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Abstract. The open-pit mine production scheduling problem has received a great deal of attention
in recent years, both in the academic literature, and in the mining industry. Optimization approaches
to strategic planning for mine exploitation have become industry standard. However most of these
approaches don’t consider the material flow after mining. In particular, the use of stockpiling to manage
processing plant capacity, and the interplay of material flows from mine to stockpile, mine to processing
plant and stockpile to plant, has not been treated as an integrated part of mine extraction sequence
optimization.

One of the key reasons is that material of different grades becomes mixed on a stockpile, leading to
difficult nonconvex, nonlinear optimization models. Here we show that the special structure of such
models can be exploited to yield effective algorithms that incorporate post-mining material flows and
stockpile management as an integrated part of mine production scheduling. The results give a more
realistic assessment of the NPV that can be realized by a mining project than is possible with current
approaches.

We address the solution of the open pit mine production scheduling problem (OPMPSP) with a single
stockpile (OPMPSP+S). The addition of a stockpile adds a relatively small number of quadratic con-
straints to the formulation of the OPMPSP and turns the problem from a mixed-integer linear into a
mixed-integer nonlinear program. We develop several extended formulations of the OPMPSP+S and
discuss the strength of the linear outer approximations obtained by relaxing their nonlinear constraints.
We also introduce an aggressive branching scheme that can force the violation of the quadratic stock-
piling constraints to be arbitrarily close to zero and a primal heuristic that produces a fully feasible
solution of OPMPSP+-S from an integer feasible solution of OPMPSP which violates these constraints.
Combining these two techniques with a branch-and-bound approach,we obtain an algorithm that yields
fully feasible solutions of OPMPSP+S arbitrarily close to the optimum. Experimental results for real-
istic benchmark instances show that this algorithm is very efficient in practice.

Our methodology is easily extendable to multiple stockpiles.

1 Introduction

Open pit mine projects typically run for several decades and the optimisation of stategic plans is a
crucial element for the successful planning of projects. A commonly used criterion for comparison
of different strategic plans for the extraction of the valuable material from the ground is net present
value (NPV). The NPV optimisation of strategic plans for open pit mines has a long history and has
been approached from a number of different angles. This paper focusses on the approach in which
extraction of discrete units of available material must be sequenced over time so as to maximize
the NPV of the operation.



This approach leads to a mathematical programming model with two main classes of constraints:
safe pit wall slopes and annual production limits. Material blending constraints are also sometimes
included, and belong to the second category. The former, which are modelled as precedence con-
straints, require binary variables to be modelled correctly, but the latter do not. Individually, it can
be shown that these constraints do not pose computational challenges. In combination, however,
they produce an NP-hard problem (see eg. [13]), often known as the Open Pit Mining Scheduling
Problem (OPMPSP) in the literature.

The OPMPSP was modelled as a mixed integer linear program (MILP) by Johnson [16], but at
that time neither computing power nor suitable algorithms existed capable of solving even small
instances. Classical approaches therefore attempted to derive an approximate solution by solv-
ing several passes of a problem containing only the precedence constraints, each parameterized
differently. This was first suggested by Lerchs and Grossman [17], and has been implemented in
Gemcom'’s popular Whittle [29] mine planning software. Lerchs and Grossman’s seminal algorithm
for the maximum weight closure problem, which is equivalent to the precedence constrained prob-
lem, is not a polynomial time algorithm in the worst case (it is pseudopolynomial). Hochbaum
[14], however, derived a polynomial time version, and there are also various ways to reduce max
closure to other graph theoretical problems for which highly efficient algorithms are known (see for
example [16,23,26]).

Another approach of a similar flavour uses Lagrangian relaxation of the constraints other than
the precedence constraints in order to attempt to obtain a valid solution to the full problem by
solving only precedence problems (Dagdelen and Johnson [11] and Akaike and Dagdelen [1]). Ho-
erger et al. [15] are one of the first to solve a MILP model without Lagrangian relaxation. Other
authors have proposed various dynamic programming algorithms. Examples are Onur and Dowd
[22], Wang [30] and Tolwinski and Underwood [28].

As computing power has increased and mixed integer programming algorithms have improved,
MILP has emerged as a realistic, and arguably as the preferred, method for solving OPMPSP. In
practical settings, a full sized problem can contain hundreds of thousands to millions of binary
variables and millions to tens of millions of linear constraints, which still places it beyond the
reach of commercial MILP solvers, but a number of techniques have been developed recently to
speed up the solution process. These include aggregation [24], see also [18] and disaggregation [7,13]
approaches, variable fixing and specialised cutting planes [5,6] and techniques for rapidly solving
the LP relaxations [4,7,10,19]. Caccetta and Hill [9] have also published a paper describing a branch
and cut based algorithm designed for large scale problems, but due to commercial confidentiality
considerations they have not released details of their method. Fricke [12] contains a comprehensive
survey of published work treating OPMPSP. A more recent survey is Newman et al. [21].

Most of these approaches treat material mined as either processed or sent to waste, never
to be reclaimed. In practice, however, stockpiles are used to hold valuable material that cannot
be processed immediately due to process capacity limits. This valuable material is not lost, but
may be reclaimed and processed at a future time when there is spare processing capacity. The
importance of stockpiles for strategic mine planning is highlighted by Asad [2]. In carrying out
cutoff grade optimization for an operation with two economic minerals, Asad [2] shows that with a
long-term stockpile, the life of a (hypothetical) gold and copper mine can be extended by 23%, and
its NPV increased by almost 4%. A subsequent study by Asad and Dimitrakopoulos [3] confirms
the importance of such stockpiles for an actual copper mine, assessed while taking into account



uncertainty in the ore body. The results in [3] also demonstrate how a only a few percentage points
difference in NPV can make a difference in the economics of whether or not to invest in the mine.

However, as noted by Asad [2], the introduction of stockpiles utilized in parallel with mining
operations, with material sent to the processing plant from either the mine or the stockpile, compli-
cates matters. The main reason for this is that when material is sent to the stockpile from one part
of the mine, it is mixed (approximately homogeneously) with material from other parts of the mine.
When material is reclaimed, it is not reclaimed at the quality which it entered the stockpile, but at
the average quality of the stockpile in its current state. This gives rise to constraints that ensure
that (the ratio of) the quality of material reclaimed from the stockpile and the quality of material
in the stockpile is the same. These ratio constraints are nonlinear and nonconvex. In particular,
the ratio relationship gives rise to bilinear constraints, which are challenging for optimization.

Consequently most prior work including stockpiling in mine production planning does not fully
integrate stockpile reclamation with production plan optimization. Rehman and Asad [25] consider
short-term production planning in which complex chemical properties of cement quarry materi-
als must be achieved by blending on a stockpile. They employ an MILP similar to that used for
OPMPSP, providing a good representation of how material blending constraints (even rather com-
plex ones) can be included in such a model. The authors note, however, that the retrieval of the
stockpile in future production planning is not considered in their model, citing the challenge of
the nonlinear constraints induced. In strategic mine planning, both [2] and [3] allow reclamation
from the stockpile only after mining operations have ceased. In exploring the discrepancy between
short- and medium-term operational planning Yarmuch and Ortiz [31] schedule flows between the
mine and two stockpiles, one high grade and one low grade, and the processing plant. They avoid
the challenge of nonlinearity introduced by stockpiling by solving the problem period by period,
re-calculating the stockpiles’ grades at the end of each period. Earlier work is likewise approximate
in this respect [9,27].

Our key contribution in this paper is to address the challenge of the nonlinear constraints
produced by including stockpiling in parallel with mining operations within an OPMPSP model. We
show that the special structure of the ratio constraints can be exploited to yield effective algorithms
that incorporate stockpile reclamation as an integrated part of mine production scheduling. The
results give a more realistic assessment of the NPV that can be realized by a mining project than
is possible with current approaches.

We will call the OPMPSP model augmented with stockpiling constraints the OPMPSP+S
model. In the present work, we treat a single stockpile, but our techniques are extendable to
multiple stockpiles in a straightforward way. A summary of our approach is as follows. We take
advantage of the techniques developed to speed up solution of the OPMPSP, including variable
fixing, and specialised cuts [5,6]. The LP-relaxation of the OPMPSP formulation with the option
to reclaim stockpiled material, but without the quadratic constraints ensuring the same quality of
material in the stockpile and material taken from the stockpile, is a very weak relaxation of the
OPMPSP+S. We therefore develop several extended formulations of OPMPSP+S and prove that
they lead to tighter LP-relaxations. Using these tighter reformulations of OPMPSP+S we apply
an additional branching procedure that can reduce the violation of the quadratic constraints to
arbitrarily low levels. Finally, given a candidate solution of OPMPSP+S that is integer feasible but
violates the quadratic constraints of OPMPSP+S we employ a primal heuristic to construct a fully
feasible solution of OPMPSP+S; i.e., a solution satisfying both the integrality constraints and the
quadratic constraint. Integrated into a branch-and-cut approach, these two techniques allow us to



refine the outer linear relaxation of the problem adaptively via branching and to turn any integer
feasible solution of a (refined) relaxation into a fully feasible solution of the original problem. Thus,
our approach can produce fully feasible solutions of OPMPSP+S with objective values that are
arbitrarily close to the optimal objective value.

Most aspects of our methodology can be applied to general mixed-integer nonlinear programs
where the nonlinear constraints are bilinear functions that control ratios of quantities. In particular,
some of the tighter reformulations we introduce, and the aggressive branching scheme, are very
general techniques.

All aspects of the methodology are also easily extended to multiple stockpiles, with or without
grade range specifications.

An outline of the paper is as follows. In Section 2 we describe the OPMPSP+S in greater detail.
Section 3 introduces our tighter reformulations of OMPSPSP+S. Section 4 begins with an overview
of how our proposed methodologies will be applied to the models from Section 3, and then proceeds
to detail these methodologies, including an aggressive branching procedure and a primal heuristic.
Section 5 details numerical experiments.

2 Problem Description and MINLP formulation

In this section we describe in detail our model of the open pit mine production scheduling problem
with stockpile (OPMPSP+S). The region of earth in the ground that is under consideration for
mining is called an ultimate pit. The ultimate pit provides an efficient excavation boundary within
which decisions will be made to mine or not mine material. The ultimate pit is typically discretised
into blocks, which represent the smallest possible size of material that may be selectively mined by
the mining equipment. Note that there can often be millions of blocks in a single pit. While, in
principle, one can try to optimise mining and processing decisions for each individual block, these
blocks are often grouped together to form aggregates in order to reduce the size of the resulting
OPMPSP. Various techniques exist for computing aggregates, for example, the fundamental tree
method [24].

Geological estimates of the contents of the blocks, and hence the aggregates, are obtained by
drilling. For each aggregate i € [N] := {1,..., N} one obtains an estimate of total rock mass R;
and the mass of various attributes such as various mineral contents; see Table 4 at the end of the
article for basic parameter notation. For simplicity, we consider only a single valuable attribute,
namely a single valuable metal, and we denote the mass of this metal in aggregate i by A;. It will
turn out that our tightened formulations in Section 3 can automatically handle multiple attributes;
we discuss this more later. The total amount of rock in aggregate i that is sufficiently valuable to
consider processing is denoted O;; such material is called ore. The standard OPMPSP model (c.f. [9])
assumes that the attributes are distributed homogeneously throughout the aggregate. Automatic
disaggregation techniques such as those in [7] may be employed to mediate this assumption, but
for simplicity of exposition, we have not done this here.

In addition to the spatial discretisation into aggregates, the life of the mine is discretised into
time periods indexed by ¢ € [T] := {1,...,T}. The durations of the time periods need not be the
same. The mining operation consists of several steps. In the first step, rock is mined from the pit.
We use two sets of variables to control the mining. For each aggregate ¢ € [N] and each time period
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t € [T], we introduce the variables

1, if aggregate ¢ has been completely mined by the end
ziy € {0,1} , Ti = of time period t;
0, otherwise,

yit €10,1], ;¢ is the fraction of aggregate ¢ mined during time period ¢.

The relation between these variables is expressed by the constraints

Tip-1 < Tig fori e [N],te{2,...,T}, (1)
t
Tit < Zyw for i € [N], t € [T]. (2)
=1

A limit on the fraction of mined material is enforced by

Zyi,t <1 for i € [N]. (3)

Precedence constraints model the requirement that wall slopes are not too steep, ensuring the
safety of the mine. Technically, these constraints demand that, before the mining of aggregate i may
be started, each immediate predecessor aggregate j € P(i) (see Table 4) must have been completely
mined. A precedence-feasible extraction sequence is then guaranteed by the constraints

t
> yie < @i for i € [N], j € P(i), t € [T]. (4)

T7=1

Note that the set P (i) only contains the immediate predecessors aggregates of aggregate i. Aggre-
gates that indirectly preceed 1, i.e., that are predecessors of predecessors of i, are not contained in
P(i).

Once rock has been mined, it may take one of three paths: it may be processed to extract the
metal from the rock, it may be stockpiled on the ground nearby the pit for processing at a later
time, or it may be sent to a waste dump, from which it is never reclaimed. For each aggregate
i € [N] and each time period t € [T], we introduce two variables to model these options, namely

zg . €10,1], zgt is the fraction of aggregate ¢ sent directly for processing in period t,

zzt €[o,1], zzt is the fraction of aggregate ¢ sent to the stockpile in time period t.

The fraction of aggregate ¢ that is sent to the waste dump in period ¢ is y;; — 2, — 27,. The
constraints

zgt + Zf,t <Yt fori € [N], t € [T] (5)

ensure that, for each aggregate, the sum of the fractions sent for processing and to the stockpile
during one time period does not exceed the fraction mined.



To model the material flows through the stockpile, we introduce the following continuous vari-
ables for each t € [T:

of,al >0, of (a}) is the total amount of ore (resp. metal) sent from the stockpile to the
processing plant during time period ¢, and
o},a;, >0, o; (a}) is the total amount of ore (resp. metal) remaining in the stockpile
tr O ¢ (g

during time period ¢ (i.e., excluding material newly arriving in the stockpile in
period t).

We assume that material reclaimed from the stockpile and sent to the processing plant during time
period t is removed from the stockpile at the beginning of time period ¢, whereas material extracted
from the pit and sent to the stockpile during time period t is put onto the stockpile at the end
of time period t. Furthermore, we assume that the stockpile is empty at the beginning of the first
time period and at the end of the planning horizon.

Following these assumptions, the material flow conservation constraints for the stockpile are

N
0,1 + ZOizf’t_l =0, + o} fort € {2,...,T}, (6)

i=1

N
aj_, + ZAizit_l =a; +af fort € {2,...,T}, and (7)

i=1
oj=ol=o0y=a)=a} =ar=0. (8)

The limited mining and processing capacities (denoted M; and P;, respectively) in each period are
reflected by the constraints

N
Z Riyir < My for t € [T], and (9)
i=1

N

> 0zl + o} <P, for ¢ € [T). (10)

=1

As discussed in the introduction, material placed on the stockpile is assumed to be mixed homoge-
neously before possible later removal for processing. Hence, we need to ensure that, at the beginning
of each time period, the ore-metal ratio of the material sent from stockpile to processing equals the
ore-metal ratio in the stockpile itself. Otherwise, the profitable metal could be sent to processing
while the ore, only incurring processing costs, could remain in the stockpile. The equality of these
ratios can be enforced by

p p
ay _ %

S P~ S D
a; + a; o, + o4

for t € [T).

To avoid the singularities from zero denominators, we reformulate these constraints as

al (o] + o) = oY (a; + ab) for t € [T]. (11)



Finally, the net present value of a mine schedule is calculated as

NPV (y, 2P, 0P, ap) =

N N
25,5 [c (at ZA zzt> -p <0tp +ZOiZ£t> —mZRiyi,t
i=1 i=1

where c is the sales price per unit of metal, p is the processing cost per unit of ore, m is the mining
cost per unit of rock, and ¢; is the discount factor that applies to time period t. For homogeneous
time periods and constant interest rate ¢ > 0 per time period, the profit made in time period £ is
typically multiplied by a discount factor of & = 1/(1 + q)*.

All in all, we obtain a formulation of the open pit mine production scheduling problem with
one attribute (“metal”) and a single, infinite-capacity stockpile, which we will call the natural
formulation (or basic formulation) of OPMPS+S throughout the paper:

7

max NPV (y, zP, 0P, aP)
s.t. (z,y,2P, 2% 0%, a° 0P, aP) satisfies (1) — (11),
z e {0, 1}V (NF)
y, 2P, 2% € [0,1)VT
0%,a°, 0P, aP € Rgo
For notational convenience, we denote by Sxr, Snr.ip, and Syr.rp the feasible solutions sets
of (NF), of the mixed-integer linear relaxation obtained by dropping the bilinear constraints (11)

from (NF), and of the linear relaxation obtained by dropping both the bilinear constraints (11) and
the integrality constraints from (NF), i.e

Snr = {(z,y,2°,2°,0%,a% 0, aP) € [0, 1JAVXT) R‘ﬁ;
(x,y,2P, 2% 0% a®, oP, aP) satisfies (1) — (11), = € {0, 1}N><T}7

Snrtp = { (2,9, 2P, 2%, 0%, a%, 0P, aP) € [0, 1*N*T) x R4T .
( )
( )

x,y, 2P, 2% 0% a®, 0P, aP) satisfies (1) — (10), z € {0,1}NXT},

Snrrp = {(2,y, 2P, 2%, 0%, a*, 0P, aP) € [0, 14N *T) » REL .

(z,y,2P,2° 0% a°, 0P, aP) satisfies (1) — (10)},

A more general setting comprising multiple attributes, multiple stockpiles, finite stockpiling
capacity, initially non-empty stockpiles, or blending constraints can easily be modelled by minor
extensions and modifications.

3 Stronger formulations

In this section we describe two techniques to strengthen the relaxations of OPMPSP+S. The first
one individually tracks the fractions of each aggregate residing in the stockpile and reclaimed
from the stockpile in each time period. This requires additional continuous variables, but produces
considerably tighter relaxations. The second approach uses additional binary variables and linear
constraints to produce a piece-wise linear outer approximation of the quadratic mixing constraints
(11). Naturally, this approximation of the non-linear constraints leads to stronger relaxations than
simply dropping the constraints.



3.1 The aggregate tracking formulation

In the (NF) formulation the material from all aggregates sent from the pit to the stockpile is
aggregated into variables 0® and a°, which only describe the total ore and metal content of the
stockpile. Alternatively, we may track the material flow through the stockpile at an individual
aggregate level. For this, we introduce for each aggregate ¢ and time period ¢ the additional variables

sz €[o,1], sz is the fraction of aggregate i sent from stockpile for processing during
time period ¢, and
zfts €[o,1], zfts is the fraction of aggregate ¢ remaining in the stockpile throughout time

period ¢ (ie. excluding material newly arriving in the stockpile in period t).

The concept of these variables is illustrated in Figure 1.

Fig. 1. Material flow over time in and out of the stockpile.

For each aggregate, these fractions must satisfy the aggregate-wise material conservation con-
straints

sz—1 + Z?,t_l = sz + sz fori e [N],te€{2,...,T}, and (12)
Sr =P =20 =0 for i € [N]. (13)

It is not hard to see by induction that these constraints, together with the variable domains and
(3) and (5), imply that 27} + 27 < 1 for all 4,¢. This is helpful to note for later use.

The total amounts of ore and metal remaining in the stockpile and taken from the stockpile
during a time period are given by the aggregate fractions remaining in and taken from the stockpile

in this period via the following equations:

N

0; = Z Oiz;y for t € [T, (14)
i=1
N

of = Z Oiz for t € [T, (15)
i=1
N

a; = Z Az} for t € [T1, (16)
i=1
N

al = Z Az} for ¢t € [T7. (17)
i=1



With the individual aggregate fractions in the stockpile at hand, we now can model the stockpile
mixing constraint by demanding that, for each time period t, the ratio of material sent from
the stockpile to processing to material remaining in the stockpile is equal for all aggregates ¢ €
[N]. Introducing additional variables f; € [0, 1] for each time period ¢, called out-fractions, these
constraints can be written as

S,
2 p

2,t .

S5 | 5P = fi for 7 € [N],tE[T],
Zit T Rt

or, avoiding zero denominators, as

zy (L= fo) = 200 fe for i € [N], t € [T]. (18)

It is easy to verify that these constraints, together with equalities (14)—(17), imply the original
mixing constraints (11); see Theorem 1 below. Hence, the total ore-metal mixing constraints (11)
can be omitted from the model if the aggregate-wise mixing constraints (18) are given.

With these additional variables and constraints, we obtain the aggregate tracking formulation:

max NPV (y, zP, 0P, aP)
s.t. (z,y,2P, 2%, 2%P 2% 0%, a®, 0P, aP, f) satisfies (1)—(10), (12)—(18),
z e {0,137,
y,Zp,ZS,ZS’p,ZS’S c [07 1]N><T’
0°,a% 0P, aP € Rgo,
feio,1r.

(AT)

Note that the variables o}, o}, aj, and a} describing the total ore and metal flow through the
stockpile can be eliminated from the model using equalities (14)—(17). For simplicity of presentation,
we nevertheless keep these variables and equalities (14)—(17) in the formulations.

As for the natural formulation, we denote by Sat the solution set of (AT), by Sar.1p the solution
set of the mixed-integer linear programming relaxation obtained by dropping constraints (18), and
by Sar.Lp the solution set of the linear relaxation of the latter, i.e.,

Sar = {(z,y, 2P, 2%, 2%P, 2%, 0%, @®, 0, aP, f) € [0, 1)6VXT) R‘g& x [0, 1]
(z,y,2P, 25, 25P 2% 0% a®, 0P, aP, f) satisfies (1)—(10), (12)—(18),
z € {0,131}
Sarap = {(z,y, 2P, 2%, 2%P, 2%, 0%, a®, 0P, aP, f) € [0, 1)6VXT) R‘g& x [0, 1]
(x,y,2P,2°% 25P 2% 0° a®, 0P, aP, f) satisfies (1)—(10), (12)—(17),
z € {0, 1}V }
Sarrp i= {(2,y, 2P, 25, 25P, 25% 0%, a5, 0P, aP, f) € [0, 1]5V*T) RLG x [0,1]7
(x,y,2P,2° 25P 2%° 0% a®, 0P, aP, f) satisfies (1)—(10), (12)—(17)}
Note that the mixed-integer linear relaxation obtained by leaving out (18) is equivalent to a “ware-
house” stockpile model, where each block may be stored and reclaimed individually.

Furthermore, note that the f-variables occur neither in the objective function NPV (y, zP, 0P, aP)
nor in the constraints (1)—(10) and (12)—(17). Hence, these variables can be eliminated from the



mixed-integer linear relaxation and from the linear relaxation of (AT) when maximizing
NPV (y, 2P, 0P, aP).

As mentioned above, the aggregate-wise mixing constraints, together with the equalities defining
the total ore and metal flows through the stockpile, imply the original mixing constraints.

Theorem 1. Let (2°7,2%%, 0%, a*,0%,a?, f) € [0, 1]2N*T) 5 R x [0, 1]7 such that (14)~(18) hold.
Then (0°,a°, o, aP) satisfies (11).

Proof. Multiplying each equality (18) (indexed by 4 and t) with its corresponding ore value O; and
summing up the resulting equalities over all aggregates yields the equalities

N N
Zoisz(l —f)= ZOizi}sft for ¢t € [T].
i=1 i=1
Analogously one obtains
N N
Z Aisz(l - fi) = ZAz‘Z;’tsft for t € [T).
i=1 i=1
With (14)—(17), these equalities yield
op (1= fr) = o, fe for t € [T], and
af (1= fe) = afi for t € [T7,
which directly imply (11). O

Theorem 1 implies that each feasible solution of (AT) defines a feasible solution of (NF) by pro-
jecting out the variables z%%, z%P, and f. It is obvious that the same holds for the solutions of the
corresponding mixed-integer and linear relaxations. The following theorem shows that each solution
of (NF) can in fact be obtained by projecting from a solution of (AT).

Theorem 2. Let (z,y,27,2° 0°,a%,07,aP) € Syp. Then there exist (27, 2%°, f) € [0, 1)2(N>xT)+T
such that (x,y, 2P, 25, 25P 255 0% a®, 0P, aP, f) € Syr.

Proof. Given (z,y, 2P, 2%, 0% 4%, 0P, aP) € Sy, we define

o if of +0; >0
fr = {O$+0t t t for t € [T1,

1 otherwise
s,8 0 fort=1 1
Fip = an
it (1-— ft)(zis,’ts_l + zf’t_l) fort€{2,...,T}
s,p . 0 fort =1
Zy = £ s for t € (2 -
t(2i1 +2i1) ort€{2,...,T}.

Obviously (z°P,2%% f) € [0,1]2N*T)+T Also, one easily verifies that (12)—(18) hold for
(z,y,2P, 2% 25P 2% 0% a® oP,aP, f), which implies the claim. O
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Denoting by projnr(X) the projection of a set X C Sar to the variable space of (NF), Theorems
1 and 2 imply the following proposition.

Proposition 3. For any instance of OPMPSP+S we have

(i) projnp(Sar) = Snr

(i) projnp(Sar-ip) C Snr-1p
(i11) projnp(Sar.Lp) C SnrLp
In consequence, the mixed-integer linear relaxation and the linear relaxation of the aggregate track-
ing formulation (AT) are at least as strong as their corresponding counterparts for the natural
formulation (NF). Denoting the maximum value of NPV (y, 2P, 0P, aP) over a solution set X by z%,
we obtain the following corollary.

Corollary 4. For any instance of OPMPSP+S we have

(i) Zap = 2yp

(it) ZLp_ar < ZLp-NF
(iii) Zyrp_ar < ZM1p-NF
Note that Theorem 2 does not hold for the solutions of the mixed-integer linear relaxations or those
of the linear relaxations of (NF) and (AT). In fact, it is not difficult to construct instances where
both the linear and the mixed-integer linear relaxation of the aggregate tracking formulation (AT)
are strictly stronger than their counterparts for (NF). If there are no restrictions on the problem
data, one can even construct problem instances where the ratio between the two LP relaxation
values or between the two MIP relaxation values is arbitrarily large.

Proposition 5. There are instances of OPMPSP+S where

(i) projnr(Sar.ap) # Snrap and 2y 1p_ a7 < Z3i1p-NF

(i4) projnr(Sar-Lp) # Snr-Lp and 2} p_ap < 2l p_Np
Our numerical results in Section 5 show that the difference between the LP relaxation values of the
natural formulation and of the aggregate tracking formulation may be very large also for real-world
instances.

3.2 The discretised out-fraction formulations

Another technique to tighten either (NF) or (AT) is to introduce a (rough) a priori discretisation of
the out-fractions f; and to produce a piece-wise linear outer approximation of the non-linear mixing
constraints. For this, we choose a series of fixed ratio levels 0 = ¢g < 1 < ... < ¢r < ¢pr+1 = 1. Let
[L] :=={1,...,L}and A; = ¢y —¢—1 for € {1,..., L+1}. Using auxiliary binary variables, we then
enforce the ratios of material taken from the stockpile and material remaining in the stockpile during
a time period to be (at least) in the same interval [¢;_1, ¢;], either for all individual aggregates or
for the total ore and the total metal amounts. For each time period ¢ € [T] and each level | € [L],
we introduce the binary variable

1 if ft 2 d)lv
0 otherwise,

ut,l S {07 1}7 ut,l = {

for which we demand
U1 < U, 1—1 forl € {2, e ,L}, te [T] (19)

We begin by describing how this discretisation can be used to tighten (AT) and later show how the
technique applies to (NF).
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The connection between the auxiliary variables u and the aggregate-wise material flow variables
is established via the inequalities

SR — 1)+ 2 < ZAl/ (1 —uyp) forie[N],le[L],te[T], and  (20)
I'=1

it (L= ¢1) = 2561 < Z Apyrugy fori € [N], 1 € [L], t € [T]. (21)
U=l

The following lemma shows that, for any binary vector u € {0,1}7*%, these linear constraints
force the out-fraction of each individual aggregate i in time period ¢ to lie in the interval [af, 8] =
D lL=1 Ay, Aq —i—ZlL:l Aj1ue]. We note that these constraints are also valid in the in the converse
sense: if the z and f variables are feasible for the (AT) formulation, then binary w can be found
satisfying these constraints, where the proof relies on 2z}’ t ;+ oz ’f < 1 for all ¢, t.

Lemma 6. Let (2°7,2%%) € [0,120VXT) gnd u € {0,1}7*F such that (19) holds. Furthermore, let

= Sk Ay and Bt = Ay 4+ 3 Arprugy. If both (20) and (21) hold, we have
il > a (”—l-z P) and (22)
< B+ ) ()

S,
Z’L

In the case of 2} + 2,7} > 0, this is equivalent to fi,:= 2] /(27 + 27}) € [, 5.

Proof. We first consider constraint (22). Let ¢ € [N], t € [T] and [* € [L] be the maximal [ such
that w;; = 1. If there is no [ with u;; = 1, then (22) reduces to sz > 0, which holds trivially.
Otherwise, constraint (20) for [ = [* is

i (B = 1) + 277 < ZAI’ (1 —up) =0.
=1

With of = Zlel Ajug; = ¢+ this implies

zfy’f(at —1)+ szozt <0,
which is is equivalent to (22). For each [ < I*, constraint (20) is equivalent to

zy = oz +257);
which is implied by (22) and thus redundant. For each [ > [*, constraint (20) is equivalent to
il = o] +257) — Z Ap.
V=l"+1

Since 2z}’ t S+ z < 1, this is implied by

!
STOA)ET+ AP

r=l41
= ¢ (27 +27) = o (5] + 57)s
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and thus redundant as well. Hence, inequality (20) is non-redundant only for [ = [*, when it reduces

to (22).
Analogously, it follows that inequality (21) is non-redundant only for [ = [* + 1, when it reduces
to (23). 0

Note that by forcing, for each t € [T, the individual out-fractions f;; of all aggregates to lie in
the same interval [af, 3], inequalities (20) and (21) implicitly also force the common out-fraction
variable f; in (AT) to lie in this interval.

Making use of Lemma 6 we obtain the out-fraction discretised aggregate tracking formulation

max NPV (y, 2P, z%P)
s.t. (m,y,2P, 2% 2%P 2% 0% a®, 0P, aP, f,u) (1)-(10), (12)—(18), (19)—(21),
z e {0,1}V<T,
y, 2P, 25, 25P 255 e [0, 1)V<T
fefo],
ue {0,1}7%L,

(DAT)

As before, we denote the solution sets of (DAT), of its mixed-integer linear relaxation, and of its
linear relaxation by Spart, SpaT.ip, and Spar.Lp, respectively. Since all variables and constraints
of (DAT) and its relaxations are contained in the respective discretised out-fraction model and
relaxations, we trivially get the following result.

Proposition 7. For any instance of OPMPSP+S we have
(i) projar(Spar) € Sar

(i) projar(Spar-ip) € Sarip
(7ii) projar(Spar-Lp) € Sar-rLp

Again, one easily verifies that the two mixed-integer non-linear models (DAT) and (AT) are equiv-
alent, while the two relaxations of (DAT) may be strictly stronger than their corresponding coun-
terparts for (AT).

Proposition 8. For any instance of OPMPSP+S we have
(i) projar(Spar) = Sar and 25 4 = 2.
There are instances of OPMPSP+S with

(_ Z:) pTOjAT(SDAT-IP) # Sarap and 25 r_prp < Zar— e
(i4) projar(Spar-Lp) # Sar-Lp and 25 4p_pp < Z;\TLP'

Analogous to the out-fractions f;; of the individual aggregates considered above, we can define
the out-fraction of the total ore mass and of the total metal masses as

allfj 0? f [ ]
= ——= and = orte|T
fa, i ? fO, Oi O?

if ai + af and oi + of are strictly positive or, in a more general way, as (not-necessarily unique)
values fo¢, for € [0,1] that satisfy

af (1= far) = @ far for t € [T, and
of (1 = for) = 0y for for t € [T1.
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Obviously, the original mixing constraints (11) are satisfied if and only if there exist such values
that, in addition, satisfy f,: = fq. for all t € [T].

Let A; and O; be valid upper bounds on the maximum total amounts of metal and ore that
may be contained in the stockpile at the beginning of period t, i.e., such that A; > a} + a} and
O; > of + d; hold for all valid solutions. Analogous to inequalities (20) and (21), the following
inequalities ensure that, for any binary vector u € {0, 1}TXL, the values f, and f,; both lie in the
interval [af, 8]:

l
P(fr— 1) +ad <> A Ap(l—uyy) for i € [N, 1 € [L], t € [T], (24)
I'=1

OtAl’-i-lut,l’ for i € [N], l e [L], t e [T] (25)

M=

0} (1 — ) — oy <

/

~
o~

Adding these constraints together with the wu-variables to the natural formulation (NF), we
obtain the out-fraction discretised natural formulation:
max NPV (y,zP, 0", aP)
s.t. (z,y,2P,2°% 0% 4%, 0P, aP, u) satisfies (1) — (11), (19), (24)—(25),
z e {0,1}V<T,
y, 2P, 25 € [0, 1)V*T, (DNF)
0°,a°,0P,aP > 0,
fefo,1,
u € {0,1}7%L,
Again, we denote the solution sets of (DNF), of its mixed-integer linear relaxation, and of its

linear relaxation by Spnr, Spnr.1p, and SpNr.Lp, respectively. Analogously to Propositions 7 and
8, we have the following relations between the solution sets and optimal solution values.

Proposition 9. For any instance of OPMPSP+S we have
(i) projyr(SpNF) = Snr and 2hnp = 2N,

(i4) projnp(Spnr-1p) € Snrip and 2hnp e < 2NF_M1ps
(iii) projnp(Spnr-Lp) € Snr-Lp and Zhnp_pp < ZNF_Lp-

There are instances of OPMPSP+S with
(iv) projar(Spnr-1p) # Sarap and 2hnp_yrrp < 2NF-_MIP
(iiv) projar(Spnr-Lp) # Sar-Lp. and 2hNp_1p < ZNF_Lp-

Analogous to the proofs in Section 3.1 one can also show that, for the same discretisation ¢, the
mixed-integer linear relaxation and linear relaxations of (DAT) are stronger than those of (DNF).

Proposition 10. For any instance of OPMPSP+S we have

(i) projpnp(Spar) = Spnr and 2h 4 = 2h N
(11) projpnr(Spar-ip) € Spnr-1p and 25 41— airp < ZONF_MIPS
(iii) projpnr(Spar-rp) € SpNr.Lp and 2PAT—LP < ZDNF—LP-
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There are instances of OPMPSP+S with

(i) projpnp(Spar-ip) # Spnrip and Zhar_yip S ZpNF-MIP)
(1) projpnr(Spar-Lp) # Spnr-Lp and 25 47— 1p < ZHNF_LP-

This shows that the individual aggregate tracking and the out-fraction discretisation both in-
dependently strengthen the relaxations of our formulation.

4 Solution approach

4.1 Overview

In this section, we describe the approach we developed and implemented to solve OPMPSP+S.

Our approach is based on a branch-and-bound algorithm solving the mixed-integer linear pro-
gramming relaxation of one of the models presented in the previous section. In addition to the
standard mixed-integer branching schemes, which enforce the integrality of all integer variables in
a solution, we also employ a specialised spatial branching scheme to reduce the maximum violation
of the relaxed nonlinear mixing-constraints. Using this branching scheme, we can force maximum
violation of the nonlinear constraints arbitrarily close to zero in the created subproblems. Thus,
our algorithm can compute upper bounds that are arbitrarily close to the global optimum solution
value of the full mixed-integer nonlinear problem formulation.

Furthermore, we use a specialized primal heuristic to turn solution candidates that are inte-
ger feasible but still violate the mixing constraints into solutions that also satisfy these nonlinear
constraints and, thus, are feasible for the respective full mixed-integer nonlinear formulation. As
the deterioration of the objective function value is linearly bounded by the violation of nonlinear
constraints by the given candidate solution, this allows us to also compute fully feasible solutions
arbitrary close to a globally optimal solution of the full mixed-integer nonlinear problem formula-
tion.

As our branching scheme only requires the addition of linear constraints in the definition of the
subproblems, only linear relaxations need to be solved during the branch-and-bound process, which
leads to a practically efficient algorithm.

In the following, we describe the branching scheme and the primal heuristic in more detail.

4.2 Branching

First, we consider the case in which we wish to solve the basic formulation (NF) using the (mixed-
integer) linear relaxation R obtained by dropping constraint (11).

Suppose we are given a (fractional) solution (x,y, 2P, 2% 0% a®,0P,aP) € Syp.Lp that violates
constraint (11) for some time period ¢ € [T]. Then the metal fraction taken out of the stockpile
differs from the ore fraction taken out. Suppose that the metal fraction exceeds the ore fraction,
which will be the case for the earliest period where the fractions differ if the given solution is an
optimal LP solution and all revenue and cost values are positive. Then there is a some ratio ¢ with

a;
P BN
a; + a,

o}
D S
0, + 0oy

<P <

Using this ratio ¢ as threshold, two branches are created: one where both ratios are at least ¢, i.c.

both (1-¢)of < ¢} and (1 —¢)a} < pa;, (26)
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and one where neither ratio exceeds ¢, i.e.
both (1 —¢)o} > ¢o,_; and (1—¢)al > ¢a;_, (27)

hold. Clearly, the given solution violates both sets of constraints and thus is cut off in both branches.
On the other hand, any solution satisfying (11) satisfies at least one of the two inequality sets
(26) or (27). Adding the linear constraints (26) or (27) to the current (mixed-integer) linear re-
laxation R C Syp.Lp thus yields two (mixed-integer) linear subproblems R; and Ry of R such
that each solution of R that satisfies (11) is also solution of R; or Ry. Furthermore, denote by
tion taken out of the stockpile that may be attained by a solution of relaxation R. With ¢ chosen
strictly between % and a;——gaf’ we immediately get Ar, < Agr and Ag, < Ag, that is, the
maximum violation of constraint (11) in the newly created subproblems strictly reduces. Choosing

< 1 the maximum difference between the metal fraction and the ore frac-

P p

¢ = 2(01303_03) + Q(foias), the actual violation of (11) will be forced to reduce by a constant factor
t t 13 t

with each application of this branching scheme for period ¢. Applying this branching scheme re-

peatedly whenever some constraint (11) is violated, we can thus force the violation of all constraints

(11) to become arbitrarily close to 0.

Similarly, for the aggregate tracking formulation (AT), suppose we are given an (already partially
tightened) (mixed-integer) linear relaxation R C Sap.pp of (AT) and some (fractional) solution
(x,y, 2P, 2%, 25P 255 0% a® 0P, aP, f) € R that violates constraint (18) for some time period t € [T].
Then there exist at least two aggregates i,7 € [N]| with different out-fractions, thus there is a ratio
¢ with

S, S,

Zi,f Zj,vlf)
S,S n S,p < d) < S,S + S,p*
Zit T Rt Zit TRt

This again gives rise to two branches, one with the additional constraints
(1-— ¢)sz < ¢zfts for i € [N], (28)

forcing the out-fractions of all aggregates in time period ¢ to be no more than ¢, and the other
branch with constraints

(1—@)z5P > oot for i € [N], (29)

forcing the out-fractions of all aggregates in time period ¢ to be no less than ¢.
Again, the current solution is cut off in both branches, while any solution satisfying (18) sat-
isfies at least one of the two inequality sets (28) or (29). Also, the maximum difference Ag :=

max{% :1 € [N]} — mln{zf;—li-itsz : 1 € [N]} between the aggregate out-fractions will be
strictly reduced in the two newly created subproblems. Choosing ¢ as the mean of the minimum
and the maximum aggregate out-fraction, the violation of constraint (18) for time period ¢ can be
forced to become arbitrarily small by applying this second branching scheme repeatedly whenever
(18) is violated. In practice, however, choosing ¢ equal to the out-fraction of the total ore amount
proved to be more efficient. One easily verifies that the out-fraction of the total ore tonnage is al-
ways between the minimum and the maximum aggregate out-fractions, and strictly between those
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values if the aggregates attaining these values have different grades (metal to ore ratios).

Note that, in both branching schemes, the branches are created by adding multiple linear in-
equalities. Such an aggressive branching strategy is usually invalid for general MINLP solvers, since
it cuts off feasible solutions. In our special application it is feasible because of our additional knowl-
edge, that the out-fractions of each attribute and of each individual aggregate must be equal. Also
note that the branches are created by adding linear inequalities to the current branch-and-bound
node’s relaxation. Thus, only linear programs need to be solved during the branch-and-bound al-
gorithm, and efficient warm-starts using the dual simplex algorithm are possible.

In order to enforce integrality for all integer variables and arbitrarily small violation of the
nonlinear mixing constraints, we combine the branching schemes described above with the standard
branching on fractional variables that must be integer. For this, we need to decide at each node of
the branch-and-bound tree what type of branching to apply.

Our goal is to obtain a small branch-and-bound tree. In order to select a good branching,
we evaluate a number of potential branchings on violated mixing constraints and compare the
predicted effect these branches would have on the value of the relaxation to the predicted effect of
the branching on the fractional variable proposed by the built-in variable brancher of the branch-
and-bound framework. For the optimal solution of the current node’s relaxation and for each time
period ¢t € [T] where the corresponding mixing constraints (11) or (18) are violated, we consider

the branching defined by the threshold ¢; = 5+ when solving (NF) or (DNF) or by

O
2(of 40}
the threshold ¢; = O;—EOE when solving (AT) or (DAT).

For each of these branchings, we estimate the effect of the branching as the difference of the
objective values of the current relaxation’s solution and the solution obtained as follows. For period
t, we set the out-fraction of the total metal amount to ¢; and adjust the corresponding amounts of
metal remaining in the stockpile during period t. For all later periods, we successively set the out-
fraction of metal equal to that of ore. This procedure shifts the metal that was ’illegally’ taken from
the stockpile in period t to the next period and, for all following time periods, adjusts the metal flows
through the stockpile to the ore flows. The deterioration observed in the objective function when
doing these adjustments proved to be good measure for the effect of the proposed branching. (Note
that our estimate implicitly depends on the threshold value chosen in the branching. For different
threshold choices, different estimates may be more appropriate.) Among all possible branchings on
violated mixing constraints, we pre-select the one where this estimate is maximized.

Finally, the estimate of the pre-selected branching is compared to the estimation of the effect
of the proposed non-integer variable branch, which is given via the pseudo-cost associated with
that variable. If the estimate of the pre-selected branching on a mixing constraint is greater than
the minimum predicted deterioration in the two subproblems proposed by the variable branching,
then we perform the branching on the mixing constraint. Otherwise, we perform the proposed
non-integer variable branching. In order to speed up the finding of good feasible solution, we also
perform the proposed branching on the non-integer variable whenever the pseudo-cost prediction
tells us that

ay
2(a} +ay)

(i) both subproblems proposed by the variable branching close more than 30% of the current
node’s optimality gap,
(ii) one of them closes more than 90% of this gap,
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(iii) the number of integer-infeasible variables is below 10, or
(iv) the difference between the two subproblems suggests that the branch-and-bound algorithm is
diving for a feasible solution.

4.3 Primal heuristic

As discussed above, our specialized branching schemes can be used to force the violation of the
nonlinear mixing constraint to become arbitrarily small. However, the optimal solutions of the
branch-and-bound nodes’ linear relaxations will never perfectly satisfy the mixing constraints but
violate them within the local limits, unless the grades of all aggregates put in the stockpile are
equal. In contrast, the branching on integer variables, while we know beforehand that their number
is finite and, thus, finitely many branches suffice to ensure integer feasibility, our branching scheme
for the mixing constraints cannot ensure that these constraints will be satisfied after finitely many
branchings. With finitely many branchings, our branch-and-bound algorithm thus can ensure integer
feasibility, but not fully feasibility with respect to the nonlinear constraints.

A candidate solution that is integer feasible but violating the mixing constraint, however, can
be easily turned into a fully feasible solution by modifying the material flows through the stockpile.

REBALANCE
Input: v = (z,y, 2°, 2°%,2°P, 2%, 0°,a®, 0P, a®, f) € SaT.Lp
Output: © = (z,y, 2P, 2°, %P, 2%°, 0% a°, 0P, a®, f) at the end of the algorithm
1fort:=2toT do
S=o0;_; + Zie[N] 0iz4 4
0 =0}
if S >0 then f; :==0/S, else f, :=1
ay = ft(af—l + Zie[N] Aizis,tfl)
a; = (1— fo)(ai_, + 2oicN Aizg, )
for i :=1 to N do
fo = ft(zf:f—l + Zis,tfl)
9 Zzsts = (1- ft)(zzstsq + Zis,tfl)
10 end-do
11 end-do

0 g O ULk W N

Fig. 2. Rebalancing heuristics (for the aggregate tracking formulation)

Algorithm REBALANCE shown in Figure 2 illustrates how this can be done for the aggregate
tracking formulation (AT). For each period t from 2 to T', it iteratively sets the out-fractions of
the total metal amount and the out-fractions of all individual aggregates to the out-fraction of the
total ore amount for that period and updates the respective amounts remaining in the stockpile for
the next period.

Note that Algorithm REBALANCE only modifies the total metal amount and the aggregate
fractions reclaimed from and remaining in the stockpile. The aggregate fractions put in the stockpile
as well as the total ore amounts reclaimed from and remaining in the stockpile remain unchanged.
Hence, the modified solution will still satisfy the processing capacity constraints. More precisely,
we have the following theorem.

Theorem 11. Let v = (z,y,2P,2° 277, 2%% 0% a’,0P,aP, f) € Sappp and denote by
0= (Z,7, 2P, 25, 259, 255 05, a8, 0P, aP, f) be the solution constructed by algorithm REBALANCE from
v. Then ¥ satisfies (1)—(10), (12)—~(17) and (18) (as well as (11)).
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Proof. Since algorithm REBALANCE only modifies the variables f, aP, a°, 25P, and 25°, we have

(x,9y,2P, 25 0% 0P) = (Z,9, 2P, 25,05, 0P). With v € Sar. LP, it follows immediately that ¥ satisfies
(1)—(6) and (8)—(10). Furthermore, the variables f, a®, at, 2%Pand z*®° are modified only for time
periods t > 2, we also have (fi,al,a], 21", 2]%) =

(13) hold for .

Step 4 of the algorithm REBALANCE sets the out-fraction variable f; for each period to the total
ore out-fraction (or to 1, if the stockpile is empty at the beginning of period ¢). Steps 5 and 6 then
ensure that the out-fraction of the total metal amount is equal to f; for each ¢, which implies that
the total metal flow conservation constraints (7) and the total mixing constraints (11) are satisfied
by 9. Analogously, Steps 7 to 10 ensure that the out-fraction of each individual aggregate is equal
to f; for each period ¢, which implies that (12) and (18) hold for v. Together with the total and
aggregate-wise material conservation constraints (6), (7), and (12), the equalities defining 2} and
z;7 in Steps 8 and 9 of the algorithm finally imply that also the equalities (14)-(17) hnkmg the
total and aggregate-wise material flows through the stockpile are satisfied by v. O

(fl,al,al,zip,zl ) which implies that (8) and

Corollary 12. Applying algorithm REBALANCE to an integer-feasible solution v of the mixed-
integer linear relaxation of (AT) yields a fully feasible solution © of (AT).

Omitting steps 7 to 10 from algorithm REBALANCE, one obtains an analogous algorithm to turn
solutions of the (mixed-integer) linear relaxation of the natural formulation (NF) into solution
candidates that, in addition to the constraints of the relaxation, also satisfy the nonlinear mixing
constraints (11).

As algorithm REBALANCE modifies the amount of metal that is contained in the material
reclaimed from the stockpile in each time period, the constructed solution will have a different
objective value than the candidate solution passed to the algorithm as input. The following theorem
provides a bound for the possible deterioration of the objective value.

Theorem 13. Let 0 := (&,, 2P, 25, 25P, 255, 0% a°, 0P, aP, f) be the solution constructed by algo-
rithm REBALANCE from v := (z,y, 2P, 2% 2%P 2%% 0%, a°, 0P P, f) € SAT_LP. Furthermore, let Ay =

S,p 5,P
max{i i € [N], 2, —I—zftp>0}—min{ﬁ i € [N], 2 §’f>0} be the difference
Zit TRt ’

[ t+ ;f
between the mazrimum out -fraction and the minimum out-fraction over all aggregates in time period
tor Ay =0 if zlt + z =0 for all i € [N] in period t in the given solution v. Then

T t
INPV (y, 27,07, a?) — NPV (i, 27, 0P, aP)| < ¢ Y Y (8:A; Y Ap)
t=2 i=1 t'=2

.

Proof. Clearly, the out-fraction of the total ore amount f; = OtpLEOtg is an average of the individual
aggregate out-fractions in each time period t in the given solution v. Each aggregate’s out-fraction
thus is changed by at most A; in period t by algorithm REBALANCE.

Adjusting the out-fractions iteratively for all periods 2 to t — 1, the algorithm changes the total
fraction of aggregate 7 in the stockpile at the beginning of period ¢ by at most Zi,_:ll Ay, Together
with the out-fraction change of at most 4A; in period t, this yields

t
P<Y Ay forallie[N], telT].
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With (17), this implies that the objective function term Zthl d¢cal for the revenues of processing
the material reclaimed from the stockpile changes by at most Zthz vazl (5,50141- Zi/:z At/). As
all other variables involved in the objective function are not modified by REBALANCE, the claim
follows. O

Analogously, one can show that the deterioration of the solution obtained by applying REBALANCE
with Steps 7 to 10 to a solution of the (mixed-integer) linear relaxation of (NF) is linearly bounded
in the differences of the out-fractions of the total metal amount and the total ore amount.

Note that the bound given in the theorem is very weak and can be strengthened easily. The key
statement of Theorem 13 is that the potential deterioration of the objective function value when
applying REBALANCE is bounded linearly in the violation of the mixing constraints. Applying
REBALANCE to a solution v of the (integer-linear) relaxation of (AT) (or (NF)) that is integer-
feasible, we obtain a solution o that is fully feasible for (AT) (or (NF)) and whose global optimality
gap is linearly bounded in the optimality gap and the violation of the mixing constraints by the
given solution. Combined with the branching scheme presented in the previous section, this allows
us to compute fully feasible solutions that are arbitrarily close to the global optimal solution of
OPMPSP+S.

We want to emphasis that algorithm REBALANCE uses two important properties of the problem
OPMPSP+S: (i) the time-expanded material flow network, in which the mixing constraints have to
be enforced, is acyclic (c.f. Figure 1) and (ii) only one of the attributes associated with the material
flow that are modified occurs in other side constraints. In our case, this attribute is the ore amount,
and the only other constraints where it is involved are the processing capacity constraints. If we
have these two properties, we can enforce the nonlinear constraints by adjusting the material flows
iteratively in all nodes of the material flow network according to the single critical attribute without
creating violations of any other side constraint.

Finally, we wish to remark that a solution obtained by applying REBALANCE to an integer-
feasible solution v of the mixed-integer linear relaxation of (AT) is optimal only among those
fully feasible solutions, that differ from v only in the variables f, a®, a®, z>P, 25°. However, it is not
necessarily optimal among those solutions that only coincide with v in the integer variables. In fact,
if the given solution v violates the mixing constraints by a large amount, the constructed solution
often can be improved by simple local exchanges. In the solution constructed by REBALANCE it
may, for example, happen that some of the material that is sent newly into the stockpile in period
t has a better metal-to-ore grade than the material that is reclaimed from the stockpile and sent
to processing during that period, because the real metal-to-ore grade of the reclaimed material was
overestimated in the solution of the relaxation. In this case, one can send some of the better grade
material directly to processing and instead retain more of the lower grade material in the stockpile,
thereby increasing the objective value. Of course, the material flows in the stockpile need to be
adjusted for the following periods to fulfil the material conservation constraints.

In our solution algorithm, we iteratively apply similar local improvements to handle the following
types of non-optimal solutions:

(i) material sent to stockpile in period ¢ has a higher grade than material reclaimed from stockpile
in period t,
(ii) material sent to stockpile in period t has a higher grade than material sent directly to pro-
cessing in period ¢,
(iii) material remaining in stockpile during period ¢ has a higher grade than material sent directly
to processing in period ¢, and
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(iv) material remaining in stockpile in period ¢ has a lower grade than material sent to waste in
period t.

At the beginning of the branch-and-bound algorithm, where the violation of the nonlinear mixing
constraints by the integer-feasible solutions that are given as input to the REBALANCE algorithm is
large, the effect of these local improvements is quite big. Later in the algorithm, when the relaxations
at the branch-and-bound nodes only permit a relatively small violation of the mixing constraints,
these local improvements rarely apply and their effect is negligible.

4.4 Cutting planes and variable fixing

In order to improve the practical performance of our branch-and-bound algorithm, we strengthen
the linear relaxations of (NF), (AT), (DAT), or (DNF) by adding further valid inequalities.

As already observed in Section 3, one major drawback of the natural formulation is that it
only tracks the total ore and the total metal amounts that are taken from the stockpile or remain
in the stockpile. A solution of the (mixed-integer) linear relaxation, where the mixing constraints
(11) linking these values are relaxed, in principle may reclaim pure metal from the stockpile, while
leaving all ore in the stockpile. In such a solution, we not only violate the mixing constraints, but
net revenue is obtained “for free” without using the processing capacity just by stockpiling the
material in one period and extracting the pure metal in the next period. Of course, this is not
possible in a solution that respects the mixing constraints. Clearly, the metal-to-ore grade of the
material reclaimed from the stockpile cannot be better than that of the best aggregate put into the
stockpile before or, more generally, of the best aggregate in the mine.

Let g™ := max{A4;/O; : i € [N], O; > 0} and g™ := min{4;/0; : i € [N], O; > 0} be
the maximum and the minimum grade of the aggregates in the mine. The above observation then
immediately implies the following proposition.

Proposition 14. FEach solution of (NF) (or of (DNF)) satisfies the trivial grade bound inequalities

al < g™l fort e [T], (30)
af > g} fort € (1), (31)
a;, < g"*o; fort € [T], and (32)
a; = g™"o; fort € [T] (33)

Adding these simple inequalities to the model leads to significantly better relaxation values for
(NF) and for (DNF). As there are only 47" inequalities (30)—(33), we add all of them to the initial
formulation when using (NF) or (DNF) in our branch-and-bound algorithm. For the aggregate
tracking formulations (AT) and (DAT), inequalities (30)—(33) are also valid. However, they will
never be violated by a fractional solution of the linear relaxation, as they are trivially implied by
the model constraints of those formulations.

Now consider the aggregate tracking formulation (AT). The (mixed-integer) linear relaxation
of this formulation does not permit the processing of material for free by sending it through the
stockpile, but it permits individual reclamation of the different aggregates that have been put into
the stockpile, as if they had been stored in individual stockpiles. Thus, a solution of the relaxation
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may reclaim all stockpiled material of aggregate ¢ in period ¢, while leaving all stockpiled material of
aggregate j # ¢ in the stockpile during this period. In a solution satisfying the mixing constraints,
this is impossible of course. As (AT) tracks for each individual aggregate what fraction of this
aggregate is reclaimed from the stockpile and what fraction is kept in the stockpile, we can at least
forbid the extreme cases, where large fractions of two blocks are in the stockpile at the beginning
of some period and one is reclaimed while the other is kept in the stockpile. The following theorem
makes this more precise.

Theorem 15. Fach solution of (AT) (or (DAT)) satisfies the inequalities
zif + 2 <1 fori,je[N],t=1,...,T. (34)

Proof. Consider a solution (y, zP, z5P) of (AT) and two aggregates i,j € [N], and a time period ¢.
The material conservation constraints (3), (5), (12) imply that 27 + 277 < 1 and z]’p +ZS§ < 1. As
(y, 2P, 25P) also satisfies the mixing constraint (18), we furthermore have =/ t( Ptz t) fi
and 237 = (1 — fi)(257 + 237) < (1 = fi), which immediately yields (34). O

Note that, again, there is only a polynomial number of inequalities (34). So, in principle, we could
add them all to the initial formulation. In practice, however, adding all N(N — 1)T inequalities
to the formulation that is actually solved is computationally prohibitive. Instead, we generate all
inequalities and place them in a cut pool, from where we iteratively add only those that are violated
to the relaxation that is actually solved.

Also note that in the case where ¢ > 0 and the NPV discount factor decreases with time, i.e.
Oi+1 < O for all ¢, none of the inequalities (34) with 4, such that the grade i is less than the
grade of j, i.e. 4;/0; < A;j/Oj, will be violated by an optimal solution of the linear relaxation. To
see why, suppose otherwise, i.e. suppose that 4;/0; < A;/O; but zftp + zj,f > 1 for some ¢ where
zZ5P, z%% come from the an optimal solution over Sar.pp. Note that in this case it must be that
zirs 25 > 0,80 277,277 < 1. Then we can construct a new feasible solution by “swapping” some
portlon of aggregate @ sent for processing in period t with a portion of aggregate j, and restoring
the material swapped in a later period. Mathematically this can be accomplished with the following
steps: ( ) find ¢+, the first period after ¢ in which some of aggregate j is sent for processing, i.e.

with 2% t+ > 0 and set u := mm{z ’f+,8 (1= 27%)} > 0 where 27, <1 follows from 27} > 0,

taklng w := 1 if there is no such period; (2) set € := min{l — j’f, —J(l -z S),zjsf, 8 2y Plu} > 0;

(3) replace zjsf with zjsf + ¢, adjusting zjsj, to maintain the material balance by Subtractmg € for all

t'=t,...,tt =1, ort' =t,..., T if u =1, (this must be possible since zj’f, =

such t'), and if u < 1, replacing Z;:ﬁ with zj’t+ —¢€; and (4) replace zz.7 with zzt — eg , adJustlng

0 so zj t, >z S-’S for all

Zsts, to maintain the material balance by adding €gj for all ¢/ = t,. —l,ort' =t,...,Tif

u =1, and if u < 1, replacing z P with z P+ ¢ o-- These adJustments keep the quantity of ore sent
to processing constant in every perlod7 but bend more of the higher-grade ore (from aggregate j) to
processing in period t than lower-grade ore (from aggregate i), with the reverse occurring in period
t* if u < 1: the quantity of metal sent to processing in the new solution in period ¢ is increased by
v = €e(Aj — Aig—Z) > 0 over the metal processed in the original solution, and decreased in period
t* by the same amount (or not at all if w = 1). However net present value costs favour earlier
processing of higher grade material, and so the adjusted solution will have a better objective value:
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the objective value of the new solution minus the old is ¢y(d; — d4) (or ¢yd; if w = 1), which is
positive, contradicting the optimality of the original relaxation solution. Thus the objective drives
satisfaction of the constraints when the grade of i is lower than that of j, and we add these inequal-
ities only for those 4,j € [N] with A4;/O; > A;/O; in realistic problem instances.

The two classes of inequalities described so far are concerned only with violations of the mixing
constraints, but not with violations of the integrality constraints. They cut off both fractional and
integer solutions that violate the mixing constraints and, thus, actually strengthen the mixed-integer
linear relaxations of (NF) and (AT) (or of (DNF) and (DAT)). To further strengthen the linear
relaxations of these formulations, we finally apply the variable fixing and cutting plane techniques
introduced and analyzed in [5,6]. These techniques exploit the integrality of the variables x that
describe the order in which the aggregates are mined.

For each period ¢, the corresponding mining capacity constraint (9) together with the prece-
dence constraints (4) and the constraints (1)—(3) and (5) defines a so-called precedence constrained
knapsack: The total amount of rock of all aggregates that have been completely mined until the
end of period ¢t must not exceed the total mining capacities over periods 1 to ¢ and, furthermore,
these aggregates must satisfy the precedence constraints implied by the wall slope (or other safety)
restrictions. For each aggregate i € [N], let P (i) C [N] be the set of all aggregates (including
i itself) that directly or indirectly must precede aggregate i in the mining order, i.e., P(i) is
the transitively closed set of predecessors of i. Clearly, all aggregates in P (i) must have been
completely mined by the time period when ¢ is completely mined.

We denote by R (i) := 3 kepel(;) Br the total amount of rock contained in aggregate i and all of

its (indirect) predecessors. The value R (i) is also called the induced amount of rock for aggregate
i. If the induced amount of rock R (i) of some i € [N] exceeds the total mining capacity up to a
period ¢, then aggregate i clearly cannot be mined completely by the end of period ¢. Consequently,
we can fix the corresponding variables z;; to zero.

Theorem 16 ([5,6]). Each solution of (NF), (AT), (DNF), or (DAT) satisfies

t
zip =0 for alli € [N], t € [T] with R (i) > > My. (35)
t'=1

Analogously, for each pair of aggregates i # j, we denote by R (ij) := 3 kePel(H)UPel (j) Ry the total
amount of rock contained in those aggregates k that preceed at least one of the aggregates i and
j, which is called the commonly induced amount of rock for aggregates ¢ and j. If the commonly
induced rock R€(ij) of some pair i,j € [N] exceeds the total mining capacity until the end of
period ¢, both 7 and j cannot be mined completely. For each period t, these conflicts define a
conflict graph CG; = ([N], E), which contains a node for each aggregate and and edge {i,7} € E if
and only if the commonly induced rock exceeds the total mining capacity until period t, i.e., if and
only if R (ij) > Zi,zl M. As any pair of aggregates i, j that are completely mined until the end
of period ¢ must be non-adjacent in this conflict graph, the set of all aggregates completely mined
by the end of ¢ must form a stable set in C'G;. Hence, the vector (ﬂji,t)z‘e[ N of an integer-feasible
solution of (NF) or (AT) must satisfy all inequalities that are valid for the stable set polytope
on the graph CG; and, in particular, the clique inequalities (see Nemhauser and Wolsey [20], for
example).
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Theorem 17 ([5,6]). Each solution of (NF), (AT), (DNF), or (DAT) satisfies

in,t <1 for allt € [T] and each (inclusion-wise mazximal) clique C' in CGy. (36)
1eC
As the number of potential variable fixings (35) is at most T'N and the time to compute the induced
rock amounts R (i) of all aggregates i € [N] is linear in N, all fixings (35) can be easily added to
the initial formulation (NF), (AT), (DNF), or (DAT).

The conflict graphs CGy for all t € [T] can be easily constructed in O(N3) time each. The
maximum number of clique inequalities (36), however, may be exponentially large, so adding them
all to the initial formulation is not a practical option. Furthermore, the separation problem for
these inequalities is equivalent to a maximum weight clique problem, which is NP-hard in general.
In our implementation of the algorithm, we therefore use the maximum weight clique algorithm by
Borndorfer and Kormos [8] to separate the clique inequalities (36) heuristically. This algorithm is
also used to separate the standard clique inequalities in general purpose ILP codes such as SCIP
and proved to be very efficient in practice.

Note that, in contrast to the models discussed in [5], only the mining capacities define useful
precedence constrained knapsacks that lead to strong valid inequalities. The processing capacities
up to some period t impose no useful restrictions on the mining operations up to that period, as the
material mined in early time periods can be stored in the stockpile for processing in later periods.

5 Computational results

5.1 Test instances

Obtaining real-world problem data from open pit mines is difficult, in part due to the high costs
involved in gathering them. Public benchmark instances are typically not available. Our industry
partner BHP Billiton Pty. Ltd. has provided us with realistic data from two open pit mines, which
are used in our numerical experiments.

Data set Marvin is based on a block model provided with the Whittle 4X mine planning software
[29], originally consisting of 8513 blocks which were aggregated to 85 so-called “panels”, i.e. single
layers of blocks without block-to-block precedence relations. These panels are used as aggregates
in our experiments. On average, each aggregate has 2.2 immediate predecessor aggregates in this
data set. The lifespan of this mine is 17 years.

Data set Dent is based on the block model of a real-world open pit mine in Western Australia,
originally consisting of 96821 blocks which were aggregated to 125 panels. Each panel has an average
of 2.0 immediate predecessor aggregates. The lifespan of this mine is 25 years.

The aggregations to panels, the cutoff grades (determining which blocks in each panel are
immediately discarded as waste), and precedence relations between the panels were pre-computed
by our industry partner. Scheduling periods are time periods of one year each with a discount rate
of 10% per year. Realistic values for mining costs and processing profits as well as for mining and
processing capacities per year were chosen by our industry partner.

Table 1 gives an overview over the size of the problem formulations presented in this paper
for these instances. For discretised out-fraction formulations (DNF) and (DAT), we consider rough
discretisations with I = 5 levels for both formulations and fine discretisations with L = 250 for
(DNF) and with L = 10 for (DAT'). The chosen level numbers in the fine discretisations ensure that
a simpler algorithm, which first solves the mixed-integer linear relaxation of the formulation and
then applies REBALANCE to the integer solution, finds a solution within 1% of global optimality.
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Problem/ No. variables No. constraints Nonzeros

Formulation total bin. cont. total linear quadr.

Marvin

(NF) 5848 1445 4403 7631 7616 15 59920
(AT) 8753 1445 7308 10387 9112 1275 70680
(DNF), L=5 5933 1530 4403 8039 8024 15 61468
(DNF), L = 250 10098 5695 4403 28864 28849 15 2102318
(DAT), L=5 8838 1530 7308 24905 23630 1275 132951
(DAT), L =10 8923 1615 7308 39440 38165 1275 270396
Dent

(NF) 12600 3125 9475 15823 15800 23 161731
(AT) 18873 3125 15748 21875 19000 2875 185841
(DNF), L =5 12725 3250 9475 16423 16400 23 164031
(DNF), L = 250 18850 9375 9475 47048 47025 23 3224081
(DAT), L =5 18998 3250 15748 53225 50350 2875 320416
(DAT), L =10 19123 3375 15748 84600 81725 2875 617541

Table 1. Size of formulations for instances Marvin and Dent (before presolving)

5.2 Results

Our computational experiments were run single-threaded on a MacBookPro with 2.2 GHz Intel
Core i7 CPU and 8 GB RAM. Our algorithm has been implemented in C++, using IBM CPLEX
12.3 as the branch-and-bound framework via its C callable library interface. The type of formulation
to use and other parameters can be set via command line arguments.

The branching schemes and the REBALANCE algorithm presented in Section 4.2 have been added
to the branch-and-bound framework via the branching-, incumbent- and heuristic-callback function
interfaces of CPLEX. To obtain good fully feasible solutions early, we use a parameter setting that
applies CPLEX’s built-in heuristics more aggressively and thus produces more promising integer-
feasible solution candidates to be post-processed by the REBALANCE algorithm.

Depending on the chosen formulation, either the trivial grade bound inequalities (30)—(33) for
the basic formulation or the stronger inequalities (34) for the aggregate tracking formulation are
created together with all other linear constraints of the respective formulation when building the
initial linear relaxation. While the trivial grade bound inequalities (30)—(33) are added directly
as normal inequalities to the active linear relaxation, inequalities (34) are added as so-called lazy
constraints into a separate cut pool, from where they are moved to the active relaxation only if
violated. This keeps the size of the active relaxation relatively small during the execution of the
algorithm. Also, all variable fixings (35) are performed during initialization. The clique inequalities
(36), on the other hand, are generated via a heuristic separation subroutine, which is included into
the CPLEX branch-and-bound framework via the cut-callback function and executed only at the
root node of the branch-and-bound tree.

In our test, we tried to solve the two test problems to a proven optimality gap of 1% and or 0.1%
with the different formulations. Table 2 shows the results obtained with all four formulations within
a time limit of 12 CPU hours when targeting an optimality tolerance of 1.0%. For the aggregate
tracking formulations (AT) and (DAT), we also report the results for a target optimality tolerance
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of 0.1%. The column LP UB shows the upper bound obtained from the initial linear relaxation.
The columns in the group Root node show the values of the upper bound, of the best solution
found, and the resulting proven optimality gap after processing the root node of the branch-and-
and bound tree (that is, after CPLEX completely processed the root node applying its build-in
separation procedures and REBALANCE has been applied to all integer-feasible solutions found by
CPLEX’s build-in heuristics at the root node). The columns in the group Final reports the same
values at the end of the algorithm, when it either reached the time limit of 12 hours or the target
optimality gap, together with the number of branch-and-bound nodes explored and the total CPU
time. Results for fine discretisations of (DNF) and (DAT), with L > 250 and L > 10, respectively,
are not reported in Table 2.

Problem/ LP Root node Final

Formulation UB UB LB Gap(%) UB LB Gap(%) Nodes Time(s)

Marvin

(NF) 9.3847 9.3696 6.6778  28.73 7.8996 6.8618  13.14 876533 12 h
(DNF), L =5 9.3478  9.2859 6.7492  27.32 7.7780 6.8493  11.94 790004 12 h
(AT) 7.1773  7.1534 6.8167 4.71 7.0138 6.9444 1.00 2594 162

6.9567 6.9498 0.10 202877 9811

(DAT), L =5 7.1738  7.1527 6.8814 3.79 7.0180 6.9487 1.00 2543 470
6.9569 6.9500 0.10 134709 9006

Dent

(NF) 5.4942  5.4887 3.2321 94.11 5.3150 4.8631 8.50 406057 12 h
(DNF), L =55.4942 5.4898 3.2321  94.11 5.3173 4.8640 8.53 413680 12 h
(AT) 5.0307  4.9880 4.8806 2.15 4.9354 4.8866 1.00 450 140

4.8927 4.8878 0.10 118275 9662

(DAT), L =5 5.0300 4.9885 4.8796 2.18 4.9356 4.8873 1.00 599 361
4.8927 4.8878 0.10 124604 23885

Table 2. Results for instances Marvin and Dent

One easily observes that the aggregate tracking formulation (AT) and the discretised aggregate
tracking formulation (DAT) perform much better than the natural formulations (NF) and (DNF).
The main reason for this is that the bounds obtained from the linear relaxation of the natural
formulations (NF) and (DNF) are very poor: for Marvin, the gap between the natural formulation’s
LP bound and the globally optimal solution is roughly 35%, while is only 3.2% for the aggregate
tracking formulation. Also, this gap reduces only very slowly when branching on the violations of the
natural formulation’s mixing constraints (11). Typically, the differences between the out-fraction
of metal and the out-fraction of ore observed for an optimal solution of a branch-and-bound node’s
linear relaxation are indeed as large as allowed by the branching constraints (26) and (27) at that
node. Branching on the violations of the aggregate tracking formulation’s mixing constraints (18)
is much more effective. As both the out-fraction of ore and the out-fraction of metal are averages
of the aggregate-wise out-fractions, these two out-fractions are typically much closer than the out-
fractions of the individual aggregates, especially if the grades of the aggregates in the stockpile
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are similar. Also, the branching scheme for the aggregate tracking formulation is inherently more
aggressive, as it adds NV inequalities instead of 2 in each branching operation.

We also find that the discretised out-fraction models (DNF) and (DAT) do not perform sig-
nificantly better than their counterparts (NF) and (AT) in general. The improvement of the LP
relaxation value by adding a piecewise linear discretisation of the mixing constraints is negligible,
while the substantially larger size of the formulation may lead to larger solution times.

In Table 3, we consider the effect on NPV of mine extraction scheduling with versus without
the use of a stockpile. We also compare several heuristic approaches to finding feasible solutions to
the former, by solving models without any mixing constraints, or with mixing constraints modelled
only by discretization, and then repairing the best feasible solution found using the REBALANCE
method. Table 3 shows the objective values and computation times of (i) the best solution found
with our algorithm for the OPMPSP+S problem, (in the rows labelled (AT)), (ii) the corresponding
OPMPSP problem without a stockpile, (iii) the best solution that is obtained by applying REBAL-
ANCE to the best solution found by MILP models with mixing constraints removed (IP(NF) and
IP(AT)) and (iv) the best solution that is obtained by applying REBALANCE to the best solution
found by MILP models with mixing constraints modelled only by discretization (IP(DNF) and
IP(DAT)). For the OPMPSP problem without a stockpile, and for the runs where REBALANCING
was applied to postprocess the solutions of the mixed-integer linear relaxations of (NF) and (AT),
the mixed-integer linear relaxations have been solved to an optimality tolerance of 0.01%, which is
the CPLEX default setting, as we are mainly interested in seeing how good (or bad) the resulting
solutions are compared to the globally optimal solution of the full mixed-integer non-linear model.
The other three runs, i.e., our specialized branch-and-bound algorithm to solve (AT) and the two
runs postprocessing the the solutions of the mixed-integer linear relaxations of (NF) and (AT), have
been parametrized in such a way that the resulting solutions would be within 1% of the globally
optimal solution of the full mixed-integer non-linear model. In our specialized algorithm, this is
achieved by simply stopping the algorithm when the target gap of 1% is reached. For the other
two runs, we have chosen a discretization of the out-fractions (with uniform §; for all levels and
time periods) that was sufficiently fine to ensure that the difference between the objective function
value of an integer-feasible solution and that of its postprocessed solution is no more than 0.5%.
We then solved the resulting mixed-integer linear relaxation of (DNF) and (DAT) to an optimality
tolerance of 0.5%. This ensures that the gap between the final solution and the globally optimal
solution of the full non-linear problem is at most 1%. For the problem instances at hand, this
required L = 10 levels for the discretised aggregate tracking formulations and L = 250 levels for
the discretised natural formulation. Note that these level values have been determined experimen-
tally by evaluating the objective function gaps introduced by REBALANCE for the first 10 solutions
produced by CPLEX when solving the integer-linear relaxations. To actually guarantee that the
optimal solution of the integer-linear relaxation does not worsen by more than 0.5% when applying
REBALANCE to an integer solution of (DNF), we would need L = 1000 for Marvin and L = 2400
for Dent, which leads to formulations that are computationally not tractable.

The columns in the group Branch-and-bound show the values of the upper bound, of the best
solution found, the resulting proven gap between these two values, the number of branch-and-
bound nodes explored, and the total CPU time at the end of the branch-and-bound algorithm, i.e.,
when it either reached the time limit of 12 hours or the target optimality gap. The branch-and-
bound algorithm is either our specialised algorithm for (AT) or the standard branch-and-bound
applied to the respective mixed-integer linear relaxation in the other cases. The columns in the
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Problem / Branch-and-bound Solution

Solution method UB LB Gap Nodes Time Val GapB GapO
(%) (s) (%) (%)

Marvin

(AT) 7.0138 6.9444 1.0 2594 162 6.9444 1.0 0.2

OPMPSP 6.5883 6.5877 0.0 4930 67 6.5883 — 53

IP(NF) + REBALANCE 9.2963 9.2954 0.0 343 11 5.5045 40.8 20.9
IP(AT) + REBALANCE 7.0134 7.0128 0.0 3801 120 6.7972 3.1 2.3
IP(DNF), L=250 + REBAL 8.9626 6.7687 24.5 59387 12 h 6.7599 245 2.8
IP(DAT), L=10 + REBAL 6.9912 6.9565 0.5 7717 2187 6.9476 0.6 0.1

Dent
(AT) 4.9354 4.8866 1.0 450 140 4.8866 1.0 0.1
OPMPSP 4.8709 4.8704 0.0 8900 323 4.8704 — 04

IP(NF) + REBALANCE 5.4059 5.4054 0.0 11921 1194 4.3838 18.9 10.3
IP(AT) + REBALANCE 4.8892 4.8887 0.0 509538 14321 4.8840 0.1 0.1
IP(DNF), L=250 + REBAL 5.4356 4.8380 11.0 43971 12 h 4.8344 11.1 1.1
IP(DAT), L=10 + REBAL 4.9123 4.8879 0.5 12590 5859 4.8878 0.5 0.0

Table 3. Objective values of OPMPSP+S versus objective values of OPMPSP without stockpile and of best solution
obtained by applying REBALANCE to the best IP solutions.

group Solution show the values of the final solutions obtained after applying REBALANCE to the
best integer-feasible solution obtained in the branch-and-bound phase. Column Val reports the
solution’s value. Column GapB shows the gap between the solution value and the best bound
proven by the respective method, while GapO shows the gap observed between the solution’s value
and the best bound proven by any method, which is (for the precision shown in the table) equal
to the gap to the global optimal solution of the full non-linear model.

Comparing the best OPMPSP+S solution value to the OPMPSP value, we see that for Marvin,
the use of the stockpile increases the NPV by nearly 5.5%, whereas for Dent, it is under 0.4%. The
difference can be explained by differences in key characteristics of the data. First, we note that in
both cases the processing capacity is the bottleneck, with a mismatch in the ratio of processing
capacity to mining capacity versus the ratio of ore tonnes to rock tonnes in the panels. This is often
a feature of real mining operations. However the effect is far less pronounced in Dent, where the
ratio of mining rate to processing rate in panels per year based on average panel tonnages is only
about 1.5, versus nearly 2.1 for Marvin. Clearly the bigger the mismatch, the more opportunity
arises to exploit extra mining capacity to mine to the stockpile. The mismatch also affects the
opportunities for post-mining use of the stockpile: in Marvin there is sufficient mining capacity
to extract all the rock in just under half the mine’s lifespan, whereas in Dent this would require
over two-thirds of the lifespan. This lifespan is also nearly 50% longer than that of Marvin, and
hence the discounting effect on the value of metal processed is much greater. Second, we observe
that whilst the average grades (metal to ore ratios) for Marvin and Dent are quite similar, with
Dent having slightly higher grades, the wvariability in grade is far greater in Marvin than Dent,
with the standard deviation in panel grade over three times greater for Marvin than Dent. Clearly
a more homogeneous mine will offer far less advantage from stockpiling than one with higher grade
variability. Nevertheless, as discussed in [3], the benefits of a long-term stockpile are not just in
increased NPV, but in the extension to the lifespan of the mine. In the case of the real copper mine
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studied in [3] the stockpile appears to contribute only about 1.2% to the mine’s NPV, but extends
the economic lifetime of the mine by more than a third. Hence even small increases in NPV may
yield benefits in terms of mine lifespan, and should be considered in any investment decision.

It can be seen from the Tables 2 and 3 that neither ignoring the stockpile, nor post-processing the
best integer-feasible solution of a mixed-integer linear relaxation with relaxed mixing constraints,
nor using a sufficiently fine a priori discretisation of the mixing constraints are practically compet-
itive with our approach. Ignoring the stockpile or post-processing the best integer-feasible solution
of the natural or aggregate tracking model without the mixing constraints may lead to very poor
solutions that differ a lot from the real optimum. The sufficiently fine a priori discretisations, on
the other hand, lead to very large mixed-integer linear programs, that are extremely hard to solve.
For the fine discretisations of the natural formulation, the mixed-integer linear programs had opti-
mality gaps of more than 10% after 12 hours computation time. Using rougher discretisations with
less levels will certainly reduce the optimality gaps and the solution times of the mixed-integer re-
laxation, but then an overall gap of 1% cannot be guaranteed anymore. With the fine discretisatons
of the aggregate tracking formulation we are able to solve the test instances with a 1% optimality
gap guarantee, but the solution times exceed those of our specialized algorithm substantially.

Our branch-and-bound algorithm, which adaptively refines the relaxation where needed via its
special branching schemes, proves to be the computationally most effective and efficient compro-
mise.
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A List of Notation

IS

M,
B
0

number of time periods

number of aggregates

set of immediate predecessors of aggregate i

rock and ore tonnage of aggregate i, respectively [tonnes]

tonnage of attribute (metal) in aggregate i (A; for a single attribute) [tonnes]
sales price of attribute (metal) [$m/tonne]

mining cost (per tonne of rock) [$m/tonne]

processing cost (per tonne of ore) [$m/tonne]

mining capacity for time period ¢ [tonnes of rock]

processing capacity for time period ¢ [tonnes of ore]

discount factor for time period ¢

Table 4. List of notation

31



