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Abstract. This paper is devoted to the study of a broad class of problems in conic programming
modeled via parameter-dependent generalized equations. In this framework we develop a second-
order generalized differential approach of variational analysis to calculate appropriate derivatives
and coderivatives of the corresponding solution maps. These developments allow us to resolve some
important issues related to conic programming. They include: verifiable conditions for isolated
calmness of the considered solution maps, sharp necessary optimality conditions for a class of math-
ematical programs with equilibrium constraints, and characterizations of tilt-stable local minimizers
for cone-constrained problems. The main results obtained in the general conic programming setting
are specified for and illustrated by the second-order cone programming.
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1. Introduction. The major motivation for this paper comes from considering
the following parametric problem of conic programming in finite-dimensional spaces:

minimize ϕ(q, y)− 〈p, y〉
subject to

g(y) ∈ Θ,
(1.1)

where y ∈ Rm is the decision variable, x = (q, p) ∈ Rs × Rm is the two-component
perturbation parameter (with q signifying the basic perturbations and p the tilt ones),
Θ ⊂ Rl is a closed convex cone, and ϕ : Rs × Rm → R and g : Rm → Rl are twice
continuously differentiable, i.e., of class C2. These are our standing assumptions in
this paper unless otherwise stated.

The characteristic feature of the optimization problem (1.1) is the cone constraint
given by g(y) ∈ Θ, which unifies remarkable subclasses of conic programs when the
cone Θ is given in a particular form. Among well-recognized theoretically and most
important for applications subclasses in conic programming we mention problems of
second-order cone programming, semidefinite programming, and copositive program-
ming; see, e.g., [1, 2, 4, 5, 6, 7, 8, 32, 38, 39] and the reference therein. Note that
the cone-constrained form (1.1) accommodates also the class of semi-infinite programs
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provided that Θ is a closed convex subcone of the corresponding infinite-dimensional
space; see the recent paper [24] containing the study of nonsmooth conic programs in
both finite and infinite dimensions.

It is well known from elementary variational analysis (see, e.g., [22, Proposi-
tion 5.1] and [37, Theorem 6.12]) that first-order necessary optimality conditions for
problem (1.1) are described by the parameterized generalized equation (GE)

0 ∈ f(x, y) + N̂Γ(y) with Γ := g−1(Θ) (1.2)

in the sense of Robinson [35], where N̂Γ(y) stands for the regular normal cone to
Γ at y ∈ Γ (see Section 2 below for the precise definition), and where f(x, y) :=
∇yϕ(p, y) − q with the symbol ∇ used for the (partial) gradient of scalar functions
as well as for the Jacobian matrix in the case of vector functions. Besides being
associated with conic programs (1.1), model (1.2) is of its independent interest and
deserves the study for its own sake. When the set Γ is convex, (1.2) encompasses
classical variational inequalities, which have been widely studied in the literature
together with similar models generated by other normal cone mappings replacing
N̂Γ(y); see, e.g., [9, 20, 22, 31, 35, 36] and the references therein. In this paper we
mainly concentrate on model (1.2) generated by the regular normal cone to Γ. Note
that most of the results obtained below are new even when the set Γ is convex.

In what follows we consider the variational system (1.2) with adding to our stand-
ing assumptions on g and Θ that f : Rn×Rm → Rm is an arbitrary continuously dif-
ferentiable mapping. This surely covers the original model (1.1) while having a much
broader range of applications; some of them are given in Section 6. Observe here an-
other important case concerning perturbed conic programming that can be described
by the generalized equation (1.2). Let x = (u, v) ∈ Rs × Rl, y = (z, λ) ∈ Rs × Rl,

f(x, y) :=

[
∇yϕ(z)− u+∇g(z)∗λ

−g(z) + v

]
,

and Θ = Rs × Ξ∗, where the notation A∗ for a matrix A signifies the matrix trans-
position/adjoint operator while that of Ξ∗ for the cone Ξ denotes the dual/polar cone
of Ξ given by Ξ∗ := {a ∈ Rl| 〈a, b〉 ≤ 0 for all b ∈ Ξ}. Then (1.2) amounts (under
some constraint qualification) to the Karush-Kuhn-Tucker (KKT) system associated
with the following canonically perturbed conic program:

minimize ϕ(y)− 〈u, y〉
subject to

g(y)− v ∈ Ξ.

Consider the (generally set-valued) solution map S : Rn ⇒ Rm to the parametric
variational system (1.2) defined by

S(x) :=
{
y ∈ Rm

∣∣ 0 ∈ f(x, y) + N̂Γ(y)
}

for all x ∈ Rn (1.3)

with the graph gphS := {(x, y) ∈ Rn × Rm| y ∈ S(x)}, and let (x̄, ȳ) ∈ gphS be our
reference point. Throughout the whole paper we impose the following assumptions on
the set Θ and the mapping g in (1.2) standard in conic programming; see, e.g., [4]:

(A1) The set Θ is C2-reducible to a closed convex set Ξ at z̄ := g(ȳ), and the
reduction is pointed. This means that there exist a neighborhood V of z̄ and
a C2 mapping h : V → Rk such that: (i) for all z ∈ V we have z ∈ Θ if and
only if h(z) ∈ Ξ, where the cone TΞ(h(z̄)) is pointed; (ii) h(z̄) = 0 and the
derivative mapping ∇h(z̄) : Rl → Rk is surjective/onto.
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(A2) The point ȳ ∈ Rm is nondegenerate for g with respect to Θ, i.e.,

∇g(ȳ)Rm + lin
(
TΘ(z̄)

)
= Rl. (1.4)

In (A1), (A2), TΩ(a) stands for the classical tangent cone to Ω at a ∈ Ω, and lin(L)
denotes the largest linear subspace of Rl contained in L ⊂ Rl.

Note that all the assumptions in (A1) are automatically fulfilled at any point
g(ȳ) ∈ Θ in the following two important settings of cone programming: when Θ
is either the SDP cone, i.e., the positive cone in semidefinite programming (cf. [3,
Corollary 4.6]), or it is the Lorentz cone known also as the second-order cone and as
the ice-cream cone; cf. [5, Lemma 15].

To proceed further, associate with (1.2) the Lagrangian function

L(x, y, λ) := f(x, y) +∇g(y)∗λ with λ ∈ Rl. (1.5)

It has been well recognized in conic programming that under the assumptions imposed
in (A1) and (A2) there is a unique Lagrange multiplier λ satisfying the KKT conditions

0 = L(x, y, λ),

0 ∈ −g(y) +NΘ∗(λ).
(1.6)

The intention of this paper is to study two important stability properties of para-
metric equilibrium problems involving the solution map (1.3) and also to derive nec-
essary optimality conditions for mathematical programs with equilibrium constraints
(MPECs) generated by GE (1.2). It has been well recognized in basic variational
analysis that all these three issues for general set-valued mappings are closely related
to certain generalized derivatives/coderivatives of the mappings in question. Observe
to this end that the set-valued part of the variational system (1.2) is given by a
normal cone mapping, i.e., by the corresponding first-order subdifferential of the in-
dicator function of the underlying set Γ = g−1(Θ). Therefore, applying yet another
generalized differentiation, we enter second-order variational analysis of the initial
cone-constrained systems. Our main tool will be second-order generalized derivatives;
see Section 2 for the precise definitions of and more discussions on these and related
constructions in variational analysis and the subsequent sections for their calculations
and applications in the settings under consideration. Note that the major results
obtained in the paper in the general conic programming setting are specified for the
case when Θ amounts to the Lorentz cone and illustrated by examples.

The rest of the paper is organized as follows. In Section 2 we present basic
definitions and discussions of the first-order and second-order generalized differential
constructions used in the formulations and proofs of the main results below.

Section 3 is devoted to calculating the second-order generalized differential con-
struction defined by graphical derivative of the normal cone mapping from (1.2) under
the convexity assumption imposed on Γ. The principal result obtained here repre-
sents this generalized derivative in terms of the problem data involving the directional
derivative of the metric projection onto the polar of the cone Θ.

Section 4 concerns calculating the regular coderivative of the regular normal cone
mapping N̂Γ(y), which can be treated as the regular second-order subdifferential of
the indicator function of Γ. The main result of this section gives in fact a new second-
order subdifferential chain rule for the regular constructions under consideration in
the case of nondegeneracy imposed in (A2).
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In Section 5 we unify the results of calculating the second-order constructions
with known calculus rules to express the graphical derivatives and both regular and
limiting coderivatives of the solution map (1.3) in terms of the initial data. The
derivative/coderivative formulas derived in this way and combined with basic char-
acterizations in general frameworks of variational analysis allow us to establish in
Section 6 new criteria for isolated calmness of the solution map (1.3), necessary op-
timality conditions for MPECs defined via (1.3), and to characterize tilt stability of
local minimizers in conic programming. The concluding Section 7 describes some lines
of our future research concerning, in particular, the characterization of full stability
of local solutions to cone-constrained optimization problems and related topics.

Throughout the paper we use standard notation of variational analysis and opti-
mization; see, e.g., the books [4, 22, 37]. Recall that the (Painlevé-Kuratowski) outer
limit of the set-valued mapping/multifunction F : Rd ⇒ Rs as z → z̄ is defined by

Lim sup
z→z̄

F (z) :=
{
v ∈ Rs

∣∣ ∃ zk → z̄, vk → v with vk ∈ F (zk) as k ∈ N
}

(1.7)

and that, given a set Ω ⊂ Rd, the symbol z
Ω→ z̄ signifies that z → z̄ with z ∈ Ω.

As usual, the notation aT indicates the vector transposition, I stands for the identity
matrix, and B denotes the closed unit ball of the space in question.

2. Tools of Variational Analysis. Generalized differentiation of nonsmooth
and set-valued mappings, as well as generalized normals and tangents to sets, play a
crucial role in modern variational analysis and optimization; see, e.g., the books [22,
37] and the references therein. In this section we briefly review some first-order and
second-order generalized differential constructions employed in the paper, confining
ourselves only to the settings that appear below. The reader can find more details
and extended frameworks in the aforementioned books and in the papers we refer to.

Let us start with geometric objects. Given a set Ω ⊂ Rd and a point z̄ ∈ Ω, define
the (Bouligand-Severi) tangent/contingent cone to Ω at z̄ via (1.7) by

TΩ(z̄) := Lim sup
t↓0

Ω− z̄
t

=
{
u ∈ Rd

∣∣∣ ∃ tk ↓ 0, uk → u with z̄ + tkuk ∈ Ω}. (2.1)

The (Fréchet) regular normal cone to Ω at z̄ ∈ Ω can be equivalently defined by

N̂Ω(z̄) :=
{
v ∈ Rd

∣∣∣ lim sup
z

Ω→z̄

〈v, z − z̄〉
‖z − z̄‖

≤ 0
}

= T ∗Ω(z̄). (2.2)

The (Mordukhovich) limiting normal cone can be also defined in the two equivalent
ways: via the outer limit (1.7) of the regular normal cone (2.2) and via the (Euclidean)
metric projection operator PΩ(z) := {y ∈ Ω with ‖z − y‖ = dist(z; Ω)} onto Ω by

NΩ(z̄) := Lim sup
z

Ω→z̄

N̂Ω(z) = Lim sup
z→z̄

{
cone

[
z − PΩ(z)

]}
, (2.3)

where Ω is assumed to be locally closed around z̄ in the second representation, and
where the symbol ‘cone’ signifies the (nonconvex) conic hull of a set. Note that
both regular and limiting normal cones reduce to the classical normal cone of convex
analysis when the set Ω is convex and when the common notation NΩ(z̄) is used. For
general sets Ω we have the inclusion

N̂Ω(z̄) ⊂ NΩ(z̄) as z̄ ∈ Ω,
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where the regular normal cone values are always convex while it is not often the case
for the limiting normal cone; see, e.g., Ω = gph |z| ⊂ R2 at z̄ = (0, 0). At the same
time, in contrast to (2.2), we have NΩ(z̄) 6= 0 for boundary points. Furthermore, the
limiting normal cone (2.3) and the corresponding generalized differential constructions
for functions and multifunctions (in particular, those discussed below) possess full
calculi based on variational/extremal principles of variational analysis; see [22, 37].
Although it is not generally the case for the regular normal cone, in this paper we
derive new results in this direction for the second-order objects induced by (2.2).

Considering next set-valued (in particular, single-valued) mappings F : Rd →→ Rs,
define for them the corresponding derivative and coderivative constructions generated
by the tangent cone (2.1) and the normal cones (2.2) and (2.3), respectively. Given
(z̄, w̄) ∈ gphF , the graphical derivative DF (z̄, w̄) : Rd →→ Rs of F at (z̄, w̄) is

DF (z̄, w̄)(u) :=
{
q ∈ Rs

∣∣ (u, q) ∈ TgphF (z̄, w̄)
}
, u ∈ Rd. (2.4)

¿From the dual prospectives we define the regular coderivative D̂∗F (z̄, w̄) : Rs →→ Rd

of F at (z̄, w̄) ∈ gphF generated by the regular normal cone (2.2) as

D̂∗F (z̄, w̄)(v) :=
{
p ∈ Rd

∣∣ (p,−v) ∈ N̂gphF (z̄, w̄)
}
, v ∈ Rs, (2.5)

and the corresponding limiting coderivative D∗F (x̄, ȳ) generated by (2.3) as

D∗F (z̄, w̄)(v) :=
{
p ∈ Rd

∣∣ (p,−v) ∈ NgphF (x̄, ȳ)
}
, v ∈ Rs. (2.6)

If F is single-valued at z̄, we drop w̄ in the notation of (2.4)–(2.6). Note that, while
the regular coderivative (2.5) is indeed dual to the graphical derivative (2.4) due to
the duality correspondence in (2.2), the limiting coderivative (2.6) is dual to none,
since the nonconvex normal cone (2.3) cannot be tangentially generated. In the case of
smooth single-valued mappings, for all u ∈ Rd and v ∈ Rs we have the representation

DF (z̄)(u) =
{
∇F (z̄)u

}
and D̂∗F (x̄)(v) = D∗F (x̄)(v) =

{
∇F (z̄)∗v

}
.

As discussed in Section 1, the main emphasis of this paper is on the second-
order generalized differential constructions appropriate for the aforementioned ap-
plications. Among several approaches to second-order generalized differentiation in
variational analysis (cf. [4, 22, 37]), we choose the set-valued version of the “derivative-
of-derivative” approach initiated in [21], which is applied to arbitrary extended-real-
valued functions and treats second-order differentiation for them as a certain gener-
alized derivative of a (set-valued) first-order subdifferential mapping that reduces to
the corresponding normal cone mapping in the case of the indicator functions of sets.
In this way the (limiting) second-order subdifferential/generalized Hessian

∂2ϕ(z̄, w̄)(v) := (D∗∂ϕ)(z̄, w̄)(v), v ∈ Rd, (2.7)

of ϕ : Rd → R := (−∞,∞] at w̄ ∈ ∂ϕ(z̄) has been introduced in [21] and then widely
applied to various stability and optimality issues in mathematical programming ; see,
e.g., [8, 10, 14, 15, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 40] and the
references therein. In (2.7), ∂ϕ stands for the (first-order) limiting subdifferential
mapping ∂ϕ : Rd →→ Rd defined, via epiϕ :=

{
(z, α) ∈ Rd+1

∣∣ α ≥ ϕ(z)
}

, by

∂ϕ(z) :=
{
w ∈ Rd

∣∣ (w,−1) ∈ Nepiϕ

(
z, ϕ(z)

)}
. (2.8)
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if ϕ(x) <∞ and ∂ϕ(x) := ∅ otherwise. In this paper we use it only in the case of the
set indicator function ϕ(z) = δΩ(z), equal to 0 when z ∈ Ω and to∞ otherwise, when

∂ϕ(z) = NΩ(z) and ∂2ϕ(z̄, w̄)(v) = D∗N(z̄, w̄)(v) for z̄ ∈ Ω and w̄ ∈ NΩ(z̄).

Similarly to (2.7) we can define the regular second-order subdifferential/generalized

Hessian ∂̂2ϕ(z̄, w̄) := (D̂∗∂̂ϕ)(z̄, w̄), where ∂̂ϕ comes from (2.8) with the replacement

of (2.3) by (2.2), and its indicator function specification D̂∗N̂(z̄, w̄), which has already
been studied and applied in [14, 15] in the settings different from this paper.

Yet another second-order construction for ϕ of our interest here has been con-
sidered in [37] under the name of the “subgradient graphical derivative” defined in
scheme (2.7) as (D∂ϕ)(z̄, w̄)(v) for w̄ ∈ ∂ϕ(z̄), v ∈ Rd. Note that for ϕ ∈ C2 we have

(D∂ϕ)(z̄)(v) = ∂̂2ϕ(z̄)(v) = ∂2ϕ(z̄)(v) =
{
∇2ϕ(z̄)v

}
for all v ∈ Rd

due to the symmetry of the classical Hessian. As for ∂2ϕ and ∂̂2ϕ, we draw our
attention to calculating D∂ϕ for ϕ = δΓ, i.e., of the graphical derivative of the normal
cone mapping DNΓ with Γ = g−1(Θ) arising from conic programming.

3. Graphical Derivatives of Normal Cone Mappings. Throughout this
section the set Γ ⊂ Rm from (1.2) is convex, i.e., N̂Γ(y) reduces to the normal cone
NΓ(y) of convex analysis. The main result of the section provides a complete calcula-
tion of the graphical derivative of the normal cone mapping NΓ. Besides deriving the
main result used in the subsequent applications, the methods developed and other
results obtained in this section seem to be of their independent interest.

The convexity of Γ = g−1(Θ) is obviously ensured by the Θ-convexity of the
mapping g : Rm → Rl, in the sense that the set{

(y, z) ∈ Rm × Rl
∣∣ g(y)− z ∈ Θ

}
is convex. This definition corresponds to the “−Θ-convexity” of g in the terminology
of [4, Definition 2.103], while it is more convenient for us to use the term “Θ-convexity”
in the sense defined above. Since g ∈ C2, its Θ-convexity is equivalent to the condition

〈∇2g(y)(h, h), ν〉 ≥ 0 for all ν ∈ Θ∗ and y, h ∈ Rm, (3.1)

which is assumed in the rest of this section.
Consider first the auxiliary linear GE

0 ∈ y − u+NΓ(y) (3.2)

associated with the (unique) metric projection PΓ(u) of u ∈ Rm onto Γ. We clearly
have that y = PΓ(u) if and only if[

y
u− y

]
∈ gphNΓ. (3.3)

Take next a vector ū ∈ Rm with PΓ(ū) = ȳ. It follows from (A2) that there is
a unique Lagrange multiplier ν ∈ Rl such that the triple (ū, ȳ, ν̄) satisfies the GE
(partially perturbed KKT system)

0 = y − u+∇g(y)∗ν,

0 ∈ −g(y) +NΘ∗(ν),
(3.4)
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where we treat (y, ν) as the decision variable and u as a perturbation parameter.

Fix u = ū and recall that system (3.4) is strongly regular, in the sense of Robinson
[36], at (ȳ, ν̄) if for all t = (t1, t2) near 0 ∈ Rm × Rl the partial linearization

t1 = y − ū+∇g(ȳ)∗ν + ν̄T∇2g(ȳ)(y − ȳ),

t2 ∈ −g(ȳ)−∇g(ȳ)(y − ȳ) +NΘ∗(ν)

admits a single-valued Lipschitzian solution (y(t), ν(t)) near (ȳ, ν̄).

The following results justifies strong regularity of the KKT system (3.4) under
the standing assumptions of this section.

Lemma 3.1 (strong regularity). Given ȳ ∈ PΓ(ū) and the corresponding La-
grange multiplier ν̄, the perturbed KKT system (3.4) is strongly regular at (ȳ, ν̄).

Proof. It is shown in [4, Theorem 5.24] that the strong regularity of (3.4) at (ȳ, ν̄)
is equivalent to the validity of the uniform second-order growth condition from [4,
Definition 5.16] for the problem under consideration at ȳ. Arguing by contradiction,
suppose that this condition does not hold and consider the function

ϑ(u, y) :=
1

2
‖y − u‖2.

Then there are sequences uk → ū, yk → ȳ, νk → ν̄, and hk → 0 such that the pair
(yk, νk) solves the generalized equation (3.4) with u = uk, g(yk + hk) ∈ Θ, and

ϑ(uk, yk + hk) ≤ ϑ(uk, yk) + o(‖hk‖2) for all k ∈ N. (3.5)

By passing to a subsequence if necessary, we suppose without loss of generality that
the sequence {hk/‖hk‖} itself converges to some vector h̄ 6= 0 as k → ∞. On the
other hand, since the inclusion g(yk) ∈ NΘ∗(νk) in (3.4) readily implies that

νk ∈ Θ∗ and 〈νk, g(yk)〉 = 0 for any k ∈ N,

we deduce from it as well as from g(yk) ∈ Θ and g(yk +hk) ∈ Θ that 〈νk, g(yk +hk)−
g(yk)〉 ≤ 0, which together with (3.5) ensure that

L(uk, yk + hk, νk)− L(uk, yk, νk) ≤ ϑ(uk, yk + hk)− ϑ(uk, yk) ≤ o(‖hk‖2) (3.6)

via the Lagrangian L(u, y, ν) := ϑ(u, y) + 〈ν, g(y)〉 associated with the convex opti-
mization problem miny∈Γ ϑ(u, y). Considering the other Lagrangian L from (1.5) in
the case of GE (3.2), observe the relationship L = ∇yL, which implies therefore that
∇yL(uk, yk, νk) = 0. Taking now (3.6) into account, we get

1
2∇

2
yyL(uk, yk, νk)(hk, hk) = L(uk, yk + hk, νk)− L(uk, yk, νk) + o(‖hk‖2) ≤ o(‖hk‖2)

for all k ∈ N. This gives us by passing to the limit as k →∞ that

∇2
yyL(ū, ȳ, ν̄)(h̄, h̄) ≤ 0.

Since h̄ 6= 0, we get therefore that

〈∇2g(ȳ)(h̄, h̄), ν̄〉 < ‖h̄‖2 + 〈∇2g(ȳ)(h̄, h̄), ν̄〉 = ∇2
yyL(ū, ȳ, ν̄)(h̄, h̄) ≤ 0,

which clearly contradicts (3.1) and thus completes the proof of the lemma.
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The next lemma gives a workable representation of the classical directional deriva-
tive of the (single-valued) metric projection operator onto the convex set Γ in terms
of the initial data of (1.2) and plays a crucial role in deriving the main result of this
section in what follows. It contains an assumption on the directional differentiability
of the projection operator onto the polar of the original constraint cone Θ, which is
not restrictive and holds for the vast majority of conic programs important for op-
timization theory and applications (in particular, for semidefinite and second-order
cone programming). On the other hand, the required directional differentiability of
the projection operator is not always available for an arbitrary convex cone Θ in finite
dimensions; see a rather involved counterexample [16] of a solid cone in R3.

Lemma 3.2 (directional derivative of the projection operator). In addition
to the standing assumptions, suppose that the projection operator PΘ∗ onto the polar
of Θ is directionally differentiable on Rl. Then for any ū ∈ Rm there is a neighborhood
U of ū such that the projection operator PΓ onto Γ is directionally differentiable at
each u ∈ U in every direction h ∈ Rm. Furthermore, this directional derivative is
calculated by P ′Γ(u;h) = v1, where v1 is the first component of the unique solution
v = (v1, v2) ∈ Rm × Rl to the system of equations

h =
(
I +

l∑
i=1

νi∇2gi(y)
)
v1 +∇g(y)∗v2,

0 = v2 − P ′Θ∗
(
g(y) + ν;∇g(y)v1 + v2

) (3.7)

with y = PΓ(u) and ν = (ν1, . . . , νl) ∈ Rl being the unique Lagrange multiplier corre-
sponding to the pair (u, y) in the KKT system (3.4).

Proof. Define the mapping Φ: Rm × Rm × Rl → Rm × Rm × Rl by

Φ(w, y, ν) :=

 w
y − w +∇g(y)∗ν
ν − PΘ∗

(
g(y) + ν

)
 (3.8)

and observe that the standard nonlinear equation u
t1
t2

 = Φ(w, y, ν)

amounts exactly to the perturbed GE

t1 = y − u+∇g(y)∗ν,

t2 ∈ −g(y) +NΘ∗(ν − t2)
(3.9)

with the perturbations t1, t2, u and the decision variables y, ν. Let us now introduce
the new decision variable µ := ν−t2 to obtain the new perturbed generalized equation

t1 = y − u+∇g(y)∗(µ+ t2),

t2 ∈ −g(y) +NΘ∗(µ)
(3.10)

with the same perturbations t1, t2, u and the decision variables y, µ.
First we claim that the strong regularity of system (3.4) at (ȳ, ν̄) with u = ū,

ensured by Lemma 3.1, implies the strong regularity of the generalized equation (3.10)
at the point (ȳ, ν̄) with (t1, t2, u) = (0, 0, ū). Indeed, since µ̄ = ν̄, it follows from
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the observation that the partial linearization of the single-valued term in (3.10) with
respect to (y, µ) at (0, 0, ū, ȳ, µ̄) reduces to the partial linearization of the single-valued
term in (3.4) with respect to (y, ν) at (ū, ȳ, ν̄). Since the set-valued parts in (3.4) and
(3.10) are the same, our claim is justified.

In the second step we prove that Φ is a Lipschitzian homeomorphism near (ū, ȳ, ν̄).
To proceed, denote by Σ: (u, t1, t2) 7→ (y, µ) the solution map associated with the
generalized equation (3.10). The justified strong regularity of (3.10) tells us that
there are neighborhoods O1 of ū, O2 of 0Rm , O3 of 0Rl , M of ȳ, and N of ν̄ as well
as a single-valued Lipschitzian mapping σ : O1 ×O2 ×O3 →M×N such that

σ(ū, 0, 0) = (ȳ, ν̄) and

Σ(u, t1, t2) ∩ (M×N ) = {σ(u, t1, t2)} for all (u, t1, t2) ∈ O1 ×O2 ×O3.

Let now % : Rm × Rm × Rl → Rm × Rl be a Lipschitzian mapping defined by

%(u, t1, t2) :=

[
σ1(u, t1, t2)

σ2(u, t1, t2) + t2

]
, (3.11)

where σ1 and σ2 are the components of σ mapping the triple (u, t1, t2) to the variables
u and µ, respectively. It follows that the second component of % assigns (u, t1, t2)
the original variable ν from (3.9). Replacing if necessary the above neighborhoods

O1 ×O2 ×O3 by some smaller ones Õ1, Õ2, and Õ3 satisfying the condition

Φ−1(u, t1, t2) ∩ (Õ1 ×M×N ) = {u} × {%(u, t1, t2)} for all (u, t1, t2) ∈ Õ1 × Õ2 × Õ3,

we conclude that Φ is indeed a Lipschitzian homeomorphism near (ū, ȳ, ν̄).
In the third step of the proof, observe that the mapping Φ from (3.8) is direction-

ally differentiable due to the assumption on PΘ∗ . Invoking now the inverse mapping
theorem due to Kummer (see, e.g., [31, Lemma 6.1] and the references therein), we
conclude that the single-valued and Lipschitz continuous local inverse mapping

Ψ := Φ−1 ∩ (Õ1 ×M×N )

is also directionally differentiable at Φ(w, y, ν) ∈ Õ1 × Õ2 × Õ3 and its directional
derivative is related to the directional derivative of Φ by

Ψ′
(
Φ(w, y, ν); (h, 0, 0)

)
=

 h
v1

v2

 , where

 h
0
0

 = Φ′
(
(w, y, ν); (h, v1, v2)

)
.

This yields our conclusion on the directional differentiability of PΓ with P ′Γ(u;h) = v1

along the solution to system (3.7) by using standard calculus rules in the expression for
Φ in (3.8). Observe finally that, since the mapping % in (3.11) is locally Lipschitzian,

the required neighborhood U of ū can be found in such a way that U ⊂ Õ1 and

%(U , 0, 0) ⊂M×N ,

which is claimed in the lemma.
Lemma 3.2 established above is a crucial ingredient in deriving the main result

of this section given in the following theorem.
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Theorem 3.3 (calculating the graphical derivative of the normal cone
mapping). Let the assumptions of Lemma 3.2 hold, let (ū, ȳ) ∈ gphPΓ, w̄ := ū− ȳ,
and ν̄ = (ν̄1, . . . , ν̄l) be a unique Lagrange multiplier associated with (ū, ȳ) via (3.4).
Then the tangent cone (2.1) to the graph of NΓ at (ȳ, w̄) admits the representation

TgphNΓ(ȳ, w̄) =
{

(v, p)
∣∣∣ ∃d ∈ Rl with p =

(
l∑

i=1

ν̄i∇2gi(ȳ)

)
v +∇g(ȳ)∗d,

d = P ′Θ∗
(
g(ȳ) + ν̄;∇g(ȳ)v + d

)}
.

(3.12)

Consequently, for any direction v ∈ Rm the graphical derivative of NΓ at (ȳ, w̄) is

DNΓ(ȳ, w̄)(v) =
{
p ∈ Rl

∣∣∣∃d ∈ Rl with p =

(
l∑

i=1

ν̄i∇2gi(ȳ)

)
v +∇g(ȳ)∗d,

d = P ′Θ∗
(
g(ȳ) + ν̄;∇g(ȳ)v + d

)}
.

(3.13)

Proof. By [15, Proposition 1] we have the relationship

TgphPΓ
(ū, ȳ) = gphP ′Γ(ū; ·).

Using this and Lemma 3.2 gives us the tangent cone representation

TgphPΓ
(ū, ȳ) =

{
(h, v1) ∈ Rm × Rm

∣∣∣ ∃v2 ∈ Rl such that

h =

(
I +

l∑
i=1

ν̄i∇2gi(ȳ)

)
v1 +∇g(ȳ)∗v2, v2 = P ′Θ∗

(
g(ȳ) + ν̄;∇g(ȳ)v1 + v2

)}
.

Since (y, w) ∈ gphNΓ if and only if (y + w, y) ∈ gphPΓ, it follows by the elementary
calculus rule from [37, Excercise 6.7] that

TgphNΓ(ȳ, w̄) =

{
(v, p) ∈ Rm × Rm

∣∣∣∣( v + p
v

)
∈ TgphPΓ(ū, ȳ)

}
,

which justifies the tangent cone formula (3.12). The graphical derivative result (3.13)
follows immediately from (3.12) and definition (2.4).

We can see that formulas (3.12) and (3.13) for calculating the tangent cone to
gphNΓ and the graphical derivative of NΓ are valid for general conic programs while
involving the directional derivative of the projection operator onto the polar Θ∗ of
the underlying cone Θ. In particular, this directional derivative was calculated en-
tirely in terms of the initial data for the following two remarkable subclasses of conic
programming: second-order cone programs (SOCPs) defined by the Lorentz cone

Θ = Kl :=
{

(θ1, . . . , θl) ∈ Rl
∣∣ θ1 ≥ ‖(θ2, . . . , θl‖

}
(3.14)

with the Euclidean norm ‖ · ‖ (see [33, Lemma 2]) and semidefinite programs (SDPs)
with Θ being the cone of symmetric positive semidefinite matrices

Θ := Sl+ =
{
A ∈ Rl×l∣∣ zTAz ≥ 0 for all z ∈ Rl

}
; (3.15)
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see [38, Theorem 4.7]. Let us present the calculation results for the case of Θ = Kl,
which are used in what follows. Note that similar calculations can be also done in the
case when Θ is the Cartesian product of finitely many Lorentz cones.

Prior to presenting the corresponding results from [33] for Θ = Kl, let us recall
the relevant notation and facts from the theory of symmetric cones needed below; see,
e.g., [12]. Given any vector u = (u1, ũ) ∈ R×Rl−1, we have its spectral decomposition

u = λ1(u)c1(u) + λ2(u)c2(u), (3.16)

where λ1(u), λ2(u) and c1(u), c2(u) are the spectral values and vectors of u given by

λi(u) = u1 + (−1)i‖ũ‖ and (3.17)

ci(u) =


1

2

(
1, (−1)i

ũ

‖ũ‖

)
if ũ 6= 0,

1

2

(
1, (−1)iv

)
if ũ = 0

(3.18)

for i = 1, 2, with v being any unit vector in Rl−1. The following proposition taken
from [33, Lemma 2] describes the directional derivative of the metric projection onto
the polar of the Lorentz cone Θ = Kl. Note that in this case we have Θ∗ = −Kl.

Proposition 3.4 (directional derivative of the projection onto the polar
of the Lorentz cone). Let Θ = Kl. Then the projection operator PΘ∗ is directionally
differentiable at u and for any direction h ∈ Rl we have the relationships:

(i) If u ∈ int Θ ∪ int Θ∗, then P ′Θ∗(u;h) = ∇PΘ∗(u)h with

∇PΘ∗(u) = −2

2∑
i=1

[
β[1]
(
λ(u)

)]
ii
ci(u)ci(u)T −

[
β[1]
(
λ(u)

)]
12
A(u),

where we have A(u) :=

(
0 0
0 I

)
−
(
c2(u)− c1(u)

)(
c2(u)− c1(u)

)T
,

λ(u) :=
(
λ1(u), λ2(u)

)
, and

[
β[1](λ)

]
ij

:=


β(λi)− β(λj)

λi − λj
if λi 6= λj ,

β′(λi) if λi = λj ,

i, j = 1, 2,

for the first divided difference matrix of the real-valued function β(x) =
(x)− := min{0, x} at λ, with λ := (λ1, λ2) ∈ R2 and λ1λ2 6= 0.

(ii) If u ∈ bd Θ \ {0}, then P ′Θ∗(u;h) = −2
(
〈c1(u), h〉

)
−c1(u) with the notation

(x)− := min{0, x} as in (i).
(iii) If u ∈ bd (Θ∗) \ {0}, then P ′Θ∗(u;h) = −h + 2

(
〈c2(u), h〉

)
+
c2(u) with the

notation (x)+ := max{0, x}.
(iv) If u = 0, then P ′Θ∗(u;h) = PΘ∗(h).

4. Regular Coderivatives of Normal Cone Mappings. This section is de-
voted to deriving a formula for calculating the regular coderivative (2.5) of the regular
normal cone mapping (2.2) to the set Γ = g−1(Θ) from (1.2) via the initial data g
and Θ under the standing assumptions formulated in Section 1. Note that due the
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duality relationship between the regular normal and tangent cones in (2.2) we have,
for an arbitrary set-valued mapping F : Rd →→ Rs, that

D̂∗F (ȳ, v̄)(w) =
{
p ∈ Rd

∣∣ 〈p, u〉 ≤ 〈w, q〉 for all (u, q) ∈ gphDF (ȳ, v̄)
}

(4.1)

whenever (ȳ, v̄) ∈ gphF and w ∈ Rs. This implies that formula (3.13) of Theorem 3.3
induces, under the assumptions of Section 3, the corresponding representation of the
regular coderivative of NΓ by the duality relation (4.1).

However, in this section we explore another route to deal with the regular normal
and coderivative constructions, which treats them directly, with no appeal to the
tangential counterparts and duality correspondences. In this way we arrive at a new
second-order chain rule to calculate the regular coderivative of the regular normal
cone mapping N̂Γ in the setting under consideration without imposing the convexity
assumption on the set Γ as well as assuming the directional differentiability of the
projection operator PΘ∗ . In the case of the limiting second-order subdifferential (2.7)
such a calculus approach has been developed in the series of previous publications (see,
e.g., [22, 26, 27, 29, 32]), with the result for D∗NΓ closest to our setting appeared in
[32, Theorem 7] under the nondegeneracy assumption. We are not familiar with any

previous developments in this direction for the case of D̂∗N̂Γ.
To proceed, consider an [l× k]-matrix A(·) whose entries are continuously differ-

entiable functions of x ∈ Rn, and let the components of b(·) ∈ Rp be continuously
differentiable functions of x. Then we have by the classical product rule that

∇
(
A(·)b(·)

)
|x=x̄ = ∇

(
A(·)b(x̄)

)
|x=x̄ +∇

(
A(x̄)b(·)

)
|x=x̄. (4.2)

Theorem 4.1 (second-order chain rule for the regular coderivative of the

regular normal cone mapping). Let v̄ ∈ N̂Γ(ȳ) under the standing assumptions
from Section 1. Then for all w ∈ Rm we have the representation

D̂∗N̂Γ(ȳ, v̄)(w) =

l∑
i=1

λ̄i∇2gi(ȳ)w +∇g(ȳ)∗D̂∗NΘ

(
g(ȳ), λ̄

)(
∇g(ȳ)w

)
, (4.3)

where λ̄ = (λ̄1, . . . , λ̄l) ∈ Rl is a unique solution to the system

∇g(ȳ)∗λ = v̄, λ ∈ NΘ

(
g(ȳ)

)
. (4.4)

Proof. First we justify the chain rule (4.3) in the case when the derivative operator
∇g(ȳ) : Rm → Rl is surjective, i.e., the associated Jacobian matrix ∇g(ȳ) with the
same notation is of full rank. Consider the set

Q :=
{

(y, λ, v) ∈ Rm × Rl × Rm
∣∣ v = ∇g(y)∗λ as λ ∈ NΘ

(
g(y)

)}
and observe that Q = Φ−1

(
{0} × gphNΘ

)
with

Φ(y, λ, v) :=

v −∇g(y)∗λ
g(y)
λ

 .
It easy follows from the surjectivity of ∇g(ȳ) that the operator ∇Φ(ȳ, λ̄, v̄) is also
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surjective, and then invoking [22, Corollary 1.15] gives us

N̂Q(ȳ, λ̄, v̄) =




l∑
i=1

λ̄i∇2gi(ȳ)p+∇g(ȳ)∗q

∇g(ȳ)p+ r
−p


∣∣∣∣∣∣∣∣∣ p ∈ Rm, (q, r) ∈ N̂gphNΘ

(
g(ȳ), λ̄

)
 .

Since gph N̂Γ is the canonical projection of the set Q onto the space generated by the
first and the third components, we get from [37, Theorem 6.43] that

N̂gphN̂Γ
(ȳ, v̄) ⊂

(z, u) ∈ Rl × Rm

∣∣∣∣∣∣∣
z =

l∑
i=1

λ̄i∇2gi(ȳ)(−u) +∇g(ȳ)∗q,(
q,∇g(ȳ)u

)
∈ N̂gphNΘ

(
g(ȳ), λ̄

)
 . (4.5)

By (2.5) this implies in turn with putting w := −u that

D̂∗N̂Γ(ȳ, v̄)(w) ⊂
l∑

i=1

λ̄i∇2gi(ȳ)w +∇g(ȳ)∗D̂∗NΘ

(
g(ȳ), λ̄

)(
∇g(ȳ)w

)
. (4.6)

To justify the opposite inclusion in (4.3), we express according to [22] the set N̂Γ

locally around ȳ as follows:

N̂Γ(y) = ψ
(
y,NΘ(g(y))

)
=
⋃{

ψ(y, z)
∣∣ z ∈ NΘ

(
g(y)

)}
with the function ψ : Rm × Rl → Rm defined by

ϕ(y, u) := ∇g(y)∗u for all y ∈ Rm and u ∈ Ru.

This representation enables us to invoke the arguments used in the proof of [22,
Lemma 1.126]. Proceeding in this way, we pick an arbitrary pair (z, w) satisfying(

z,−∇g(ȳ)w
)
∈ NgphNΘ

(
g(ȳ), λ̄

)
and arrive at the inclusion(

l∑
i=1

λ̄i∇2gi(ȳ)w +∇g(ȳ)∗z, w

)
∈ N̂gphN̂Γ

(ȳ, v̄),

which ensures together with (4.6) the validity of (4.3) in the case of surjectivity.
It remains now to replace the subjectivity of ∇g(ȳ) by the weaker nondegeneracy

assumption from (A2). To proceed, we employ the local representation of Θ provided
by its reducibility at g(ȳ); see the assumptions in (A1) with the notation used therein.

Denote f := h ◦ g and observe that its derivative ∇f(ȳ) is surjective due to the
nondegeneracy assumption. Applying (4.3) to the mapping f allows us to find a unique
multiplier µ̄ = (µ̄1, . . . , µ̄k) ∈ NΞ(f(x̄)) satisfying the relationships ∇f(x̄)∗µ̄ = v̄ and

D̂∗N̂Γ(ȳ, v̄)(w) =

(
k∑

i=1

µ̄i∇2fi(ȳ)

)
w +∇f(ȳ)∗D̂∗NΞ

(
f(ȳ), µ̄

)(
∇f(ȳ)w

)
. (4.7)
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By the classical chain rule we have the equalities

∇f(ȳ) = ∇(h ◦ g)(ȳ) = ∇h
(
g(ȳ)

)
∇g(ȳ),

∇f(ȳ)∗ = ∇g(ȳ)∗∇h
(
g(ȳ)

)∗
. (4.8)

Furthermore, it follows from the surjectivity of ∇h(g(ȳ)) and applying (4.3) to h that

D̂∗NΘ

(
g(ȳ), λ̄

)
(ν) =

(
k∑

i=1

ϑ̄i∇2hi
(
g(ȳ)

))
ν+∇h

(
g
(
ȳ)
)∗
D̂∗NΞ

(
h(g(ȳ)), ϑ̄

)(
∇h(g(ȳ)ν

)
,

for all ν ∈ Rk, where ϑ̄ = (ϑ̄1, . . . , ϑ̄k) is a unique vector from Rk such that

ϑ̄ ∈ NΞ

(
h(g(ȳ))

)
and ∇h

(
g(ȳ)

)∗
ϑ̄ = λ̄.

Since h(g(ȳ)) = f(ȳ), it follows from the uniqueness of the multiplier µ̄ in (4.7) that
ϑ̄ = µ̄. Indeed, both multipliers ϑ̄ and µ̄ belong to NΞ(f(ȳ)), and by (4.8) we have

∇f(ȳ)∗ϑ̄ = ∇g(ȳ)∗∇h
(
g(ȳ)

)
ϑ̄ = ∇g(ȳ)∗λ̄ = v̄.

Taking this into account, observe the equalities

∇f(ȳ)∗D̂∗NΞ

(
f(ȳ), µ̄

)(
∇f(ȳ)w

)
= ∇g(ȳ)∗∇h

(
g(ȳ)

)∗
D̂∗NΞ

(
h(g(ȳ)), ϑ̄

)(
∇h(g(ȳ)∇g(ȳ)w

)
=∇g(ȳ)∗

[
D̂∗NΘ

(
g(ȳ), λ̄

)(
∇g(ȳ)w

)
−
( k∑

i=1

µ̄i∇2hi
(
g(ȳ)

))
∇g
(
ȳ)w

]
.

To complete the proof of the theorem, it remains to show that

( k∑
i=1

µ̄i∇2fi(ȳ)
)
w =

( l∑
i=1

λ̄i∇2gi(ȳ)
)
w +∇g(x̄)∗

( k∑
i=1

µ̄i∇2hi
(
g(ȳ)

))
∇g(ȳ)w.

To proceed, we invoke the product rule (4.2) and get the equality

∇
(
∇fi(ȳ)

)
= ∇

(
∇g(·)∗∇hi(g(·)

)∣∣
y=ȳ

= ∇
(
∇g(·)∗∇hi(g(ȳ))

)
|y=ȳ+∇g(ȳ)∗∇

(
∇hi(g(·))

)
|y=ȳ.

This allows us to conclude that( k∑
i=1

µ̄i∇2fi(ȳ)
)
w =

[
∇
(
∇g(·)∗

( k∑
i=1

µ̄i∇2hi
(
g(ȳ)

)))∣∣∣
y=ȳ

]
w

+∇g(ȳ)∗
( k∑

i=1

µ̄i∇2hi
(
g(ȳ)

))
∇g(ȳ)w.

(4.9)

Since
k∑

i=1

µ̄i∇2hi(g(ȳ)) = λ̄, the first term on the right-hand side of (4.9) amounts to

(
∇
(
[∇g1(·), . . . , gl(·)]λ̄

)
|y=ȳ

)
w =

(
l∑

i=1

λ̄i∇2gi(ȳ)

)
w,

which justifies (4.3) and thus completes the proof of the theorem.
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To facilitate the usage of formula (4.3), e.g., in the case of Θ = Kl, we restate it
now in terms of the regular coderivative of the metric projection mapping PΘ.

Corollary 4.2 (regular coderivative of the regular normal cone and
projection mappings). In the setting of Theorem 4.1 we have

D̂∗N̂Γ(ȳ, v̄)(w) =
{ l∑

i=1

λ̄i∇2gi(ȳ)w + (∇g(ȳ))∗p
∣∣∣

−∇g(ȳ)w ∈ D̂∗PΘ

(
g(ȳ) + λ̄

)(
−∇g(ȳ)w − p

)}
.

Proof. It follows from to the well-known relationship

PΘ = (I +NΘ)−1

between the projection and normal cone operators for convex sets (see, e.g., [37,
Proposition 6.17]) that (y, w) ∈ gphNΘ if and only if (y + w, y) ∈ gphPΘ. Hence we
get from [37, Exercise 6.7] that

N̂gphNΘ

(
g(ȳ), λ̄

)
=
{

(p, r)
∣∣ p = u+ w, r = u, (u,w) ∈ N̂gphPΘ

(
g(ȳ) + λ̄g(ȳ)

)}
,

and it suffices to apply the definition of the regular coderivative.
Note that a similar relationship to that in Corollary 4.2 holds for the limiting

coderivatives of NΓ and PΘ. In the Lorentz cone case Θ = Kl the corresponding
formulas for the regular and limiting coderivatives of the projection operator PΘ can
be found [33, Theorem 1] and [33, Theorem 2 and Theorem 3], respectively.

To conclude this section, let us discuss further specifications and extensions of
the second-order chain rule obtained in Theorem 4.1.

Remark 4.3 (calculating coderivatives of the normal cone mapping de-
fined by the SDP cone). Besides the Lorentz cone case discussed above, the
second-order calculus rule in Theorem 4.1 as well as its limiting counterpart from [32,

Theorem 7] allow us to fully calculate the corresponding coderivatives D̂∗N̂Γ(ȳ, v̄)
and D∗NΓ(ȳ, v̄) entirely via the problem data for the SDP cone Θ = Sl+ from (3.15).
This is based on the calculations of the corresponding coderivative constructions for
PSl

+
given recently in [8, Proposition 3.2 and Theorem 3.1].

Remark 4.4 (infinite-dimensional extensions). Observe that Theorem 4.1
holds as formulated in arbitrary Banach spaces, where the notion of nondegeneracy
is taken from [4, Definition 4.70] without assuming the finite dimensionality of the
spaces in question. Indeed, the only change in the proof given above is to replace
the application of the finite-dimensional result from [37, Theorem 6.43] by its Banach
space counterpart from [23, Theorem 4.2] ensuring the equality in (4.5) and hence
in (4.1) under the surjectivity assumption imposed on ∇g(ȳ). In this way we can
also derive the Banach space version of second-order chain rule from [32, Theorem 7]
for the limiting constructions. Furthermore, the developed approach based on [22,
Lemma 1.126] and its proof in the case of surjectivity and on the nondegeneracy
reduction to the surjectivity case employed in [32, Theorem 7] and in Theorem 4.1
above allows us to establish—in the general case of nondegeneracy—the exact/equality
type second-order chain rules for various combinations of coderivatives and first-order
subdifferentials defined via the dual “derivative-of-derivative” scheme of (2.7) (see,
e.g., [22, 25, 26]) in arbitrary Banach spaces.
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Remark 4.5 (relations to tangential constructions). Having in hands the
calculations of Theorem 4.1, it is appealing to employ them in deriving workable
formulas for the corresponding representations of the graphical derivative of N̂Γ by
reversing the duality scheme (4.1) between DF and D̂∗F . However, the realization
of this scheme requires the graphical regularity of F (cf. [37, Corollary 6.29]), which
in fact reduces to a certain smoothness of F in the case of graphically Lipschitzian
(in the sense of [37, Definition 9.66] and [22, Definition 1.45]) mappings; see [22,
Theorem 1.46] with the references and discussions therein. These observations show
that the reversed duality scheme cannot be applied to the normal cone mappings under
consideration as well as to a large class of subdifferential mappings, which exhibit the
graphical Lipschitzian property; see [37, Proposition 13.46].

5. Generalized Derivatives of Solution Maps. On the basis of the results
in Section 3 and 4 we are now able to derive the corresponding representations of the
generalized derivatives and coderivatives of the solution map S from (1.3), crucial for
the subsequent applications in Section 6. Let us start with the graphical derivative.

Theorem 5.1 (graphical derivative of solution maps). Let (x̄, ȳ) ∈ gphS
for the solution map S in (1.3), let all the assumptions of Theorem 3.3 be fulfilled,
and let λ̄ ∈ Rl be a unique Lagrange multiplier satisfying the KKT system

L(x̄, ȳ, λ) = 0,

λ ∈ NΘ

(
g(ȳ)

)
.

(5.1)

Then we have the inclusion for the graphical derivative of S at (x̄, ȳ):

DS(x̄, ȳ)(v) ⊂
{
u ∈ Rm

∣∣ 0 = ∇xf(x̄, ȳ)v +∇yL(x̄, ȳ, λ̄)u+∇g(ȳ)∗d,

d = P ′Θ∗
(
g(ȳ) + λ̄;∇g(ȳ)u+ d

)}
, v ∈ Rn.

(5.2)

If in addition the partial Jacobian ∇xf(x̄, ȳ) is surjective, then (5.2) holds as equality.
Proof. It is easy to observe that

gphS =

{
(x, y) ∈ Rn × Rm

∣∣∣∣ h(x, y) :=

[
y

−f(x, y)

]
∈ gph N̂Γ

}
, (5.3)

i.e., gphS = h−1(gph N̂Γ). Thus we can deduce from [37, Theorem 6.31] that

TgphS(x̄, ȳ) ⊂
{

(v, u) ∈ Rn × Rm

∣∣∣∣[ u
−∇xf(x̄, ȳ)v −∇yf(x̄, ȳ)u

]
∈ TgphNΓ

(
ȳ,−f(x̄, ȳ)

)}
which holds as equality provided that ∇xf(x̄, ȳ) is surjective; see [37, Exercise 6.7].
Employing now formula (3.12) for calculating the tangent cone TgphNΓ

under the
assumptions made in Section 3 and then recalling the definitions of Lagrangian (1.5)
and graphical derivative (2.4), we ensure the validity of inclusion (5.2) and then the
equality therein under the additional surjectivity assumption on ∇xf(x̄, ȳ).

Employing the complete calculations from Proposition 3.4 of the directional deriva-
tive of the projection operator PΘ∗ for the case of the Lorentz cone Θ = Kl would
allow us to express the results of Theorem 5.1 entirely via the initial data of the cor-
responding second-order cone program. This is illustrated by the following example.

Example 5.2 (calculating graphical derivative of solutions maps for
SOCPs). Consider the following GE of type (1.2):

x ∈ y + N̂g−1(Θ)(y),
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where g(y) := (1− 1
2y

2
1 , y2, y3 + 1), Θ = K3, and (x̄, ȳ) = (0, 0). Then g(ȳ) = (1, 0, 1),

λ̄ = (0, 0, 0), Im∇g(ȳ) = {0}×R×R, and linTK3

(
g(ȳ)

)
= {(α, β, α) : α, β ∈ R}. This

ensures that ȳ is a nondegenerate point of g with respect to K3. It is also easy to check
(3.1), which ensures that g is Θ-convex. Moreover, on the basis of Proposition 3.4(ii),
for u := g(ȳ) + λ̄ = (1, 0, 1) and for any direction h, we have that

P ′Θ∗(u;h) = −2
(
〈c1(u), h〉

)
−c1(u) = −(h1 − h3)−

 1/2
0
−1/2

 ,

with c1(u) = (1/2, 0,−1/2) and the notation (x)− := min{0, x}. Thus, the surjectivity
of ∇xf(x̄, ȳ) = −I and the equality in (5.2) lead us to the precise formula

DS(x̄, ȳ)(v) =

u
∣∣∣∣∣∣u1 = v1, u2 = v2, u3 =

〈 v3 if v3 ≤ 0

1
3v3 if v3 > 0


for calculating the graphical derivative of the solution map in question.

Next we proceed with calculating the regular coderivative of the solution map.

Theorem 5.3 (regular coderivative of solution maps). Let (x̄, ȳ) ∈ gphS
under the standing assumptions of Section 1, and let λ̄ = (λ̄1, . . . , λ̄l) ∈ Rl be a
unique solution to system (4.4) with v̄ = −f(x̄, ȳ). Suppose in addition that the
partial Jacobian ∇xf(x̄, ȳ) is surjective. Then for any v ∈ Rm we have the regular
coderivative representation of the solution map (1.3):

D̂∗S(x̄, ȳ)(v) =
{
∇xf(x̄, ȳ)∗w

∣∣∣ 0 ∈ v +∇yf(x̄, ȳ)∗w +

l∑
i=1

λ̄i∇2gi(ȳ)w

+∇g(ȳ)∗D̂∗NΘ

(
g(ȳ), λ̄

)(
∇g(ȳ)w

)}
.

(5.4)

It can be equivalently rewritten in the Lagrangian form:

D̂∗S(x̄, ȳ)(v) =
{
∇xf(x̄, ȳ)∗w

∣∣∣ 0 ∈ v +∇yL(x̄, ȳ, λ̄)∗w

+∇g(ȳ)∗D̂∗NΘ

(
g(ȳ), λ̄

)(
∇g(ȳ)w

)}
.

(5.5)

Proof. Taking into account the surjectivity of ∇h(x̄, ȳ) from (5.3) due to the
surjectivity of ∇xf(x̄, ȳ) and using the well-known formula for the normal cone of the
inverse image of sets under smooth mappings (see, e.g., [22, Corollary 1.15] and [37,
Exercise 6.7]) as well as definition (2.5) of the regular coderivative, we arrive at

D̂∗S(x̄, ȳ)(v) =
{
u ∈ Rn

∣∣∣ there is w ∈ Rm with u = ∇xf(x̄, ȳ)∗w,

0 ∈ v +∇yf(x̄, ȳ)∗w + D̂∗NΓ

(
ȳ,−f(x̄, ȳ)

)
(w)
}
.

Then formula (5.4) and its Lagrangian version (5.5) are implied by Theorem 4.1.
On the basis of Corollary 4.2 formula (5.5) can be reformulated in terms of the

regular coderivative of the projection operator as follows:

D̂∗S(x̄, ȳ)(v) =
{
∇xf(x̄, ȳ)∗w

∣∣ there is p ∈ Rl such that

0 = v +∇yL(x̄, ȳ, λ̄)∗w +
(
∇g(ȳ)

)∗
p,

−∇g(ȳ)w ∈ D̂∗PΘ

(
g(ȳ) + λ̄

)(
− p−∇g(ȳ)w

)}
.

(5.6)
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This variant will be used in Example 5.5 for Θ = K3 given below.
Next we present a representation of the limiting coderivative of the solution map

S which readily follows from [32, Theorem 7] and [13, Theorem 4.1]. Recall [37,
p. 399] that a set-valued mapping M : Rd →→ Rs is calm at (p̄, z̄) ∈ gphM if there are
neighborhoods U of p̄ and V of z̄ together with a constant κ ∈ R+ such that

M(p) ∩ V ⊂M(p̄) + κ‖p− p̄|B for all p ∈ U.

Theorem 5.4 (limiting coderivative of solution maps). Let (x̄, ȳ) ∈ gphS
under the standing assumptions of Section 1, and let λ̄ = (λ̄1, . . . , λ̄l) ∈ Rl be a unique
solution to (4.4) with v̄ = −f(x̄, ȳ). The following assertions hold.
(i) Suppose that ∇xf(x̄, ȳ) is surjective. Then for any v ∈ Rm we have

D∗S(x̄, ȳ)(v) =
{
∇xf(x̄, ȳ)∗w

∣∣ 0 ∈ v +∇yL(x̄, ȳ, λ̄)∗w
+∇g(ȳ)∗D∗NΘ

(
g(ȳ), λ̄

)(
∇g(ȳ)w

)}
.
(5.7)

(ii) Suppose that the perturbation mapping M : Rm ⇒ Rn × Rm] defined by

M(p) :=
{

(x, y) ∈ Rn × Rm
∣∣ p ∈ f(x, y) +∇g(y)∗NΘ

(
g(y)

)}
is calm at (0, x̄, ȳ). Then equality (5.7) is replaced by the inclusion “⊂”.

Proof. Under the surjectivity of the operator ∇xf(x̄, ȳ) we can proceed simi-
larly to the proof of Theorem 5.3 with replacing the second-order chain rule from
Theorem 4.1 by the one obtained in [32, Theorem 7].

To justify assertion (ii), observe by [40, Theorem 3.1] and [13, Theorem 4.1] that
the calmness of M at (0, x̄, ȳ) implies the inclusion

D∗S(x̄, ȳ)(v) ⊂
{
∇xf(x̄, ȳ)∗v

∣∣ 0 ∈ v+∇yf(x̄, ȳ)∗w+D∗NΓ

(
ȳ,−f(x̄, ȳ)

)
(w)
}
. (5.8)

Employing again [32, Theorem 7] completes the proof of the theorem.
Note that the corresponding counterpart of (5.6) attains the form

D∗S(x̄, ȳ)(v) =
{
∇xf(x̄, ȳ)∗w

∣∣ there is p ∈ Rl such that

0 = v +∇yL(x̄, ȳ, λ̄)∗w + (∇g(ȳ))∗p,

−∇g(ȳ)w ∈ D∗PΘ

(
g(ȳ) + λ̄

)(
− p−∇g(ȳ)w

)}
.

(5.9)

Let us now illustrate the statements of Theorem 5.3 and Theorem 5.4 by the
following example from second-order cone programming.

Example 5.5 (calculating coderivatives of solution maps in SOCPs).
Consider the GE as in Example 5.2, i.e.,

x ∈ y + N̂g−1(Θ)(y),

where g(y) := (1 + y3, y
2
2 , 1 + y2), Θ = K3, and (x̄, ȳ) = (0, 0). Then g(ȳ) = (1, 0, 1),

λ̄ = (0, 0, 0), Im∇g(ȳ) = R×{0}×R, and linTK3

(
g(ȳ)

)
= {(α, β, α)| α, β ∈ R}. This

ensures that ȳ is a nondegenerate point of g with respect to K3. Employing further
[33, Theorem 1(ii)], we calculate the regular coderivative D̂∗PΘ(g(ȳ) + λ̄) by

D̂∗PΘ

(
g(ȳ) + λ̄)(u) =

{
z ∈ R3

∣∣ u− z ∈ R+c1, 〈z, c1〉 ≥ 0
}
, (5.10)

where the spectral vector c1 := c1(g(ȳ) + λ̄) in this case is

c1 =
1

2
(1, 0,−1)>.
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Using (5.6) gives us the regular coderivative expression in the two equivalent forms:

D̂∗S(x̄, ȳ)(v) =

〈 v + α

 0

−1

1

 ∣∣∣α ∈ [1

2
(v2 − v3), 0

] if v3 ≥ v2,

∅ otherwise;

D̂∗S(x̄, ȳ)(v) =


−w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1 = −v1,

[
w2

w3

]
∈

〈 co

−
[
v2

v3

]
,−


v2 + v3

2
v2 + v3

2


 if v3 ≥ v2,

∅ otherwise


.

Likewise, on the basis of [33, Theorem 3(i)] we obtain that

D∗PΘ(z)(u) =

〈
co {u,A(z)u

}
if 〈u, c1〉 ≥ 0,{

u,A(z)u
}

otherwise,

where z := g(ȳ) + λ̄, and where

A(z) := P(c1)⊥(z) = I +
1

2

 −1 z̃T

‖z̃‖2

(z̃)
‖z̃‖2 − z̃(z̃)T

‖z̃‖22

 =

1/2 0 1/2
0 1 0

1/2 0 1/2


via the spectral decomposition of the vector z = g(ȳ) + λ̄; cf. (3.16) and (3.17) above.
It follows now from (5.9) that

D∗S(x̄, ȳ)(v) =


−w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w1 = −v1,

[
w2

w3

]
∈

〈 co

−
[
v2

v3

]
,−


v2 + v3

2
v2 + v3

2


 if v3 ≥ v2

−
[
v2

v3

]
,−


v2 + v3

2
v2 + v3

2


 otherwise


.

Remark 5.6 (modified solution map). Along with S we can define the mod-
ified solution map

S̃(x) :=
{
y ∈ Rm

∣∣ 0 ∈ f(x, y) +NΓ(y)
}

for Γ = g−1(Θ) and x ∈ Rn,

with the replacement of the regular normal cone N̂Γ(y) by the limiting one NΓ(y) in
(1.3). Observe, however, that under the imposed assumptions the set Γ is normally

regular on a neighborhood of ȳ, i.e., N̂Γ(y) = NΓ(y) for y near ȳ, and so both solution
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maps coincide for such y. This happens even if nondegeneracy is replaced by the
weaker qualification condition

NΘ(ȳ) ∩ ker∇g(ȳ)∗ = {0}, (5.11)

ensuring the strong amenability property of Γ near ȳ; see [37, Exercise 10.25]. Note
in this connection that the nondegeneracy condition in (A2) is mainly needed for
deriving the second-order chain rule of the equality type in Theorem 4.1 (as well as
in [32, Theorem 7]) while calculus rule of the inclusion type can be obtained with
replacing nondegeneracy by some other assumptions; see, e.g. [27]. Normal regularity
of the set Γ around ȳ is lost especially when Θ is nonconvex, and then the solution
maps S(y) and S̃(y) would be essentially different.

6. Applications. This section contains some applications of the results obtained
above on computing the generalized derivative/coderivative constructions for solution
maps to the following three important issues in variational analysis: isolated calmness,
optimality conditions for MPECs, and tilt stability in conic programming. Accordingly,
we split this section into three subsections.

6.1. Isolated calmness of solution maps. Given F : Rn →→ Rm, recall that it
has the isolated calmness property at (x̄, ȳ) ∈ gphF if there are neighborhoods U of
x̄ and V of ȳ and a constant κ ≥ 0 such that

F (x) ∩ V ⊂ {ȳ}+ κ‖x− x̄‖B for all x ∈ U. (6.1)

This well-posedness/stability property and its equivalent description as strong metric
subregularity of the inverse F−1 play a significant role in variational analysis and
optimization; see, e.g., [9] and the references therein.

It is known from [17] (cf. also [9, Theorem 4C.1]) that isolated calmness of an
arbitrary closed-graph multifunction F between finite-dimensional spaces at any point
(x̄, ȳ) ∈ gphF can be fully characterized via the graphical derivative (2.4) as follows:

DF (x̄, ȳ)(0) = {0}. (6.2)

Note that this form is similar to the limiting coderivative characterization (known also
as the Mordukhovich criterion [37, Theorem 9.40])

D∗F (x̄, ȳ)(0) = {0} (6.3)

of the well-recognized Aubin/Lipschitz-like property of F around (x̄, ȳ), which is equiv-
alent to the fundamental metric regularity property of the inverse F−1. The latter
criterion (6.3) has been widely used in numerous aspects of variational analysis, op-
timization, and their applications; see, e.g., [22, 37] with the references and com-
mentaries therein. It has been recently implemented in [32] to obtain a complete
characterization, entirely via the initial data, of the Aubin property of solution maps
to perturbed second-order cone programs on the basic of calculating the limiting
coderivative of the normal cone mapping D∗NΘ generated by the Lorentz cone.

Following this line and utilizing the graphical derivative calculations for the so-
lution map (1.3) in Theorem 5.1 allow us to derive, on the basic of (6.2), verifiable
characterizations of the isolated calmness property of S for the general convex cone
Θ in (1.3) and provide its implementation for Θ = Kl. To the best of our knowledge,
these results are first in the literature for isolated calmness in conic programming.
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Theorem 6.1 (isolated calmness of solution maps in perturbed conic
programming). Let (x̄, ȳ) ∈ gphS for the solution map (1.3) under the assumptions
of Theorem 3.3, and let λ̄ ∈ Rl be a unique Lagrange multiplier satisfying (5.1). Then
S enjoys the isolated calmness property at (x̄, ȳ) provided that u = 0 for any solution
(u, d) ∈ Rm × Rl of the system

0 = ∇yL(x̄, ȳ, λ̄)u+∇g(ȳ)∗d,

d = P ′Θ∗
(
g(ȳ) + λ̄;∇g(ȳ)u+ d

)
.

(6.4)

If in addition the partial Jacobian ∇xf(x̄, ȳ) is surjective, then the above condition is
also necessary for the isolated calmness of S at (x̄, ȳ).

Proof. It follows directly by substituting the graphical derivative calculations
from Theorem 5.1 into the isolated calmness criterion (6.2).

In the case of the Lorentz cone Θ = Kl the complete calculation of the directional
derivative P ′Θ∗ provided in Proposition 3.4 leads us to the isolated calmness charac-
terization of Theorem 6.1 entirely via the initial data of SOCPs. Let is illustrate this
by the following example.

Example 6.2 (verifying isolated calmness for second-order cone pro-
grams with no Aubin property). Consider the solution map S : R →→ R2 of the
generalized equation (1.2) with the following initial data:

f(x, y) = (y2,−x+ y1), Γ = K2, and (x̄, ȳ) = (0, 0) ∈ R3.

In this case Θ = Γ = K2 and g is the identity map; thus all assumptions of The-
orem 3.3, used in Theorems 5.1 and 6.1, are satisfied. It is easy to see that the
only solution to the corresponding KKT system (5.1) is λ̄ = 0 ∈ R2. Observe that
(x̄, ȳ) ∈ gphS and that S(x) = ∅ for all x < 0, which shows that the Aubin property
is violated for the solution map S around (x̄, ȳ); this is obviously confirmed by (6.3).
On the other hand, we get from (5.2) that

DS(x̄, ȳ)(0) ⊂

{
u =

(
u1

u2

)
∈ R2

∣∣∣∣∣ −
(
u2

u1

)
= P ′Θ∗

(
0;

[
u1 − u2

u2 − u1

])
= PΘ∗

([
u1 − u2

u2 − u1

])}
,

where the last equality comes from Proposition 3.4. It is not hard to check that
right-hand side of the last equation reduces to {0}. Indeed, it follows from the clas-
sical characterization of projections onto convex cones that any u ∈ R2 from the
aforementioned set satisfies the equality

0 =

〈(
u1 − u2

u2 − u1

)
+

(
u2

u1

)
,−

(
u2

u1

)〉
= −2u1u2.

Splitting into the two possible cases of u1 = 0 and u2 = 0, we deduce from the equality

−

(
u2

u1

)
= PΘ∗

([
u1 − u2

u2 − u1

])

that u = (0, 0) in both cases. This ensures by the graphical derivative criterion (6.2)
that S possesses the isolated calmness property at (x̄, ȳ).
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6.2. Mathematical programs with equilibrium constraints. The main
concern of this subsection is the following general optimization problem, which belongs
to the class of mathematical programs with equilibrium constraints (MPECs):

minimize ϕ(x, y)
subject to

0 ∈ f(x, y) + N̂Γ(y)

(6.5)

with the cost function ϕ : Rn × Rm → R and the constraints described by the gener-
alized equation (1.2) under the standing assumptions formulated in Section 1. Opti-
mization problems of this type have drawn a strong attention in the literature, mainly
in the case of convex sets Γ when the generalized equation in (6.5) reduces to the clas-
sical parameterized variational inequality; see the books [20, 22, 31] and the references
therein. When the set Γ in nonconvex, the vast majority of MPECs models studied
and applied in optimization are described in form (6.5) with replacing N̂Γ(y) by ei-
ther the limiting normal cone (2.3) or its convex closure, which is the normal cone of
Clarke. To the best of our knowledge, a systematic study of MPEC models with the
regular normal cone in (6.5) has started quite recently in [15] and [14]. These papers
are devoted to the study of the parameterized solution maps (1.3) and applications to
necessary optimality conditions in MPECs (6.5) in the case of Γ being a set of feasible
solutions to problems of nonlinear programming with C2 inequality constraints. The
next theorem seems to be the first result in this direction for MPECs described via the
regular coderivative of the normal cone mapping to feasible sets in conic programming.
Note that it immediately implies a similar result with replacing D̂∗NΘ by the limiting
coderivative D∗NΘ, being significantly better that the latter one due to the intrinsic
irregularity of the normal cone mappings; see Remark 4.5.

Theorem 6.3 (necessary optimality conditions for MPECs governed by
regular normal cone mappings in conic programming). Let (x̄, ȳ) ∈ gphS be a
local optimal solution to MPEC (6.5), and let λ̄ ∈ Rl be a unique Lagrange multiplier
satisfying (5.1). In addition to the standing assumptions on f and Γ formulated in
Section 1, suppose that ϕ is (Fréchet) differentiable at (x̄, ȳ) and that the operator
∇xf(x̄, ȳ) is surjective. Then there exists an MPEC multiplier µ̄ ∈ Rm such that

0 = ∇xϕ(x̄, ȳ) +∇xf(x̄, ȳ)∗µ̄,

0 ∈ ∇yϕ(x̄, ȳ) +∇yL(x̄, ȳ, λ̄)∗µ̄+∇g(ȳ)∗D̂∗N̂Θ

(
g(ȳ), λ̄

)(
∇g(ȳ)µ̄

)
.

(6.6)

Proof. MPEC (6.5) can be obviously rewritten in the unconstrained form

minimize φ(x, y) := ϕ(x, y) + δgphS(x, y) over all (x, y) ∈ Rn × Rm (6.7)

via the indicator function δgphS of the graph of the solution map (1.3). Applying to

the optimal solution (x̄, ȳ) of (6.7) the generalized Fermat rule 0 ∈ ∂̂φ(x̄, ȳ) via the
regular subdifferential and then the regular subdifferential sum rule for ϕ+δgphS with
the differentiable function ϕ (see, e.g., [22, Propositions 1.107 and 1.114]), we get

0 ∈ ∇ϕ(x̄, ȳ) + N̂gphS(x̄, ȳ),

which amounts by virtue of (2.5) to the regular coderivative condition

0 ∈ ∇xϕ(x̄, ȳ) + D̂∗S(x̄, ȳ)
(
∇yϕ(x̄, ȳ)

)
. (6.8)
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To complete the proof of the theorem, it remains to employ Theorem 5.3 on the
calculation of the regular coderivative of the solution map in (6.8).

Remark 6.4 (necessary optimality conditions for nonsmooth MPECs
associated with conic programming). Following the proof of Theorem 6.3 and
using more involved results from nonsmooth optimization together with Theorem 5.3,
we can consider MPECs (6.5) for nonsmooth cost functions and derive for them both

upper subdifferential necessary optimality conditions via the upper version ∂̂+ϕ(z̄) :=

−∂̂(−ϕ)(z̄) of the regular subdifferential and lower subdifferential necessary optimality
conditions via the limiting subdifferential (2.8); cf. [22, Propositions 5.2 and 5.3] in
the general constrained framework.

For some applications it is more convenient to present necessary optimality con-
ditions of Theorem 6.3 via the regular coderivative of the metric projection operator
PΘ onto the underlying cone Θ.

Corollary 6.5 (necessary optimality conditions for MPECs via the
regular coderivative of the projection operator). In the setting of Theorem 6.3
there are multipliers µ̄ ∈ Rm and ν̄ ∈ Rl such that we have the inclusion

−∇g(ȳ)µ̄ ∈ D̂∗PΘ

(
g(ȳ) + λ̄

)(
−∇g(ȳ)µ̄− ν̄

)
(6.9)

along with the equality system

0 = ∇xϕ(x̄, ȳ) +∇xf(x̄, ȳ)∗µ̄,

0 = ∇yϕ(x̄, ȳ) +∇yL(x̄, ȳ, λ̄)∗µ̄+∇g(ȳ)∗ν̄.
(6.10)

Proof. It follows immediately from the relationships between the projection and
normal cone operators for convex sets used in the proof of Corollary 4.2.

As discussed in Remark 4.3, the results obtained in [33] and [8] allow us to calcu-
late the regular coderivative of the projection mapping in (6.9) entirely via the initial
data for the cases of the Lorentz and SDP cones Θ, respectively, and hence effectively
implement the MPEC necessary optimality conditions of Corollary 6.5 in these set-
tings. Let us illustrate it by the following example for the MPEC generated by the
Lorentz cone Θ = K3 in (6.5).

Example 6.6 (illustrating the MPEC optimality conditions for the Lorentz
cone). Consider MPEC (6.5) with x ∈ R3, y ∈ R3, and

ϕ(x, y) := y1 − y2 +
1

2
y2

3 ,

in which the equilibrium is governed by the GE from Example 5.5. It is easy to see
that the pair (x̄, ȳ) = (0, 0) is a local minimizer of this MPEC. Since all assumptions of
Theorem 6.3 are fulfilled, we can invoke Corollary 6.5 and conclude from the equations
(6.10) that µ̄ = 0, ν̄1 = −1, and ν̄2 = 1. Thus it remains to find ν̄3 ∈ R such that the
vector ν̄ = (−1, 1, ν̄3) satisfies relation (6.9), which reads in this case as

0 ∈ D̂∗PΘ

(
g(ȳ) + λ̄

)
(−ν̄).

It holds by (5.10) for ν̄3 = 0, which confirms therefore that the solution (x̄, ȳ) indeed
fulfills the optimality conditions of Corollary 6.5.
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6.3. Tilt stability in conic programming. This part of the paper is devoted
to the application of the results obtained above as well as related developments in
second-order variational analysis to tilt stability of conic programs written as

minimize ϕ(y) subject to y ∈ Γ = g−1(Θ) (6.11)

under the standing assumptions on the initial data imposed in Section 1.
Recall that the concept of tilt stability of local minimizers was introduced by

Poliquin and Rockafellar [34] in the extended-real-valued format of unconstrained
optimization as in Definition 6.7 and characterized therein in terms of the second-order
subdifferential (2.7) of the extended-real-valued objective. As discussed in [34], the
major motivation to consider tilt stability came from the requirement to characterize
strong manifestations of optimality that support computational work via the study of
how optimal solutions react to linear shifts (tilt perturbations) of the problem data.

Definition 6.7 (tilt stability of local minimizers for extended-real-valued
functions). Let φ : Rm → R be an extended-real-valued function finite at ȳ. We say
that ȳ is a tilt-stable local minimizer of φ if there is γ > 0 such that the mapping

M : p 7→ argmin
{
φ(y)− φ(ȳ)− 〈p, y − ȳ〉

∣∣ ‖y − ȳ‖ ≤ γ}
is single-valued and Lipschitzian on some neighborhood of p = 0 with M(0) = {ȳ}.

It is clear that constrained optimization problems can be written in the extended-
real-valued unconstrained format of Definition 6.7 as, e.g., in (6.7). On the other
hand, deducing results for constrained problems from those obtained in [34] in the
unconstrained case requires second-order generalized differential calculus as well as
calculating the corresponding second-order constructions in particular situations un-
der consideration, which was not previously available. Note also that yet another type
of tilt stability characterizations was obtained in [4, Theorem 5.36] in the framework
of conic programming via the so-called “uniform second-order growth conditions with
respect to tilt perturbation” without employing generalized differentiation.

The recent years have witnessed strong interest in tilt stability and its applica-
tions from several viewpoints of new developments in variational analysis and gen-
eralized differentiation; see, e.g., [10, 11, 19, 25, 26, 29, 30]. The closest to our
developments in this paper are those presented in [25, 26, 29, 30], where a number
of necessary conditions, sufficient conditions, and complete characterizations of tilt
stability were obtained on the basis of second-order generalized differential calculus
for various classes of constrained optimization problems including classical nonlin-
ear programs with equality and inequality constraints, mathematical programs with
polyhedral constraints, and the so-called extended nonlinear programs with C2 data.
We are not familiar with any results in this direction for general or special classes of
problems of conic programming of type (6.11), which are under consideration here.

Note that in conic programming the tilt stability of a local optimal solution ȳ ∈ Γ
to (6.11) amounts to the single-valuedness and Lipschitz continuity of the mapping

M : p 7→ argmin
{
ϕ(y)− ϕ(ȳ)− 〈p, y − ȳ〉

∣∣ y ∈ Γ, ‖y − ȳ‖ ≤ γ
}

(6.12)

around the nominal parameter value p = 0 with some γ > 0 and M(0) = {ȳ}. Prior
to deriving second-order characterizations of tilt stability in (6.11), let us give an
example showing that isolated local minimizers in the standard sense may not be
tilt-stable for simple cone programs described by the Lorentz cone Θ = K3 in (6.11).
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Example 6.8 (not tilt-stable isolated local minimizers in second-order
cone programming). Consider the following second-order cone program:

minimize ϕ(y) := y3
1 + y1 − y3 subject to y = (y1, y2, y3) ∈ K3.

Thus in this case Θ = Γ = K3 and g is the identity map. It is easy to check that
ȳ = (0, 0, 0) is the only optimal solution of the problem, which is an isolated minimizer.
Fix any number γ > 0 and choose the sequence pk =

(
0, 0, 3

k

)
∈ R3 as k ∈ N. Then

for any y ∈ K3 with ‖y − ȳ‖ ≤ γ and for any k ∈ N we have the inequalities

ϕ(y)− 〈pk, y〉 = y3
1 + y1 −

(
1 +

3

k

)
y3 ≥ y3

1 −
3

k
y1 ≥ −

2

k
√
k
,

which become equalities for yk =
(

1√
k
, 0, 1√

k

)
. Note furthermore that

‖yk − ȳ‖ =

√
2√
k
>

√
k

3
‖pk − 0‖ for all k ∈ N,

which shows that the argminimum mapping (6.12) is not Lipschitz continuous. Thus
the minimizer ȳ is not tilt-stable for this cone-constrained program.

The next theorem provides a characterization of tilt-stable minimizers for general
conic programs (6.11) via the limiting coderivative of the normal cone mapping to Γ.

Theorem 6.9 (tilt stability in the second-order framework of conic pro-
gramming). Let ȳ ∈ Γ be a feasible solution to conic program (6.11) under our
standing assumptions. Then ȳ a tilt-stable local minimizer of (6.11) if and only if

〈w,∇2ϕ(ȳ)w〉 > −〈u,w〉 whenever u ∈ D∗NΓ

(
ȳ,−∇ϕ(ȳ)

)
(w) and w 6= 0. (6.13)

Proof. Rewriting the conic program (6.11) in the unconstrained format

minimize φ(y) := ϕ(y) + δΓ(y) for all y ∈ Rm (6.14)

with the extended-real-valued objective φ, we get from [34, Theorem 1.3] that ȳ ∈ Γ
is a tilt-stable local minimizer to (6.14), and hence to (6.11), if and only if

〈u,w〉 > 0 whenever u ∈ ∂2φ(ȳ, 0) with w 6= 0 (6.15)

in terms of the limiting second-order subdifferential (2.7), provided that 0 ∈ ∂φ(ȳ) and
the function φ is prox-regular and subdifferentially continuous at (ȳ, 0) in the sense of
[37, Definition 13.27 and Definition 13.28], respectively. It follows from the elementary
sum rule for the limiting subdifferential (see, e.g., [22, Proposition 1.107(ii)]) that the
stationary condition 0 ∈ ∂φ(ȳ) for the function φ in (6.15) is equivalent to 0 ∈ ∇ϕ(ȳ)+
NΓ(ȳ). Furthermore, it is easy to see that the C2-reducibility and nondegeneracy
assumptions in (A1) and (A2) ensure that the set Γ is strongly amenable at ȳ in
the sense of [37, Definition 10.23(b)]. This implies, by invoking [37, Example 10.24
and Proposition 13.32], that the function φ is both prox-regular and subdifferentially
continuous at (ȳ, 0). To complete the proof of the theorem, it remains to use the
second-order subdifferential sum rule from [22, Proposition 1.121] telling us that

∂2(ϕ+ δΓ)(ȳ, 0)(w) = ∇2ϕ(ȳ)w +D∗NΓ

(
ȳ,−∇ϕ(ȳ)

)
(w) for all w ∈ Rm (6.16)
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and therefore (6.15) is equivalent to the claimed condition (6.13).
Employing next the second-order chain rule for the limiting constructions in (6.13)

obtained in [32, Theorem 7] under the standing assumptions made (including the
crucial nondegeneracy condition), we arrive at the following characterization of tilt-
stable minimizers in the general problem (6.11) of conic programming expressed in
terms of the initial problem data.

Theorem 6.10 (characterization of tilt-stable local minimizers for gen-
eral conic programs). Let ȳ ∈ g−1(Θ) satisfy all the assumptions of Theorem 6.9,
and let λ̄ ∈ Θ∗ ⊂ Rl be a unique Lagrange multiplier satisfying the KKT system

∇yL(ȳ, λ) = 0, 〈λ, g(ȳ)〉 = 0 (6.17)

with the Lagrangian L(y, λ) := ϕ(y)+ 〈λ, g(y)〉. Then ȳ is a tilt-stable local minimizer
of (6.11) if and only if for all w ∈ Rm \ {0} we have the relationship

〈w,∇2
yyL(ȳ, λ̄)w〉+ 〈∇g(ȳ)w,D∗NΘ

(
g(ȳ), λ̄

)(
∇g(ȳ)w

)
〉 > 0. (6.18)

Proof. It follows from the representation of the limiting coderivative D∗NΓ via
the second-order chain rule established in [32, Theorem 7] which can be combined
with condition (6.13) and expressed via the Lagrangian L arising in (6.17).

If the constraint mapping g in the conic program (6.11) is Θ-convex as defined at
the beginning of Section 3, we get the following sufficient condition for tilt stability.

Corollary 6.11 (sufficient condition for tilt-stable minimizers of conic
programs with Θ-convex constraints). In addition to the assumptions of Theo-
rem 6.10, suppose that the mapping g is Θ-convex. Then the condition

〈w,∇2ϕ(ȳ)w〉 > 0 whenever ∇g(ȳ)w ∈ domD∗NΘ

(
g(ȳ), λ̄

)
and w 6= 0 (6.19)

is sufficient for ȳ to be a tilt-stable local minimizer of the conic program (6.11).
Proof. It follows from the monotonicity result of [34, Theorem 2.1] and the max-

imal monotonicity of the normal cone mapping in convex analysis that

〈∇g(ȳ)w,D∗NΘ

(
g(ȳ), λ̄

)(
∇g(ȳ)w

)
≥ 0 for all w ∈ Rm.

Furthermore, it follows from the inclusion λ̄ = (λ̄1, . . . , λ̄l) ∈ Θ∗ and the Θ-convexity
description (3.1) for C2 mappings that

〈w,∇2
yyL(ȳ, λ̄)w〉 = 〈w,∇2ϕ(ȳ)w〉+

l∑
i=1

λ̄i〈w,∇2gi(ȳ)w〉 ≥ 〈w,∇2ϕ(ȳ)w〉.

Thus condition (6.19) implies (6.18), and we complete the proof of the corollary.

The tilt stability theory developed above can be related to stability analysis of GE
(1.2) as follows. With program (6.11) we associate its canonically perturbed optimality
condition and the corresponding solution map

S(x) =
{
y ∈ Rm

∣∣ x ∈ ∇ϕ(y) + N̂Γ(y)
}
, (6.20)

which is in form (1.3) with f(x, y) = ∇ϕ(y) − x. On the basis of the obtained
characterization of tilt stability and a result from the recent paper [19] we can now
characterize another important stability property of S.
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Recall that a multifunction F : Rn ⇒ Rm has a single-valued Lipschitzian localiza-
tion at (ū, v̄) ∈ gphF if there exist neighborhoods U of ū, V of v̄, and a single-valued
Lipschitzian mapping ρ : U → Rm such that ρ(ū) = v̄ and

F (u) ∩ V =
{
ρ(u)

}
for all u ∈ U .

By [9, Section 3G] the respective inverse mapping F−1 : Rm ⇒ Rn is then called
strongly metrically regular at (v̄, ū).

Theorem 6.12 (existence of single-valued Lipschitzian localization of S).
Let ȳ ∈ g−1(Θ) be a local minimizer of (6.11) under the validity of the standing
assumptions of this section, and let λ̄ ∈ Θ∗ ⊂ Rl be a unique Lagrange multiplier
satisfying the KKT system (6.17). Then the solution map S given by (6.20) has a
single-valued Lipschitzian localization at (x̄, ȳ) with x̄ = 0 if and only if the second-
order condition (6.18) is satisfied.

Proof. It follows from Theorem 6.10 under the assumptions made that condition
(6.18) is equivalent to ȳ being a tilt-stable local minimizer of (6.11). Moreover, as
mentioned in the proof of Theorem 6.9, the extended-real-valued objective φ = ϕ+δΓ
is prox-regular and subdifferentially continuous at (ȳ, 0). We can thus invoke [19,
Proposition 7.2], which states in this case the equivalence between tilt stability of ȳ
in (6.11) and strong metric regularity of the subgradient mapping ∂φ at (ȳ, 0). Since
our assumptions ensure the equalities

∂φ(y) = ∇ϕ(y) +NΓ(y) = ∇ϕ(y) + N̂Γ(y)

for all y close to ȳ, it follows that for these vectors y we have the equivalence

x ∈ ∂φ(y)⇐⇒ y ∈ S(x),

which thus completes the proof of the theorem.
Having in hands the more detailed calculations of the limiting coderivative D∗NΘ

in the cases of the Lorentz cone Θ = Kl and of the SDP cone Θ = Sl+ discussed after
Corollary 4.2 and in Remark 4.3, respectively, we can obtain further specifications of
the tilt stability characterization from Theorem 6.10 for second-order cone programs
and semidefinite programs expressed entirely via their initial data.

Remark 6.13 (tilt stability in conic programming via composite opti-
mization). In [29, 30] the so-called composite optimization approach was suggested
to analyze tilt stability in constrained optimization and was applied there to special
classes of problems in mathematical programming. In this approach the constrained
problem (6.11) can be equivalently represented in the unconstrained composite format

minimize φ(y) := ϕ(y) + (δΘ ◦ g)(y), y ∈ Rm, (6.21)

via the composition of the extended-real-valued indicator function δΘ : Rl → R and
the constraint mapping g : Rm → Rl. In fact, (6.21) is yet another form of (6.14),
which emphasizes the composite structure of Γ = g−1(Θ) in (6.11). On the basis
of this approach and the second-order calculus rules developed in [29, 30], verifiable
characterizations of tilt stability were established in these papers for mathematical
programs with a certain polyhedral structure of constraints such as classical nonlinear
programs (NLPs), extended nonlinear programs (ENLPs), and mathematical pro-
grams with polyhedral constraints (MPPCs) for which a polyhedral version of the
nondegeneracy condition played a crucial role. However, such a polyhedrality is not
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the case for the general conic constraint under consideration, and thus we cannot make
a full use of these results. Combining them with [32, Theorem 7] allows us to recover
the second-order characterizations of tilt stability in conic programming presented in
Theorem 6.10 and Corollary 6.11 above.

7. Concluding Remarks. This paper presents calculations of the major deriva-
tive and coderivative constructions of variational analysis for set-valued solution maps
to parameterized generalized equations/KKT systems associated with conic constraints.
The results established in this direction are based on new second-order calculus rules
of generalized differentiation derived in the paper, which are of their own interest. The
obtained derivative and coderivative formulas are applied to deriving sharp necessary
optimality conditions for a class of MPECs with conic constraints and to character-
izing two important stability properties, namely: isolated calmness of solution maps
and tilt stability of local optimal solutions. These general results are specified for
an important class of equilibria with second-order cone constraints and illustrated by
examples. Moreover, they open a possibility to deal efficiently also with SDPs.

The developed approaches and results can be extended to more general calculus
and application settings in both finite and infinite dimensions, which has been dis-
cussed in the remarks given above. In these concluding remarks we would like to point
out two lines of a possible future research work associated with conic constraints.

The first one concerns the study of full stability [18] of local optimal solutions to
conic programs. Recall that the full stability concept is an extension of tilt stability
in the sense that the perturbed problem

minimize φ(q, y)− 〈p, y〉 over y ∈ Rm

depends on the parameter pair (q, p). In the vein of [34], characterizations of full
stability were established in [18] in the unconstrained framework via a certain par-
tial version of the second-order subdifferential (2.7) and then were developed in [30]
for some classes of constrained optimization problems by the composite approach
discussed in Remark 6.13. The results obtained in [30] require a certain polyhedral
structure of constraints, which is unfortunately not available in major classes of equi-
libria with conic constraints like, e.g., SOCPs and SDPs. The derivation of a suitable
counterpart of Theorem 6.9 is thus definitely not straightforward.

Another challenging issue concerns relaxing the nondegeneracy assumption. Some
results in this direction were obtained in [27] under condition (5.11) and a special
second-order qualification condition and also in [14, 15] for classical nonlinear pro-
grams under the combination of the Mangasarian-Fromovitz and the constant rank
constraint qualifications. We plan to proceed further in both of these directions.
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[5] J. F. Bonnans and H. Raḿırez C., Perturbation analysis of second-order cone programming
problems. Math. Program., 104 (2005), pp. 205–227.



SECOND-ORDER VARIATIONAL ANALYSIS IN CONIC PROGRAMMING 29
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