈X(L+Q1)>x− 1

4
1>Q1

s.t. diag(Y ) = 1

Y � 0 .

(14)

In this case, there is no dominance between the standard SDP relaxation (13) and our

relaxation (6) being equivalent to (14): the disadvantage of (14) lies in the fact that the

SDP constraint only takes the quadratic part of the objective function into account, which

generally leads to weaker relaxations. On the other hand, in the special case Q = 0, our

relaxation trivially yields the optimal value of (1), and by Theorem 1 this remains true
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if Q is any diagonal matrix. This just reflects the main idea of our approach, namely to

address the underlying linear problem by exact methods. None of the SDP based relax-

ations discussed in the literature will achieve this in general.

3.4. Feasible sets of low dimension

As already discussed in (Buchheim and Traversi 2013), the underestimators given by (6)

can be improved if the set X satisfies a set of linear equations Ax= b. For the convenience

of the reader, we shortly summarize this idea in the following.

Let the columns of V ∈Rn×k form an orthonormal basis of the kernel of A and choose

any w ∈Rn with Aw= b. Then g
(t)
z underestimates f on the affine subspace given by Ax= b

if and only if

V >QV � V >Diag(t)V .

The latter constraint can replace the stronger constraint Q�Diag(t) both in the subgra-

dient approach and in the SDP based approach. In the former, the penalty term may be

replaced by min{0, λmin(V >(Q−Diag(t))V )}); the corresponding supergradient is −(V v)2,

where v is a normalized eigenvector of V >(Q− Diag(t))V corresponding to its smallest

eigenvalue.

In our experimental results presented in (Buchheim and Traversi 2013), it turns out that

this replacement can improve both the bounds and the total running times significantly,

even if only one equation is taken into account, as in the case of the quadratic spanning

tree problem.

3.5. Taking box constraints into account

We next discuss how the underestimator can be improved when taking into account that

it only needs to underestimate f on the set {0,1}n. We have

g(t)
z (x)≤ f(x) ∀x∈ {0,1}n

⇔ (x− z)>(Q−Diag(t))(x− z)≥ 0 ∀x∈ {0,1}n .

A sufficient condition is

y>(Q−Diag(t))y≥ 0 ∀y ∈Rn : yi ≥ 0 if zi ≤ 0, yi ≤ 0 if zi ≥ 1 . (15)

This condition is also necessary if z ∈ [0,1]n. In particular, when choosing the touching

point as z = 1
2
1, this shows that we need to enforce Q−Diag(t)� 0 for obtaining a valid
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underestimator. In this sense, the methods presented above yield best possible underesti-

mators.

On the contrary, if z = 0, the condition above is equivalent to Q−Diag(t) being coposi-

tive, which is a weaker condition than positive semidefiniteness. For computational matters,

as copositive optimization is NP-hard in general, the cone of copositive matrices is often

replaced by the sum of the positive semidefinite cone and the cone of nonnegative matrices;

the latter sum is a proper subcone of the former.

In the same spirit, we can replace (15) by the stronger condition that Q−Diag(t) be a

sum of a positive semidefinite matrix and a symmetric matrix N such that

Nij ≥ 0 if (zi ≤ 0 and zj ≤ 0) or (zi ≥ 1 and zj ≥ 1)

Nij ≤ 0 if (zi ≤ 0 and zj ≥ 1) or (zi ≥ 1 and zj ≤ 0) (16)

Nij = 0 otherwise.

In other words, we require Q−Diag(t)−N � 0 for some matrix N satisfying the condi-

tions (16). In general, this requirement is less strict than Q−Diag(t)� 0, so it can lead

to tighter lower bounds while still being tractable: the optimal t can still be computed by

solving a semidefinite program.

This improvement can also be combined with the techniques presented in Section 3.4

for taking valid equations into account. In this case, the resulting relaxed condition on t is

V >(Q−Diag(t)−N)V � 0

for some N that satisfies (16). Again, this condition can be modeled within a semidefinite

program.

4. Branch-and-bound algorithm

In order to solve Problem (1) exactly, we embed the lower bounds derived in Section 3 into

a branch-and-bound framework. Our main objective is to exploit the fact that Problem (6)

only changes slightly from one node in the enumeration tree to a neighboring node. In fact,

we enforce this similarity in two ways, as already described in (Buchheim and Traversi

2013) and shortly summarized in the following.
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4.1. Enumeration scheme and preprocessing

Firstly, we determine an order of variables at the beginning and fix variables always in

this order. More precisely, if x1, . . . , xn is the chosen order, the next variable to be fixed

is the free variable with smallest index. The same idea has been used in (Buchheim et al.

2012) and (Buchheim et al. 2013). In this way, the reduced matrices Q in the nodes of the

enumeration tree only depend on the depth of the node but not on the specific subproblem.

Consequently, only n such matrices can appear in the enumeration tree, instead of 2n when

applying other branching strategies.

Secondly, we do not call the subgradient method or SDP to compute an optimal t in

every node, but try to find one fixed t for each level of the enumeration tree that yields

strong lower bounds on average. This reduces the number of oracle calls to one per node.

By our first restriction, the matrix Q is fixed on each level, so that we can compute the

vector t depending on Q.

In summary, all time-consuming computations concerning the matrix Q can now be per-

formed in a preprocessing phase, including the computation of an underestimator for each

level of the enumeration tree, and the same remains true when considering valid equations.

All problem data can be updated quickly in an incremental way. In summary, if no sub-

gradient approach is used and touching points are consistent on all depths, all operations

except for the solution of the black box problem can be performed in a total running time

of O((n− d)2) for a node on depth d. For technical details, we refer to (Buchheim and

Traversi 2013).

Our decision to use the same order of variable fixings throughout the entire enumer-

ation still allows to choose this order once in the beginning. In order to compute tight

underestimators, we aim at matrices that are as close to a diagonal matrix as possible, as

motivated by the discussion in Section 3.3. To this end, we first fix the variable xi that

maximizes
∑

j 6=i |qij| and then apply the same rule recursively. Each variable is first fixed

to the value it had in the last solution computed by the linear optimization oracle.

4.2. Computation of an underestimator

In Section 3 we showed that for the special touching point 1
2
1 the optimal lower bound

can be computed as

max 1
4
1>t + min (L+Q1)>x − 1

4
1>Q1 .

s.t. Q�Diag(t) s.t. x∈X
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In order to speed up our algorithm, we apply the same approach for any touching point z.

More precisely, we determine an underestimator t solving the SDP on the left hand side,

which only depends on the matrix Q. By our ideas sketched above, the matrix Q in turn

only depends on the level in the enumeration tree, so that only n such underestimators need

to be computed in the preprocessing phase. The second problem is a linear optimization

problem depending on the current node in the enumeration tree, it can be solved by calling

the oracle for Problem (2) once. This approach may lead to weaker bounds if the touching

point is different from 1
2
1, but the advantage of solving n instead of exponentially many

semidefinite programs is crucial here. Note that in the presence of equations we may be

forced to choose a touching point different from 1
2
1, as it needs to satisfy all considered

equations.

As discussed above, the strength of the underestimator can be improved by exploiting

valid equations. For this, the above SDP can be replaced by

max 1>t

s.t. V >QV � V >Diag(t)V .

However, this problem can be unbounded, as the objective function is not restricted to the

feasible subspace. To avoid this, we replace the objective function by

〈I,V >Diag(t)V 〉= 〈V V >,Diag(t)〉= diag(V V >)>t ,

thus obtaining

max diag(V V >)>t

s.t. V >QV � V >Diag(t)V .
(17)

The dual of (17) is

min 〈V >QV,Y 〉

s.t. diag(V Y V >) = diag(V V >)

Y � 0

and thus strictly feasible. In particular, the primal problem (17) is bounded. A strictly

feasible solution for (17) is given by t := (λmin(Q)− 1) · 1. In Section 5, we will describe a

tailored algorithm for solving problems of type (17).

Note that it is possible to obtain a feasible solution t from any given t0 by setting

t := t0 +λmin(Q−Diag(t0))1
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as discussed above, or, when taking equations into account, by

t := t0 +λmin(V >(Q−Diag(t0))V )1

where we use V >V = I.

Finally, note that this approach can be generalized if box constraints are taken into

account as described in Section 3.5. The dual problem then becomes

min 〈V >QV,Y 〉

s.t. diag(V Y V >) = diag(V V >)

(V Y V >)ij ≥ 0 if (zi ≤ 0 and zj ≤ 0) or (zi ≥ 1 and zj ≥ 1)

(V Y V >)ij ≤ 0 if (zi ≤ 0 and zj ≥ 0) or (zi ≥ 1 and zj ≤ 1)

Y � 0.

5. Fast computation of the underestimator

The special structure of the semidefinite program (17) can be exploited in order to solve it

more quickly than with standard interior point methods. We adapt an algorithm devised

by Dong (2014) for a very similar type of SDP. It is based on a barrier approach using a

coordinate descent method with exact line search.

To keep the analogy with (Dong 2014), switching the sign of t, we first rewrite (17) as

a minimization problem:

min diag(V V >)>t

s.t. V >(Q+ Diag(t))V � 0 .

We introduce a penalty term σ > 0 and obtain

min f(t;σ) := diag(V V >)>t−σ log det(V >(Q+ Diag(t))V )

s.t. V >(Q+ Diag(t))V � 0 .
(18)

The gradient of the objective function of (18) is

∇tf(t;σ) = diag(V V >)−σdiag(V [V >(Q+ Diag(t))V ]−1V >) .

An important ingredient in our algorithm is the quick update of the matrix

W := [V >(Q+ Diag(t))V ]−1

using the Sherman-Morrison formula and of the vector

x := diag(VWV >) .
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We initialize our iterative algorithm by calculating

t(0) := −(1 + ε)λmin(V >QV )

W (0) := [V >(Q+ Diag(t(0)))V ]−1

x(0) := diag(VW (0)V >)

directly, for some ε > 0. By construction, t(0) is a feasible solution for (18). Now in each

iteration we improve the objective function coordinatewise, choosing a coordinate i(k) max-

imizing

|∇tf(t;σ)i|= |v>i vi−σx
(k)
i | .

We perform an exact line search along the chosen coordinate direction, i.e., we minimize

f(t(k) + sei(k)) over the feasible region. This is equivalent to finding some s satisfying

0 = ∇sf(t(k) + sei(k))

= v>i(k)vi(k) −σv>i(k)[V
>(Q+ Diag(t(k) + sei(k)))V ]−1vi(k) .

Now

[V >(Q+ Diag(t(k) + sei(k)))V ]−1 = [W (k) + svi(k)v>i(k)]
−1

= W (k)−
sW (k)vi(k)v>

i(k)W
(k)

1 + sv>
i(k)W (k)vi(k)

by the Sherman-Morrison formula. We obtain the unique solution

s(k) =
σ

v>
i(k)vi(k)

− 1

x
(k)

i(k)

as our optimal step length. The resulting updates

t(k+1) := t(k) + s(k)ei(k)

W (k+1) := W (k)−
s(k)W (k)vi(k)v>

i(k)W
(k)

1 + s(k)x
(k)

i(k)

x(k+1) := x(k)−
s(k)VW (k)vi(k)v>

i(k)W
(k)V >

1 + s(k)x
(k)

i(k)

can now be performed in O(n2) time, using Sherman-Morrison again as well as the fact

that W (k)vi(k)v>
i(k)W

(k) is of rank one.
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In the course of this algorithm, the penalty factor σ needs to converge to zero. In our

implementation, we multiply σ by 0.99 in each iteration. We stop the process as soon as

the relative improvement of the objective value of t(k) according to (17) falls short of 10−5

in three consecutive iterations. Note that the iterates t(k) computed by this algorithm are

all feasible for Problem (18) and hence for Problem (17), independently of the (current)

value of σ. In particular, each iterate yields a valid underestimator. We can thus stop our

algorithm at any point, which gives us the possibility to balance the running time to be

spend for computing underestimators with the quality of the latter.

6. Experiments

A preliminary version of our algorithm has been evaluated in (Buchheim and Traversi

2013). In particular, we were able to show that taking valid equations into account can

improve both lower bounds and total running times significantly, even if only one equation

is considered. A further observation was that the touching point 1
2
1 yields by far the best

results out of the considered alternatives, so that we fix this choice in the following, up to

the necessary projections when considering equations.

In this section, we provide a much more extensive experimental evaluation of our

approach based on a much larger class of test instances from different problem types. We

compare our algorithm computationally to Cplex 12.6 (Cplex 2015), to the SDP-based

solver BiqCrunch 2.0 (Malick and Roupin 2013), and to the QCR method; an implemen-

tation of the latter has been provided by the authors of (Billionnet et al. 2009). All these

methods can address general constrained binary quadratic optimization problems and are

thus applicable to all types of instances considered here.

The main improvement of our algorithm with respect to the version tested in (Buchheim

and Traversi 2013) is the new algorithm presented in Section 5. Note that taking box

constraints into account, as discussed in Section 3.5, did not lead to practical improvements

in our current implementation, as it requires to choose a touching point that does not

belong to the interior of the box [0,1]n.

We tested our approach on various quadratic combinatorial optimization problems, as

listed in the following. For each problem we provide the following information:

• a brief description of the problem,

• a mathematical model in the form of (1),
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• a set of valid equations used to improve the underestimator,

• the algorithm for solving the linear counterpart (2) of the problem,

• an overview over state-of-the-art problem-specific solution methods, and

• the testbed used in the experiments.

Note that the integer programming formulations given here are just for illustration. As

argued above, our approach does not rely on any integer programming model for the

underlying problem.

Quadratic Shortest Path Problem (QSPP): We solve a generalization of the minimum (sin-

gle pair) shortest path problem on a directed graph. In addition to the weights associated

to each arc, we also have weights associated to the simultaneous use of pairs of arcs.

The mathematical model for solving the problem on a directed graph G = (N,A) is the

following:

min
∑

a,b∈AQabxaxb +
∑

a∈ALaxa

s.t.
∑

a∈δ+(i) xa−
∑

a∈δ−(i) xa = 0 ∀i∈N \ {s, t}∑
a∈δ+(s) xa = 1∑
a∈δ−(t) xa = 1

xa ∈ {0,1} ∀a∈A ,

(19)

with s and t being the origin and destination of the path and δ+(i) (resp. δ−(i)) being the

set of outgoing (resp. ingoing) arcs of a node i. In this case we can exploit all equations

given in (19), out of which |N | − 1 are linearly independent (if G is connected).

Comparatively few publications have addressed the QSPP so far. They mostly deal with

special cases, e.g., only products between consecutive edges are taken into account (Gourvès

et al. 2010, Amaldi et al. 2011, Hu and Sotirov 2016). For the general case, the problem

has been shown to be NP-hard, and problem-specific methods to compute lower bounds

have been proposed in the meantime (Rostami et al. 2015). The latter have been evaluated

on the same instances we consider in the following: we use grid graphs with k× k nodes,

for k = 10, . . . ,15, and generate quadratic costs uniformly at random from {1, ...,10}. For

each size, five instances were generated with different seeds for a total of 30 instances. As

black box we used the network simplex algorithm of Cplex 12.4 with standard settings.

Quadratic Assignment Problem (QAP): The QAP is a well known generalization of the

assignment problem. As for the quadratic version of the shortest path problem, also in this
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case we have an additional weight corresponding to the use of two edges in the solution.

The mathematical model for solving the problem on a bipartite graph G = (N1∪̇N2,E)

with |N1|= |N2| is the following:

min
∑

e,f∈EQefxexf +
∑

e∈E Lexe

s.t.
∑

e∈δ(i) xe = 1 ∀i∈N1∑
e∈δ(i) xe = 1 ∀i∈N2

xe ∈ {0,1} ∀e∈E .

(20)

Also in this case we can exploit all equations given in (20), out of which |N1|+ |N2| − 1

are linearly independent. As black box, we reformulate the assignment problem as a min-

cost-flow problem and solve it using the network simplex algorithm of Cplex 12.4, with

standard settings.

In contrast to the QSPP, the QAP has been investigated intensively in the literature.

It is probably the most classical example of a combinatorial optimization problem with

a quadratic objective function, introduced by Koopmans and Beckmann in 1957. Early

approaches contain the well-known Gilmore-Lawler bound (Gilmore 1962, Lawler 1963),

which results from a solution of |N1|+1 linear assignment problems, as well as linearization

approaches, combined with quadratic reformulations of the assignment constraints (Adams

and Johnson 1994). Since then, methods computing much stronger lower bounds have

been devised, in particular based on semidefinite relaxations (Zhao et al. 1998, de Klerk

and Sotirov 2012, de Klerk et al. 2015). Compared to LP-based bounds, the resulting

bounds turn out to be very strong, but their computation is more time-consuming (both is

confirmed by our results for BiqCrunch reported below). When aiming at exact solutions,

instances with |N1| ≥ 20 are still difficult to solve in general. Using convex QP-relaxations

and a huge computational grid, Anstreicher et al. (2002) were able to solve instances

with |N1|= 30. Such dimensions are clearly out of reach for our generic approach; in our

experiments we use instances from QAPLIB (Burkard et al. 1997) with |N1|= 10,12.

Quadratic Knapsack Problem (QKP): The QKP is a well known generalization of the knap-

sack problem where in addition to profits associated to each object, we also have profits
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associated to the presence of pairs of objects in the solution. The mathematical model for

solving the problem on a set of objects N is the following:

min
∑

i,j∈N Qijxixj +
∑

i∈N Lixi

s.t.
∑

i∈N cixi ≤ k

xi ∈ {0,1} ∀i∈N ,

(21)

with ci being the weight of object i ∈N and k being the capacity. No equations can be

exploited in this case. As black box, we implemented the well-known dynamic programming

procedure for the linear knapsack problem; see, e.g., (Kellerer et al. 2004). Note that

we model QKP as a minimization problem here, in order to stay analogous to the other

problem classes.

The QKP is a well-studied problem. Again, dual bounds are often obtained from either

linear (Billionnet and Soutif 2004b) or semidefinite relaxations (Helmberg et al. 2000).

For the case of non-negative quadratic coefficients, exact algorithms based on Lagrangian

relaxation have been devised by Caprara et al. (1999) and Billionnet and Soutif (2004a).

They are able to solve instances on up to 150 items to optimality (up to 400 items if the

objective function is sparse). For a more recent survey of dual bounds and exact algorithms,

see Pisinger (2007). In our experiments, we use the library of QKP instances (with 100

items each) proposed in (Billionnet and Soutif 2004b), for a total of 40 instances.

We also considered Unconstrained Binary Quadratic Programs (UBQP) as well as the

Quadratic Spanning Tree Problem (QSTP) in (Buchheim and Traversi 2013). Note that

any LP based approach to spanning tree problems suffers from the fact that the classical

integer programming formulation requires an exponential number of linear inequalities and

hence a separation algorithm. For this reason, applying Cplex, BiqCrunch, or the QCR

method is not a promising approach. On contrary, our new method does not rely on any

LP formulation and the linear problem (2) can be solved by any combinatorial algorithm

such as Kruskal’s algorithm (Kruskal 1956). We thus do not include a comparison here.

We would like to emphasize that our algorithm is designed to solve a large class of

quadratic binary optimization problems. As such, we do not expect that it can compete

with problem-specific methods for, e.g., the QAP. For this reason, we do not include a

comparison with state-of-the-art solvers for the problems listed above.
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For all tests reported in the following, we used Intel Xeon E5-2670 processors, running at

2.60 GHz with 64 GB of RAM. All running times are stated in cpu seconds. The running

time for each instance is limited to 3 cpu hours.

6.1. Lower bound comparison

In this section, we compare the lower bounds in the root node of the branch-and-bound tree

obtained by our algorithm with the root bounds obtained by Cplex, the QCR algorithm,

and BiqCrunch. For Cplex, we examine both the variant where the quadratic objective

function is linearized (Cplex-MIP) and the one where QP-relaxations are used to obtain

dual bounds (Cplex-QP); this distinction is made via the parameter CPX PARAM QTOLININD.

In the SDP formulations passed to BiqCrunch, we always consider quadratic reformulations

of constraints, as suggested to us by one of the developers of BiqCrunch. More precisely, for

the problems QSPP and QAP containing linear equations, we multiply each of these by all

variables and add the resulting quadratic constraints to the linear formulation. For QKP,

we add the quadratic inequality (a>x)(a>x−b)≤ 0 to the original contraint a>x≤ b. To the

resulting problem formulations, we apply both the version of BiqCrunch without triangle

inequalities (SDP) and with triangle inequalities (SDP+∆). Otherwise, we use standard

parameters for all software considered.

The results concerning QSPP, QAP and QKP are provided in Tables 1–3. All tables are

vertically divided into eight blocks: in the first block, we state the name of the instance

and its dimension. In the next six blocks, we report lower bounds given by the different

approaches. As all problems we consider are purely binary with integer coefficients, we

round up the values obtained to the closest integer value. Finally, we state the optimal

value of the instance.

As obvious from the tables, SDP+∆ yields by far the strongest bounds, being close to the

optima for all three instance types. Without triangle inequalities, the bounds are consider-

ably weaker: roughly, the simple SDP bounds are similary strong as the bounds computed

by QCR. Also Cplex-QP leads to similar bounds in the QKP case, but is considerably

weaker in the QSPP case and extremely weak in the QAP case. The bounds calculated by

Cplex-MIP are very weak for QSPP, trivial for QAP, and comparable to QCR and SDP

for QKP. Compared to the other approaches, our new algorithm in general yields bounds

of medium strength: they are always weaker than those obtained by SDP+∆, SDP, and

QCR, but stronger than those given by Cplex-QP except for the QKP case. Note that
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most algorithms considered here produce negative bounds for many instances in the QAP

case, in spite of the fact that zero is a trivial lower bound.

inst n Cplex-MIP LB Cplex-QP LB QCR LB SDP LB SDP+∆ LB Our LB OPT
10 1 180 79 200 489 487 620 357 621
10 2 180 79 211 501 489 634 323 635
10 3 180 91 217 498 495 635 367 636
10 4 180 81 209 491 489 660 359 661
10 5 180 91 233 504 500 664 367 665
11 1 220 83 253 609 607 812 420 813
11 2 220 86 251 593 590 787 417 788
11 3 220 87 225 592 588 794 384 795
11 4 220 98 236 619 618 781 402 782
11 5 220 93 228 582 581 766 404 767
12 1 264 105 271 714 709 958 479 959
12 2 264 85 282 707 705 962 524 963
12 3 264 84 259 687 683 899 491 900
12 4 264 87 236 698 693 959 481 960
12 5 264 94 289 701 699 975 479 976
13 1 312 105 335 805 803 1154 586 1159
13 2 312 108 333 821 820 1176 590 1178
13 3 312 104 325 822 814 1159 558 1164
13 4 312 103 301 805 801 1109 568 1110
13 5 312 95 322 842 837 1114 567 1115
14 1 364 102 364 959 954 1350 680 1363
14 2 364 114 357 963 954 1357 669 1367
14 3 364 117 334 934 932 1319 651 1320
14 4 364 119 348 982 977 1345 661 1347
14 5 364 108 354 949 941 1341 704 1344
15 1 420 131 367 1094 1089 1545 729 1551
15 2 420 120 412 1099 1096 1554 806 1588
15 3 420 102 419 1067 1064 1522 762 1561
15 4 420 122 386 1061 1057 1531 744 1569
15 5 420 122 389 1084 1080 1558 791 1582

Table 1 Lower bound comparison for QSPP

inst n Cplex-MIP LB Cplex-QP LB QCR LB SDP LB SDP+∆ LB Our LB OPT
tai10a 100 0 -509824 32225 32171 135025 -13475 135028
tai10b 100 0 -15375723 -2253366 -2253753 1183625 -5972174 1183760
chr12a 144 0 -416795 -103848 -103887 9551 -217851 9552
chr12b 144 0 -419179 -86164 -86312 9741 -177099 9742
chr12c 144 0 -415953 -99747 -99819 11155 -179110 11156
had12 144 0 -7040 1198 1197 1651 672 1652
nug12 144 0 -3483 -216 -220 558 -759 578
rou12 144 0 -881997 76922 76862 231778 -313 235852
scr12 144 0 -423726 -111147 -111189 31005 -227213 31410
tai12a 144 0 -1029577 77893 77839 224412 -27238 224416
tai12b 144 0 -621081036 -134673000 -134818410 -134818410 -402161178 39464925

Table 2 Lower bound comparison for QAP

6.2. Running time comparison

We next compare our algorithm with Cplex-MIP, Cplex-QP, the QCR method, and

BiqCrunch in terms of total running times for solving the instances to optimality. The latter

is applied to the quadratic model as described above, also making use of triangle inequal-

ities. The comparison for QSPP, QAP and QKP is presented in Tables 4–6, respectively.

In all tables, we report for each of the five algorithms the number of branch-and-bound

nodes and the overall computing time (TL if the time limit is reached). In each row, the

running time of the fastest solver is highlighted.

Our new algorithm is able to solve to optimality all 30 instances of QSPP and all 11

instances of QAP, as well as 12 out of the 39 instances of QKP. Cplex-MIP can only solve 7
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inst n Cplex-MIP LB Cplex-QP LB QCR LB SDP LB SDP+∆ LB Our LB OPT
100 25 1 100 -19125 -23846 -23141 -18904 -18615 -34756 -18558
100 25 2 100 -56576 -58465 -57451 -56600 -56575 -60485 -56525
100 25 3 100 -4064 -7794 -6164 -3986 -3800 -14986 -3752
100 25 4 100 -51065 -54204 -53143 -50527 -50404 -57694 -50382
100 25 5 100 -61622 -62410 -61746 -61649 -61644 -63137 -61494
100 25 6 100 -36655 -40748 -39868 -36541 -36419 -47826 -36360
100 25 7 100 -14855 -19300 -18321 -14852 -14719 -29519 -14657
100 25 8 100 -20529 -24870 -24135 -20656 -20502 -36474 -20452
100 25 9 100 -35488 -39664 -38922 -35601 -35482 -46032 -35438
100 25 10 100 -25497 -30081 -29596 -25217 -25042 -38858 -24930
100 50 1 100 -83921 -92176 -95449 -83978 -83911 -104435 -83742
100 50 2 100 -105322 -112191 -109655 -105089 -105023 -117406 -104856
100 50 3 100 -34324 -44140 -42695 -34270 -34209 -66364 -34006
100 50 4 100 -106319 -111322 -109162 -106099 -106079 -115734 -105996
100 50 5 100 -56952 -66171 -65104 -56719 -56692 -84867 -56464
100 50 6 100 -17357 -26388 -23914 -16271 -16144 -43215 -16083
100 50 7 100 -53062 -62775 -62148 -52980 -52942 -81743 -52819
100 50 8 100 -54534 -63788 -62824 -54510 -54479 -82084 -54246
100 50 9 100 -70794 -79085 -77998 -69039 -68974 -93372 -68974
100 50 10 100 -89966 -97413 -90142 -89041 -88956 -106246 -88634
100 75 1 100 -189137 -190150 -151179 -189139 -189138 -190664 -189137
100 75 2 100 -98716 -113262 -111376 -95516 -95450 -135560 -95074
100 75 3 100 -63870 -78403 -77256 -62287 -62280 -108892 -62098
100 75 4 100 -75164 -89190 -88035 -72779 -72719 -116203 -72245
100 75 5 100 -29235 -43606 -40327 -27906 -27844 -72765 -27616
100 75 6 100 -145418 -155748 -151780 -145452 -145416 -166175 -145273
100 75 7 100 -113111 -127900 -125222 -111361 -111316 -147115 -110979
100 75 8 100 -25408 -36117 -32902 -19713 -19673 -59888 -19570
100 75 9 100 -108298 -120973 -119196 -104905 -104834 -141193 -104341
100 75 10 100 -144220 -154822 -189571 -143969 -143957 -164457 -143740
100 100 1 100 -82642 -99418 -97043 -82628 -82624 -142746 -81978
100 100 2 100 -193522 -208411 -203642 -190903 -190886 -220342 -190424
100 100 3 100 -226138 -234897 -231054 -225565 -225538 -239245 -225434
100 100 5 100 -230441 -239462 -235360 -230286 -230268 -243602 -230076
100 100 6 100 -76250 -95725 -93766 -74719 -74714 -135979 -74358
100 100 7 100 -10620 -25261 -17864 -10748 -10441 -49966 -10330
100 100 8 100 -63167 -82854 -80870 -62895 -62890 -124939 -62582
100 100 9 100 -234558 -241061 -237797 -234288 -234280 -243448 -232754
100 100 10 100 -195087 -208945 -204046 -195080 -195077 -222563 -193262

Table 3 Lower bound comparison for QKP

Cplex-MIP Cplex-QP QCR BiqCrunch Our Algo

inst n nodes time nodes time nodes time nodes time nodes time

10 1 180 1.54e+3 66.2 8.77e+3 11.2 6.21e+2 9.4 1.00e+0 22.4 5.13e+4 4.8
10 2 180 2.00e+3 73.5 9.42e+3 11.8 1.53e+3 8.7 1.00e+0 27.1 3.32e+4 4.2
10 3 180 1.72e+3 67.8 8.24e+3 9.9 2.04e+3 8.5 1.00e+0 20.3 2.96e+4 4.2
10 4 180 2.52e+3 89.8 1.33e+4 16.2 4.24e+3 9.8 1.00e+0 26.0 6.67e+4 5.1
10 5 180 2.43e+3 90.7 1.25e+4 15.1 3.23e+3 9.7 1.00e+0 34.7 6.76e+4 5.2
11 1 220 8.53e+3 677.0 3.26e+4 50.7 9.51e+3 32.3 1.00e+0 55.1 2.72e+5 15.8
11 2 220 7.89e+3 661.9 2.83e+4 44.8 8.04e+3 31.1 1.00e+0 52.7 1.34e+5 11.2
11 3 220 8.91e+3 598.2 3.16e+4 49.9 9.28e+3 27.8 1.00e+0 81.7 1.64e+5 12.0
11 4 220 7.79e+3 481.4 2.34e+4 42.9 3.10e+3 20.5 1.00e+0 55.0 1.09e+5 10.1
11 5 220 6.68e+3 566.4 2.03e+4 36.9 4.78e+3 25.4 1.00e+0 50.8 1.30e+5 11.1
12 1 264 1.30e+4 1506.9 7.49e+4 146.2 1.82e+4 92.8 1.00e+0 126.7 7.41e+5 42.8
12 2 264 1.52e+4 1762.3 9.70e+4 201.8 2.39e+4 99.7 1.00e+0 151.3 7.16e+5 41.1
12 3 264 9.68e+3 1028.3 5.63e+4 115.2 9.40e+3 80.8 1.00e+0 113.0 3.01e+5 24.0
12 4 264 1.61e+4 1860.5 1.08e+5 197.0 2.77e+4 124.0 1.00e+0 162.9 9.84e+5 53.8
12 5 264 1.46e+4 1680.2 8.76e+4 172.6 2.46e+4 132.0 3.00e+0 457.8 7.33e+5 43.5
13 1 312 4.47e+4 6399.4 3.94e+5 1183.4 1.07e+5 625.3 5.00e+0 1131.2 3.19e+6 176.8
13 2 312 4.82e+4 6213.2 3.36e+5 1043.5 8.79e+4 502.0 3.00e+0 908.5 4.36e+6 240.8
13 3 312 4.60e+4 6826.3 3.48e+5 1060.0 7.80e+4 353.5 3.00e+0 1146.6 4.10e+6 218.7
13 4 312 3.09e+4 5082.1 2.25e+5 726.3 4.48e+4 271.4 1.00e+0 297.2 1.98e+6 121.1
13 5 312 2.24e+4 3847.8 1.72e+5 590.6 2.51e+4 206.4 1.00e+0 272.2 2.29e+6 138.5
14 1 364 3.98e+4 TL 1.07e+6 3204.9 2.44e+5 1416.5 7.00e+0 2949.1 9.75e+6 618.1
14 2 364 3.89e+4 TL 1.14e+6 4062.2 2.41e+5 1396.9 5.00e+0 2244.8 1.12e+7 702.1
14 3 364 3.35e+4 TL 7.73e+5 3079.3 1.25e+5 795.2 3.00e+0 1487.3 1.01e+7 618.6
14 4 364 2.98e+4 TL 9.25e+5 3475.1 1.50e+5 935.6 3.00e+0 1585.9 1.88e+7 1140.8
14 5 364 4.09e+4 TL 8.85e+5 3363.6 2.06e+5 1230.6 3.00e+0 1470.8 1.08e+7 678.9
15 1 420 1.48e+4 TL 2.30e+6 TL 4.27e+5 2951.3 5.00e+0 3667.4 3.86e+7 2697.7
15 2 420 2.21e+4 TL 2.42e+6 TL 8.36e+5 5117.1 1.50e+1 9797.8 6.90e+7 4903.6
15 3 420 2.21e+4 TL 2.39e+6 TL 6.10e+5 3910.2 1.30e+1 7918.2 5.10e+7 3682.6
15 4 420 1.66e+4 TL 2.77e+6 TL 9.09e+5 5556.5 1.70e+1 9684.1 6.15e+7 4312.2
15 5 420 1.92e+4 TL 2.76e+6 TL 6.97e+5 4317.0 9.00e+0 5655.8 6.52e+7 4712.4

Table 4 Computational results for QSPP
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Cplex-MIP Cplex-QP QCR BiqCrunch Our Algo

inst n nodes time nodes time nodes time nodes time nodes time

tai10a 100 1.03e+5 672.8 4.30e+6 916.4 2.72e+5 72.9 1.95e+2 441.7 8.33e+5 14.6
tai10b 100 7.72e+3 46.1 3.62e+6 703.3 2.34e+5 56.9 5.12e+3 TL 9.56e+4 2.1
chr12a 144 4.06e+3 6.6 5.53e+7 TL 4.42e+6 1110.5 2.87e+2 1975.6 1.53e+5 8.6
chr12b 144 1.44e+3 1.0 4.88e+7 9057.7 3.82e+6 950.7 2.77e+2 977.5 6.44e+3 4.7
chr12c 144 1.63e+4 23.8 4.39e+7 TL 2.10e+7 5110.9 3.51e+2 3201.8 1.32e+6 32.8
had12 144 8.76e+5 TL 3.32e+7 TL 1.62e+6 783.4 3.00e+0 48.9 7.00e+6 168.5
nug12 144 1.27e+6 TL 3.59e+7 TL 2.75e+7 10585.1 3.70e+1 1353.3 7.56e+6 146.4
rou12 144 6.72e+5 TL 3.32e+7 TL 1.94e+7 9005.8 3.47e+2 7132.0 2.15e+7 416.7
scr12 144 2.75e+4 126.6 4.13e+7 TL 1.88e+7 5790.5 2.39e+2 TL 1.01e+6 24.6
tai12a 144 6.91e+5 TL 3.27e+7 TL 2.91e+6 1403.0 2.93e+2 1421.4 4.31e+6 92.4
tai12b 144 1.86e+5 2471.5 3.30e+7 TL 9.07e+6 3687.5 4.20e+3 TL 2.78e+6 51.2

Table 5 Computational results for QAP

Cplex-MIP Cplex-QP QCR BiqCrunch Our Algo

inst n nodes time nodes time nodes time nodes time nodes time

100 25 1 100 6.29e+2 1.1 5.00e+7 TL 8.45e+7 TL 2.06e+3 713.5 3.09e+8 TL
100 25 2 100 0.00e+0 0.1 5.49e+4 8.5 9.39e+3 2.1 5.07e+2 99.2 8.06e+4 18.9
100 25 3 100 4.60e+1 0.5 6.33e+7 TL 9.38e+7 TL 6.71e+2 302.2 8.89e+7 732.4
100 25 4 100 4.10e+1 0.5 6.26e+7 TL 3.91e+7 8280.0 1.75e+2 58.1 3.26e+7 5865.3
100 25 5 100 0.00e+0 0.1 1.50e+3 0.3 2.26e+2 0.1 3.87e+2 80.7 1.07e+3 1.3
100 25 6 100 2.79e+2 0.9 5.54e+7 TL 5.99e+7 TL 3.19e+2 145.0 1.77e+8 TL
100 25 7 100 2.37e+2 0.7 5.22e+7 TL 7.73e+7 TL 1.68e+3 485.3 3.79e+8 TL
100 25 8 100 1.90e+1 0.2 5.08e+7 TL 6.76e+7 TL 7.59e+2 251.7 2.98e+8 TL
100 25 9 100 1.70e+1 0.3 5.29e+7 TL 6.97e+7 TL 2.15e+2 93.8 1.10e+8 TL
100 25 10 100 5.90e+2 1.9 5.02e+7 TL 7.68e+7 TL 2.87e+3 1302.9 2.48e+8 TL
100 50 1 100 7.00e+1 2.1 5.16e+7 TL 6.83e+7 TL 1.95e+3 637.8 1.40e+8 TL
100 50 2 100 4.69e+2 8.8 1.86e+7 3629.4 1.01e+7 2540.0 2.60e+3 932.0 1.14e+7 1952.4
100 50 3 100 3.21e+2 3.1 4.73e+7 TL 7.93e+7 TL 3.16e+3 896.8 4.65e+8 TL
100 50 4 100 3.00e+1 1.1 1.18e+6 221.8 3.39e+5 85.6 2.31e+2 87.8 1.29e+6 253.1
100 50 5 100 3.98e+2 5.1 4.66e+7 TL 6.72e+7 TL 3.14e+3 569.9 1.91e+8 TL
100 50 6 100 5.53e+2 3.6 4.99e+7 TL 9.03e+7 TL 4.97e+2 149.3 7.80e+8 TL
100 50 7 100 1.77e+2 4.2 4.67e+7 TL 7.41e+7 TL 4.95e+2 100.8 2.13e+8 TL
100 50 8 100 1.60e+2 2.1 4.52e+7 TL 7.37e+7 TL 2.20e+3 736.9 2.53e+8 TL
100 50 9 100 1.83e+2 4.9 4.48e+7 TL 6.95e+7 TL 1.00e+0 1.4 1.37e+8 TL
100 50 10 100 3.06e+3 33.1 4.84e+7 TL 5.69e+7 TL 1.86e+4 8017.5 9.35e+7 TL
100 75 1 100 0.00e+0 0.6 3.50e+1 0.0 2.21e+7 6680.0 8.30e+1 19.3 1.31e+2 1.0
100 75 2 100 1.02e+4 93.0 4.20e+7 TL 6.05e+7 TL 2.56e+4 10070.3 1.87e+8 TL
100 75 3 100 3.57e+2 6.0 4.05e+7 TL 6.95e+7 TL 8.35e+2 140.8 3.40e+8 TL
100 75 4 100 4.43e+3 59.3 4.24e+7 TL 6.30e+7 TL 3.03e+4 TL 2.70e+8 TL
100 75 5 100 4.76e+2 7.2 4.44e+7 TL 8.38e+7 TL 3.38e+3 749.3 7.09e+8 TL
100 75 6 100 6.00e+0 0.8 1.92e+7 4642.2 5.55e+6 1750.0 5.63e+2 181.1 2.01e+7 2994.6
100 75 7 100 1.25e+3 20.6 4.40e+7 TL 6.25e+7 TL 9.39e+3 3186.6 1.47e+8 TL
100 75 8 100 2.62e+3 82.3 4.46e+7 TL 7.88e+7 TL 2.75e+2 78.7 9.00e+8 TL
100 75 9 100 1.19e+4 171.5 4.02e+7 TL 6.72e+7 TL 2.57e+4 TL 1.50e+8 TL
100 75 10 100 3.46e+2 8.0 4.42e+7 TL 1.50e+2 0.5 1.96e+3 425.6 7.79e+7 TL
100 100 1 100 1.26e+2 5.0 4.04e+7 TL 5.52e+7 TL 7.87e+3 1259.6 3.17e+8 TL
100 100 2 100 1.49e+3 46.6 3.76e+7 TL 5.10e+7 TL 6.26e+3 1888.1 7.84e+7 TL
100 100 3 100 9.40e+1 5.7 3.43e+5 94.0 3.49e+5 118.4 5.23e+2 89.7 1.43e+5 32.0
100 100 5 100 1.28e+2 9.4 2.73e+5 68.8 2.42e+5 81.7 6.67e+2 156.2 9.83e+4 21.4
100 100 6 100 6.93e+2 23.4 4.09e+7 TL 6.47e+7 TL 3.36e+3 723.7 3.58e+8 TL
100 100 7 100 1.56e+2 7.2 4.27e+7 TL 8.10e+7 TL 2.01e+2 87.9 4.96e+7 251.6
100 100 8 100 2.91e+2 5.5 3.81e+7 TL 7.10e+7 TL 1.93e+3 351.2 5.01e+8 TL
100 100 9 100 4.58e+4 1610.5 2.74e+5 68.5 3.12e+5 93.2 3.29e+4 9707.7 9.08e+4 14.5
100 100 10 100 7.22e+4 1185.0 3.65e+7 TL 4.20e+7 TL 1.69e+4 TL 1.51e+8 TL

Table 6 Computational results for QKP

instances of QAP and is the weakest solver for QSPP with 10 instances unsolved; for QKP,

however, this approach clearly outperforms all other methods, being the fastest method in

all but 5 cases. Altogether, Cplex-QP is weaker than Cplex-MIP, solving only 3 instances



Buchheim and Traversi: Quadratic combinatorial optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 25

for QAP, 25 for QSPP and 9 for QKP. Our approach clearly outperforms both versions of

Cplex on all instances of QSPP and most instances of QAP. Moreover, it performs slightly

better than Cplex-QP on the QKP instances.

Also in comparison with the QCR algorithm, our algorithm is faster in solving QSPP in

general and much faster in solving QAP instances, while having comparable running times

on average for solving the QKP instances. Interestingly, running times can differ drastically

in both directions, particularly for the QKP instances, showing that both algorithms have

very different strengths.

Finally, also BiqCrunch shows different performance on the three classes of instances.

On the one hand, it is clearly outperformed by our approach for QSPP and QAP instances,

except for one instance. On the other hand, it is very strong for the QKP instances, where

it is beaten only by Cplex-MIP.

In summary, we can conclude that our algorithm outperforms the other approaches on

almost all QSPP and most of the QAP instances considered, while the picture for QKP is

different, with Cplex-MIP and BiqCrunch being the fastest algorithms on average.

7. Conclusion

We proposed a generic framework for solving binary quadratic programming problems that

exploits the underlying combinatorial structure. The bounding procedure uses an integer

linear relaxation of the original problem based on separable underestimators and it proved

to have a good trade-off between quality of the bound provided and computing time. Our

algorithm is effective in solving several classes of quadratic 0–1 problems and is the first

exact approach available in the literature for the quadratic shortest path problem. The use

of the proposed algorithm is recommended in any situation where an efficient algorithm is

known for solving the linear counterpart of the problem.
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