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 

Abstract—Transmission expansion planning (TEP) is a rather 

complicated process which requires extensive studies to determine 

when, where and how many transmission facilities are needed. A 

well planned power system will not only enhance the system reli-

ability, but also tend to contribute positively to the overall system 

operating efficiency. Starting with two mixed-integer nonlinear 

programming (MINLP) models, this paper explores the possibility 

of applying AC-based models to the TEP problem. Two nonlinear 

programming (NLP) relaxation models are then proposed by 

relaxing the binary decision variables. A reformula-

tion-linearization-technique (RLT) based relaxation model in 

which all the constraints are linearized is also presented and dis-

cussed in the paper. Garvers’s 6-bus test system and the IEEE 

24-bus system are used to test the performance of the proposed 

models and related solvers. A validation process guarantees that 

the resultant TEP plan is strictly AC feasible. The simulation 

results show that by using proper reformulations or relaxations, it 

is possible to apply the AC models to TEP problems and obtain a 

good solution.  

 
Index Terms-- Transmission expansion planning, mathematical 

programming, ACOPF, MINLP, reformulation, relaxation. 

I.  NOMENCLATURE 

bk Admittance of line k 

bk0 Shunt admittance of line k 

ck Investment cost of the line k  

c2 Quadratic cost coefficient of generator g 

c1 Linear cost coefficient of generator g 

c0 Fixed cost coefficient of generator g 

ei Real part of the complex bus voltage Vi 

fi Imaginary part of the complex bus voltage Vi 

gk Conductance of line k 

gk0 Shunt conductance of line k 

M Disjunctive factor, a large positive number 

M$ Million dollars 

Obj. Objective function 

PDi Total active power of the load at bus i 
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Pk Active power flow on line k 

PGg Active power output of generator g 

PGg.max  Active power capacity of the generator g 

Qk Reactive power flow on line k 

QDi Total reactive power of the load at bus i 

QGg Reactive power output of generator g 

QGg.max  Reactive power capacity of the generator g 

R+ Set of positive real numbers 

Sk.max MVA capacity of line k 

Vi Voltage at bus i 

Vmax Bus voltage upper bound 

Vmin Bus voltage lower bound 

xL, yL Lower bound of x, y 

xU, yU Upper bound of x, y 

zk Binary decision variable for line investment: 1 

for build, 0 for not build (zk is a continuous 

variable in the relaxed models) 

θij Angle difference between bus i and bus j 

θmax Maximum angle difference between bus i and 

bus j 

Ωg Set of generators 

II.  INTRODUCTION 

RANSMISSION expansion planning (TEP) is a process to 

determine an optimal strategy to expand the existing power 

system transmission network to meet the demand of the possi-

ble load growth and the proposed generators, while maintaining 

reliability and security performance of the power system. TEP 

is typically a rather complicated process that requires extensive 

studies to determine where, when and how many transmission 

facilities are needed. Due to the increasing complexity of 

modern power systems and the requirements of the deregulated 

market process, electric utilities have gradually realized that a 

well-planned power system will not only help enhance the 

system reliability, but will also contribute positively to the 

overall system operating efficiency. Traditionally, the lack of 

efficient computing tools has usually prevented the used of 

sophisticated mathematical modeling in solving the TEP 

problem to determine locations for placing new transmission 

facilities. Today, the computational performance of the com-

puters has improved dramatically and so have optimization 

algorithms, which make the rigorous modeling and computing 

of the TEP problem possible.  

The TEP problem by nature can be regarded as an optimal 
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power flow (OPF) problem with discrete constraints. In an AC 

power system, it is generally known that the modeling of the 

ACOPF is a nonlinear programming (NLP) problem. Similarly, 

by adding discrete variables into the problem, the modeling of 

the TEP problem using an AC model (ACTEP) can be referred 

to as a mixed-integer nonlinear programming (MINLP) prob-

lem. Mathematically, the MINLP problems are usually con-

sidered as one of the classes of problems that are the most 

difficult to solve due to their intrinsic complexity. In the world 

of complexity, problems are generally classified as P or NP 

based on the effort needed to solve them. e.g., a class P problem 

can be solved in polynomial time by a deterministic Turing 

machine, while a class NP problem cannot. Further, a problem 

is regarded as NP-hard if solving it in polynomial time would 

make possible to solve all the problems in class NP in poly-

nomial time. Particularly, if a problem is NP-hard and it is also 

an NP problem, then it is known as an NP-complete problem 

[1]. The complexity of the MINLP problems is usually NP-hard 

or even NP-complete [2]. If P ≠ NP, then the relationship of P, 

NP, NP-hard and NP-complete problems can be described in 

Fig. 1. 

 
Fig. 1.  Relationship of P, NP, NP-hard and NP-complete problems, P ≠ NP 

 

The AC modeling of TEP problem is rarely seen in the lit-

erature. Reference [1] is a recent report, where an ACOPF 

based MINLP model is proposed and solved by using interior 

point method. In most of the published literature, TEP problems 

are modeled as a mixed-integer linear programming (MILP) 

problem based on the DC approximation of the network model 

[4]-[6]. This is the case because compared to the MINLP 

model, MILP is much easier to solve. One issue needs to be 

noted that although MINLP problems are quite hard, they are 

not unsolvable. In fact, quite a few solvers such as KNITRO, 

BONMIN, COUENNE and BARON are capable of solving 

MINLP-types problems and can obtain a reasonably good so-

lution in an acceptable time frame. Among these solvers, 

COUENNE and BARON are designed for solving both convex and 

non-convex MINLP problems. KNITRO and BONMIN are de-

signed for solving only convex MINLP problems exactly, while 

for con-convex MINLP problems, heuristic solutions will be 

given [7].  

On the other hand, solving the MINLP problems is not the 

only choice. In fact, when the original problem is impossible or 

too expensive to solve, relaxation can always be considered as 

an option. By eliminating integer variables, the MINLP prob-

lems can be relaxed to an NLP problem, which has a potential 

for an easier solution. The core issue for solving global opti-

mization problems is the use of linear or convex programming 

relaxations that convexify the original problem and aid the 

solution process. During the process of the convexification, the 

tightness of the relaxations plays a crucial role because it will 

directly affect the accuracy of the relaxed model [8]. A refor-

mulation-linearization-technique (RLT) is usually used to 

generate such tight linear programming relaxations for not only 

constructing exact solution algorithms, but also to design 

powerful relaxation models for large classes of discrete com-

binatorial and continuous non-convex programming problems 

[9]-[10]. 

This paper explores the possibility of applying AC-based 

models to the TEP problems. The contributions of the paper are 

twofold: 

1) The AC-based TEP models and their possible relaxa-

tions are proposed and discussed in detail. The paper 

starts with two MINLP models, and followed by two 

NLP models where the binary variables are relaxed. A 

RLT-based relaxation model is also presented in which 

all the constraints are linearized. 

2) Many results are published on Garver’s 6-bus system 

[3], [5], [11]. But when examined closely, few are AC 

feasible. This paper performs an ACOPF validation 

process on the expanded system, which guarantees the 

TEP plan obtained is strictly AC feasible.  

The remainder of the paper is organized as follows: Section 

III reviews the ACOPF formulations. Section IV presents two 

MINLP-based ACTEP models. Section V presents the possible 

reformulations and relaxations of the MINLP models. Simula-

tion results are provided in Section VI to compare and validate 

the performance of the proposed models. Finally, concluding 

remarks are drawn in Section VII. 

III.  THE ACOPF FORMULATIONS 

The formulation of the ACOPF is the foundation of the 

formulation of the TEP problem, because solving the TEP 

problem can essentially be regarded as solving an ACOPF with 

discrete constraints. In this section, the standard ACOPF for-

mulation will be reviewed both in polar form and rectangular 

form, and serve as basis of the TEP formulations presented in 

the following sections. 

Choosing to minimize the total generation cost and assum-

ing the generators have quadratic cost functions, the standard 

ACOPF formulation in polar form can be written as follows, 

 2
2 1 0min  

g

g g

g

c PG c PG c



                      (1) 

0g d k

g i d i k i

PG PD P
  

                            (2) 

0g d k

g i d i k i

QG QD Q
  

                            (3) 

.min .maxg g gPG PG PG                            (4) 

.min .maxg g gQG QG QG                            (5) 

min maxiV V V                                    (6) 

max maxij                                      (7) 

2 2 2

.max0 k k kP Q S                                 (8) 

P 

NP 
NP-hard 

NP-complete 
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where the power balance constraints for active power and re-

active power at each bus are represented in (2) and (3), respec-

tively. The generator outputs constraints for active power and 

reactive power are shown in (4) and (5), respectively. Notice 

that in reality, the Pmin and the Qmin of a generator are not nec-

essarily 0. In fact, many generators have the ability to absorb 

reactive power, so that Qg.min usually has a negative value. 

Moreover, for some pumped storage generators, even Pg.min 

may be a negative number during certain generation periods. 

However, one fundamental assumption for ACOPF problems is 

that the on and off status of the generators do not change. In 

other words: the unit commitment problem is not considered in 

ACOPF. The voltage magnitude and angle constraints are 

shown in (6) and (7), respectively. In static power flow studies, 

the angle differences θij between two buses that are directly 

connected are usually rather small, typically not more than π/6 

in radian. In power systems, there are no separate limits for 

active power and reactive power on a line. The line flow con-

straints are enforced by limiting the apparent power flows 

(MVAs) as shown in (8). Assuming all the transformers have 

standard turns ratios, then the active power Pk and reactive 

power Qk of a certain branch are given by, 

   2

0 cos sink i k k i j k ij k ijP V g g VV g b                  (9) 

   2

0 cos sink i k k i j k ij k ijQ V b b VV b g                (10) 

Although the polar form of the formulations is more fre-

quently used in ACOPF studies, the rectangular form should 

never be overlooked because it does offer some favorable 

computational properties and may be applied to TEP modeling. 

In order to formulate the rectangular form of power flow 

equations, the polar form can be rewritten as follows, 

cos sini i i i i i iV V jV e jf     ,                    (11) 

where ei and fi are the real and imaginary part of the complex 

bus voltage Vi. Substituting (11) into (9) and (10), and letting 

gsh = gk + gk0, bsh = bk + bk0, the active power and reactive line 

flows are given by, 

     2 2

k i i sh k i j i j k j i i jP e f g g e e f f b e f e f      
 

       (12) 

     2 2

k i i sh k i j i j k j i i jQ e f b b e e f f g e f e f       
 

.     (13) 

In rectangular form, (6) and (7) can be rewritten as: 

2 2 2 2

.min .maxi i i iV e f V                             (14) 

Keeping the objective function and all other constraints intact, 

then (1)-(5), (8) and (12)-(13) together constitute the rectan-

gular form of the ACOPF formulation. 

IV.  MINLP-BASED ACTEP MODELS 

As discussed in Section III, the TEP problem can be re-

garded as an extension of the OPF problem, in which the pa-

rameters to be optimized are not only limited to continuous 

variable but also integer (binary) variables. Notice that the 

constraints in the ACOPF model are highly non-linear, after 

introducing discrete variables, the resultant TEP model will be 

a MINLP problem. In this section, two MINLP-based TEP 

formulations are presented.  

In a TEP problem, is it straightforward to model the number 

of lines as integer variables. For example, if the number of lines 

that need to be built in a transmission corridor is nk, then nk is an 

integer variable whose value can be any integer not greater than 

the maximum number of lines allowed nk.max. Instead of con-

sidering how many lines should be built in a given transmission 

corridor, this paper, however, formulates the problem alterna-

tively and uses a binary decision variable zk to determine 

whether a certain line should be built or not. By doing so, the 

set of multi-stage integer variables nk are converted to a set of 

the variables which have only two stages: either 1 or 0, and 

therefore reduces the problem complexity. By using the binary 

variables approach, the first ACTEP model is shown as follows, 

MIP1: 

 2
2 1 0min  

k g

k k g g

k g

c z c PG c PG c

 

             (15) 

0g d k

g i d i k i

PG PD P
  

      

0g d k

g i d i k i

QG QD Q
  

      

.min .maxg g gPG PG PG   

.min .maxg g gQG QG QG   

min maxiV V V   

max maxij      

2 2 2

.max0 k k kP Q S    

where the active and reactive line flows are given by, 

    2

0 cos sink k i k k i j k ij k ijP z V g g VV g b     
 

        (16) 

   2

0 cos sink k i k k i j k ij k ijQ z V b b VV b g      
 

.      (17) 

Comparing the TEP model MIP1 with the ACOPF model 

shown in Section III, differences exist only in (15)-(17). The 

long term objective of the long term TEP problem is to max-

imize the social welfare or market surplus, which is equivalent 

to minimizing the sum of the investment cost and the operating 

cost as shown in (15) if a perfect inelastic demand curve is 

assumed. In order to determine whether a certain line should be 

built or not, the line flows are modeled as the products of the 

binary decision variables and the original trigonometry ex-

pressions as shown in (12) and (13). For those lines that already 

exist in the system, zk are fixed to be 1.  For those lines which 

are potentially considered as the candidate lines to be built, the 

algorithm can freely choose zk to be either be 1 or 0. A new line 

is selected to be built if and only if the corresponding decision 

variable zk = 1. 

The MIP1 model provides a fairly straightforward 

MINLP-based ACTEP models. The main difficulty in using 

this formulation lies in the equality constraints (16) and (17). 

These equality constraints are products of binary variables and 

non-convex non-linear expressions, which could be tricky to 
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satisfy and extremely hard to evaluate mathematically. In fact, 

efforts can be made to develop a soft version of MIP1 model by 

using the following disjunctive method, 

 

MIP2: 

 2
2 1 0min  

k g

k k g g

k g

c z c PG c PG c

 

     

0g d k

g i d i k i

PG PD P
  

      

0g d k

g i d i k i

QG QD Q
  

      

.min .maxg g gPG PG PG   

.min .maxg g gQG QG QG   

min maxiV V V   

max maxij      

2 2 2

.max0 k k k kP Q z S    ,                       (18) 

where the active and reactive line flows are given by, 

    2

0 cos sin (1 )k i k k i j k ij k ij k kP V g g VV g b z M           (19) 

   2

0 cos sin ( 1)k i k k i j k ij k ij k kP V g g VV g b z M           (20) 

   2

0 cos sin (1 )k i k k i j k ij k ij k kQ V b b VV b g z M           (21) 

   2

0 cos sin ( 1)k i k k i j k ij k ij k kQ V b b VV b g z M           (22) 

Compared with model MIP1, the changes in MIP2 are in 

(18)-(22). Notice that instead of using hard equality constraints, 

the MIP2 model splits every equality constraint into two ine-

quality constraints with the opposite signs. When certain con-

ditions are satisfied, the two inequality constraints will squeeze 

each other and act as an equality constraint. For example: the 

constraint (19) and (20) indicates that if zk is 1, i.e. the line 

exists or the line is selected to be built, then the R.H.S. of these 

two constraints will force the line active power flow equation to 

hold; otherwise, if zk is 0, i.e. the line is not selected, then the 

disjunctive factor Mk needs to make the two constraints not 

binding. Similar logic applies to (21) and (22) as well. As the 

disjunctive factor, Mk should be sufficiently large so that the 

constraints are not binding when lines are not selected. But a 

too large Mk may also result in numerical difficulties and make 

the problem hard to solve. The minimum sufficient Mk can be 

determined by using the approach in [6]. Furthermore, when a 

line exists, the total power flow on the line should be kept 

within its MVA rating; otherwise, the power flow should be 

zero, as indicated in (18). 

Notice that even though MIP2 is a soft version of MIP1, it is 

still an MINLP model, and constraints like (18) could still give 

the solvers a hard time to solve (see case studies). In order to 

make the model more solvable, relaxations seem to be the only 

possible choice. The possible relaxations of the above models 

are discussed in the next section. 

V.  RELAXATIONS OF THE ACTEP MODEL 

Mathematically, the relaxation refers to a modeling strategy 

that approximates the original problem and typically has a 

larger feasible region, so that the solution of the approximation 

requires less effort than the solution to the original problem. A 

solution of the relaxed problem may not necessarily be the 

exact solution of the original problem but should be reasonably 

close and provides key information about the original problem. 

For TEP problems, the main objective is to eliminate the integer 

constraints to reduce the complexity of the original problem. 

This section proposes three possible relaxations based on the 

ACTEP models presented in Section IV. The first two are NLP 

relaxations, and the third relaxation is a RLT-based model, 

where the original MINLP problem is linearized and relaxed as 

a linear programming problem.  

A.  The NLP Relaxations 

The two NLP relaxations are based on the MIP2 model 

shown in Section IV. By slightly changing the formulation, the 

integer constraints in MIP2 can be removed and this will result 

in an NLP model as follows, 

NLP1: 

 2
2 1 0min  

k g

k k g g

k g

c z c PG c PG c

 

     

0g d k

g i d i k i

PG PD P
  

      

0g d k

g i d i k i

QG QD Q
  

      

.min .maxg g gPG PG PG   

.min .maxg g gQG QG QG   

min maxiV V V   

max maxij      

2 2 2

.max0 k k k kP Q z S  
 

 1k kz z                                   (23) 

0 1kz   .                                  (24) 

Notice that by adding constraint (23), the zk do not necessarily 

need to be a binary variable. Instead, zk can be re-defined as a 

continuous variable between 0 and 1 as shown in (24). The TEP 

formulation is therefore reduced to a NLP model. Ideally, 

constraint (23) may be written as zk(1 – zk) = 0. The evaluation 

of an equality constraint usually results in numerical difficulties 

and could make the relaxed NLP problem as hard as the original 

MINLP problem. Therefore practically, it is recommended to 

use the inequality form in (23), where ε is a small positive 

number. 

Apart from the approach in NLP1, another relaxation strat-

egy is also possible. Instead of using the zero product con-

straints as shown in (23), a penalty term can be imposed on the 

objective function and this will result in the following relaxed 

NLP model, 

 

NLP2: 

   2
2 1 0min  sin 1

k g

k k k g g

k g

c z A z c PG c PG c

 

         (25) 
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0g d k

g i d i k i

PG PD P
  

      

0g d k

g i d i k i

QG QD Q
  

      

.min .maxg g gPG PG PG   

.min .maxg g gQG QG QG   

min maxiV V V   

max maxij      

2 2 2

.max0 k k k kP Q z S  
 

0 1kz 
 

As can be observed from the NLP2 model shown above, a 

sinusoidal penalty term [Asin(πzk) + 1] is imposed on (25). The 

penalty makes the first term of the resultant new objective 

function a product of the line investment cost and the penalty 

term. Notice that when zk is equal to either 1 or 0, the value of 

the penalty term is 1 and has no effect on the original objective 

function; otherwise, the large positive coefficient A of the sine 

function will impose a large value on the objective function 

which makes it impossible to be the optimal solution. In other 

words, the incentive of the penalty term is to obtain the optimal 

solution only when zk is equal to either 0 or 1. The sketch of the 

penalty function is shown in Fig. 2. 

 
Fig. 2.  Penalty function value plotted with respect to zk 

B.  The RLT-based Relaxation 

Before applying the RLT-based relaxation to the TEP 

problems, a trivial example motivates the basic concept of the 

RLT. Considering the following minimization problem, 

              min  (x+y)
 

(26) 
subject to, 

            1x y xy                                    (27) 

,x y R   

( , ) ( , ) ( , )L L U Ux y x y x y               

It can be observed that this model has a bilinear term xy and 

therefore it is non-convex. In order to obtain the convex relax-

ation, a new variable w is introduced to replace the binary term 

so that the constraint (27) can be rewritten as, 

1x y w                                     (28) 

Notice that the upper bound and lower bound of the existing 

variables x and y are given respectively as (xU, yU) and (xL, yL), 

and there is no additional constraint on w, then a tight bound 

which is also known as the McCormick convex relaxation [8] 

can be calculated by solving the following inequalities: 

L L L L

U U U U

U L U L

L U L U

w x y y x x y

w x y y x x y

w x y y x x y

w x y y x x y

  

  

  

  

 .                      (29) 

By using the above RLT-based relaxation, the original bilinear 

problem can be relaxed to a linear programming problem, 

which is apparently convex and much easier to solve. However, 

the main drawback of the RLT relaxation is the excessive size 

of the resulting LP relaxation. In fact, an RLT-based relaxation 

will increase the size of the problem by 2 to 4 times. Also, by 

using the RLT based relaxation, it is hard to control the degree 

of the relaxation. This means that the problem may easily be-

come too relaxed and therefore lose some of the key infor-

mation that should be maintained. 

In order to apply RLT to the TEP formulation, the rectan-

gular form of the power flow equations as shown in Section III 

is used. By sequentially inserting the dummy variables, all the 

bilinear terms can eventually be rewritten as a linear expres-

sion. The RLT-based TEP model is shown as follows, 

RLT: 

 2
2 1 0min

k g

k k g g

k g

c z c PG c PG c

 

     

0g d k

g i d i k i

PG PD P
  

      

0g d k

g i d i k i

QG QD Q
  

      

.min .maxg g gPG PG PG   

.min .maxg g gQG QG QG   

min maxiV V V   

max maxij      

.max0 k kP S                                  (30) 

     1 2 3 4 5 6 (1 )k sh k k k k k k k k k kP g X X g X X b X X z M          (31) 

     1 2 3 4 5 6 ( 1)k sh k k k k k k k k k kP g X X g X X b X X z M          (32) 

     1 2 3 4 5 6 (1 )k sh k k k k k k k k k kQ b X X b X X g X X z M          (33)  

     1 2 3 4 5 6 ( 1)k sh k k k k k k k k k kQ b X X b X X g X X z M          (34) 

where X1 = ei
2
, X2 = ej

2
, X3 = eiej, X4 = fifj, X5 = ejfi and X6 = 

eifj. In steady state power system analysis, it is usually assumed 

that, 

0.95 1.05iV   

0.5 sin 0.5ij    

3 2 cos 1ij   

Recall that ei = Vicosθi and fi = Visinθi, the bounds on ei, ej, fi and 

fj can be therefore calculated as, 

0.8227 ( , ) 1.05i je e   

 

1 

A+1 

Asin(πzk)+1 

zk 

1 0 
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0.525 ( , ) 0.525i jf f    

Thus, (29) can then be used to derive the bounds on X1 to X6. 

Notice that in order to obtain a fully linearized model, a further 

relaxation is used in (30), which is based on the assumption that 

at the transmission level, namely Qk << Pk. 

VI.  CASE STUDIES 

In this section, simulation results are reported on two test 

systems. First, the proposed MINLP-based ACTEP models and 

their relaxations will be tested on Garver’s 6-bus system to 

compare and analyze the performance of each proposed model. 

Later, the long-term TEP results will be shown using the IEEE 

24-bus reliability test system (RTS). All the models are pro-

grammed in AMPL [12]. The computing platform used to 

perform all the simulations is a Linux workstation with an Intel 

i7 2600 4-core CPU at 3.40 GHz and 16 GB of RAM. 

A.  Garver’s 6-bus System 

Garver’s 6-bus test system [11] has 6 buses, 6 initial lines, 5 

loads and 3 generators. The generator at bus 6 is isolated from 

the main system. The system parameters can be found in [3]. 

For all cases in this section, it is assumed that the maximum 

number of lines allowable in a transmission corridor is 2. Since 

there are 6 existing lines, therefore the maximum possible 

number of lines can be built is 2C6
2
 – 6 = 24. In order to com-

pare with the published results, the operating costs are not 

included in the objective functions. 

Three MINLP solvers: COUENNE 0.4.0 [13], BONMIN 1.5.1 

[14] and KNITRO 8.0.0 [15] are used for solving the two MINLP 

models presented in Section IV. Among all three solvers, only 

COUENNE is designed for obtaining a global optimal solution 

for both convex and non-convex MINLP problem. BONMIN and 

KNITRO ensure optimal solutions only when the objective and 

all the constraints are convex, otherwise, heuristic solutions 

will be given. 
 

TABLE III TEP RESULTS FOR THE MIP MODELS 

Model Solver KNITRO BONMIN COUENNE 

MIP1 

Objective 1056 1056 
Time limit 

reached 

Lines 
Build all 

lines 
Build all lines  

MIP2 
Objective 

Iteration 

limit 

reached 

677 
Time limit 

reached 

Lines 
 

Build 17 lines  

 

As one can observe from Table III, for the MIP1 model, the 

heuristic solutions given by KNITRO and BONMIN are simply to 

build all the lines. This is rather a trivial feasible solution be-

cause the solvers are not really selecting a specific choice. For 

the MIP2 model, KNITRO gives a solution of 130 M$, while 

BONMIN gives 667 M$. It is interesting to note that although 

COUENNE claims that it can solve general MINLP problems 

exactly, however, the solution time could be extremely long. 

For both MINLP-based models, COUENNE fails to return a 

solution within the 24-hour time limit. In a word, the perfor-

mance of the solvers for the MINLP-based models is still quite 

limited. 

The NLP models and the RLT model are solved only by 

KNITRO and BONMIN. Although the first two models are re-

duced to NLP problems, they are still non-convex and therefore 

are global optimization problems. For non-convex global op-

timization problems, obtaining a global minimum cannot be 

guaranteed in polynomial time. However, the solution can be 

significantly affected by the starting points. In order to obtain a 

better solution, the multi-start function in KNITRO and BONMIN 

is used. For both NLP models, the number of multi-starts is set 

to 2000. In other words, 2000 sets of different starting points 

are automatically initiated by the solvers. Also, the optimality 

tolerance and the feasibility tolerance of the solvers are set to 

10
-9

, respectively. The TEP results of the relaxation models are 

shown in Table IV. 
 

TABLE IV TEP RESULTS FOR THE NLP AND RLT MODELS 

Model Solver KNITRO BONMIN 

NLP1 

Objective  
(M$) 

406 473 

Lines Build 11 lines Build 12 lines 

NLP2 

Objective 

(M$) 
180 804 

Lines 

(1-5), (2-3), 

(2-6)×2, (3-5), 

(4-6)×2 

Build 21 lines 

RLT 

Objective 
(M$) 

110 110 

Lines (2-6), (3-5), (4-6)×2 (2-6), (3-5), (4-6)×2 

 

As can be observed from Table IV that for NLP1 model, 

KNITRO gives a lower objective value (406 M$) and fewer lines 

to build as compared to the results gives by BONMIN after 2000 

restarts. For the NLP2 model, KNITRO again gives a much 

lower objective value (180 M$) as compared to the results gives 

by BONMIN. It should be pointed out that based on the simula-

tion experience, the selection of the penalty factor A can sig-

nificantly influence the results. A penalty factor that is not 

sufficiently large may cause the decision variables zk fail to 

converge to 0 or 1. However, a too large penalty factor could 

bring convergence problem and end up with a higher objective 

value. In this case, the value of penalty factor A used for 

KNITRO that gives the best solution is 10
9
, while for BONMIN is 

10
3
. The RLT model, as discussed in the previous section, is a 

completely linearized model, and is therefore a MILP model. 

For the RLT model, both the solvers identify the same objective 

value and the same set of lines to be built. Among all the results 

in Table IV, the RLT model gives the lowest objective value. 

During the process of the relaxations and due to the intrinsic 

limit of the solvers, it is likely that some key information of the 

original model is not strictly maintained in the relaxed models. 

Therefore, the “optimal” plan obtained by the TEP model may 

turn out to be infeasible in power flow studies. As a result, a 

validation process is necessary to ensure that the TEP plans are 

AC feasible. In this section, the four TEP plans with the lowest 

objective functions are validated by running an ACOPF study, 

the results are shown in Table V. 

As observed from Table V that although the RLT model 

gives the lowest objective value, the TEP plan is, however, 
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infeasible in ACOPF.  This is probably due to too much relax-

ation in the model. In fact, one has little control during the 

relaxation process by using the RLT-base model. The following 

three solutions are all AC feasible. Therefore, one can conclude 

that the solution given by NLP2 (marked bold in Table V) is the 

best known ACTEP solution for Garver’s test system. The 

expanded network is shown in Fig. 4. 
 

TABLE V TEP RESULTS COMPARISON FOR THE GARVER’S SYSTEM 

Model Solver Objective  (M$) ACOPF Results 

RLT KNITRO / BONMIN 110 No convergence 

NLP2 KNITRO 180 Converged 

NLP1 KNITRO 406 Converged 

NLP1 BONMIN 473 Converged 

G3

D3

D5

D2

G1 D1

D4
G6

5

3

2

1

4

6

 
Fig. 4.  Garver’s 6-bus test system after TEP 

 

Fig. 5 shows the effect of multi-starts on the ACTEP solu-

tions using NLP2 model. It can be observed that the quality of 

the solution can be significantly improved with the increase 

number of multi-starts. Meanwhile, one should be aware that 

this is at a cost of the computing time. 

 
Fig. 5.  Effect of multi-starts on the ACTEP solutions  

 

Table VI shows the comparison of Garver’s 6-bus system 

TEP results obtained in this paper and some results available in 

the published literature. One can observe that the AC model 

gives a higher objective value and requires more lines to be 

built. Notice that since the DC lossless model and the DC lossy 

model are based on the MILP model, the global optimality of 

the solution is guaranteed. However, since the AC model is a 

non-convex NLP model and it therefore is NP-hard. The only 

conclusion can be drawn is that this solution is the best known 

ACTEP solution for Garver’s 6-bus system. 

Although the solution process of Garver’s system looks 

slightly complicated, the results are not completely desperate, 

In fact, it is worth noting that the results given by the NLP2 

model are quite promising. Therefore, the authors decided to 

test the models on a larger system: IEEE 24-bus RTS system.  
 

TABLE VI COMPARISON OF THE TEP RESULTS 

Model DC Lossless [5] DC Lossy [5] AC 

Objective (M$) 110 140 180 

Lines (3-5), (4-6)×3 
(2-6)×2, (3-5), 

(4-6)×2 

(1-5), (2-3), 

(2-6)×2, (3-5), 

(4-6)×2 

AC Feasible? No No Yes 

 

B.  IEEE 24-bus System 

The IEEE 24-bus system used in this paper is the same as the 

one used in [5]. It has 33 generators connected at 10 buses, and 

21 loads. The line investment cost data and the system param-

eters can be found in [5] and [16], respectively. The total load is 

2850 MW. The objective function in this case is to minimize 

the sum of line investment cost and the operating cost for 20 

years. The AC model and solver used in this study are NLP2 

and KNITRO, respectively. Similar to the previous case, the 

penalty factor used in this case is 10
9
, the number of multi-starts 

is set to 2000, and the optimality tolerance and the feasibility 

tolerance of the solvers are set to 10
-9

.  

In order to perform the ACTEP studies, five lines that are 

related to bus 1, bus 2 and bus 7 are removed (1 – 2, 1 – 4, 1 – 5, 

2 – 4 and 7 – 8), which means bus 1, bus 2 and bus 7 are isolated 

from the rest of the system. Instead, a new candidate line set is 

listed in Table VII. 
 

TABLE VII PARAMETERS FOR CANDIDATE LINES 

Number Corridor Cost (M$) Rating (MW) 

1 1 – 2 7.04 175 

2 1 – 4 106.92 175 

3 1 – 5 42.78 175 

4 2 – 4 64.14 175 

5 2 – 6 97.2 175 

6 7 – 2 7.04 175 

7 7 – 4 106.92 175 

8 7 – 5 64.14 175 

9 7 – 8 31.08 175 

 

Two cases are studied for the IEEE 24-bus system. In Case 

1, the TEP model is run without any additional constraints. In 

Case 2, an additional constraint is added in consideration of the 

steady state security requirement, which is the number of lines 

connect to one bus should be greater or equal to 2. The ACTEP 

results are shown in Table VIII. 

As observed from Table VIII, for Case 1, the AC model 

requires building 3 lines, thus bus 1, bus 2, bus 4, bus 5 and bus 

7 in the system will be radially connected, while in Case 2 

where the security requirement is added, two more lines 2 – 4 

and 1 – 2 are required, and therefore eliminates the radial line. 

Both the DC lossless model and the DC lossy model give the 

same result of building 3 lines when security requirement is not 

considered. It should be pointed out that if considering security 
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requirement, then the DC-based models give the same results as 

Case 2 of the AC model (not shown in Table VIII).  
 

TABLE VIII COMPARISON OF TEP RESULTS USING DIFFERENT MODELS 

Corridor 
DC lossless 

model [4] 

DC lossy 

model [4] 

AC model 

Case 1 Case 2 

1 – 2 1 1  1 

1 – 5   1 1 

2 – 4    1 

7 – 2 1 1 1 1 

7 – 8 1 1 1 1 

Investment 

cost (M$) 
45.16 45.16 87.94 152.08 

Losses1 

(MW) 
58.77 58.77 55.72 54.06 

Annual 

operating 

cost (M$) 

560.3 560.3 558.7 558.0 

CPU time 0.08 s 0.16 s 
2.3 h (2000 

restarts) 

2.5 h (2000 

restarts) 
1The losses and the annual operating cost are obtained from ACOPF 

VII.  SUMMARY AND CONCLUSIONS 

This paper explored the possibility of applying AC-based 

models to the TEP problem. Five TEP models include two 

MINLP-based models, two NLP relaxed models and a 

RLT-based linear model are presented in this paper. The for-

mulation of each model is shown and discussed in detail. A 

validation process guarantees the resultant TEP plan is strictly 

AC feasible. The conclusions of this paper are: 

 The AC model can be applied to model TEP problems. 

The solution of MINLP-based ACTEP models is still 

challenging.  

 By reformulation and relaxation, it is possible to solve 

the NLP-based ACTEP problem and obtain a local op-

timal solution.  

 In order to obtain a high quality solution, the optimality 

and feasibility tolerances of the solver should be set as 

small as possible, and the use of the multi-start option is 

a necessity. 

 For the NLP2 model, proper penalty factors should be 

selected. The RLT model may not work well for the TEP 

problem due to the lack of control of the relaxation.  

Comparing results, the ACTEP solutions typically require 

building more lines and therefore give a higher objective cost 

than the results given by the DC-based MILP models. This 

occurs because of the voltage and reactive power issues. 

However, due to the non-convex nature of the ACTEP models, 

it is hard to judge the global optimality of the results. The 

multi-start option may be a good choice, but this option will 

also result in the slowness in computation of the ACTEP model. 

It should be pointed out that the potential of the MINLP/NLP 

model for solving large scale TEP problems appears to be an 

open problem which requires more research. 
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