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Abstract. In this paper we investigate the convergence behavior of a primal-dual
splitting method for solving monotone inclusions involving mixtures of composite, Lip-
schitzian and parallel sum type operators proposed by Combettes and Pesquet in [7].
Firstly, in the particular case of convex minimization problems, we derive convergence
rates for the sequence of objective function values by making use of conjugate duality
techniques. Secondly, we propose for the general monotone inclusion problem two new
schemes which accelerate the sequences of primal and/or dual iterates, provided strong
monotonicity assumptions for some of the involved operators are fulfilled. Finally, we
apply the theoretical achievements in the context of different types of image restoration
problems solved via total variation regularization.
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1 Introduction and preliminaries
The last few years have shown a rising interest in solving structured nondifferentiable
convex optimization problems within the framework of the theory of conjugate functions.
Applications in fields like signal and image processing, location theory and supervised
machine learning motivate these efforts.

In this article we investigate and improve the convergence behavior of the primal-
dual monotone + skew splitting method for solving monotone inclusions which was
proposed by Combettes and Pesquet in [7], itself being an extension of the algorithmic
scheme from [4] obtained by allowing also Lipschitzian monotone operators and parallel
sums in the problem formulation. In the mentioned works, by means of a product space
approach, the problem is reduced to the one of finding the zeros of the sum of a Lips-
chitzian monotone operator with a maximally monotone operator. The latter is solved
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by using an error-tolerant version of Tseng’s algorithm which has forward-backward-
forward characteristics and allows to access the monotone Lipschitzian operators via
explicit forward steps, while set-valued maximally monotone operators are processed
via their resolvents. A notable advantage of this method is given by both its highly
parallelizable character, most of its steps could be executed independently, and by the
fact that allows to process maximal monotone operators and linear bounded opera-
tors separately, whenever they occur in the form of precompositions in the problem
formulation.

Before coming to the description of the problem formulation and of the algorithm
from [7], we introduce some preliminary notions and results which are needed throughout
the paper.

We are considering the real Hilbert spaces H and Gi, i = 1, . . . ,m, endowed with
the inner product 〈·, ·〉 and associated norm ‖·‖ =

√
〈·, ·〉, for which we use the same

notation, respectively, as there is no risk of confusion. The symbols ⇀ and → denote
weak and strong convergence, respectively. By R++ we denote the set of strictly positive
real numbers, while the indicator function of a set C ⊆ H is δC : H → R := R∪ {±∞},
defined by δC(x) = 0 for x ∈ C and δC(x) = +∞, otherwise. For a function f : H → R
we denote by dom f := {x ∈ H : f(x) < +∞} its effective domain and call f proper if
dom f 6= ∅ and f(x) > −∞ for all x ∈ H. Let be

Γ(H) := {f : H → R : f is proper, convex and lower semicontinuous}.

The conjugate function of f is f∗ : H → R, f∗(p) = sup {〈p, x〉 − f(x) : x ∈ H} for
all p ∈ H and, if f ∈ Γ(H), then f∗ ∈ Γ(H), as well. The (convex) subdifferential of
f : H → R at x ∈ H is the set ∂f(x) = {p ∈ H : f(y) − f(x) ≥ 〈p, y − x〉 ∀y ∈ H}, if
f(x) ∈ R, and is taken to be the empty set, otherwise. For a linear continuous operator
Li : H → Gi, the operator L∗i : Gi → H, defined via 〈Lix, y〉 = 〈x, L∗i y〉 for all x ∈ H
and all y ∈ Gi, denotes its adjoint operator, for i ∈ {1, . . . ,m}.

Having two functions f, g : H → R, their infimal convolution is defined by f � g :
H → R, (f � g)(x) = infy∈H {f(y) + g(x− y)} for all x ∈ H, being a convex function
when f and g are convex.

Let M : H → 2H be a set-valued operator. We denote by graM = {(x, u) ∈ H×H :
u ∈ Mx} its graph and by ranM = {u ∈ H : ∃x ∈ H, u ∈ Mx} its range. The inverse
operator ofM is defined asM−1 : H → 2H,M−1(u) = {x ∈ H : u ∈Mx}. The operator
M is called monotone if 〈x− y, u− v〉 ≥ 0 for all (x, u), (y, v) ∈ graM and it is called
maximally monotone if there exists no monotone operator M ′ : H → 2H such that
graM ′ properly contains graM . The operator M is called ρ-strongly monotone, for
ρ ∈ R++, if M − ρId is monotone, i. e. 〈x− y, u− v〉 ≥ ρ‖x− y‖2 for all (x, u), (y, v) ∈
graM , where Id denotes the identity on H. The operator M : H → H is called ν-
Lipschitzian for ν ∈ R++ if it is single-valued and it fulfills ‖Mx−My‖ ≤ ν‖x− y‖ for
all x, y ∈ H.

The resolvent of a set-valued operator M : H → 2H is JM : H → 2H, JM =
(Id +M)−1. When M is maximally monotone, the resolvent is a single-valued,
1-Lipschitzian and maximal monotone operator. Moreover, when f ∈ Γ(H) and
γ ∈ R++, ∂(γf) is maximally monotone (cf. [9, Theorem 3.2.8]) and it holds Jγ∂f =
(Id + γ∂f)−1 = Proxγf . Here, Proxγf (x) denotes the proximal point of parameter γ of
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f at x ∈ H and it represents the unique optimal solution of the optimization problem

inf
y∈H

{
f(y) + 1

2γ ‖y − x‖
2
}
. (1.1)

For a nonempty, convex and closed set C ⊆ H and γ ∈ R++ we have ProxγδC
= PC ,

where PC : H → C, PC(x) = arg minz∈C ‖x− z‖, denotes the projection operator on C.
Finally, the parallel sum of two set-valued operators M1,M2 : H → 2H is defined as

M1 �M2 : H → 2H,M1 �M2 =
(
M−1

1 +M−1
2

)−1
.

We can formulate now the monotone inclusion problem which we investigate in this
paper (see [7]).

Problem 1.1. Consider the real Hilbert spaces H and Gi, i = 1, ...,m, A : H → 2H a
maximally monotone operator and C : H → H a monotone and µ-Lipschitzian operator
for some µ ∈ R++. Furthermore, let z ∈ H and for every i ∈ {1, . . . ,m}, let ri ∈ Gi,
let Bi : Gi → 2Gi be maximally monotone operators, let Di : Gi → 2Gi be monotone
operators such that D−1

i is νi-Lipschitzian for some νi ∈ R++, and let Li : H → Gi be
a nonzero linear continuous operator. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+
m∑
i=1

L∗i ((Bi�Di)(Lix− ri)) + Cx, (1.2)

together with the dual inclusion

find v1 ∈ G1, . . . , vm ∈ Gm such that (∃x ∈ H)
{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi∈(Bi�Di)(Lix− ri),i = 1, . . . ,m.
(1.3)

Throughout this paper we denote by G := G1 × ...× Gm the Hilbert space equipped
with the inner product

〈(p1, . . . , pm), (q1, . . . , qm)〉 =
m∑
i=1
〈pi, qi〉 ∀(p1, . . . , pm) ∀(q1, . . . , qm) ∈ G

and the associated norm ‖(p1, . . . , pm)‖ =
√∑m

i=1 ‖pi‖2 for all (p1, . . . , pm) ∈ G. We
introduce also the nonzero linear continuous operator L : H → G, Lx = (L1x, . . . , Lmx),
its adjoint being L∗ : G → H, L∗v =

∑m
i=1 L

∗
i vi.

We say that (x, v1, . . . , vm) ∈ H × G is a primal-dual solution to Problem 1.1, if

z −
m∑
i=1

L∗i vi ∈ Ax+ Cx and vi ∈ (Bi�Di)(Lix− ri), i = 1, . . . ,m. (1.4)

If (x, v1, . . . , vm) ∈ H×G is a primal-dual solution to Problem 1.1, then x is a solution
to (1.2) and (v1, . . . , vm) is a solution to (1.3). Notice also that

x solves (1.2)⇔ z −
m∑
i=1

L∗i (Bi�Di)(Lix− ri) ∈ Ax+ Cx⇔

∃ v1 ∈ G1, . . . , vm ∈ Gm such that
{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx,

vi ∈ (Bi�Di)(Lix− ri), i = 1, . . . ,m.
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Thus, if x is a solution to (1.2), then there exists (v1, . . . , vm) ∈ G such that
(x, v1, . . . , vm) is a primal-dual solution to Problem 1.1 and if (v1, . . . , vm) is a solu-
tion to (1.3), then there exists x ∈ H such that (x, v1, . . . , vm) is a primal-dual solution
to Problem 1.1.

The next result provides the error-free variant of the primal-dual algorithm in [7]
and the corresponding convergence statements, as given in [7, Theorem 3.1].

Theorem 1.1. For Problem 1.1 suppose that

z ∈ ran
(
A+

m∑
i=1

L∗i (Bi�Di) (Li · −ri) + C

)
.

Let x0 ∈ H and (v1,0, . . . , vm,0) ∈ G, set

β = max{µ, ν1 . . . , νm}+

√√√√ m∑
i=1
‖Li‖2,

choose ε ∈ (0, 1
β+1) and (γn)n≥0 a sequence in

[
ε, 1−ε

β

]
and set

(∀n ≥ 0)


p1,n = JγnA (xn − γn (Cxn +

∑m
i=1 L

∗
i vi,n − z))

For i = 1, . . . ,m⌊
p2,i,n = JγnB

−1
i

(
vi,n + γn(Lixn −D−1

i vi,n − ri)
)

vi,n+1 = γnLi(p1,n − xn) + γn(D−1
i vi,n −D−1

i p2,i,n) + p2,i,n
xn+1 = γn

∑m
i=1 L

∗
i (vi,n − p2,i,n) + γn(Cxn − Cp1,n) + p1,n.

(1.5)

Then the following statements are true:

(i)
∑
n∈N ‖xn − p1,n‖2 < +∞ and ∀i ∈ {1, . . . ,m}

∑
n∈N ‖vi,n − p2,i,n‖2 < +∞.

(ii) There exists a primal-dual solution (x, v1, . . . , vm) ∈ H × G to Problem 1.1 such
that the following hold:

(a) xn ⇀ x and p1,n ⇀ x.
(b) (∀i ∈ {1, . . . ,m}) vi,n ⇀ vi and p2,i,n ⇀ vi.

In this paper we consider first Problem 1.1 in its particular formulation as a primal-
dual pair of convex minimization problems, approach which relies on the fact that
the subdifferential of a proper, convex and lower semicontinuous function is maximally
monotone, and show that the convergence rate of the sequence of objective function
values on the iterates generated by (1.5) is of O( 1

n), where n ∈ N is the number of
passed iterations. Further, in Section 3, we provide for the general monotone inclusion
problem, as given in Problem 1.1, two new acceleration schemes which generate un-
der strong monotonicity assumptions sequences of primal and/or dual iterates converge
with improved convergence properties. The feasibility of the proposed methods is ex-
plicitly shown in Section 4 by means of numerical experiments in the context of solving
image denoising, image deblurring and image inpainting problems via total variation
regularization.
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One of the iterative schemes to which we compare our algorithms is a primal-dual
splitting method for solving highly structured monotone inclusions, as well, and it was
provided by Vũ in [8]. Here, instead of monotone Lipschitzian operators, cocoercive op-
erators were used and, consequently, instead of Tseng’s splitting, the forward-backward
splitting method has been used. The primal-dual method due to Chambolle and Pock
described in [6, Algorithm 1] is a particular instance of Vũ’s algorithm.

2 Convex minimization problems
The aim of this section is to provide a rate of convergence for the sequence of the values
of the objective function at the iterates generated by the algorithm (1.5) when solving
a convex minimization problem and its conjugate dual. The primal-dual pair under
investigation is described in the following.

Problem 2.1. Consider the real Hilbert spaces H and Gi, i = 1, ...,m, f ∈ Γ(H) and
h : H → R a convex and differentiable function with µ-Lipschitzian gradient for some
µ ∈ R++. Furthermore, let z ∈ H and for every i ∈ {1, . . . ,m}, let ri ∈ Gi, gi, li ∈ Γ(Gi)
such that li is ν−1

i -strongly convex for some νi ∈ R++, and let Li : H → Gi be a nonzero
linear continuous operator. We consider the convex minimization problem

(P ) inf
x∈H

{
f(x) +

m∑
i=1

(gi� li)(Lix− ri) + h(x)− 〈x, z〉
}

(2.1)

and its dual problem

(D) sup
(vi,...,vm)∈G1×...×Gm

{
− (f∗�h∗)

(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(g∗i (vi) + l∗i (vi) + 〈vi, ri〉)
}
.

(2.2)

In order to investigate the primal-dual pair (2.1)-(2.2) in the context of Problem
2.1, one has to take

A = ∂f, C = ∇h, and, for i = 1, . . . ,m, Bi = ∂gi and Di = ∂li.

Then A and Bi, i = 1, ...,m are maximal monotone, C is monotone, by [1, Proposition
17.10], and D−1

i = ∇l∗i is monotone and νi-Lipschitz continuous for i = 1, . . . ,m,
according to [1, Proposition 17.10, Theorem 18.15 and Corollary 16.24]. One can easily
see that (see, for instance, [7, Theorem 4.2]) whenever (x, v1, . . . , vm) ∈ H × G is a
primal-dual solution to Problem 1.1, with the above choice of the involved operators, x
is an optimal solution to (P ), (v1, . . . , vm) is an optimal solution to (D) and for (P )-(D)
strong duality holds, thus the optimal objective values of the two problems coincide.

The primal-dual pair in Problem 2.1 captures various different types of optimization
problems. One such particular instance is formulated as follows and we refer for more
examples to [7].

Example 2.1. In Problem 2.1 take z = 0, let li : Gi → R, li = δ{0} and ri = 0 for
i = 1, . . . ,m, and set h : H → R, h(x) = 0 for all x ∈ H. Then (2.1) reduces to

(P ) inf
x∈H

{
f(x) +

m∑
i=1

gi(Lix)
}
,
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while the dual problem (2.2) becomes

(D) sup
(vi,...,vm)∈G1×...×Gm

{
−f∗

(
−

m∑
i=1

L∗i vi

)
−

m∑
i=1

g∗i (vi)
}
.

In order to simplify the upcoming formulations and calculations we introduce the
following more compact notations. With respect to Problem 2.1, let F : H → R, F (x) =
f(x) + h(x) − 〈x, z〉. Then domF = dom f and its conjugate F ∗ : H → R is given by
F ∗(p) = (f + h)∗(z + p) = (f∗�h∗)(z + p), since dom h = H. Further, we set

v = (v1, . . . , vm), v = (v1, . . . , vm), p2,n = (p2,1,n, . . . , p2,m,n), r = (r1, . . . , rm).

We define the function G : G → R, G(y) =
∑m
i=1(gi� li)(yi) and observe that its

conjugate G∗ : G → R is given by G∗(v) =
∑m
i=1(gi� li)∗(vi) =

∑m
i=1(g∗i + l∗i )(vi).

Notice that, as l∗i , i = 1, . . . ,m, has full domain (cf. [1, Theorem 18.15]), we get

domG∗ = (dom g∗1 ∩ dom l∗1)× . . .× (dom g∗m ∩ dom l∗m) = dom g∗1 × . . .× dom g∗m,
(2.3)

The primal and the dual optimization problems given in Problem 2.1 can be equiv-
alently represented as

(P ) inf
x∈H
{F (x) +G(Lx− r)},

and, respectively,

(D) sup
v∈G
{−F ∗(−L∗v)−G∗(v)− 〈v, r〉}.

Then x ∈ H solves (P ), v ∈ G solves (D) and for (P )-(D) strong duality holds if and
only if (cf. [2, 3])

−L∗v ∈ ∂F (x) and Lx− r ∈ ∂G∗(v). (2.4)

Let us mention also that for x ∈ H and v ∈ G fulfilling (2.4) it holds

[〈Lx− r,v〉+ F (x)−G∗(v)]− [〈Lx− r,v〉+ F (x)−G∗(v)] ≥ 0 ∀x ∈ H ∀v ∈ G.

For given sets B1 ⊆ H and B2 ⊆ G we introduce the so-called primal-dual gap
function

GB1×B2(x,v) = sup
ṽ∈B2

{〈Lx− r, ṽ〉+ F (x)−G∗(ṽ)}

− inf
x̃∈B1

{〈Lx̃− r,v〉+ F (x̃)−G∗(v)}. (2.5)

We consider the following algorithm for solving (P )-(D), which differs from the one
given in Theorem 1.1 by the fact that we are asking the sequence (γn)n≥0 ⊆ R++ to be
nondecreasing.
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Algorithm 2.1. Let x0 ∈ H and (v1,0, . . . , vm,0) ∈ G, set

β = max{µ, ν1, . . . , νm}+

√√√√ n∑
i=1
‖Li‖2,

choose ε ∈
(
0, 1

β+1

)
and (γn)n≥0 a nondecreasing sequence in

[
ε, 1−ε

β

]
and set

(∀n ≥ 0)


p1,n = Proxγnf (xn − γn (∇h(xn) +

∑m
i=1 L

∗
i vi,n − z))

For i = 1, . . . ,m⌊
p2,i,n = Proxγng∗i

(vi,n + γn(Lixn −∇l∗i (vi,n)− ri))
vi,n+1 = γnLi(p1,n − xn) + γn(∇l∗i (vi,n)−∇l∗i (p2,i,n)) + p2,i,n

xn+1 = γn
∑m
i=1 L

∗
i (vi,n − p2,i,n) + γn(∇h(xn)−∇h(p1,n)) + p1,n.

(2.6)

Theorem 2.1. For Problem 2.1 suppose that

z ∈ ran
(
∂f +

m∑
i=1

L∗i (∂gi�∂li) (Li · −ri) +∇h
)
.

Then there exists an optimal solution x ∈ H to (P ) and an optimal solution
(v1, . . . , vm) ∈ G to (D), such that the following holds for the sequences generated by
Algorithm 2.1:

(a) z−
∑m
i=1 L

∗
i vi ∈ ∂f(x) +∇h(x) and Lix− ri ∈ ∂g∗i (vi) +∇l∗i (vi) ∀i ∈ {1, . . . ,m}.

(b) xn ⇀ x, p1,n ⇀ x and vi,n ⇀ vi, p2,i,n ⇀ vi ∀i ∈ {1, . . . ,m}.
(c) For n ≥ 0 it holds

‖xn − x‖2

2γn
+

m∑
i=1

‖vi,n − vi‖2

2γn
≤ ‖x0 − x‖2

2γ0
+

m∑
i=1

‖vi,0 − vi‖2

2γ0
.

(d) If B1 ⊆ H and B2 ⊆ G are bounded, then for xN := 1
N

∑N−1
n=0 p1,n and vNi :=

1
N

∑N−1
n=0 p2,i,n, i = 1, . . . ,m, the primal-dual gap has the upper bound

GB1×B2(xN , vN1 , . . . , vNm) ≤ C(B1, B2)
N

, (2.7)

where

C(B1, B2) = sup
(x,v1,...,vm)∈B1×B2

{
‖x0 − x‖2

2γ0
+

m∑
i=1

‖vi,0 − vi‖2

2γ0

}
.

(e) The sequence (xN , vN1 , . . . , vNm) converges weakly to (x, v1, . . . , vm).

Proof. Theorem 4.2 in [7] guarantees the existence of an optimal solution x ∈ H to
(2.1) and of an optimal solution (v1, . . . , vm) ∈ G to (2.2) such that strong duality holds,
xn ⇀ x, p1,n ⇀ x, as well as vi,n ⇀ vi and p2,i,n ⇀ vi for i = 1, . . . ,m, when n converges
to +∞. Hence (a) and (b) are true. Thus, the solutions x and v = (v1, . . . , vm) fulfill
(2.4).
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Regarding the sequences (p1,n)n≥0 and (p2,i,n)n≥0, i = 1, . . . ,m, generated in Algo-
rithm 2.1 we have for every n ≥ 0

p1,n = (Id + γn∂f)−1 (xn − γn (∇h(xn) + L∗vn − z))

⇔ xn − p1,n
γn

−∇h(xn)− L∗vn + z ∈ ∂f(p1,n)

and, for i = 1, ...,m,

p2,i,n = (Id + γn∂g
∗
i )
−1 (vi,n + γn(Lixn −∇l∗i (vi,n)− ri))

⇔ vi,n − p2,i,n
γn

+ Lixn −∇l∗i (vi,n)− ri ∈ ∂g∗i (p2,i,n).

In other words, it holds for every n ≥ 0

f(x) ≥ f(p1,n) +
〈
xn − p1,n

γn
−∇h(xn)− L∗vn + z, x− p1,n

〉
∀x ∈ H (2.8)

and, for i = 1, . . . ,m,

g∗i (vi) ≥ g∗i (p2,i,n) +
〈
vi,n − p2,i,n

γn
+ Lixn −∇l∗i (vi,n)− ri, vi − p2,i,n

〉
∀vi ∈ Gi. (2.9)

In addition to that, using that h and l∗i , i = 1, ...,m, are convex and differentiable, it
holds for every n ≥ 0

h(x) ≥ h(p1,n) + 〈∇h(p1,n), x− p1,n〉 ∀x ∈ H (2.10)

and, for i = 1, . . . ,m,

l∗i (vi) ≥ l∗i (p2,i,n) + 〈∇l∗i (p2,i,n), vi − p2,i,n〉 ∀vi ∈ Gi. (2.11)

Consider arbitrary x ∈ H and v = (v1, . . . ,vm) ∈ G. Since〈
xn − p1,n

γn
, x− p1,n

〉
= ‖xn − p1,n‖2

2γn
+ ‖x− p1,n‖2

2γn
− ‖xn − x‖

2

2γn〈
vi,n − p2,i,n

γn
, vi − p2,i,n

〉
= ‖vi,n − p2,i,n‖2

2γn
+ ‖vi − p2,i,n‖2

2γn
− ‖vi,n − vi‖

2

2γn
, i = 1, ...,m,

we obtain for every n ≥ 0, by using the more compact notation of the elements in G
and by summing up the inequalities (2.8)–(2.11),

‖xn − x‖2

2γn
+ ‖vn − v‖2

2γn
≥ ‖xn − p1,n‖2

2γn
+ ‖x− p1,n‖2

2γn
+
‖vn − p2,n‖2

2γn
+
‖v − p2,n‖2

2γn

+
m∑
i=1
〈Lixn +∇l∗i (p2,i,n)−∇l∗i (vi,n)− ri, vi − p2,i,n〉 −

m∑
i=1

(g∗i + l∗i )(vi) + (f + h)(p1,n)

+ 〈∇h(p1,n)−∇h(xn)− L∗vn + z, x− p1,n〉 −
[
m∑
i=1
−(g∗i + l∗i )(p2,i,n) + (f + h)(x)

]
.
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Further, using again the update rules in Algorithm 2.1 and the equations〈
p1,n − xn+1

γn
, x− p1,n

〉
= ‖xn+1 − x‖2

2γn
− ‖xn+1 − p1,n‖2

2γn
− ‖x− p1,n‖2

2γn

and, for i = 1, ...,m,〈
p2,i,n − vi,n+1

γn
, vi − p2,i,n

〉
= ‖vi,n+1 − vi‖2

2γn
− ‖vi,n+1 − p2,i,n‖2

2γn
− ‖vi − p2,i,n‖2

2γn
,

we obtain for every n ≥ 0

‖xn − x‖2

2γn
+ ‖vn − v‖2

2γn
≥ ‖xn+1 − x‖2

2γn
+ ‖vn+1 − v‖2

2γn
+ ‖xn − p1,n‖2

2γn
+
‖vn − p2,n‖2

2γn

− ‖xn+1 − p1,n‖2

2γn
−
‖vn+1 − p2,n‖2

2γn
+ [〈Lp1,n − r,v〉 −G∗(v) + F (p1,n)]

−
[〈

Lx− r,p2,n

〉
−G∗(p2,n) + F (x)

]
. (2.12)

Further, we equip the Hilbert space H = H× G with the inner product

〈(y,p), (z, q)〉 = 〈y, z〉+ 〈p, q〉 ∀(y,p), (z, q) ∈ H × G (2.13)

and the associated norm ‖(y,p)‖ =
√
‖y‖2 + ‖p‖2 for every (y,p) ∈ H × G. For every

n ≥ 0 it holds

‖xn+1 − p1,n‖2

2γn
+
‖vn+1 − p2,n‖2

2γn
=
‖(xn+1,vn+1)− (p1,n,p2,n)‖2

2γn

and, consequently, by making use of the Lipschitz continuity of ∇h and ∇l∗i , i =
1, . . . ,m, it shows that

‖(xn+1,vn+1)− (p1,n,p2,n)‖
= γn‖(L∗(vn − p2,n), L1(p1,n − xn), . . . , Lm(p1,n − xn))

+ (∇h(xn)−∇h(p1,n),∇l∗1(v1,n)−∇l∗1(p2,1,n), . . . ,∇l∗m(vm,n)−∇l∗1(p2,m,n))‖
≤ γn‖(L∗(vn − p2,n), L1(p1,n − xn), . . . , Lm(p1,n − xn))‖

+ γn‖(∇h(xn)−∇h(p1,n),∇l∗1(v1,n)−∇l∗1(p2,1,n), . . . ,∇l∗m(vm,n)−∇l∗1(p2,m,n))‖

= γn

√√√√∥∥∥∥∥
m∑
i=1

L∗i (vi,n − p2,i,n)
∥∥∥∥∥

2

+
m∑
i=1
‖Li(p1,n − xn)‖2

+ γn

√√√√‖∇h(xn)−∇h(p1,n)‖2 +
m∑
i=1
‖∇l∗i (vi,n)−∇l∗i (p2,i,n)‖2

≤ γn

√√√√( m∑
i=1
‖Li‖2

)
m∑
i=1
‖vi,n − p2,i,n‖2 +

(
m∑
i=1
‖Li‖2

)
‖p1,n − xn‖2

+ γn

√√√√µ2‖xn − p1,n‖2 +
m∑
i=1

ν2
i ‖vi,n − p2,i,n‖2

9



≤ γn

√√√√ m∑
i=1
‖Li‖2 + max{µ, ν1, . . . , νm}

 ‖(xn,vn)− (p1,n,p2,n)‖. (2.14)

Hence, by taking into consideration the way in which (γn)n≥0 is chosen, we have for
every n ≥ 0

1
2γn

[
‖xn − p1,n‖2 + ‖vn − p2,n‖2 − ‖xn+1 − p1,n‖2 − ‖vn+1 − p2,n‖2

]

≥ 1
2γn

1− γ2
n

√√√√ m∑
i=1
‖Li‖2 + max{µ, ν1, . . . , νm}

2 ‖(x,vn)− (p1,n,p2,n)‖2 ≥ 0.

and, consequently, (2.12) reduces to

‖xn − x‖2

2γn
+ ‖vn − v‖2

2γn
≥ γn+1

γn

‖xn+1 − x‖2

2γn+1
+ [〈Lp1,n − r,v〉 −G∗(v) + F (p1,n)]

+ γn+1
γn

‖vn+1 − v‖2

2γn+1
−
[〈

Lx− r,p2,n

〉
−G∗(p2,n) + F (x)

]
.

Let N ≥ 1 be an arbitrary natural number. Summing the above inequality up from
n = 0 to N − 1 and using the fact that (γn)n≥0 is nondecreasing, it follows that

‖x0 − x‖2

2γ0
+ ‖v0 − v‖2

2γ0
≥ ‖xN − x‖

2

2γN
+
N−1∑
n=0

[〈Lp1,n − r,v〉 −G∗(v) + F (p1,n)]

+ ‖vN − v‖2

2γN
−
N−1∑
n=0

[〈
Lx− r,p2,n

〉
−G∗(p2,n) + F (x)

]
.

(2.15)

Replacing x = x and v = v in the above estimate, since they fulfill (2.4), we obtain
N−1∑
n=0

[〈Lp1,n − r,v〉 −G∗(v) + F (p1,n)]−
N−1∑
n=0

[〈
Lx− r,p2,n

〉
−G∗(p2,n) + F (x)

]
≥ 0.

Consequently,

‖x0 − x‖2

2γ0
+ ‖v0 − v‖2

2γ0
≥ ‖xN − x‖

2

2γN
+ ‖vN − v‖2

2γN
and statement (c) follows. On the other hand, dividing (2.15) by N , using the convexity
of F and G∗, and denoting xN := 1

N

∑N−1
n=0 p1,n and vNi := 1

N

∑N−1
n=0 p2,i,n, i = 1, . . . ,m,

we obtain

1
N

(
‖x0 − x‖2

2γ0
+ ‖v0 − v‖2

2γ0

)
≥
[〈

LxN − r,v
〉
−G∗(v) + F (xN )

]
−
[〈

Lx− r,vN
〉
−G∗(vN ) + F (x)

]
,

which shows (2.7) when passing to the supremum over x ∈ B1 and v ∈ B2. In this way
statement (d) is verified. The weak convergence of (xN ,vN ) to (x,v) when N converges
to +∞ is an easy consequence of the Stolz–Cesàro Theorem, fact which shows (e).
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Remark 2.1. In the situation when the functions gi are Lipschitz continuous on Gi, i =
1, ...,m, inequality (2.7) provides for the sequence of the values of the objective of (P )
taken at (xN )N≥1 a convergence rate of O( 1

N ), namely, it holds

F (xN ) +G(LxN − r)− F (x)−G(Lx− r) ≤ C(B1, B2)
N

∀N ≥ 1. (2.16)

Indeed, due to statement (b) of the previous theorem, the sequence (p1,n)n≥0 ⊆ H is
bounded and one can take B1 ⊂ H being a bounded, convex and closed set containing
this sequence. Obviously, x̄ ∈ B1. On the other hand, we take B2 = dom g∗1 × . . . ×
dom g∗m, which is in this situation a bounded set. Then it holds, using the Fenchel-
Moreau Theorem and the Young-Fenchel inequality, that

GB1×B2(xN ,vN ) = F (xN ) +G(LxN − r) +G∗(vN )− inf
x̃∈B1

{〈
Lx̃− r,vN

〉
+ F (x̃)

}
≥ F (xN ) +G(LxN − r) +G∗(vN )−

〈
Lx− r,vN

〉
− F (x)

≥ F (xN ) +G(LxN − r)− F (x)−G(Lx− r).

Hence, (2.16) follows by statement (d) in Theorem 2.1.
In a similar way, one can show that, whenever f is Lipschitz continuous, (2.7)

provides for the sequence of the values of the objective of (D) taken at (vN )N≥1 a
convergence rate of O( 1

N ).

Remark 2.2. If Gi, i = 1, . . . ,m, are finite-dimensional real Hilbert spaces, then (2.16)
is true, even under the weaker assumption that the convex functions gi, i = 1, ...,m,
have full domain, without necessarily being Lipschitz continuous. The set B1 ⊂ H can
be chosen as in Remark 2.1, but this time we take B2 =×m

i=1
⋃
n≥0 ∂gi (Lip1,n) ⊂ G, by

noticing also that the functions gi, i = 1, ...,m, are everywhere subdifferentiable.
The set B2 is bounded, as for every i = 1, . . . ,m the set

⋃
n≥0 ∂gi (Lip1,n) is bounded.

Let be i ∈ {1, ...,m} fixed. Indeed, as p1,n ⇀ x, it follows that Lip1,n → Lix̄ for
i = 1, ...,m. Using the fact that the subdifferential of gi is a locally bounded operator
at Lix̄, the boundedness of

⋃
n≥0 ∂gi (Lip1,n) follows automatically.

For this choice of the sets B1 and B2, by using the same arguments as in the previous
remark, it follows that (2.16) is true.

3 Zeros of sums of monotone operators
In this section we turn our attention to the primal-dual monotone inclusion problems
formulated in Problem 1.1 with the aim to provide accelerations of the iterative method
described in Theorem 1.1 under the additional strong monotonicity assumptions.

3.1 The case when A + C is strongly monotone

We focus first on the case when A + C is ρ-strongly monotone for some ρ ∈ R++ and
investigate the impact of this assumption on the convergence rate of the sequence of
primal iterates. The condition A + C is ρ-strongly monotone is fulfilled when either
A : H → 2H or C : H → H is ρ-strongly monotone. In case that A is ρ1-monotone and
C is ρ2-monotone, the sum A+ C is ρ-monotone with ρ = ρ1 + ρ2.
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Remark 3.1. The situation when B−1
i + D−1

i is τi-strongly monotone with τi ∈ R++
for i = 1, . . . ,m, which improves the convergence rate of the sequence of dual iterates,
can be handled with appropriate modifications.

Due to technical reasons we assume in the following that the operators D−1
i in

Problem 1.1 are zero for i = 1, . . . ,m, thus, Di(0) = Gi and Di(x) = ∅ for x 6= 0, for
i = 1, ...,m. In Remark 3.2 we show how the results given in this particular context
can be employed when treating the primal-dual pair of monotone inclusions (1.2)-(1.3).
Consequently, the problem we deal with in this subsection is as follows.
Problem 3.1. Consider the real Hilbert spaces H and Gi, i = 1, ...,m, A : H → 2H a
maximally monotone operator and C : H → H a monotone and µ-Lipschitzian operator
for some µ ∈ R++. Furthermore, let z ∈ H and for every i ∈ {1, . . . ,m}, let ri ∈ Gi,
let Bi : Gi → 2Gi be maximally monotone operators and let Li : H → Gi be a nonzero
linear continuous operator. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+
m∑
i=1

L∗iBi(Lix− ri) + Cx, (3.1)

together with the dual inclusion

find v1 ∈ G1, . . . , vm ∈ Gm such that (∃x ∈ H)
{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ Bi(Lix− ri), i = 1, . . . ,m.
(3.2)

The subsequent algorithm represents an accelerated version of the one given in
Theorem 1.1 and relies on the fruitful idea of using a second sequence of variable step
length parameters (σn)n≥0 ⊆ R++, which, together with the sequence of parameters
(γn)n≥0 ⊆ R++, play an important role in the convergence analysis.
Algorithm 3.1. Let x0 ∈ H, (v1,0, . . . , vm,0) ∈ G,

γ0 ∈
(

0,min
{

1,
√

1 + 4ρ
2(1 + 2ρ)µ

})
and set σ0 = 1

2γ0(1 + 2ρ)
∑m
i=1 ‖Li‖2

.

Consider the following updates:

(∀n ≥ 0)



p1,n = JγnA (xn − γn (Cxn +
∑m
i=1 L

∗
i vi,n − z))

For i = 1, . . . ,m⌊
p2,i,n = JσnB

−1
i

(vi,n + σn(Lixn − ri))
vi,n+1 = σnLi(p1,n − xn) + p2,i,n

xn+1 = γn
∑m
i=1 L

∗
i (vi,n − p2,i,n) + γn(Cxn − Cp1,n) + p1,n

θn = 1/
√

1 + 2ργn(1− γn), γn+1 = θnγn, σn+1 = σn/θn.

(3.3)

Theorem 3.1. In Problem 3.1 suppose that A+C is ρ-strongly monotone with ρ ∈ R++
and let (x, v1, . . . , vm) ∈ H×G be a primal-dual solution to Problem 3.1. Then for every
n ≥ 0 it holds

‖xn − x‖2 + γn

m∑
i=1

‖vi,n − vi‖2

σn
≤ γ2

n

(
‖x0 − x‖2

γ2
0

+
m∑
i=1

‖vi,0 − vi‖2

γ0σ0

)
, (3.4)

where γn, σn ∈ R++, xn ∈ H and (v1,n, . . . , vm,n) ∈ G are the iterates generated by
Algorithm 3.1.
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Proof. Taking into account the definitions of the resolvents occurring in Algorithm 3.1
we obtain

and

xn − p1,n
γn

− Cxn −
m∑
i=1

L∗i vi,n + z ∈ Ap1,n

vi,n − p2,i,n
σn

+ Lixn − ri ∈ B−1
i p2,i,n, i = 1, . . . ,m,

which, in the light of the updating rules in (3.3), furnishes for every n ≥ 0

and

xn − xn+1
γn

−
m∑
i=1

L∗i p2,i,n + z ∈ (A+ C)p1,n

vi,n − vi,n+1
σn

+ Lip1,n − ri ∈ B−1
i p2,i,n, i = 1, . . . ,m.

(3.5)

The primal-dual solution (x, v1, . . . , vm) ∈ H×G to Problem 3.1 fulfills (see (1.4), where
D−1
i are taken to be zero for i = 1, ...,m)

z −
m∑
i=1

L∗i vi ∈ Ax+ Cx and vi ∈ Bi(Lix− ri), i = 1, . . . ,m.

Since the sum A+ C is ρ-strongly monotone, we have for every n ≥ 0〈
p1,n − x,

xn − xn+1
γn

−
m∑
i=1

L∗i p2,i,n + z −
(
z −

m∑
i=1

L∗i vi

)〉
≥ ρ‖p1,n − x‖2 (3.6)

while, due to the monotonicity of B−1
i : Gi → 2Gi , we obtain for every n ≥ 0〈

p2,i,n − vi,
vi,n − vi,n+1

σn
+ Lip1,n − ri − (Lix− ri)

〉
≥ 0, i = 1, . . . ,m. (3.7)

Further, we set

v = (v1, . . . , vm), vn = (v1,n, . . . , vm,n), p2,n = (p2,1,n, . . . , p2,m,n).

Summing up the inequalities (3.6) and (3.7), it follows that〈
p1,n − x,

xn − xn+1
γn

〉
+
〈

p2,n − v,
vn − vn+1

σn

〉
+
〈
p1,n − x,L∗(v − p2,n)

〉
+
〈
p2,n − v,L(p1,n − x)

〉
≥ ρ‖p1,n − x‖2. (3.8)

and, from here,〈
p1,n − x,

xn − xn+1
γn

〉
+
〈

p2,n − v,
vn − vn+1

σn

〉
≥ ρ‖p1,n − x‖2 ∀n ≥ 0. (3.9)

In the light of the equations〈
p1,n − x,

xn − xn+1
γn

〉
=
〈
p1,n − xn+1,

xn − xn+1
γn

〉
+
〈
xn+1 − x,

xn − xn+1
γn

〉
= ‖xn+1 − p1,n‖2

2γn
− ‖xn − p1,n‖2

2γn
+ ‖xn − x‖

2

2γn
− ‖xn+1 − x‖2

2γn
,
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and〈
p2,n − v,

vn − vn+1
σn

〉
=
〈

p2,n − vn+1,
vn − vn+1

σn

〉
+
〈

vn+1 − v,
vn − vn+1

σn

〉
=
‖vn+1 − p2,n‖2

2σn
−
‖vn − p2,n‖2

2σn
+ ‖vn − v‖2

2σn
− ‖vn+1 − v‖2

2σn

inequality (3.9) reads for every n ≥ 0

‖xn − x‖2

2γn
+ ‖vn − v‖2

2σn
≥ ρ‖p1,n − x‖2 + ‖xn+1 − x‖2

2γn
+ ‖vn+1 − v‖2

2σn
+ ‖xn − p1,n‖2

2γn

+
‖vn − p2,n‖2

2σn
− ‖xn+1 − p1,n‖2

2γn
−
‖vn+1 − p2,n‖2

2σn
. (3.10)

Using that 2ab ≤ αa2 + b2

α for all a, b ∈ R, α ∈ R++, we obtain for α := γn,

ρ‖p1,n − x‖2 ≥ ρ
(
‖xn+1 − x‖2 − 2‖xn+1 − x‖‖xn+1 − p1,n‖+ ‖xn+1 − p1,n‖2

)
≥ 2ργn(1− γn)

2γn
‖xn+1 − x‖2 −

2ρ(1− γn)
2γn

‖xn+1 − p1,n‖2,

which, in combination with (3.10), yields for every n ≥ 0

‖xn − x‖2

2γn
+ ‖vn − v‖2

2σn
≥ (1 + 2ργn(1− γn))‖xn+1 − x‖2

2γn
+ ‖vn+1 − v‖2

2σn

+ ‖xn − p1,n‖2

2γn
+
‖vn − p2,n‖2

2σn
− (1 + 2ρ(1− γn))‖xn+1 − p1,n‖2

2γn
−
‖vn+1 − p2,n‖2

2σn
.

(3.11)

Investigating the last two terms in the right-hand side of the above estimate it shows
for every n ≥ 0 that

− (1 + 2ρ(1− γn))‖xn+1 − p1,n‖2

2γn

≥ −(1 + 2ρ)γn
2

∥∥∥∥∥
m∑
i=1

L∗i (vi,n − p2,i,n) + (Cxn − Cp1,n)
∥∥∥∥∥

2

≥ −2(1 + 2ρ)γn
2

((
m∑
i=1
‖Li‖2

)
‖vn − p2,n‖2 + µ2‖xn − p1,n‖2

)
,

and

−
‖vn+1 − p2,n‖2

2σn
= −σn2

(
m∑
i=1
‖Li(p1,n − xn)‖2

)
≥ −σn2

(
m∑
i=1
‖Li‖2

)
‖p1,n − xn‖2.
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Hence, for every n ≥ 0 it holds

‖xn − p1,n‖2

2γn
+
‖vn − p2,n‖2

2σn
− (1 + 2ρ(1− γn))‖xn+1 − p1,n‖2

2γn
−
‖vn+1 − p2,n‖2

2σn

≥
(
1− γnσn

∑m
i=1 ‖Li‖2 − 2(1 + 2ρ)γ2

nµ
2)

2γn
‖p1,n − xn‖2

+
(
1− 2γnσn(1 + 2ρ)

∑m
i=1 ‖Li‖2

)
2σn

‖vn − p2,n‖2

≥ 0.

The nonnegativity of the expression in the above relation follows because of the sequence
(γn)n≥0 is nonincreasing, γnσn = γ0σ0 for every n ≥ 0 and

γ0 ∈
(

0,min
{

1,
√

1 + 4ρ
2(1 + 2ρ)µ

})
and σ0 = 1

2γ0(1 + 2ρ)
∑m
i=1 ‖Li‖2

.

Consequently, inequality (3.11) becomes

‖xn − x‖2

2γn
+ ‖vn − v‖2

2σn
≥ (1 + 2ργn(1− γn))‖xn+1 − x‖2

2γn
+ ‖vn+1 − v‖2

2σn
∀n ≥ 0.

(3.12)

Notice that we have γn+1 < γn, σn+1 > σn and γn+1σn+1 = γnσn for every n ≥ 0.
Dividing (3.12) by γn and making use of

θn = 1√
1 + 2ργn(1− γn)

, γn+1 = θnγn, σn+1 = σn
θn
,

we obtain
‖xn − x‖2

2γ2
n

+ ‖vn − v‖2

2γnσn
≥ ‖xn+1 − x‖2

2γ2
n+1

+ ‖vn+1 − v‖2

2γn+1σn+1
∀n ≥ 0.

Let be N ≥ 1. Summing this inequalities from n = 0 to N − 1, we finally get

‖x0 − x‖2

2γ2
0

+ ‖v0 − v‖2

2γ0σ0
≥ ‖xN − x‖

2

2γ2
N

+ ‖vN − v‖2

2γNσN
. (3.13)

In conclusion,

‖xn − x‖2

2 + γn
‖vn − v‖2

2σn
≤ γ2

n

(
‖x0 − x‖2

2γ2
0

+ ‖v0 − v‖2

2γ0σ0

)
∀n ≥ 0, (3.14)

which completes the proof.

Next we show that ργn converges like 1
n as n→ +∞.

Proposition 3.2. Let γ0 ∈ (0, 1) and consider the sequence (γn)n≥0 ⊆ R++, where

γn+1 = γn√
1 + 2ργn(1− γn)

∀n ≥ 0. (3.15)

Then limn→+∞ nργn = 1.
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Proof. Since the sequence (γn)n≥0 ⊆ (0, 1) is bounded and decreasing, it converges
towards some l ∈ [0, 1) as n→ +∞. We let n→ +∞ in (3.15) and obtain

l2(1 + 2ρl(1− l)) = l2 ⇔ 2ρl3(1− l) = 0,

which shows that l = 0, i. e. γn → 0 (n→ +∞). On the other hand, (3.15) implies that
γn

γn+1
→ 1(n → +∞). As ( 1

γn
)n≥0 is a strictly increasing and unbounded sequence, by

applying the Stolz–Cesàro Theorem it shows that

lim
n→+∞

nγn = lim
n→+∞

n
1
γn

= lim
n→+∞

n+ 1− n
1

γn+1
− 1

γn

= lim
n→+∞

γnγn+1
γn − γn+1

= lim
n→+∞

γnγn+1(γn + γn+1)
γ2
n − γ2

n+1

(3.15)= lim
n→+∞

γnγn+1(γn + γn+1)
2ργ2

n+1γn(1− γn)

= lim
n→+∞

γn + γn+1
2ργn+1(1− γn) = lim

n→+∞

γn

γn+1
+ 1

2ρ(1− γn) = 2
2ρ = 1

ρ
,

which completes the proof.

Hence, we have shown the following result.

Theorem 3.3. In Problem 3.1 suppose that A + C is ρ-strongly monotone and let
(x, v1, . . . , vm) ∈ H×G be a primal-dual solution to Problem 3.1. Then, for any ε > 0,
there exists some n0 ∈ N (depending on ε and ργ0) such that for any n ≥ n0

‖xn − x‖2 ≤
1 + ε

n2

(
‖x0 − x‖2

ρ2γ2
0

+
m∑
i=1

‖vi,0 − vi‖2

ρ2γ0σ0

)
, (3.16)

where γn, σn ∈ R++, xn ∈ H and (v1,n, . . . , vm,n) ∈ G are the iterates generated by
Algorithm 3.1.

Remark 3.2. In Algorithm 3.1 and Theorem 3.3 we assumed that D−1
i = 0 for i =

1, . . . ,m, however, similar statements can be also provided for Problem 1.1 under the
additional assumption that the operators Di : Gi → 2Gi are such that D−1

i is ν−1
i -

cocoercive with νi ∈ R++ for i = 1, . . . ,m. This assumption is in general stronger than
assuming that Di is monotone and D−1

i is νi-Lipschitzian for i = 1, ...,m. However, it
guarantees that Di is ν−1

i -strongly monotone and maximally monotone for i = 1, ...,m
(see [1, Example 20.28, Proposition 20.22 and Example 22.6]). We introduce the Hilbert
space H = H × G, the element z = (z, 0, . . . , 0) ∈ H and the maximally monotone
operator A : H→ 2H, A(x, y1, . . . , ym) = (Ax,D1y1, . . . , Dmym) and the monotone and
Lipschitzian operator C : H → H, C(x, y1, . . . , ym) = (Cx, 0, . . . , 0). Notice also that
A+C is strongly monotone. Furthermore, we introduce the element r = (r1, . . . , rm) ∈
G, the maximally monotone operator B : G → 2G , B(y1, . . . , ym) = (B1y1, . . . , Bmym),
and the linear continuous operator L : H→ G, L(x, y1 . . . , ym) = (L1x−y1, . . . , Lmx−
ym), having as adjoint L∗ : G → H, L∗(q1, . . . , qm) = (

∑m
i=1 L

∗
i qi,−q1, . . . ,−qm). We

consider the primal problem

find x = (x, p1 . . . pm) ∈H such that z ∈ Ax + L∗B (Lx− r) + Cx, (3.17)
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together with the dual inclusion problem

find v ∈ G such that (∃x ∈H)
{

z −L∗v ∈ Ax + Cx
v ∈ B(Lx− r) . (3.18)

We notice that Algorithm 3.1 can be employed for solving this primal-dual pair of
monotone inclusion problems and, by separately involving the resolvents of A,Bi and
Di, i = 1, ...,m, as for γ ∈ R++

JγA(x, y1, . . . , ym) = (JγAx, JγD1y1, . . . , JγDmym) ∀(x, y1, . . . , ym) ∈H
JγB(q1, . . . , qm) = (JγB1q1, . . . , JγBmqm) ∀(q1, . . . , qm) ∈ G.

Having (x,v) ∈ H × G a primal-dual solution to the primal-dual pair of monotone
inclusion problems (3.17)-(3.18), Algorithm 3.1 generates a sequence of primal iterates
fulfilling (3.16) in H. Moreover, (x,v) is a a primal-dual solution to (3.17)-(3.18) if and
only if

z −L∗v ∈ Ax + Cx and v ∈ B (Lx− r)

⇔ z −
m∑
i=1

L∗i vi ∈ Ax+ Cx and vi ∈ Dipi, vi ∈ Bi (Lix− pi − ri) , i = 1, . . . ,m

⇔ z −
m∑
i=1

L∗i vi ∈ Ax+ Cx and vi ∈ Dipi, Lix− ri ∈ B−1
i vi + pi, i = 1, . . . ,m.

Thus, if (x,v) is a primal-dual solution to (3.17)-(3.18), then (x,v) is a primal-dual
solution to Problem 1.1. Viceversa, if (x,v) is a primal-dual solution to Problem 1.1,
then, choosing pi ∈ D−1

i vi, i = 1, ...,m, and x = (x, p1 . . . pm), it yields that (x,v) is a
primal-dual solution to (3.17)-(3.18). In conclusion, the first component of every primal
iterate in H generated by Algorithm 3.1 for finding the primal-dual solution (x,v) to
(3.17)-(3.18) will furnish a sequence of iterates verifying (3.16) in H for the primal-dual
solution (x,v) to Problem 1.1.

3.2 The case when A + C and B−1
i + D−1

i , i = 1, . . . , m, are strongly
monotone

Within this subsection we consider the case when A+C is ρ-strongly monotone with ρ ∈
R++ and B−1

i +D−1
i is τi-strongly monotone with τi ∈ R++ for i = 1, . . . ,m, and provide

an accelerated version of the algorithm in Theorem 1.1 which generates sequences of
primal and dual iterates that converge to the primal-dual solution to Problem 1.1 with
an improved rate of convergence.

Algorithm 3.2. Let x0 ∈ H, (v1,0, . . . , vm,0) ∈ G, and γ ∈ (0, 1) such that

γ ≤ 1√
1 + 2 min {ρ, τ1, . . . , τm}

(√∑m
i=1 ‖Li‖2 + max {µ, ν1, . . . , νm}

) .
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Consider the following updates:

(∀n ≥ 0)


p1,n = JγA (xn − γ (Cxn +

∑m
i=1 L

∗
i vi,n − z))

For i = 1, . . . ,m⌊
p2,i,n = JγB−1

i

(
vi,n + γ(Lixn −D−1

i vi,n − ri)
)

vi,n+1 = γLi(p1,n − xn) + γ(D−1
i vi,n −D−1

i p2,i,n) + p2,i,n
xn+1 = γ

∑m
i=1 L

∗
i (vi,n − p2,i,n) + γ(Cxn − Cp1,n) + p1,n.

(3.19)

Theorem 3.4. In Problem 1.1 suppose that A + C is ρ-strongly monotone with ρ ∈
R++, B−1

i + D−1
i is τi-strongly monotone with τi ∈ R++ for i = 1, . . . ,m, and let

(x, v1, . . . , vm) ∈ H×G be a primal-dual solution to Problem 1.1. Then for every n ≥ 0
it holds

‖xn − x‖2 +
m∑
i=1
‖vi,n − vi‖2 ≤

( 1
1 + 2ρminγ(1− γ)

)n(
‖x0 − x‖2 +

m∑
i=1
‖vi,0 − vi‖2

)
,

where ρmin = min {ρ, τ1, . . . , τm} and xn ∈ H and (v1,n, . . . , vm,n) ∈ G are the iterates
generated by Algorithm 3.2.

Proof. Taking into account the definitions of the resolvents occurring in Algorithm 3.2
we obtain for every n ≥ 0

xn − xn+1
γ

−
m∑
i=1

L∗i p2,i,n + z ∈ (A+ C)p1,n

and
vi,n − vi,n+1

γ
+ Lip1,n − ri ∈ (B−1

i +D−1
i )p2,i,n, i = 1, . . . ,m.

The primal-dual solution (x, v1, . . . , vm) ∈ H × G to Problem 1.1 fulfills (see (1.4))

z −
m∑
i=1

L∗i vi ∈ Ax+ Cx and vi ∈ (Bi�Di)(Lix− ri), i = 1, . . . ,m.

By the strong monotonicity of A+C and B−1
i +D−1

i , i = 1, . . . ,m, we obtain for every
n ≥ 0〈

p1,n − x,
xn − xn+1

γ
−

m∑
i=1

L∗i p2,i,n + z −
(
z −

m∑
i=1

L∗i vi

)〉
≥ ρ‖p1,n − x‖2 (3.20)

and, respectively,〈
p2,i,n − vi,

vi,n − vi,n+1
γ

+ Lip1,n − ri − (Lix− ri)
〉
≥ τi‖p2,i,n − vi‖2, i = 1, ...,m.

(3.21)

Consider the Hilbert space H = H × G, equipped with the inner product defined in
(2.13) and associated norm, and set

x = (x, v1, . . . , vm), xn = (xn, v1,n, . . . , vm,n), pn = (p1,n, p2,1,n, . . . , p2,m,n).
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Summing up the inequalities (3.20) and (3.21) and using〈
pn − x,

xn − xn+1
γ

〉
= ‖xn+1 − pn‖2

2γ − ‖xn − pn‖2

2γ + ‖xn − x‖2

2γ − ‖xn+1 − x‖2

2γ ,

we obtain for every n ≥ 0

‖xn − x‖2

2γ ≥ ρmin‖pn − x‖2 + ‖xn+1 − x‖2

2γ + ‖xn − pn‖2

2γ − ‖xn+1 − pn‖2

2γ . (3.22)

Further, using the estimate 2ab ≤ γa2 + b2

γ for all a, b ∈ R, we obtain

ρmin‖pn − x‖2 ≥ 2ρminγ(1− γ)
2γ ‖xn+1 − x‖2 − 2ρmin(1− γ)

2γ ‖xn+1 − pn‖2

≥ 2ρminγ(1− γ)
2γ ‖xn+1 − x‖2 − 2ρmin

2γ ‖xn+1 − pn‖2 ∀n ≥ 0.

Hence, (3.22) reduces to

‖xn − x‖2

2γ ≥ (1 + 2ρminγ(1− γ))‖xn+1 − x‖2

2γ

+ ‖xn − pn‖2

2γ − (1 + 2ρmin)‖xn+1 − pn‖2

2γ ∀n ≥ 0.

Using the same arguments as in (2.14), it is easy to check that for every n ≥ 0

‖xn − pn‖2

2γ − (1 + 2ρmin)‖xn+1 − pn‖2

2γ

≥

1− (1 + 2ρmin)γ2

√√√√ m∑
i=1
‖Li‖2 + max {µ, ν1, . . . , νm}

2 ‖xn − pn‖2

2γ

≥ 0,

whereby the nonnegativity of this term is ensured by the assumption that

γ ≤ 1
√

1 + 2ρmin
(√∑m

i=1 ‖Li‖2 + max {µ, ν1, . . . , νm}
) .

Therefore, we obtain

‖xn − x‖2 ≥ (1 + 2ρminγ(1− γ))‖xn+1 − x‖2 ∀n ≥ 0,

which leads to

‖xn − x‖2 ≤
( 1

1 + 2ρminγ(1− γ)

)n
‖x0 − x‖2 ∀n ≥ 0.
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4 Numerical experiments in imaging
In this section we test the feasibility of Algorithm 2.1 and of its accelerated version
Algorithm 3.1 in the context of different problem formulations occurring in imaging and
compare their performances to the ones of two other popular primal-dual algorithms
introduced in [6]. For all applications discussed in this section the images have been
normalized, in order to make their pixels range in the closed interval from 0 (pure black)
to 1 (pure white).

4.1 TV-based image denoising

Our first numerical experiment aims the solving of an image denoising problem via total
variation regularization. More precisely, we deal with the convex optimization problem

inf
x∈Rn

{
λTV (x) + 1

2‖x− b‖
2
}
, (4.1)

where λ ∈ R++ is the regularization parameter, TV : Rn → R is a discrete total
variation functional and b ∈ Rn is the observed noisy image.

In this context, x ∈ Rn represents the vectorized imageX ∈ RM×N , where n = M ·N
and xi,j denotes the normalized value of the pixel located in the i-th row and the j-th
column, for i = 1, . . . ,M and j = 1, . . . , N . Two popular choices for the discrete total
variation functional are the isotropic total variation TViso : Rn → R,

TViso(x) =
M−1∑
i=1

N−1∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+
M−1∑
i=1
|xi+1,N − xi,N |+

N−1∑
j=1
|xM,j+1 − xM,j | ,

and the anisotropic total variation TVaniso : Rn → R,

TVaniso(x) =
M−1∑
i=1

N−1∑
j=1
|xi+1,j − xi,j |+ |xi,j+1 − xi,j |

+
M−1∑
i=1
|xi+1,N − xi,N |+

N−1∑
j=1
|xM,j+1 − xM,j | ,

where in both cases reflexive (Neumann) boundary conditions are assumed.
We denote Y = Rn × Rn and define the linear operator L : Rn → Y, xi,j 7→

(L1xi,j , L2xi,j), where

L1xi,j =
{
xi+1,j − xi,j , if i < M
0, if i = M

and L2xi,j =
{
xi,j+1 − xi,j , if j < N
0, if j = N

.

The operator L represents a discretization of the gradient using reflexive (Neumann)
boundary conditions and standard finite differences. One can easily check that ‖L‖2 ≤ 8
and that its adjoint L∗ : Y → Rn is as easy to implement as the operator itself (cf. [5]).

20



σ = 0.12, λ = 0.07 σ = 0.06, λ = 0.035
ε = 10−4 ε = 10−6 ε = 10−4 ε = 10−6

ALG1 350 (7.03 s) 2989 (59.82 s) 184 (3.69 s) 1454 (29.07 s)
ALG2 101 (2.28 s) 442 (9.91 s) 72 (1.62 s) 298 (6.68 s)
PD1 342 (3.59 s) 3133 (32.68 s) 180 (1.91 s) 1427 (14.87 s)
PD2 96 (1.02 s) 442 (4.67 s) 69 (0.76 s) 319 (3.39 s)

Table 4.1: Performance evaluation for the images in Figure 4.1. The entries represent to the
number of iterations and the CPU times in seconds, respectively, needed in order to attain a
root mean squared error for the iterates below the tolerance ε.

Within this example we will focus on the anisotropic total variation function which
is nothing else than the composition of the l1-norm in Y with the linear operator L.
Due to the full splitting characteristics of the iterative methods presented in this paper,
we need only to compute the proximal point of the conjugate of the l1-norm, the latter
being the indicator function of the dual unit ball. Thus, the calculation of the proximal
point will result in the computation of a projection, which has an easy implementation.
The more challenging isotropic total variation functional is employed in the forthcoming
subsection in the context of an image deblurring problem.

Thus, problem (4.1) reads equivalently

inf
x∈Rn

{h(x) + g(Lx)} ,

where h : Rn → R, h(x) = 1
2‖x − b‖

2, is 1-strongly monotone and differentiable with
1-Lipschitzian gradient and g : Y → R is defined as g(y1, y2) = λ‖(y1, y2)‖1. Then its
conjugate g∗ : Y → R is nothing else than

g∗(p1, p2) = (λ‖ · ‖1)∗ (p1, p2) = λ

∥∥∥∥(p1
λ
,
p2
λ

)∥∥∥∥∗
1

= δS(p1, p2),

where S = [−λ, λ]n × [−λ, λ]n. Taking x0 ∈ H, v0 ∈ Y,

γ0 ∈
(

0,min
{

1,
√

1 + 4ρ
2(1 + 2ρ)µ

})
and σ0 = 1

2γ0(1 + 2ρ)
∑m
i=1 ‖Li‖2

,

Algorithm 3.1 looks for this particular problem like

(∀n ≥ 0)


p1,n = xn − γn (xn − b+ L∗vn)
p2,n = PS (vn + σnLxn)
vn+1 = σnL(p1,n − xn) + p2,n
xn+1 = γnL

∗(vn − p2,n) + γn(xn − p1,n) + p1,n
θn = 1/

√
1 + 2ργn(1− γn), γn+1 = θnγn, σn+1 = σn/θn.

However, we solved the regularized image denoising problem with Algorithm 2.1, the
primal-dual iterative scheme from [6] (see, also, [8]) and the accelerated version of the
latter presented in [6, Theorem 2], as well, and refer the reader to Table 4.1 for a
comparison of the obtained results:
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(a) Noisy image, σ = 0.06 (b) Noisy image, σ = 0.12

(c) Denoised image, λ = 0.035 (d) Denoised image, λ = 0.07

Figure 4.1: TV -l2 image
denoising. The noisy im-
age in (a) was obtained af-
ter adding white Gaussian
noise with standard devia-
tion σ = 0.06 to the orig-
inal 256 × 256 lichtenstein
test image, while the out-
put of Algorithm 3.1, for
λ = 0.035, after 100 itera-
tions is shown in (c). Like-
wise, the noise image when
choosing σ = 0.12 and the
output of the same algo-
rithm, for λ = 0.07, after
100 iterations are shown in
(b) and (d), respectively.

• ALG1: Algorithm 2.1 with γ = 1−ε̃√
8 , small ε̃ > 0 and by taking the last iterate

instead of the averaged sequence.
• ALG2: Algorithm 3.1 with ρ = 0.3, µ = 1 and γ0 =

√
1+4ρ

2(1+2ρ)µ .
• PD1: Algorithm 1 in [6] with τ = 1√

8 , τσ8 = 1 and by taking the last iterate
instead of the averaged sequence.
• PD2: Algorithm 2 in [6] with ρ = 0.3, τ0 = 1√

8 , τ0σ08 = 1.

From the point of view of the number of iterations, one can notice similarities be-
tween both the primal-dual algorithms ALG1 and PD1 and the accelerated versions
ALG2 and PD2. From this point of view they behave almost equal. When comparing
the CPU times, it shows that the methods in this paper need almost twice amount of
time. This is since ALG1 and ALG2 lead back to a forward-backward-forward split-
ting, whereas PD1 and PD2 rely on a forward-backward splitting scheme, meaning that
ALG1 and ALG2 process the double amount of forward steps than PD1 and PD2. In
this example the evaluation of forward steps (i. e. which constitute in matix-vector
multiplications involving the linear operators and their adjoints) is, compared with the
calculation of projections when computing the resolvents, the most costly step.

4.2 TV -based image deblurring

The second numerical experiment that we consider concerns the solving of an extremely
ill-conditioned linear inverse problem which arises in image deblurring and denoising.
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For a given matrix A ∈ Rn×n describing a blur operator and a given vector b ∈ Rn
representing the blurred and noisy image, the task is to estimate the unknown original
image x ∈ Rn fulfilling

Ax = b.

To this end we basically solve the following regularized convex nondifferentiable problem

inf
x∈Rn

{
‖Ax− b‖1 + λ1TViso(x) + λ2 ‖x‖1 + δ[0,1]n(x)

}
, (4.2)

where λ1, λ2 ∈ R++ are regularization parameters and TViso : Rn → R is the discrete
isotropic total variation function. Notice that none of the functions occurring in (4.2)
is differentiable, while the regularization is done by a combination of two regularization
functionals with different properties.

The blurring operator is constructed by making use of the Matlab routines imfilter
and fspecial as follows:

1 H=f s p e c i a l ( ’ gauss ian ’ , 9 , 4 ) ; % gauss ian b l u r o f s i z e 9 t imes 9
2 % and standard d e v i a t i on 4
3 B=im f i l t e r (X,H, ’ conv ’ , ’ symmetric ’ ) ; % B=observed b l u r r ed image
4 % X=o r i g i n a l image

The function fspecial returns a rotationally symmetric Gaussian lowpass filter of size
9 × 9 with standard deviation 4, the entries of H being nonnegative and their sum
adding up to 1. The function imfilter convolves the filter H with the image X
and furnishes the blurred image B. The boundary option “symmetric” corresponds to
reflexive boundary conditions. Thanks to the rotationally symmetric filter H, the linear
operator A defined via the routine imfilter is symmetric, too. By making use of the
real spectral decomposition of A, it shows that ‖A‖2 = 1.

For (y, z), (p, q) ∈ Y, we introduce the inner product

〈(y, z), (p, q)〉 =
M∑
i=1

N∑
j=1

yi,jpi,j + zi,jqi,j

and define ‖(y, z)‖× =
∑M
i=1

∑N
j=1

√
y2
i,j + z2

i,j . One can check that ‖ · ‖× is a norm on
Y and that for every x ∈ Rn it holds TViso(x) = ‖Lx‖×, where L is the linear operator
defined in the previous section. The conjugate function (‖ · ‖×)∗ : Y → R of ‖ · ‖× is for
every (p, q) ∈ Y given by (see, for instance, [3])

(‖ · ‖×)∗(p, q) =
{

0, if ‖(p, q)‖×∗ ≤ 1
+∞, otherwise ,

where
‖(p, q)‖×∗ = sup

‖(y,z)‖×≤1
〈(p, q), (y, z)〉 = max

1≤i≤M
1≤j≤N

√
p2
i,j + q2

i,j .

Therefore, the optimization problem (4.2) can be written in the form of

inf
x∈Rn

{f(x) + g1(Ax) + g2(Lx)},
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(a) Original image (b) Blurred and noisy image (c) Reconstructed image

Figure 4.2: TV -l1-l1 image deblurring. Figure (a) shows the clean 256 × 256 cameraman
test image, (b) shows the image obtained after multiplying it with a blur operator and adding
white Gaussian noise and (c) shows the averaged sequence generated by Algorithm 2.1 after 400
iterations.

where f : Rn → R, f(x) = λ2‖x‖1 + δ[0,1]n(x), g1 : Rn → R, g1(y) = ‖y − b‖1 and
g2 : Y → R, g2(y, z) = λ1 ‖(y, z)‖×. For every p ∈ Rn it holds g∗1(p) = δ[−1,1]n(p) + pT b
(see, for instance, [2]), while for any (p, q) ∈ Y we have g∗2(p, q) = δS(p, q), with S =
{(p, q) ∈ Y : ‖(p, q)‖×∗ ≤ λ1}. We solved this problem by Algorithm 2.1 and to this
end we made use of the following formulae for the proximal points involved in the
formulation of this iterative scheme:

Proxγf (x) = arg min
z∈[0,1]n

{
γλ2‖z‖1 + 1

2‖z − x‖
2
}

= P[0,1]n (x− γλ21
n) ∀x ∈ Rn,

Proxγg∗1 (p) = arg min
z∈[−1,1]n

{
γ 〈z, b〉+ 1

2‖z − p‖
2
}

= P[−1,1]n (p− γb) ∀p ∈ Rn,

and

Proxγg∗2 (p, q) = arg min
(y,z)∈S

1
2‖(y, z)− (p, q)‖2 = PS (p, q) ∀(p, q) ∈ Y,

where γ ∈ R++, 1n is the vector in Rn with all entries equal to 1 and the projection
operator PS : Y → S is defined as

(pi,j , qi,j) 7→

 pi,j

max
{

1,
√
p2

i,j+q2
i,j

λ1

} , qi,j

max
{

1,
√
p2

i,j+q2
i,j

λ1

}
 .

Taking x0 ∈ H, (v1,0, v2,0) ∈ Rn × Y, β =
√

1 + 8 = 3, ε ∈
(
0, 1

β+1

)
and (γn)n≥0 a
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nondecreasing sequence in
[
ε, 1−ε

β

]
, Algorithm 2.1 looks for this particular problem like

(∀n ≥ 0)



p1,n = P[0,1]n (xn − γn (A∗v1,n + L∗v2,n + λ21
n))

p2,1,n = P[−1,1]n (v1,n + γn(Axn − b))
p2,2,n = PS (v2,n + γnLxn)
v1,n+1 = γnA(p1,n − xn) + p2,1,n
v2,n+1 = γnL(p1,n − xn) + p2,2,n
xn+1 = γn(A∗(v1,n − p2,1,n) + L∗(v2,n − p2,2,n)) + p1,n.

Figure 4.2 shows the original cameraman test image, which is part of the image process-
ing toolbox in Matlab, the image obtained after multiplying it with the blur operator
and adding after that normally distributed white Gaussian noise with standard devia-
tion 10−3 and the image reconstructed by Algorithm 2.1 when taking as regularization
parameters λ1 = 3e-3 and λ2 = 2e-5.

4.3 TV -based image inpainting

In the last section of the paper we show how image inpainting problems, which aim
for recovering lost information, can be efficiently solved via the primal-dual methods
investigated in this work. To this end, we consider the following TV -l1 model

inf
x∈Rn

{
λTViso(x) + ‖Kx− b‖1 + δ[0,1]n(x)

}
, (4.3)

where λ ∈ R++ is the regularization parameter and TViso : Rn → R is the isotropic
total variation functional and K ∈ Rn×n is the diagonal matrix, where for i = 1, ..., n,
Ki,i = 0, if the pixel i in the noisy image b ∈ Rn is lost (in our case pure black) and
Ki,i = 1, otherwise. The induced linear operator K : Rn → Rn fulfills ‖K‖ = 1, while,
in the light of the considerations made in the previous two subsections, we have that
TViso(x) = ‖Lx‖× for all x ∈ Rn.

Thus, problem (4.3) can be formulated as

inf
x∈Rn

{f(x) + g1(Lx) + g2(Kx)},

where f : Rn → R, f(x) = δ[0,1]n , g1 : Y → R, g1(y1, y2) = ‖(y1, y2)‖× and g2 : Rn → R,
g2(y) = ‖y − b‖1. We solve it by Algorithm 2.1, the formulae for the proximal points
involved in this iterative scheme been already given in Subsection 4.2. Figure 4.3 shows
the original fruit image, the image obtained from it after setting to pure black 80%
randomly chosen pixels and the image reconstructed by Algorithm 2.1 when taking as
regularization parameter λ = 0.05.
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