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Abstract. The planning of chemical production often involves the optimization of the 

size of the tasks to be performed subject to unit capacity constraints, as well as inventory 

constraints for intermediate materials. While several mixed-integer programming (MIP) 

models have been proposed that account for these features, the development of tightening 

methods for these formulations has received limited attention. In this paper, we develop a 

constraint propagation algorithm for the calculation of lower bounds on the number and 

size of tasks necessary to satisfy given demand. These bounds are then used to express 

three types of tightening constraints which greatly enhance the computational 

performance of the MIP scheduling model. Importantly, the proposed methods are 

applicable to a wide range of problem classes and time-indexed MIP models for chemical 

production scheduling.  

1.   Introduction 

Chemical production involves the conversion of raw materials (feedstocks) into final products, 

both of which are most often fluids (gases or liquids). Fluids can be mixed or split in variable proportions 

and are often recycled (e.g., unreacted raw materials are recycled after they are separated from the final 

product). Production tasks convert a set of input materials into a set of output materials, and are carried 

out in equipment units that are capable of processing different amounts of (fluid) materials. In other 

words, the size and therefore the number of tasks to be executed can be an optimization decision.  

While there are chemical facilities with a wide range of processing characteristics and constraints, 

there are two major types of chemical processing, sequential and network. In sequential processing, it is 

assumed that production tasks have a single input and a single output material; the input material of a task 

is produced by a single upstream task; and the output of a task is consumed by a single downstream task. 

Thus, materials from different tasks are not mixed, and the output of a task cannot be split to be consumed 

by multiple tasks. Also, it is implicitly assumed that each material is produced and consumed by at most 

one task. In network processing, tasks may consume or produce multiple materials, and a material can be 

produced and consumed by different types of tasks. Also, material coming from different tasks can be 

mixed in a storage vessel, the output of a task can be consumed by multiple downstream tasks, and 

material can also be recycled.  
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Interestingly, the methods that have been developed to address chemical production scheduling 

problems follow the aforementioned classification. Early work focused on sequential facilities where a 

batch of raw material has to go through multiple production stages to be converted to the final product. In 

other words, the processing of fluids is represented as the processing of a discrete batch that has to go 

through different processing stages; amounts of materials are not monitored and no material balances are 

included. We note that this type of modeling is possible because splitting, mixing and recycling are not 

allowed. We term these approaches as batch-based. In most cases, it is also assumed that the sizes and 

thus the number of batches (for known demand) were determined prior to optimization [Reklaitis, 2012], 

while recent approaches consider simultaneous batching and scheduling [Prasad and Maravelias, 2008]. 

In the process systems engineering (PSE) literature these facilities are termed either as multi-stage, if the 

routing through the stages is the same for all batches/products, or multi-purpose, if there are 

batch/product-specific routings [Mendez et al., 2006; Maravelias, 2012a].  

Clearly, batch-based methods cannot be used to address problems in network facilities where 

mixing, splitting, and recycling are allowed; materials can be produced and consumed by different tasks; 

and the sizes of the tasks are optimization decisions. To address these problems researchers developed 

what we term material-based models, where the amounts of material processed by a task, as well as the 

inventories of materials, are explicitly modeled. Another key modeling aspect of these approaches is that 

a time reference grid is defined, and (i) the start/end times of tasks are mapped onto this grid and (ii) 

inventory constraints are expressed at the time points of the grid. The pioneering work of Pantelides and 

co-workers employed a discrete-time grid, where the time horizon is divided into periods of equal and 

known length and processing times are assumed to be constant [Kondili et al., 1993; Shah et al., 1993]. 

Since then, a wide range of formulations have been proposed including continuous-time and mixed-time 

grids, as well as unit-specific grids.  

Regardless of the nature of the time representation and the details of the formulation, there are 

three processing constraints that have to be enforced [Maravelias, 2012b]:  

a) Unit utilization: a unit cannot perform more than one task at a time. 

b) Material balance: the inventory of a material in a storage vessel has to be nonnegative and less 

than the capacity of the vessel. 

c) Batch-size: the size of a processing task (batch-size) has to be between a nonzero lower and an 

upper bound (capacity).  

The main difference between the various material-based formulations lies in the modeling of the 

first constraint. In discrete-time models, it is enforced through the widely used one-machine clique 

constraint, while in continuous-time formulations more complex sets of constraints are used. The second 

constraint is always a flow balance constraint for a material-time node, similar to those used in production 

planning formulations [Pochet and Wolsey, 2006]. Finally, the third constraint results in variable 

lower/upper bound constraints: if a task is executed, then the amount processed should be within a lower 

and upper bound; otherwise it is zero. The size of a task should be greater than or equal to the lower 

bound for safety and controllability reasons, as well as due to recipe constraints. Most of the 

aforementioned types of constraints have been studied extensively. First, valid inequalities and 

specialized solution methods have been developed for time-indexed single-machine problems [Wolsey, 
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1990; van den Akker et al., 1999; van den Akker et al., 2000].  Also, many constraint propagation 

algorithms have been developed for this constraint [Hooker, 2000; Baptiste et al., 2001; Van Hentenryck 

and Michel, 2005; Hooker, 2007]. Second, lot sizing problems have material balances that are similar to 

those in network scheduling problems, and adding valid constraints based on these material balances and 

bill-of-materials information results in a significantly tighter formulation [Pochet and Wolsey, 1993; 

Wolsey, 1997; Miller and Wolsey, 2003].Finally, valid inequalities have been derived from variable 

upper bound constraints in the context of fixed-charge network problems [Nemhauser and Wolsey, 1988; 

Wolsey, 1998]. However, scheduling problems with variable lower bound constraints have not been 

studied sufficiently. Burkard and Hatzl (2005) bound the number of batches of each task and the number 

of batches produced of each material by solving a small MIP for every task and an LP for every material, 

while Janak and Floudas (2008) propose bounding the number of batches and cumulative production for 

each task by solving an MIP bounding problem for every task.  

Accordingly, in this paper, we study how the variable lower bound constraints can be used to 

develop strong valid inequalities for MIP chemical production scheduling problems. Specifically, we first 

develop an algorithm that allows us to calculate tight lower bounds on the number of batches of each task 

and the total amount of material processed by each task that are necessary to satisfy the given demand. 

These lower bounds, which are calculated from instance data within seconds, are then used to write two 

classes of valid inequalities which greatly reduce the computational requirements. Our algorithm is 

applicable to all types of network facilities, including facilities with (i) multiple tasks producing or 

consuming the same material(s), (ii) multiple units capable of performing the same task(s), and (iii) 

recycle loops. Also, they are applicable to all types of material-based MIP formulation that employ time-

indexed variables.  

It is important to note that material-based time-indexed MIP models are used as the backbone in a 

wide range of chemical production scheduling tools, as well as in in-house tools developed by chemical 

companies [Wassick, 2009]. Also, material-based models have been extended to address problems in 

sequential production environments as well as facilities that combine sequential and network 

environments [Sundaramoorthy and Maravelias, 2011]. Nevertheless, one of the limitations of both 

commercial products and specialized tools is that they remain computationally inefficient. Thus, our 

methods, which are applicable to all aforementioned models, have the potential to benefit a wide range of 

tools and models.  

The paper is structured as follows. In Section 2, we introduce a network-inspired representation 

of chemical facilities, present a formal statement of the problem we consider and a widely used MIP 

scheduling model, and close with a motivating example. In Section 3, we present the constraint 

propagation algorithm for the calculation of the lower bounds on the number of batches and the total 

material processed. In Section 4, we present two types of tightening constraints, as well as extensions for 

problems with intermediate due times. In Section 5, we perform an extensive computational study 

including more than 70 problem instances. We use lowercase italic letters for indices, uppercase bold 

letters for sets, lowercase Greek letters for parameters, and uppercase italics for optimization variables.  



4 
 

2.   Background 

2.1.   Chemical Production Scheduling Notation 

A chemical facility transforms a set of raw materials into a set of valuable products through a 

sequence of processing tasks carried out in equipment units. A processing task converts a set of input 

materials (raw materials or intermediates) into a set of outputs (intermediates or final products) according 

to specified conversion coefficients. Note that the term task is used to describe a type of operation (e.g., 

the conversion of A to B via reaction A → B is a task), which implies that a schedule may include 

multiple executions of the same task. A task can in general be carried out in multiple units of unequal 

capacity, which implies that the number of batches of a task necessary to satisfy given demand is not 

known prior to optimization. Thus, the term scheduling in the PSE literature has been used to describe a 

problem which includes three levels of decisions: (i) the determination of the number (and size) of 

batches to be performed, (ii) the assignment of batches to processing units, and (iii) the timing of batches 

so that at most one batch is executed on a unit.  

We assume that a chemical facility consists of: (i) processing units, where tasks are executed; (ii) 

storage vessels, where materials are stored; and (iii) piping for material transfer. Processing units and 

storage vessels have capacity limitations, and each processing unit and storage vessel is capable of 

processing/storing a subset of tasks/materials. We do not consider other shared resources such as utilities 

(e.g., electricity) and labor. Figure 1a shows the process flow diagram (PFD) of a simple chemical 

facility, where raw material S1 is converted into intermediate S2 in unit U1, and the latter is converted to 

either product S3 or S4 in unit U2 or U3. Note that the PFD shows the physical equipment of the facility, 

but not necessarily the tasks that take place on the units. Also, units can perform multiple tasks; e.g., units 

U2 and U3 can convert S2 to S3 or convert S2 to S4.  

U2

U3

U1

Storage 

for S1

Storage 

for S2

Storage 

for S3

Storage 

for S4

(a) Process Flow Diagram  

T1

T2

T3

S1
S2

S3

S4

{U1}

{U2,U3}

(b) State-Task Network  
Figure 1. Process flow diagram (physical layout of the facility) and state-task network representation of a facility. 

2.2.   Problem Statement 

To study scheduling problems, we have to use a representation that includes not only the physical 

resources, but also the different tasks that can be carried out. In this paper, we adopt the state-task 

network representation, which is based on the following concepts:  

a) States (materials): include feeds, intermediates, and final products and are represented by circles.  

b) Tasks: are operations that produce and consume states (materials) and are depicted with rectangles.  

c) Units: unary resources for the execution of tasks; multiple units may be able to process a single task, 

and a single unit may be able to process multiple tasks.  
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States (circles) and tasks (rectangles) are connected by arrows, referred to as streams, showing the flow of 

material. If a task consumes (produces) a state, an arrow points from the state (task) to the task (state). 

Figure 1b shows the STN representation for a scheduling problem in the facility shown in Figure 1a. Note 

that units are shown implicitly through the task-unit compatibility information given by the dotted lines. 

The structure of the network is defined in terms of the following sets (see Figure 2a): 

Indices/Sets  

i,i’∈I  tasks 

j∈J  processing units 

s,s’∈S  states 

Subsets 

s


I / s


I   tasks producing/consuming state s 

P

iJ  processing units that can process task i 

i


S / i


S

 
states produced/consumed by task i 

S
F
 final products 

We are also given the following parameters:  

ϕs  total customer demand for state s 
min

j / max

j   minimum/maximum capacity of unit j 

is  / is    fraction of state s produced/consumed by task i 

τij  fixed processing time for task i in unit j 

ζs
0 

initial inventory of state s 

In Figure 2a, S1 is consumed by T2 and T3 and produced by T1; therefore, S1


I ={T2, T3} and 

S1


I ={T1}. In Figure 2b, T1 produces S3 and consumes S2 and S1, so T1


S ={S3} and T1


S ={S1,S2}. In 

general, a plus (+) superscript indicates production, and a minus (–) indicates consumption. If T2 and T3 

can both be processed in either U2 or U3, then T2

P
J = T3

P
J ={U1, U3}. 

T1

T2

T3

S1

S1T1 I

S1T2 I

S1T3 I

T1
S1

T1S1 S

S2

S3

T1S2 S

T1S3 S

 
(a)  Sets /s s

 
I I  

 
(b)  Sets /i i

 
S S  

 
Figure 2. Illustration of general sets.  

2.3.  Discrete-time Model 

To illustrate the underlying concepts and perform computational studies, we introduce the 

widely-used MIP formulation of Shah et al. (1993). We use this model because a recent computational 

study showed that discrete-time models are more effective for large-scale problems and, most 

importantly, can be easily extended to account for a range of processing restrictions and characteristics 

(e.g., intermediate due dates,  holding and utility costs, variable resource requirements during task 

execution) at almost no computational cost [Sundaramoorthy and Maravelias, 2011b]. However, we 
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highlight that our methods are applicable to all time-indexed MIP models for chemical production 

scheduling that account for variable batch-sizes.  

Time points are indexed by t. The formulation includes one family of binary variables: 
P

ijtX   is one if unit j processes task i starting at time t 

and the following non-negative continuous variables: 

Bijt  batch-size of task i processed in unit j starting at time t 

Sst  inventory of state s at time t 

Pst  amount of feed state s purchased at time t 

Dst  amount of final product s delivered to customers at time t 

 The model consists of unit utilization (eqn. 1), unit capacity (eqn. 2), inventory capacity (eqn. 3), 

and material balance (eqn. 4) constraints. 

1

1 ,
j ij

t
P

ijt

i t t

X j t




   

  
I

 (1) 

min max , ,P P P

j ijt ijt j ijt iX B X i j t    J  (2) 

max ,st sS s t    (3) 

   1
ij

P P
s i s i

st is is ijt st sts t ij t
i j i j

S S B B P D


 
 

 

 
   

       
I J I J

 (4) 

where Dst is fixed to the total amount of state s due at time t; and Pst is only non-zero for feed states. 

Variables P

ijtX  are fixed to zero for the τij -1 time points before the end of the time horizon. 

2.4.  Motivating Example 

We consider an instance of the facility introduced in Figure 1, with a demand for 90kg of S3 and 

25kg of S4. For each unit, the capacity (min-max) and processing cost of a task in that unit are: 25-60kg 

and $10 for U1; 40-50kg and $25 for U2; and 35-45kg and $30 for U3. Our objective is to minimize cost. 

We generated a model for this instance based on formulation presented in §2.3. The minimum cost for the 

LP-relaxation is $76.7, while the number of batches of tasks T1, T2, and T3 are 1.9, 1.8, and 0.5, 

respectively (see Table 1).  

Table 1. Effect of tightening on the number of batches and cost for the network in Figure 1.  

 

# of Batches Min. 

Cost ($)   T1 T2 T3 

Optimal solution 3 2 1 105 

Minimum # of batches 

    Burkard’s method 2 2 1 

 Proposed method 3 2 1 

 LP-Relaxation 

    No tightening 1.9 1.8 0.5 76.7 

Burkard’s method 2.2 2 1 96.7 

Proposed method 3 2 1 105 
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However, if we take into account the capacities of the units, we can infer that more batches will 

be required in any feasible solution. T2 must produce 90kg of S3 to satisfy demand; since the maximum 

batch-size is 50kg, this requires at least two batches. Similarly, T3 must produce at least 25kg of S4, but, 

since the minimum batch-size is 35kg, T3 must produce at least 35kg in at least one batch. Together, T2 

and T3 require a minimum of 125kg (=90+35) of S2, which T1 produces in at least three batches. Using 

this constraint propagation procedure, we calculate lower bounds on the number of batches and 

cumulative production for each task.  

Table 1 shows the effect of tightening on the example in Figure 1. Without tightening, the 

minimum cost for the LP-relaxation is $76.7. With the proposed method, the cost of the LP relaxation is 

$105. Interestingly, the minimum cost and number of batches of the LP-relaxation in this simple problem, 

match the optimal MIP solution. Our goal is to develop a method that allows us to systematically 

calculate similar bounds in general production networks, including facilities with recycle streams. Note 

that using the tightening methods proposed by Burkard and Hatzl (2005) improves the cost of the LP-

relaxation to $96.7. Burkard and Hatzl (2005) do not consider minimum unit capacities, so their method 

requires T1 to produce only 115kg (=90+25) of S2 in two batches. The tightening methods of Janak and 

Floudas (2008) find a lower bound on the number of batches which is as tight as ours, but require solving 

a MIP for every task which is often as time consuming as solving the original MIP model. Also, their 

approach relies on a specific continuous-time models. Our proposed methods do not require solving any 

auxiliary MIPs, are valid for any network, and can be used with any model employing a time grid. 

3.  Constraint Propagation Algorithm 

Our constraint propagation algorithm calculates parameters which are then used to formulate the 

tightening constraints. The algorithm depends on the structure of the process network. We classify 

networks into four categories according to Figure 3:  

(1) networks with no loops (Figure 4a); 

(2) networks with loops but no recycle states (Figure 4b); 

(3) networks with recycle states in a single loop (Figure 4c); and 

(4) networks with a recycle state and multiple nested loops (Figure 4d). 

A recycle loop is any closed path (moving only in the direction of the stream arrows) within the network, 

and a recycle state is a state in a loop that can be produced by multiple tasks. Each colored box in Figure 

3 has its own specific tightening procedures that are described in the indicated section. All networks use 

the tightening procedures for general networks (§3.1). Networks are first divided into networks with and 

without recycle loops. If there are recycle loops, §3.2 describes the additional tightening methods. 

Recycle loops are further divided into loops with and without recycle states, and §3.3 explains more 

tightening methods for networks with recycle states. When a loop has a recycle state, it is classified as 

having either a single loop or a nested loop, which is described in §3.4. In §3.5, we present a general 

algorithm for applying the tightening methods to any network. In §3.6, we describe an alternative 

approach for networks with recycle states that also works well when multiple tasks can produce a single 

state. 
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 3.1 General Networks

No Loops (Fig 4a) 3.2 Loops

 3.3 Recycle States No Recycle States (4b)

Single Loop (4c) 3.4 Nested Loops (4d) 

(a) General network without loops

T1 T2
S1

S2

… …

(b)  Network with a loop and no recycle states

T1 T2
S1

S2

… …

(c)  Network with a recycle state

T1 T2
S1

… …

(d)  Network with nested loops

T1 T2

S1

S2

… …

 
Figure 3. Classification of networks.           Figure 4. Examples of categories of networks.  

3.1.  General Networks 

3.1.1.   Backward Propagation 

For backward propagation, we introduce the following parameters: 

ωs  lower bound on the amount of state s required to meet final demand 

 μi/  i  lower bound on the production of task i required to meet final demand, μi≤  i  

 νis  lower bound on the amount of state s that must be produced by task i 

First, we need to find the minimum amount required for all states, ωs, and the minimum 

production for all tasks,   i; we calculate these parameters sequentially by backward propagating demand 

for final products. We estimate ωs once   i is known for all tasks consuming state s (all i∈ s


I ). Similarly, 

we need to know ωs for all states produced by task i (all s∈ i


S ) before we calculate   i (see Figure 5).    

 We calculate ωs starting with the final products:  

0

0

s

F

s s

F
s

is i s

i

s

s

 
   







  


   



I

S

S  (5) 

In the RHS of eqn 5, the top expression is the customer demand for final products minus any initial 

inventory while the bottom expression is the amount of intermediate s required by all tasks consuming it 

minus its initial inventory. If the initial inventory exceeds the amount required, ωs will be negative, and 

the process does not need to produce state s.  

 The minimum amount of state s that must be produced by task i, νis, is introduced as an 

intermediate parameter. Although ωs can be negative, νis must be at least zero. 

 max ,0 ,

0 \ ,

ST

s s
is MT R

s

s i

s i








  
 

 

S I

S S I
 (6) 

S2 S4

S3

S1

S7

S6S5T1 T3

T2 T4

T1 T3
S1 S5 S6

T4

S3

S7
T2

S2 S4

  T3 and   T4 must be 

estimated before ωS5

ωS5 and ωS5 must be 

estimated before   T2

(a) STN representation of example (b) Series of calculations in back-propagation  
Figure 5. Example of backward propagation of demand. From demand for S6 and S7, we calculate ωS6 and ωS7; 

next, we calculate   T3 and   T4, followed by ωS5 and ωS4. We cannot find   T2 yet because ωS3 is not known, so we 

calculate   T1, followed by ωS3 and ωS1. Finally, we calculate   T2 and ωS2. 
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where S
ST

 is the set of states produced by a single task, S
MT

 is the set of states that can be produced by 

multiple tasks, and S
R
 is the set of recycle states. Eqn. 6 does not consider recycle states, which we 

discuss in §3.3. If multiple tasks can produce a state, we assume that any single task can meet the full 

demand; therefore, the minimum production of that state by each task is zero, and, for these states, an 

alternative approach that gives better results is described in §3.6.  

 After calculating νis for all states produced by a task, we calculate μi,  

 max
i

is
i

s
is




 


 
  

 S

 (7) 

The term inside the brackets is the total amount task i must process to meet the demand for s. We take the 

maximum over all states produced by task i to ensure the task satisfies demand for all states. At this point, 

we must find the minimum attainable production amount,   i ≥ μi  

i i i     (8) 

where Δμi is the minimum amount that must be added to μi to reach an attainable production amount and 

is discussed in §3.1.2. Parameter   i provides a tighter lower bound on the required production of task i. 

We backward propagate demand until ωs and   i are known for all states and tasks. 

3.1.2.  Attainable Production Amounts 

 After finding μi, we need Δμi to calculate   i. When only one unit can process a task, it is 

straightforward to find the range of attainable production amounts for any number of batches and to check 

if the required production is in one of those attainable ranges (see example in Figure 6). If μi 
falls in an 

attainable region, demand can be met exactly, and Δμi 
is zero; otherwise, Δμi 

is the distance between μi 

and the start of the next attainable range. 

 However, when multiple units can process a task, we must find and check attainable ranges for 

every possible combination of batches in units. For example, if two units can process a task, we need to 

check 1 batch in U1, 0 in U2; 0 in U1, 1 in U2; 1 in U1, 1 in U2; etc. To reduce the number of 

combinations, we find an upper bound on the number of batches in a particular unit, max

j , by dividing μi 

by the largest possible batch unit j can process and rounding up, 

max

max

Pi
j i

j

j





 
   
  

J  (9) 

4

3

2

1

120 140

#
 o

f 
B

a
tc

h
e
s

Production Amount

1600 20 40 60 80 100

 
Figure 6. Attainable ranges for a unit with a capacity of 30-40kg are shaded. 
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When the number of batches for a particular unit is at its upper bound, we are guaranteed the attainable 

range meets or exceeds demand with just one unit, and the number of batches in all other units is set to 

zero to eliminate more combinations. In total there are Ki ranges to check, 

 max

P
i

P

i j i

j

K 


 
J

J  (10) 

For each range, k∈{1,2,…,Ki}, there is a unique combination of k

j , where k

j  gives the number of 

batches in unit j for range k. The first term in eqn. 10 is the number of ranges with k

j = 0,1,2,…( max

j - 

1)
 
for all j∈ P

iJ , and the second term is the number of ranges with k

j  
= max

j  for one j∈ P

iJ  and k

j =0 for 

all other j∈ P

iJ . We loop over all k∈{1,2,…,Ki} and check if i  falls into an attainable range. If, for task i, 

min max

P P
i i

k k

j j i j j

j j

    
 

  
J J

  (11) 

for some k, the minimum required production can be met exactly, and Δμi is zero. The LHS of eqn. 11 

gives the lower bound of the attainable range, and the RHS gives the upper bound. If μi is not attainable 

for any range, we perform another loop over all k to find the range that is able to meet production 

requirements and whose lower bound is closest to μi.  

min min

min

if 

if 

P P
i i

P
i

k k

j j i j j i

j jk

i k

j j i

j

     


  

 



  


  
 



 


J J

J

 (12) 

The top line sets k

i  equal to the excess amount produced (the lower bound on the range minus μi) if the 

combination of units is at least able to meet demand. The second line sets k

i  to infinity when the 

combination’s capacity is too small. Once all ranges have been checked, Δμi is calculated:  

 min k

i i
k

     (13) 

 As an example, we consider a task that can be processed in U1 or U2 and must process 55 kg (see 

Figure 7). We find max

U1 3   and max

U2 2  from eqn. 9; and Ki=8 from eqn. 10. All k

j  for k∈{1,2,…,8} 

are shown on the left side of Figure 7. The attainable ranges are shaded (eqn. 11). Since μi= 55 does not 

fall in a gray range, eqn. 11 is never satisfied. The excess produced by each range is the distance between 

μi and the start of the next shaded range (eqn. 12). For this example, the smallest excess production is 5, 

Eqn. 11

capacities (min/max):

U1: 20/25  U2: 45/50

αU1 αU2

1 0 0 no no ∞

2 0 1 no no ∞

3 0 2 no yes 35

4 1 0 no no ∞

5 1 1 no yes 10

6 2 0 no no ∞

7 2 1 no yes 30

8 3 0 no yes 5

Eqn. 12

Is μ i  in 

attainable 

region?

Is 

demand 

met?

Excess 

prodution 

 Δμ i
k

k μ i  = 55 μ ᷉i  = 60

Production Amount

0 20 40 60 80 100

 
Figure 7. Example of calculation of the minimum attainable production amount. 
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so Δμi is 5, and   i is 60.  

The algorithm for finding Δμi is as follows: 

1 Calculate max

j  and Κi and set αj
k
. 

2 For k∈{1,2,…, Κi} 

3    If eqn. 11 is true 

4  Set Δμi =0 and stop 

5 end 

6 end 

7 For k∈{1,2,…, Κi} 

8 Calculate k

i  (eqn. 12) 

9 end 

10 Calculate Δμi (eqn. 13) 

The attainable production amount, i , is now calculated using eqn. 8. 

3.2.  Networks with Loops 

When there are loops in a network, simple backward propagation will not work. We use tear 

streams to break the loop with one tear stream in every loop. A tear stream consists of a task, referred to 

as the tear task, and a state produced by that task, referred to as the tear state. Although any stream can be 

chosen as the tear stream, some choices are more convenient. If a loop has a task that produces a state 

outside the recycle loop, this task should be used as the tear task; otherwise, any task can be chosen. The 

sets I
T
 and S

T
 contain all tear tasks and states, and L

lI  and L

lS  give all tasks and states in loop l.  

Figure 8 provides an example for propagating demand for a network with a loop. We write the 

value of μi inside the box representing task i, ωs inside the circle representing state s, and νis next to the 

stream connecting task i to state s. For simplicity, all examples have one unit per task, and capacities are 

given for each task. The recycle loop is shown in bold. We chose T3 as the tear task because it produces 

S4 outside the recycle loop, and S5 is the tear state. We initialize νT3,S5 for the tear stream to zero (Figure 

8b). Now, we can estimate   T3 as soon as ωS4 is known. We backward propagate demand as follows: 

ωS4=50 ⇒   T3=100 ⇒ ωS3=100 ⇒   T2=100 ⇒ ωS2=100 ⇒   T1=110 (μT1=100 and ΔμT1=10) ⇒ ωS1=110-

45=65 ⇒   T4=65 ⇒ ωS5=65*0.8=52. We stop after calculating ωS5=52 for the tear state (Figure 8c). We 

need a minimum of 52 kg of S5, but T3 only produces 50kg (=100*0.5). Therefore, we set νT3,S5=52, and 

delete ωs and μi for all other states and tasks (Figure 8d). We repeat backward propagation using the new 

value νT3,S5=52 (Figure 8e). Now, T3 produces the required 52kg of S5.  

In general, we begin by initializing νis for all tear streams to zero. We backward propagate 

demand until ωs is estimated for a tear state. We update νis for the tear stream using eqn. 6 and compare it 

to the production of the tear task. If production can meet demand (νis 
≤ is i  ), there is no problem, and we 

continue with the backward propagation. If demand is greater than production (νis 
> is i  ), we reset all 

other ωs and   i, and restart the backward propagation using the new initial value for the tear stream. If, on 

the second pass, demand for a tear state still exceeds production, the problem is infeasible with the given 

initial inventories.  
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(c)   Propagate demand backward

(d)  Check tear stream and start over

Capacities

T1 T2-T4

min 55 50

max 90 150

S4 50 

   T3 S5T T I S

0
1 45S 

(a)  Example STN and data

(b)   Initialize tear streams

(e)  Final minimum production amounts
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

I

S

S1

T1 T2

S2 S3

T3

S4
50%

50%

T4

S5

20%

80%

S6

S1
T1

110

T2

100
65 100 100

S2 S3
T3

100
50

S4
50

52

T4

65
52

S5

65

13S6

100100

S1

T1 T2
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52
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Figure 8. Network with a loop and no recycle states. 

3.3.  Networks with Recycle States 

Previously, when multiple tasks could produce a single state, we assumed that each task was 

capable of producing the full amount, and, therefore, each task had a minimum production of zero (eqn. 

6). However, when a state s∈S
MT

 is part of a loop, we can find a better estimate for νis. We refer to these 

states as recycle states, S
R⊆S

MT
. Note that the fraction of a state that is recycled is less than one; in other 

words, if we start out with some amount of the recycle state and run only tasks in the recycle loop, we 

will never end up with more of the recycle state than what we had initially. 

We introduce the following new parameters for networks with recycle states: 
R

s   upper bound on the amount of state s that can be produced when only the minimum amount of a 

recycle state, ωs’, is available 
R

i   upper bound on the production of task i when only the minimum amount of a recycle state is 

available 
ψis  upper bound on the amount of recycle state s produced by task i when only the minimum amount 

of state s is available 

 

3.3.1.  Example 

For the network in Figure 9, we start by selecting the tear stream in exactly the same way as in 

§3.2. We choose T4→S3 as the tear stream and initialize νT4,S3 to zero. The backward propagation 

continues until we calculate ωS3=98 in Figure 9c. There is a maximum amount of S3 that T4 (T1) can 

produce without increasing the required production of T1 (T4) (see Proposition 1); this amount is given 

by the parameter is , which we estimate by propagating ωS3 forward (Figure 9d). In the forward 

propagation, we start out with ωS3=98kg of S3, which means T3 can produce at most T3

R =140kg 

(=98/0.7) of S5 (assuming there is enough S4). T5 needs   T5=20kg of S5 (from Figure 9c) and the 

remaining 120kg (=140-20) of S5 are available for T4. Therefore, T4 produces up to ψT4,S3=24kg 
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(=120*0.2) of S3. Since ωS3=98kg of S3 are needed in all (from Figure 9c), we conclude that T1 must 

produce the remaining 74kg (=98-24), and νT1,S3 =74. T1 is capable of producing all 98kg of S3 (ψT1,S3=∞ 

with unlimited initial inventory of feeds), so T4 is not required to produce any S3, and νT4,S3=0. Since S3 

is also a tear state, we must ensure that the production of S3 by T4 exceeds νT4,S3; since it does 

(0≤0.2*120), we continue with the backward propagation until we have calculated ωs and   i for all states 

and tasks (Figure 9e).  

S1

T1 T3

S3

S5

T4

S680%

20%

30%

S2 T2

S4

40%

70%60%

T5

S7

(a)  Example STN and data

(c)  Propagate demand backward

(d)  Propagate ωS3 forward

(e)  Final minimum production
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∞
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(b)  Initialize tear streams

T1,S3 74  T1,S4 0 

L1:  S3 T3 S5 T4 S3   

 
Figure 9. Backward propagation in a network with a single recycle state in a single loop. 

3.3.2.  General Methods for Recycle States 

Backward propagation for networks with recycle states starts by initializing νis for tear streams to 

zero. As with standard loops, when νis is calculated for a tear stream, we check if production exceeds 

demand. After calculating ωs for a recycle state, we label this state s* and find the maximum amount that 

can be recycled. The minimum amount of the labeled recycle state that is required to meet demand, ωs*, is 

propagated forward around the recycle loop to find R

s and R

i for all states and tasks, respectively. For 

all states and tasks outside the recycle loop, we set R

s and R

i  to infinity; this ensures no feasible 

solutions are cutoff and assumes that these states are produced starting from feeds with an unlimited 

supply. Once R

i  is known for all tasks producing a state (i∈ s


I ), we calculate R

s . We can calculate R

s  

for the labeled recycle state immediately. 

 
*

*

0

0

for *

if  and max 1
S

S s
s s

s s
R

R L L
s

is i s l s l
l

i l

s s

s

 

   


 


 

  


     




L
I L

S I I  (14) 

The first expression gives R

s  for the labeled recycle state s*. The second expression is for all other states 

in the recycle loop except states produced by multiple tasks (other recycle states) within any loop 

containing s*. The first term in the condition in the second line gives all states in any loop containing s*, 

and the second term is the number of tasks within the loop that produce state s. If there is another recycle 
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state inside the loop, there are nested loops in the network, and §3.4.1 discusses how to find R

s . The total 

amount of state s available, R

s , is the amount produced by all tasks plus the initial inventory. Once R

s  is 

known for all states consumed by task i (s∈ i


S ), we find R

i .  

 
s*

s*

,
min if  and max 1s

i

R

s i s i

i i iR L L

i l i l
ls

lis

i

  









 

   

 


 
 

    
 
 


I

LS
L

I S S  (15) 

Eqn. 15 gives R

i  for any task inside the recycle loop except for tasks that consume multiple states within 

any loop containing s*, which are discussed in §3.4.2. The first term in the condition gives all tasks in any 

loop containing state s* and the second term gives the number of states within the loop that are consumed 

by task i. In the numerator, the minimum amount of state s required for other tasks is subtracted to give 

the maximum amount of state s available for task i. Dividing by is   gives the total amount task i needs to 

process to consume all of the available s. Taking the minimum over all states consumed by task i ensures 

there is enough of every state. We do not round R

i to an attainable production amount; rounding up will 

result in weaker bound, and rounding down may cutoff feasible points. Once R

i  is known for all tasks 

producing the labeled recycle state, we find the maximum amount produced by each task. 

s* s* s*

R

i i i i     I  (16) 

Finally, we calculate the minimum amount of state s* produced by each task. 

 s*

s* s* s* s*

\

max 0,i i

i i

i  







  
    

  

I

I  (17) 

The most a task can produce of a recycle state is ψis and the least is zero. If νis> ψis, there is not enough 

initial inventory, and the problem is infeasible. If the demand cannot be satisfied without a particular task, 

eqn. 17 gives the minimum that task must produce. If a single task or combination of tasks can satisfy the 

demand, all other tasks do not need to supply any material, and the final term in eqn. 17 is less than zero. 

Proposition. There is a maximum amount of each recycle state that can be produced by each task, is , 

without increasing the minimum required production of other tasks producing that state. 

Proof: If ωs is the minimum amount of recycle state s required to meet final demand, and is is the 

maximum amount of state s that can be produced by task i when starting with ωs, then is  is the amount 

of s produced by task i and  

,

max 0,

s

is s i s s

i i i

i  





  

  
    

  

I

I . 

Let is  be the maximum fraction of state s that is recycled by task i. If an additional amount of state s, 

0i  , is produced by task i, the total amount of s now required is at least 

s

i
s

isi







I

, and the maximum 

amount produced by all tasks is 

s

is i

i

 



I

. The total amount of s that needs to be produced by task i is 
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 
,

max 0,

s s

i
is s i s i s

i si i i i

i


   
 


 

    

  
       

  
 

I I

I .  

since 1is  , 
,s s

i
i

isi i i i




    

 
I I

, and is is   . Therefore, all tasks producing state s are at their minimum 

production when all other tasks recycle at most is . ■ 

3.4.  Networks with Nested Loops 

Not all networks with multiple loops need the additional procedures described in this section. 

There are two cases with multiple loops where the forward propagation will not work.  

3.4.1.  Case 1 

When multiple tasks in a single loop produce another recycle state, the forward propagation 

described previously fails when calculating R

s  for that state. For the network in Figure 10a, S3 is 

produced by T3 and T2, which both belong to loop L3 containing recycle state S2. We propagate the 

demand as described previously until it is time to propagate ωS2 forward and calculate S3

R in Figure 10b. 

We need T2

R  and T3

R  to calculate S3

R , but S3

R  is needed to calculate T3

R  (Figure 10c). During the 

forward propagation, T2 produces at most T2

R =120kg of S3. Previously (Figure 10b), we determined that 

T2 must produce a minimum of   T2=112.5kg of S3, meaning T2 can now produce an extra 7.5kg (=120-

112.5). If T3 processes all additional 7.5kg of S3, it will produce another 0.75kg (=7.5*0.1) of S3. 

Processing the additional 0.75kg gives 0.075kg (=0.75*0.1) more of S3; this is a geometric series that 

eventually converges to 8.33kg (=7.5/(1-0.1)) more of S3. We add the extra 8.33kg to the original 125kg 

of S3 needed to meet the demand to give S3 133.3R   (Figure 10c). Demand propagation continues until 

ωs and   i are known for all states and tasks (Figure 10d). 

The example is generalized to any process network. We will refer to the first labeled recycle state 

as s* (the one for which we are trying to find νis) and the second recycle state as s** (the one for which 

we are trying to find R

s ). The total amount of state s** available is 

   
s*

s*

01
if  and max 2

1 S
RNC S

s

R R L L

s is i is s s l s s
l

si l

s     


 


 

  
            
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S I I   (18) 
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Figure 10. Demand propagation with multiple recycle states in the same loop. 
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where I
RNC

 is the set of tasks for which R

i  has not been calculated, and ξs is the maximum fraction of 

state s that can be recycled by the loop containing only tasks in I
RNC

. The algorithm provides a method for 

keeping track of I
RNC

. Eqn. 18 gives R

s  for any states excluded from eqn. 14. The first term is the 

additional amount available during the forward propagation from all tasks for which R

i  has already been 

calculated. Dividing by 1-ξs gives the total additional amount of s** produced during recycling. Finally 

the original ωs and the initial inventory are added to give R

s .  

 Parameter ξs can be estimated when there is only one loop containing s** but not s*; i.e., 

l∈{l:s**∈ L

lS ,s*∉ L

lS }. 

,

,

for 
L L
l i l

L L
l i l

is

i s R

s

is

i s

s













  




  

 




I S S

I S S

S  (19) 

The numerator gives the fraction of material remaining in the loop after task i. The denominator is the 

fraction of the material consumed by task i that is already in the recycle loop. Eqn. 19 is only valid when 

there is only one loop containing s** but not s*. Eqn. 18 is valid for any network, but ξs needs to be 

estimated. 

3.4.2.  Case 2 

When a task inside a loop consumes multiple states in a loop, the forward propagation fails. In 

Figure 11, T2 consumes S2 and S3 which both belong to recycle loop L2. In Figure 11b, demand has 

been backward propagated to calculate the demand for recycle state S2. The demand needs to be 

propagated forward, but we cannot calculate T2

R  until S2

R  and S3

R  are known, and S3

R  cannot be 

calculated until T2

R  is known (Figure 11c). During the forward propagation we have S2

R =108kg of S2 

available. If there is enough S3, T2 can process at most 120kg. We ignore S3 in eqn. 15, and set 

T2 120R  . We continue propagating demand (Figure 11d).   

 The procedure is easily generalized to any process network,  

 
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,
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Figure 11. Demand propagation in a network with a recycle state and multiple loops. 
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where S
RNC

 is the set of states for which R

s  has not been calculated; these states are ignored when 

calculating R

i . The algorithm provides a way to keep track of S
RNC

. Eqn. 20 gives R

i  for any tasks in 

the loop excluded from eqn. 15.  

3.5.  Complete Algorithm 

The complete algorithm combines the tightening procedures for all network types. For each of the 

four categories, the relevant portions of the algorithm in Figure 12 are colored as in Figure 3. For 

convenience, we define the new sets:  
SL

sS   states in any recycle loop containing state s, 
S
s

SL L

s l

l


L

S S  

SL

sI  tasks in any recycle loop containing state s, 
S
s

SL L

s l

l


L

I I  

I
NC

/I
RNC

  tasks for which μi /μi
R
 is not known 

I
A
/I

RA
  tasks available (ωs /ωs

R
 has been calculated for all s∈ i


S / i


S ) for calculating μi /μi

R
 

S
NC

/S
RNC 

states for which ωs /ωs
R
 is not known 

S
A
/S

RA
  states available (μi /μi

R
 has been calculated for all i∈ s


I / s


I ) for calculating ωs /ωs

R
 

C

iS  states for which νis has been calculated for task i 

S
RC 

recycle states for which we need to perform a forward propagation 

In the algorithm, we use the parameter ts to keep track of how many times tear state s∈S
T
 has been 

updated. As mentioned in §3.2, if the tear state is updated more than once, the instance is infeasible. 

 

1. Set νis=0 ∀s∈ST, i∈IT∩Is
+; ts=0 

∀s∈ST ; and Si
C={s:s∈ST ∩ Si

+}

2. Set SNC=S, INC=I, IA=∅, and SA=SF

Is IA=∅
& SA=∅? 

Is SA∩SR=∅? 

5. Set SNC=SNC\SA,  Si
C=Si

C∪{s:s∈Si
+∩ SA},

SA=∅, and IA={i:i∈INC, Si
C=Si

+}

6. Calculate μi (eqn. 7)  and   i (eqn. 

8) ∀i∈IA. Set INC=INC\IA. IA=∅ and

SA={s:s∈SNC, Is
-∩INC=∅}

3. Calculate ωs ∀s∈SA (eqn. 5)

4. Calculate νis ∀s∈SA, i∈Is
+ (eqn. 6)

Is νis≤ρis  i 
∀s∈ST, 

i∈IT∩Is
+?

Stop
YES

NO

YES

YES

NO

General networks

Recycle loops

Recycle states

Nested loops

NO

12. Calculate ωs
R ∀s∈SRA (eqn. 10 or 

14). Set SRNC=SRNC\ SRA, SRA=∅, and 

IRA={i:i∈IRNC, Si
- ∩SRNC=∅}

13. Calculate μi
R ∀i∈IRA (eqn. 11 or 

16). Set IRNC=IRNC\IRA, IRA=∅, and

SRA={s:s∈ SRNC, Is
+∩IRNC=∅}

Is SRNC=∅

& IRNC=∅? 

11. Calculate ψiS*

(eqn. 16) and νiS* 

(eqn. 17) ∀i∈ IS*
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14. Set SRA={s:s∈SR∩SRNC, (Is
+∩ Is*

SL)\IRNC ≠∅} 
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-∩Ss*
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|Si
- ∩Ss*

SL|>1}. Calculate ξs∀s∈SRA (eqn. 19)
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R=∞ ∀i∉Is*
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+

YES

Stop: 

Infeasible

NO

 
Figure 12. General algorithm for propagating demand through a network. 
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3.6.  States Produced by Multiple Tasks 

When multiple tasks can produce a state, eqn. 6 gives νis = 0 for each task, which may mean μi is 

zero for upstream tasks that must produce some material. In Figure 13, S4 is produced from T2 or T3, so 

each task has a minimum production of zero. However, T2 and T3 both require S2, which is produced by 

T1. If we used eqn. 6 to find νis in step 4 of the algorithm, we find that μT1=0, which is not a tight lower 

bound. Instead, we can solve a simple linear program (LPi) to find νis. 

min iQ    

s.t.  0

s s

s i s i i s i

i i

Q Q s  
 

 
   

  

   
I I

       i  (LPi) 

s

NC

i s i s

i

Q s 



 



  
I

S   

where Qi is a positive variable for the total amount of material task i produces in a particular solution of 

(LPi). The first constraint requires that, for each state, the amount produced plus any initial inventory is 

greater than the amount consumed. The second constraint enforces that the amount produced of a state 

must exceed ωs and is only written for states for which ωs is known. The objective is to minimize the 

amount produced by task i. When it is time to find νis in the algorithm, we solve (LPi) for task i and then 

multiply the optimal objective value by is   to get νis. When a task (other than a tear task) produces 

multiple states, we only need to solve (LPi) once and multiply by the optimal value by is   for each state 

s∈ i


S . For tear tasks that produce multiple states, we solve (LPi) twice, first to calculate νis for any non-

tear states produced by the task and second to update νis for the tear state.  

When we use this method, we solve (LPi) to find νis for all tasks in the network. This method also 

provides an alternative to the methods for recycle states described in §3.3 and §3.4. For more complicated 

networks with nested loops, this method may give tighter bounds and may be much simpler to use. 

Demand is still backward propagated according to the algorithm in Figure 12 with two changes: (1) we 

calculate νis in step 4 of the algorithm with (LPi) instead of with eqn. 6, and (2) we skip (or answer yes to) 

all steps involving recycle states (steps 8-14).  

T1

S1 S2

T2

S4

S3

90%

10%
T3

Method 

for νis

  i ωs

T1 T2 T3 S1 S2 S3 S4

Eqn. 6 0 0 0 0 0 0 50

(LP) 15 0 0 45 0 0 50

 
Figure 13. Compares the two methods for finding νis: (1) using eqn. 6 and (2) solving (LP). Customers demand 

50kg of S4 and all tasks are processed in a unit with a capacity of 0-50kg.  
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4.  Valid Inequalities 

We write tightening constraints after calculating   i and ωs for all tasks and states. We find the 

minimum number of batches processed by a task, λi, by dividing the required production by the largest 

possible size of a single batch of task i and rounding up. 

 maxmax
P
i

i
i

j
j







 
 


 
  J

 (21) 

The minimum number of batches provides a lower bound for the sum of the assignment variables. 

,P
i

P

ijt i

j t

X i


 
J

 (22) 

When multiple tasks produce a state, eqn. 22 may not provide a tight bound. Instead, we find bounds for 

the minimum number of batches from all tasks producing a state, κs. Again, we divide the required 

amount of each state by the largest possible amount of that state that can be produced in a single batch 

and round up, 

 max

,

max
P

s i

s
s

is j
i j




 




 

 
 


 
  I J

 (23) 

Now, κs provides a bound for the assignment variables for all tasks producing state s. 

, ,P
s i

P MT

ijt s

i j t

X s
 

  
I J

S  (24) 

Eqn. 24 does not provide new information for states produced by a single task. Tightening constraints 22 

and 24 have the same form as those proposed by Burkard and Hatzl (2005) and Janak and Floudas (2008), 

but the bounds from the different methods may be different.  

 When a task can be processed in units with very different capacities, eqn. 22 and 24 may not 

provide tight bounds. Instead, we use the maximum batch-size and minimum production requirements to 

find stronger general inequalities. 

max

,

ˆ
P
i

P

j ijt i

j t

X i 


 
J

 (25)  

where μ i is the tightest bound for eqn. 25. In §3.1.2, we calculate   i based on min

j . Since eqn. 25 is based 

on max

j ,   i does not provide a tight bound. We find μ i by performing another loop over all k∈{1,2,…,Ki} 

with the same k

j   used to calculate the attainable production amount.  

max maxif 
ˆ

otherwise

P P
i i

k k

j j i j j
k

j j
i

    
  

 


 
 

 
J J  (26) 
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The top expression sets ˆ k

i  
to the production amount at the end of attainable range k if the range is large 

enough to meet demand. The second expression sets ˆ k

i  to infinity when the attainable range is too small 

to meet demand. After checking all ranges, we set μ i to the smallest of all ˆ k

i .  

 ˆ ˆmin k

i i
k

   (27) 

The LHS of eqn. 25 can only take on a discrete set of values when P

ijtX  is binary; these values are given 

by Σαj
max

j  where αj is an integer and are the same as the production amounts at the end of the attainable 

ranges shown in Figure 7. Therefore all possible values for the LHS occur at the end of an attainable 

range. To find the value of μ i that gives the tightest bound, we use the production amount at the end the 

attainable region that is closest to but greater than   i (see Figure 14). In general, μ i is the smallest 

production amount at the end of an attainable range (Σαj
k max

j ) that is at least able to meet demand (  i).  

Eqn. 25 can also be written for states produced by multiple tasks: 

max

,P
s i

P MT

is j ijt s

i j t

X s  




 

  
I J

S  (28) 

Figure 15 illustrates the effect of the tightening constraints on the feasible region of the LP-

relaxation of the model for the example in Figures 7 and 14. The total demand is 55, μi=55,   i =60, and μ i 

=75. The lines show eqn. 22 and eqn. 25 with three RHS values: μi,   i, and μ i. Eqn. 22 requires at least 

two batches. Improving (increasing) the RHS of constraint 25 improves the LP-relaxation of the model.  

When backlogging is not allowed, we use due times to tighten the formulation further. Now, all 

parameters include a time index (ϕst, ωst, etc.) and are zero for times when no orders are due. For every 

due time, we add all earlier orders to get ϕst and calculate the other parameters as before. Instead of 

summing the assignment variable over the entire horizon, we sum it only over the time available to start 

the task. 

0

,
ij

P
i

t

P

ijt it

tj

X i t










  
J

 (29) 

For times when no orders are due, all parameters are zero, and eqn. 29 is not written. We can also write 

constraints 24, 25, and 28 to consider due times by changing the times over which the assignment 

variables are summed. For the example in Figure 1, suppose customer C1 demands 30kg of S3 at t=6 and 

25kg of S4 at t=9, and customer C2 demands 60kg of S3 at t=9. The total final demands up to t=6 and up 

to t=9 are calculated. Table 2 lists order sizes (ϕst), required productions for states (ωst) and tasks (  it), and 

assignment bounds (λit).  

Table 2. Parameter values when due times are used to tighten the formulation. 

t  Order (ϕst)  ωst    it  

Assignment 

Bounds (λit) 

 

 S3 S4  S2  T1 T2 T3  T1 T2 T3 

6  30 0  35  35 35 0  1 1 0 

9  90 25  125  125 90 35  3 2 1 
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capacities (min/max):

U1: 20/25  U2: 45/50

αU1 αU2

1 0 0 no ∞

2 0 1 no ∞

3 0 2 yes 100

4 1 0 no ∞

5 1 1 yes 75

6 2 0 no ∞

7 2 1 yes 100

8 3 0 yes 75

Production Amount

100

Eqn. 26

Is 

demand 

met?  μ̂i
k

k μ i  = 55 μ̂i = 75

0 20 40 60 80

 
Figure 14. Example of μ  i calculation. The LHS of eqn. 25 must belong to the set {0, 25, 50, 75…}. Since the 

minimum production is   i = 60, the LHS of eqn. 25 must be at least 75 in any feasible solution.  
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Figure 15. Effect of tightening constraints on feasible region.  

5.  Computational Study 

5.1.  Problem Instances 

To determine how well the tightening constraints work, we test 72 instances with different 

objectives, networks, problem features, and time horizons. Each instance is run with different tightening 

formulations. Specifically, we compare the two types of constraints based on the number of batches (eqn. 

22 and 24) and on the minimum production (eqn. 25 and 28). We also look at the effectiveness of the 

extensions for processes with due times.  

We consider two objectives: minimization of processing cost and makespan. The processing cost 

depends on the task and unit, but not on the batch-size. 

, ,

cost
P
i

P

ij ijt

t i j

X


 
J

 (30) 

  ,
j

P P

ijt ij

i

MS X t j t


   
I

J  (31) 

Table 3. The seven constraint sets. 
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Set 

Minimum # 

of batches 

(eqn. 22, 24) 

Minimum 

production 

(eqn. 25, 28) 

Due Times 

(eqn. 29) 

F1 

   F2 X 

  F3 

 

X 

 F4 X X 

 F5 X 

 

X 

F6 

 

X X 

F7 X X X 

We use four networks, N1-N4, to determine the effect of recycle streams and states produced by 

multiple tasks on the effectiveness of the tightening constraints (Figure A1 in Electronic Companion). 

Process and order data are also given in the Electronic Companion (Tables A1-A4). Networks N1 and N4 

have no recycle streams, but network N4 has a state produced by multiple tasks. Networks N2 and N3 

have a recycle stream. Network N2 is taken from Kondili et al (1993).  

We consider three problem classes with different features for each network. Problem (a) has all 

orders due at the end of the time horizon. To determine the impact of including due times in the tightening 

constraints, problem (b) has intermediate due times. To compare the two types of tightening constraints, 

unit capacities are changed for problem (c) so at least one task can be processed by units with different 

capacities. We solve each instance with three time horizons: 40, 80, and 120 hours. The order size and 

due time scale with the time horizon to ensure all time horizons lead to schedules that are similarly 

loaded. Starting with a 40-hour horizon, the order size and due time are doubled for an 80-hour horizon 

and tripled for a 120-hour horizon. 

We consider seven sets of tightening constraints (Table 3). All formulations contain eqns. 1-4. 

Formulation F1 has no tightening constraints. F2 includes the constraints based on the minimum number 

of batches. Set F3 contains the constraints based on the required production. F4 combines F2 and F3. 

Finally, sets F5-F7 are the same as sets F2-F4 but with due times. Only problem (b) is run with 

formulations F5-F7, and the results focus on formulations F1-F4.  

All problems are solved using GAMS 23.7/CPLEX 12.3 on a computer with 6 GB of RAM and a 

2.67 GHz Intel Core (i7-920) processor running on Windows 7. We use a resource limit of 1800s. Model 

and solution statistics for all problems are given in the Electronic Companion (Tables A5-A10). For the 

36 instances, implementing the demand propagation algorithm takes an average of 0.26s with a maximum 

time of 4.3s when using eqn. 6 to calculate νis, and an average of 2.4s with a maximum time of 11.9s 

when using (LPi) to calculate νis. 

5.2.  Results 

Table 4 shows aggregate results for formulations F1 and F4. Problems are grouped into four 

categories: (1) those that are solved to optimality by both formulations, (2) those that are solved to 

optimality only by F4, (3) those that are never solved to optimality, and (4) those that are solved to 

optimality only by F1. The average computational time or optimality gap is given for the problems in 

each of the four categories. For cost minimization, 14 problems are in the first category, and tightening 
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reduces the computational time from 189s to 1.4s. Category 2 contains 20 problems, and the tightened 

formulation solves these problems in an average of 2.4s while, without tightening, there is an average 

optimality gap of 1.3% after 1800s. For the two problems in category 3, tightening reduces the average 

optimality gap from 2.1% to 1.5%. There are no problems in the final category. For makespan 

minimization, 34 problems fall in the first category, and the average computational time is 61s without 

tightening and 32s with tightening. There is one problem each in categories 2 and 4.  

Figure 16 is a performance profile for formulations F1-F4. For each instance, the computational 

time for each formulation is divided by the fastest time over all formulations for that instance to give r. 

The vertical axis is the probability a formulation will solve a problem within s (on the horizontal axis) 

times the fastest formulation. For cost minimization, the untightened formulation solves only 17% of the 

problems within 15 times the fastest formulation, but F4 solves 94% of the problems within the same 

time. Using the tightening constraints based on the minimum production (in either F3 or F4) give the best 

results. For makespan minimization, F3 performs the best, but tightening is generally less effective and 

does not always improve solution time.  

Figure 17 compares the four formulations for the two objectives. Each point is the average 

computational time or optimality gap over all networks, problem classes, and time horizons (36 runs per 

point). The tightening constraint based on the number of batches (F2) is the least effective, and F3 and F4 

are about equivalent. For cost minimization, tightening increases the fraction of problems solved to 

optimality and decreases the computational time, while for makespan minimization, it does not have a 

large impact on the computational time. Since makespan minimization appears to be an easier problem 

and tightening is not as effective, we will focus on cost minimization for the remainder of the section. 

Table 4. Summary of tightening results with average computational time or optimality gap. 

  Cost Minimization   Makespan Minimization 

Category 1 2 3 4 

 

1 2 3 4 

# of problems 14 20 2 0 

 

34 1 0 1 

F1 189s 1.3% 2.1% -- 

 

61s 2.0% -- 302s 

F4 1.4s 2.4s 1.5% --   32s 18s -- 1.1% 
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Figure 16. Performance profiles comparing tightening formulations F1-F4. 
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Figure 18 compares the four formulations for the four networks averaged over the three problem 

types and three time horizons (9 runs per point). All tightened formulations perform better than F1, and 

F3 and F4 are the most effective. When there are recycle streams, as in N2 and N3, F2 does not perform 

as well. Figure 19 shows results for the three problem classes averaged over the four networks and three 

time horizons (12 runs per point). For all problem classes, tightening based on the minimum number of 

batches (F2 and F5) is less effective than using the minimum production requirements (F3 and F6), but 

using both types of inequalities in F4 and F7 is sometimes better. When the problem includes due times in 

type (b), adding the due times to the tightening constraints (F5-F7) has little impact on the solution time. 

Finally, in Figure 20 we show results for the different time horizons, where each point is an average over 

all problems classes and networks (12 runs per point). As expected, increasing the time horizon decreases 

the fraction of problems solved to optimality, but using tightening increases the fraction solved so only 

8% of the problems solved with a 40-hour horizon are not solved with 80- or 120-hour horizons. We also 

note that the average computational requirement and optimality gap decrease notably.   
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Figure 17. Results for the two objectives.  
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Figure 18. Results for four process networks (cost minimization). 
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Figure 19. Results for the three problem classes (cost minimization). 
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Figure 20. Results for three time horizons (cost minimization).  

5.3.  Model and Solution Statistics 

Table 5 lists model and solution statistics for four representative instances for cost minimization 

and a 40-hour time horizon. F2-F4 only add a moderate number of equations, about one or two per task. 

F5-F7 add many more constraints, about one or two per task per due time. The objective for the LP-

relaxation improves as tightening constraints are added and is always best when both types of tightening 

constraints are used.  

Table 5. Model and solution statistics for representative problems for cost minimization and a 40-hour 

horizon. 

Formulation F1 F2 F3 F4 
 

F1 F2 F3 F4 F5 F6 F7 

  Problem 1a  Problem 2b 

Discrete vars 230 230 230 230 
 

312 312 312 312 312 312 312 

Continuous vars 878 878 878 878 
 

1206 1206 1206 1206 1206 1206 1206 

Constraints  1149 1154 1154 1159 
 

1354 1360 1360 1366 1430 1429 1505 

LP-relaxation 311.14 320 320 320 
 

424.66 430.16 431.66 431.66 441.65 443.56 443.56 

Objective  320 320 320 320 
 

490 490 490 490 490 490 490 

Nodes  6615 0 0 0 
 
3199677 3441882 20019 1668 2734482 747 615 

CPU time (s) 2.75 0.09 0.09 0.09 
 
1800.02 1800 18.97 3.45 1800.02 2.32 2.39 

Gap (%) 0 0 0 0 
 

1.87 1.87 0 0 1.87 0 0 

 
Problem 3c  Problem 4a 

Discrete vars 427 427 427 427 
 

467 467 467 467 
   

Continuous vars 1501 1501 1501 1501 
 

1338 1338 1338 1338 
   

Constraints  1846 1854 1854 1862 
 

1723 1731 1731 1739 
   

LP-relaxation 253.46 294.43 305.67 309 
 

328.58 355.92 352.13 357.58 
   

Objective  310 310 310 310 
 

380 380 380 380 
   

Nodes  2830545 56924 0 0 
 
2668183 502 0 0 

   
CPU time (s) 1251.22 68.89 0.09 0.09 

 
1800 0.64 0.09 0.09 

   
Gap (%) 0 0 0 0 

 
2.54 0 0 0 

   

5.4.  Long Solution Times 

Figure 21 presents a summary of the computational results – it compares the average optimality 

gap after 1800s and the solution time on a problem-by-problem basis for formulations F1 and F4 for cost 

minimization. For the fourteen problems are solved to optimality with both formulations, the proposed 

methods reduce the average computational time from 189s to 1.4s (speedup of more than two orders of 
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magnitude). Twenty problems that cannot be solved to optimality by F1 within 1800 sec (average 

optimality gap = 1.3%) are solved to optimality by F4 with an average computational time of only 2.4s, 

which represents a speedup of more than three orders of magnitude.  

Importantly, even this type of speedup is an underestimation of the actual enhancement our 

methods lead to when applied to hard instances. To illustrate the point, we solved an instance of Network 

3 with a 120-hour time horizon using formulation F1 with a resource limit of 16 hours (57,600s). After 16 

hours, the optimality gap was 2.22%. The same instance is solved to optimality in 5.8s using F4, a four 

orders of magnitude improvement. We observed that many of the instances that did not solve using F1 

within the 1800s resource limit require a much longer time to solve. 

No tightening (F1)

Tightening (F4)

Proven optimal solution

Possibly suboptimal solution

189s 1.3%

2.1%

1.4s 2.4s

Problems

1.5%

 
Figure 21. Comparison of average optimality gap and average solution time for formulations F1 and F4. 
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Figure 22. Network for the instance that is solved with a long solution time. 

6.  Conclusions 

We presented methods for the effective solution of chemical production scheduling problems 

using time-indexed MIP models. We developed a demand propagation algorithm for the calculation of 

parameters that are used to generate tightening constraints. Specifically, we calculate lower bounds on (i) 

the number of batches of each task in any feasible solution, (ii) the number of batches of tasks producing 

a state, (iii) the total amount processed by one task, and (iv) the amount of each state that has to be 

produced. The algorithm exploits minimum batch-size restrictions, which are common in chemical 

manufacturing, but have received limited attention in the literature.  Furthermore, it is applicable to 

facilities with recycling of material, a class of problems that cannot be addressed using more standard 

methods based on bill-of-material information. Most importantly, the demand propagation algorithm has 

minimal computational requirements (less than 1 minute of CPU time), even for complex large-scale 

manufacturing facilities. Using the aforementioned bounds, we generated four types of tightening 

constraints, which lead to substantial computational improvements. The tightening constraints based on 

the minimum production are more effective than those based on the number of batches, while using both 
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types of constraints leads to the most effective solution. We also observed that the tightening constraints 

are especially effective for longer time horizons. The proposed methods, which are applicable to all time-

indexed MIP scheduling models for chemical manufacturing, can potentially lead to significant 

computational improvements in a wide range of commercial optimization-based tools.  
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Nomenclature 

Sets 

Indices/Sets  

i,i’∈I  tasks 

j∈J  processing units 

s,s’∈S  states 

t,t’∈T  time points 

k range 

l∈L  recycle loops 

Subsets 

Sets for any network: 

s


I / s


I   tasks producing/consuming state s 

Ij  tasks that can be performed by processing unit j 
P

iJ  processing units that can process task i  

S
ST

 / S
MT

  states produced by a single/multiple tasks 

i


S / i


S

 
states produced/consumed by task i 

S
F
 final products 

Sets for networks with recycle loops: 
L

lI / L

lS   tasks/states in recycle loop l 

I
T
/S

T
  tear tasks/states 

S
R 

recycle states (states in a recycle loop that are produced by multiple tasks) 
S

sL  
loops containing state s 

Sets used in the algorithm: 
SL

sS   set of states in any recycle loop containing state s 
SL

sI  
set of tasks in any recycle loop containing state s 

I
NC

/I
RNC

  tasks for which μi /
R

i  is not known 

I
A
/I

RA
  tasks available for calculating μi /

R

i  

S
NC

/S
RNC 

states for which ωs /
R

s  is not known 

S
A
/S

RA
  states that are available for calculating ωs /

R

s  
C

iS  
states for which νis has been calculated for task i 

S
RC 

recycle states for which we need to perform a forward propagation 

Parameters 

Problem data: 

ϕs  total demand for state s 
min

j / max

j   minimum/maximum capacity of unit j 
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max

s   maximum inventory of state s 

is  / is   fraction of state s produced/consumed by task i 

τij fixed processing time for task i in unit j 

ζs
0
 initial inventory of state s 

πij  cost of carrying out task i in unit j 

Parameters calculated by tightening methods: 

ωs  lower bound on the amount of state s required to meet final demand 

μi/  i  lower bound on the production of task i required to meet final demand 

Δμi  minimum amount added to μi to reach an attainable production amount 

νis  lower bound on the amount of state s that must be produced by task i 

λi lower bound on the number of batches task i processes 

κs  lower bound on the number of batches producing state s 
k

j  number of batches in unit j during iteration k 
max

j  maximum number of batches in unit j needed to satisfy final demand 
R

s   upper bound on the amount of state s that can be produced when only the minimum amount 

of a recycle state is available 
R

i   upper bound on the production of task i when only the minimum amount of a recycle state is 

available 

ψis  upper bound on the amount of recycle state s produced by task i when only the minimum 

amount of state s is available 

ξs maximum fraction of state s that can be recycled 

Variables 

Binary variables: 
P

ijtX   is one if unit j processes task i starting at time t at time t 

Continuous non-negative variables: 

Bijt  batch-size of task i processed in unit j starting at time t 

Sst  inventory of state s at time t 

Pst  amount of feed state s purchased at time t 

Dst  amount of final product s delivered to customers at time t 

Qi total amount of material task i produces in a particular solution of (LP). 
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