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Abstract. We discuss the l2-lp (with p ∈ (0, 1)) matrix minimization for re-
covering low rank matrix. A smoothing approach is developed for solving
this non-smooth, non-Lipschitz and non-convex optimization problem, in which
the smoothing parameter is used as a variable and a majorization method is
adopted to solve the smoothing problem. The convergence theorem shows that
any accumulation point of the sequence generated by the smoothing approach
satisfies the necessary optimality condition for the l2-lp problem. As an appli-
cation, we use the proposed smoothing majorization method to solve matrix
completion problems. Numerical experiments indicate that our method is very
efficient for obtaining the high quality recovery solution for matrix completion
problems.
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1. Introduction

Recently, low rank minimization problem has attracted wide attention in many areas of application
science and engineering, such as computer vision [1], Euclidean space embedding [2], machine learning
[3, 4, 5] and so on. There are numerous models used to describe the low rank minimization problem, the
simplest one of them is the rank minimization problem

minimize rank(X)
subject to X ∈ C, (1.1)

where C is a nonempty closed convex subset of Mm×n. The above problem (1.1) was considered by
Fazel [6], in which the computational complexity of (1.1) is analyzed and it is proved to be an NP-hard
problem. For solving Problem (1.1), Fazel et al. [6, 7] suggested to approximate the rank function by the
nuclear norm and proposed the following convex optimization problem

minimize ‖X‖∗
subject to X ∈ C, (1.2)
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where ‖X‖∗ denotes the nuclear norm of X, which is defined as the sum of all the singular values of X.
Many important problems can be formulated as (1.2), the most popular is matrix completion problem

minimize ‖X‖∗
subject to Xij = Mij , (i, j) ∈ Ω,

(1.3)

where Ω is an index set of the entries of M . Various algorithms have been designed to solve the matrix
completion problem, such as singular value thresholding algorithm (SVT) [8], fixed-point continuation
algotithm (FPCA) [9], accelerated proximal gradient algorithm [10] and alternating-direction-type algo-
rithm [11].

If we define PΩ to denote the orthogonal projector onto the span of matrices vanishing outside of Ω
so that the (i, j) entry of PΩ(X) is equal to Xij if (i, j) ∈ Ω and zero otherwise, Problem (1.3) is written
as

minimize ‖X‖∗
subject to PΩ(X) = PΩ(M). (1.4)

Furthermore, if we use the general linear operator A and vector b to replace the orthogonal projector and
PΩ(M) respectively, Problem (1.4) is generalized to the following form

minimize ‖X‖∗
subject to A(X) = b,

which can be viewed as a convex relaxation of affine rank minimization problem

minimize rank(X)
subject to A(X) = b.

Candès and Tao [12] and Donoho [13] show that the affine rank minimization problem under certain
condition may be solved through the following convex problem

minimize ‖X‖∗
subject to ‖b−A(X)‖2 ≤ δ,

(1.5)

where δ > 0 evaluates the uncertainty about the observation b with noise. Instead of Problem (1.5),
people often consider the problem as follows

minimize
1
2
‖A(X)− b‖22 + τ‖X‖∗

subject to X ∈Mm×n.
(1.6)

The above problem (1.6) is called the nuclear norm regularized linear least square problem, which is
regarded as the convex approximation to the problem

minimize
1
2
‖A(X)− b‖22 + τ · rank(X)

subject to X ∈Mm×n.
(1.7)

In this paper, we will consider another approximation to Problem (1.7), which is the following l2-lp
model

(P)





minimize F (X) :=
1
2
‖A(X)− b‖22 +

τ

p
‖X‖p

p

subject to X ∈Mm×n,
(1.8)

where A is a linear operator from Mm×n to Rq, which is given by

A(X) := (〈A1, X〉, 〈A2, X〉, · · · , 〈Aq, X〉)T
,

where Ai ∈ Mm×n(i = 1, 2, · · · , q) and b ∈ Rq. The function ‖ · ‖p
p (0 < p < 1) is not a norm and it is

defined as

‖X‖p
p :=

m∑

i=1

σp
i (X), (1.9)
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where σi(X)(i = 1, 2, · · · ,m) are the singular values of X. It is easy to show that the function ‖X‖p
p

defined in (1.9) is an intermediate value between the rank function

rank(X) :=
m∑

i=1

σ0
i (X) = the number of nonzero singular values.

and the nuclear norm

‖X‖∗ :=
m∑

i=1

σi(X) = the sum of all singular values.

If let m = n and X is a diagonal matrix, Problem (1.8) is reduce to

minimize
1
2
‖Ax− b‖22 +

τ

p
‖x‖p

p

subject to x ∈ Rn,
(1.10)

where x denotes the n dimensional vector whose components are the entries of diagonal matrix X and A
is a q × n matrix. The term ‖x‖p

p in (1.10), in some sense, characterizes the sparsity of the solutions of
Ax = b. Problem (1.10) is extensively studied in recent years, for instance Chen el al. [14] gives the lower
bound estimates of nonzero entries in solutions of (1.10) and [15] introduces the smoothing technique to
tackle the non-convex, non-Lipschize regularization term ‖x‖p

p and gives a SQP-type algorithm. Desides
these, many numerical algorithms have been designed for recovering sparse vectors, see for example
[16, 17, 18].

Back to Problem (1.8), a few authors have already made contributions. Mohan el al. [19] and Lai
el al. [20] use the skill of iterative reweighted least squares (IRLS-p) and respectively combine with the
assumption of τ−Null space property (τ−NSP) [19] and the certain restricted isometry properties (RIPs)
[21] for the operator A to analyze the convergence of Problem (1.8). However, the lower bound analysis
for the singular values at the optimal solution of Problem (1.8) is still unknown, which is an important
motivation that stimulates us to study it.

This paper is organized as follows. In Section 2, we present the lower bound for the singular values at
the local optimal solution of Problem (P) defined in (1.8). Next, the properties of the smoothing function
for the objective function will be analyzed and the approximation of the smoothing model to Problem (P)
is established in Section 3. In Section 4, we will design an algorithm for the smoothing model using the
idea of majorization method. As an important application, we use the smoothing majorization method
to solve a large number of matrix completion problems and report numerical results in Section 5. Finally,
we presents some concluding remarks.

2. Lower Bound Analysis

Let Mm×n be the space of all m × n matrices equipped with the standard trace inner product
〈X, Y 〉 := trace(XT Y ) and its induced Frobenius norm ‖ · ‖F . The operator norm of a given matrix is
denoted by ‖ ·‖. Without loss of generality, we assume m ≤ n throughout this paper. Let Om,On denote
the set of all m dimensional orthogonal matrices and the set of all n dimensional orthogonal matrices,
respectively. Let X admit the following singular value decomposition (SVD):

X = U(X)[Diagσ(X) 0]V (X)T . (2.1)

where U(X) ∈ Om, V (X) ∈ On. σ(X) := (σ1(X), σ2(X), · · · , σm(X))T and σ1(X) ≥ σ2(X) ≥ · · · ≥
σm(X) ≥ 0 to denote the singular values of X (counting multiplicity) being arranged in non-increasing
order. And Diagσ(X) is defined as

Diagσ(X) :=




σ1(X)
σ2(X)

. . .

σm(X)


 .
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For simplicity, we denote Diagσ(X) by Σ(X). Hence, (2.1) can be written as

X = U(X)[Σ(X) 0]V (X)T . (2.2)

The set of such matrices (U(X), V (X)) in (2.2) is denoted by Om,n(X), i.e.

Om,n(X) :=
{
(U, V ) ∈ Om ×On : X = U [Σ(X) 0]V T

}
.

If X∗ is a local minimizer of Problem (P) and rank(X∗) = r, then

σ1(X∗) ≥ σ2(X∗) ≥ · · · ≥ σr(X∗) > 0 = σr+1(X∗) = · · · = σm(X∗).

Furthermore, X∗ has the following SVD:

X∗ = U∗[Σ∗ 0](V ∗)T , Σ∗ = Diag[(σ1(X∗), σ2(X∗), · · · , σr(X∗), 0, · · · , 0︸ ︷︷ ︸
m−r

)T ].

and
Om,n(X∗) =

{
(U, V ) : X∗ = U [Σ∗ 0]V T

}
. (2.3)

Now we give an important lemma in this paper, from which a bridge between (P) and the auxiliary
vector problem defined below will be built.

Lemma 2.1 For any pair (U∗, V ∗) ∈ Om,n(X∗), where Om,n(X∗) is defined by (2.3), the vector z∗ :=
(σ1(X∗), σ2(X∗), · · · , σr(X∗))T ∈ Rr is a local minimizer of the following problem

minimize ϕ(z) := F (U∗[Diag(z, 0m−r) 0](V ∗)T )
subject to z ≥ 0.

(2.4)

Moreover, the first and second order necessary conditions of (2.4) at z∗ are respectively given by

∇xϕ(z∗) = 0 (2.5)

and
∇2

xϕ(z∗) º 0, (2.6)

where ∇2
xϕ(z∗) º 0 means that the matrix ∇2

xϕ(z∗) is positive semidefinite.

Proof. Since σi(X∗) > 0(i = 1, 2, · · · , r), z∗ is a feasible point of the above problem (2.4). It is easy to
show that

ϕ(z∗) = F (U∗[Diag(z∗, 0m−r) 0](V ∗)T )
= F (X∗)
≤ min

{
F (X) : X = U∗[Diag(z, 0m−r) 0](V ∗)T , z ≥ 0

}

= min {ϕ(z) : z ≥ 0} ,

where the third inequality uses the fact that X∗ is a local minimizer of Problem (P), which proves the
first part of the lemma.

Since z∗ lies in the interior of the feasible set {z : z ≥ 0}, the constraint z ≥ 0 is inactive at z∗. Hence,
the problem (2.4) becomes a unconstrained optimization problem at the neighborhood of z∗. By the
first-order and second-order necessary optimality conditions for the unconstrained optimization problem,
we obtain (2.5) and (2.6). ¤

Note that Lemma 2.1 gives the optimality condition for the auxiliary vector problem (2.4), which will
be used to analyze the lower bound for the nonzero singular value of the local minimization point X∗ of
the low rank problem (P).
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If we denote the matrix Ã as follows

Ã :=




ã1
11 ã1

22 · · · ã1
rr

ã2
11 ã2

22 · · · ã2
rr

...
...

...
ãq
11 ãq

22 · · · ãq
rr


 ,

where ãi
jj := [(U∗)T AiV

∗]jj (i = 1, 2, · · · , q and j = 1, 2, · · · , r). Problem (2.4) is expressed as a simple
bound-constrained optimization problem (see Appendix A)

minimize ϕ(z) =
1
2
‖Ãz − b‖22 +

τ

p

r∑

i=1

zp
i

subject to z ≥ 0.

(2.7)

Note that from the original Problem (P) to Problem (2.7), the number of variables is tremendously
decreased and the low rank problem is converted into the corresponding vector problem. Problem (2.7)
is similar to Problem (1.10), but it has nonnegative variable constraints.

Corollary 2.2 The first order necessary condition of Problem (2.7) at z∗ ∈ Rr can be written as follows

ÃT (Ãz∗ − b) + τ(z∗)p−1 = 0, (2.8)

where (z∗)p−1 =
(
σp−1

1 (X∗), σp−1
2 (X∗), · · · , σp−1

r (X∗)
)T

.

Proof. The conclusion is easy to obtain from Lemma 2.1 to obtain the conclusion. ¤

Finally, we use the equality (2.8) of Corollary 2.2 to give the lower bound for the singular values of
the optimal solution X∗ to Problem (P). Let X0 be a given matrix.

Theorem 2.1 Let L̃ := κ

(
τ

‖Ã‖
√

2F (X0)

) 1
1−p

and rank(X∗) = r, where X∗ is a local minimizer of

Problem (P) with F (X∗) ≤ F (X0). Then

for any i ∈ {1, 2, · · · ,m}, σi(X∗) < L̃ ⇒ σi(X∗) = 0,

where κ :=
(

1
2

) 1
1−p

< 1. Meanwhile, the rank of X∗ is bounded by

rank(X∗) ≤ min
(

m,
pF (X0)
τ(L̃)p

)
.

Proof. By the fact that F (X∗) ≤ F (X0), we have

‖ÃT (A(X∗)− b) ‖22 ≤ ‖Ã‖2
(
‖A(X∗)− b‖22 +

2τ

p
‖X‖p

p

)

= 2‖Ã‖2F (X∗)
≤ 2‖Ã‖2F (X0). (2.9)

By the equation (2.8) in Corollary 2.2 and (2.9), we have

τσp−1
r (X∗) ≤ τ




r∑

j=1

[
σp−1

j (X∗)
]2




1
2

= τ‖(z∗)p−1‖2
= ‖ÃT (Ãz∗ − b)‖2
= ‖ÃT (A(X∗)− b) ‖2
≤ ‖Ã‖

√
2F (X0).
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Note that p ∈ (0, 1) implying

σr(X∗) ≥
(

τ

‖Ã‖
√

2F (X0)

) 1
1−p

> κ

(
τ

‖Ã‖
√

2F (X0)

) 1
1−p

= L̃.

Hence, all nonzero singular values of X∗ are no less than L̃. That is, if σi(X∗) < L̃, we have σi(X∗) = 0.

Now we turn to the proof of the second part. By the definition of F (X), it follows that

rτ

p
L̃p ≤ τ

p
‖X∗‖p

p ≤
1
2
‖A(X∗)− b‖22 +

τ

p
‖X∗‖p

p = F (X∗) ≤ F (X0),

which implies

rank(X∗) = r ≤ pF (X0)
τL̃p

or rank(X∗) ≤ min
(

m,
pF (X0)

τL̃p

)
.

¤

3. The Smoothing Function Method

3.1 Differential properties of the smoothing function

In this subsection, we focus on the properties of smoothing function for the objective function F (X)
defined in Problem (P). Before that, we firstly review some basics of spectral functions for symmetric
matrices.

Let Sn denote the space of n dimensional symmetric matrices equipped with the inner product
〈A,B〉 := trace(AB) for A,B ∈ Sn. Let Sn

+ and Sn
++ denote the cone of n dimensional positive

semidefinite symmetric matrices and the cone of n dimensional positive definite symmetric matrices, re-
spectively. A real-valued function F = f ◦ λ is called spectral function, if it is defined on a subset of Sn

and invariant under orthogonal similarity transformation:

F (UT MU) = F (M), ∀ M ∈ On for X ∈ Sn.

The function f : Rn →R is a real-valued function and satisfies the following symmetric property

f(ν) = f(Pν), ∀ P ∈ Pn, ν ∈ <n,

where Pn is the set of all n× n permutation matrices. A set Ω in Rn is symmetric if

PΩ = Ω, ∀ P ∈ Pn.

There are some important spectral functions below:

(a) The nuclear norm of M ∈ Sn, which is defined by

‖M‖∗ :=
n∑

i=1

|λi(M)|.

If we choose f : Rn →R as follows

f(η) := |η1|+ |η2|+ · · ·+ |ηn|,

then
‖M‖∗ = [f ◦ λ](M).
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(b) The spectral norm of M ∈ Sn, which is defined by

‖M‖2 := max
1≤i≤n

|λi(M)|.

If we choose f : Rn →R as follows
f(η) := max

1≤i≤n
|ηi|,

then
‖M‖2 = [f ◦ λ](M).

(c) The function −logdet(M) (M ∈ Sn
++), which is used to define the merit function in the semidefinite

programming. If we choose f : Ω →R as follows

f(η) := −
n∑

i=1

log ηi,

where Ω := {η : ηi > 0, i = 1, 2, · · · , n}, then

−logdet(M) = [f ◦ λ](M).

There are many publications about the study of spectral functions. Lewis et al. [22, 23] investigate
the explicit expressions of the gradient and the Hessian for spectral function f ◦λ. Qi et al. [24] study the
semismoothness of spectral function. Li et al. [25] give the explicit expressions of second-order directional
derivatives of spectral function when f is C1,1 and ∇f(·) is semidifferentiable at λ(X). Sun and Sun [26]
study the differentiability and the semismoothness of Löwner’s operator and spectral function under the
framework of Euclidean Jordan algebras.

In this paper, we define the symmetric function f : Rm+n →R by

f(ξ) := |ξ1|p + |ξ2|p + · · ·+ |ξm+n|p.
Let Ξ : Mm×n → Sm+n be the linear operator defined by,

Ξ(X) :=
(

0 X
XT 0

)
.

It follows from [27, 28] that Ξ(X) has the following eigenvalue decomposition:

Ξ(X) = Q(X)




Σ(X) 0 0
0 0 0
0 0 −Σ(X)↑


 Q(X)T ,

where

Q(X) :=
1√
2

(
U(X) 0 U(X)↑

V1(X)
√

2V2(X) −V1(X)↑

)
,

and

V (X) :=




m︷ ︸︸ ︷
V1(X)

...

n−m︷ ︸︸ ︷
V2(X)


 , U(X)↑ := U(X)I↑m, V1(X)↑ := V1(X)I↑m,

Σ(X)↑ :=




σm(X)
σm−1(X)

. . .

σ1(X)


 , I↑m :=




1
1

. .
.

1
1



∈ Sm.

It is easy to check that

λi(Ξ(X)) =





σi(X) if i = 1, 2, · · · ,m,
0 if i = m + 1, · · · , n,
−σm+n+1−i(X) if i = n + 1, n + 2, · · · , n + m.

(3.1)
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From (3.1), we have

[f ◦ λ](Ξ(X)) =
m∑

i=1

|σi(X)|p + 0 · (n−m) +
m∑

i=1

| − σi(X)|p

= 2
m∑

i=1

σp
i (X)

= 2‖X‖p
p.

Hence, we can rewrite F (X) as

F (X) =
1
2
‖A(X)− b‖22 +

τ

2p
[f ◦ λ](Ξ(X)).

The following result taken from [22] provides a convenient tool for computing the gradient of spectral
function.

Lemma 3.1 Let G ∈ Sn and suppose the vector λ(G) belongs to the domain of the symmetric function
f : Rn →R. Then f is differentiable at λ(G) if and only if the spectral function f ◦ λ is differentiable at
G. In this case the derivative of f ◦ λ at G is

D(f ◦ λ)(G) = U(G)(Diag∇f(λ(G)))U(G)T ,

for any orthogonal matrix U(G) satisfying G = U(G)(Diagλ(G))U(G)T , where λ(G) is a vector whose
entries are the eigenvalues of the matrix G.

Let F1(X) :=
1
2
‖A(X) − b‖22 and F2(X) :=

τ

2p
[f ◦ λ](Ξ(X)). Define fε(η) : R\{0} × Rm+n → R as

follows
fε(η) := (η2

1 + ε2)
p
2 + (η2

2 + ε2)
p
2 + · · ·+ (η2

m+n + ε2)
p
2 ,

then

[fε ◦ λ](Ξ(X)) =
m∑

i=1

(σ2
i (X) + ε2)

p
2 + (n−m)|ε|p +

m∑

i=1

([−σi(X)]2 + ε2)
p
2

= 2
m∑

i=1

(σ2
i (X) + ε2)

p
2 + (n−m)|ε|p. (3.2)

Set
F2(ε,X) :=

τ

2p
([fε ◦ λ](Ξ(X))− (n−m)|ε|p) . (3.3)

From (3.2) and (3.3), we have
lim
ε↓0

F2(ε,X) = F2(X).

For fixed ε 6= 0, fε(η) is a continuous differentiable function of η. The gradient of fε(η) with respect to η
is given by

∇ηfε(η) =
(
pη1(η2

1 + ε2)
p
2−1, pη2(η2

2 + ε2)
p
2−1, · · · , pηm+n(η2

m+n + ε2)
p
2−1

)T

. (3.4)

Lemma 3.2 Let F (ε,X) be defined by

F (ε,X) := F1(X) + F2(ε,X). (3.5)

Then F (ε,X) is a smoothing function for F (X).
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Proof. It follows from Lemma 3.1 that [fε ◦ λ](Ξ(X)) is a continuous differentiable function of Ξ(X).
Combining with the fact that Ξ(X) is a linear operator of X, F2(ε,X) is a continuous differentiable func-
tion of X. Because F1(X) is also a continuous differentiable function of X, we obtain the conclusion. ¤

It is easy to show that for any H ∈Mm×n,

DF1(X)[H] = A(H)T (A(X)− b) , (3.6)

where DF1(·) denotes the first order directional derivative of F1(·).

Lemma 3.3 For any H ∈Mm×n and fixed ε 6= 0, let the function F2(ε,X) be defined as (3.3). Then,

DF2(ε,X)[H] = τ(diagA)T




σ1(X)(σ2
1(X) + ε2)

p
2−1

σ2(X)(σ2
2(X) + ε2)

p
2−1

...

σm−1(X)(σ2
m−1(X) + ε2)

p
2−1

σm(X)(σ2
m(X) + ε2)

p
2−1




,

where A := U(X)T HV1(X) and diagA := (A11, A22, · · · , Amm)T , Aii is the (i, i) entry of A.

Proof. From Lemma 3.1 and (3.4), we obtain that

D[fε ◦ λ](Ξ(X)) = Q(X)
[
Diag∇Ξ(X)fε(λ(Ξ(X)))

]
Q(X)T

= Q(X)Diag
[
(w1, w2, · · · , wm+n)T

]
Q(X)T ,

where the definition of wi is given by

wi =





pσi(X)(σ2
i (X) + ε2)

p
2−1 if i = 1, 2, · · · ,m,

0 if i = m + 1,m + 2, · · · , n,

−pσm+n+1−i(X)(σ2
m+n+1−i(X) + ε2)

p
2−1 if i = n + 1, n + 2, · · · , n + m.

Because Ξ(X) is a linear operator of X, from Proposition 2.47 in [29], we obtain that for any H ∈Mm×n

and fixed ε 6= 0 that

DF2(ε,X)[H] = F ′2(ε,X)[H]

=
τ

2p
[fε ◦ λ]′(Ξ(X); Ξ(H))

=
τ

2p
〈∇[fε ◦ λ](Ξ(X)),Ξ(H)〉

=
τ

2p
〈[Diag∇fε(λ(Ξ(X)))] , Q(X)T Ξ(H)Q(X)〉,

where the second and the third equations use Proposition 2.47 in [29] and the fact that [fε ◦ λ](Ξ(X)) is
a continuous differentiable function of Ξ(X), respectively. Therefore, (see Appendix B)

DF2(ε,X)[H] = τ(diagA)T




σ1(X)(σ2
1(X) + ε2)

p
2−1

σ2(X)(σ2
2(X) + ε2)

p
2−1

...

σm−1(X)(σ2
m−1(X) + ε2)

p
2−1

σm(X)(σ2
m(X) + ε2)

p
2−1




.

¤

Theorem 3.1 For any H ∈Mm×n, fixed ε 6= 0 and let the function F (ε,X) be defined as (3.5). Then,

DF (ε,X)[H] = A(H)T (A(X)− b) + τ(diagA)T




σ1(X)(σ2
1(X) + ε2)

p
2−1

σ2(X)(σ2
2(X) + ε2)

p
2−1

...

σm−1(X)(σ2
m−1(X) + ε2)

p
2−1

σm(X)(σ2
m(X) + ε2)

p
2−1




,

where A := U(X)T HV1(X).
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Proof. It is obvious from (3.6) and Lemma 3.3. ¤

3.2 Approximation by the smoothing model

In this subsection, we establish the smoothing model to Problem (P) and analyze the corresponding
first order necessary condition. We define the smoothing model (Pε) as follows

(Pε)
{

minimize F (ε,X)
subject to X ∈Mm×n.

For simplify, we denote

Sol(P) := the set of local minimizer of (P),
Sol(Pε) := the set of local minimizer of (Pε).

From Corollary 2.2, we have

ÃT (Ãz∗ − b) + τ(z∗)p−1 = 0,

where z∗ := (σ1(X∗), σ2(X∗), · · · , σr(X∗))T ∈ Rr. Since σi(X∗) > 0 (i = 1, 2, · · · , r), we obtain that

(z∗)T ÃT (Ãz∗ − b) + τ‖X∗‖p
p = 0.

As F (X) is not Lipschitz continuous, it is not convenient to give a necessary condition for Problem
(P) in terms of Clarke subdifferential notion, here we introduce the following definition of the first order
necessary condition for Problem (P).

Definition 3.4 For X ∈ Mm×n and p ∈ (0, 1), X is said to satisfy the first order necessary condition of
Problem (P) if

A(X)T (A(X)− b) + τ‖X‖p
p = 0. (3.7)

Obviously, if X∗ is a local minimizer of Problem (P), X∗ satisfies the above conclusion (3.7).

Note that Problem (Pε) is an unconstrained optimization problem. Let X∗
ε be a local minimizer of

(Pε). Then for any H ∈Mm×n,

DF (ε,X∗
ε )[H] = 0. (3.8)

By the definitions of F (X) and F (ε,X), we obtain that

0 ≤ F (ε,X)− F (X) ≤ τm|ε|p
p

. (3.9)

The inequality (3.9) gives the bound of the difference between the original objective function F (X) and
the smoothing function F (ε,X), which also implies that limε↓0 F (ε,X) = F (X).

Let {Xεk
} denote the sequence with εk 6= 0, k = 1, 2, · · · and εk → 0 as k →∞.

Theorem 3.2 We have the following conclusions:

(1) Let {X∗
εk
} be a sequence of matrices satisfying (3.8) with ε = εk. Then any accumulation of {X∗

εk
}

satisfies the first order necessary condition of Problem (P).

(2) Let {X∗
εk
} be a sequence of matrices being global minimizer of (Pεk

). Then any accumulation of
{X∗

εk
} is the global minimizer of Problem (P).

10



Proof. Let X∗ be an accumulation point of {X∗
εk
}. Then X∗

εk
→ X∗ as k →∞.

(1) From (3.8), we have

A(X∗
εk

)T
(A(X∗

εk
)− b

)
+ τ(diagAεk

)T




σ1(X∗
εk

)(σ2
1(X∗

εk
) + ε2k)

p
2−1

σ2(X∗
εk

)(σ2
2(X∗

εk
) + ε2k)

p
2−1

...

σm−1(X∗
εk

)(σ2
m−1(X

∗
εk

) + ε2k)
p
2−1

σm(X∗
εk

)(σ2
m(X∗

εk
) + ε2k)

p
2−1




= 0, (3.10)

where Aεk
:= U(X∗

εk
)T X∗

εk
V1(X∗

εk
). The SVD of X∗

εk
is given by

X∗
εk

= U(X∗
εk

)[Σ(X∗
εk

) 0]V (X∗
εk

)T ,

where

V (X∗
εk

) :=




m︷ ︸︸ ︷
V1(X∗

εk
)

...

n−m︷ ︸︸ ︷
V2(X∗

εk
)


 and Σ(X∗

εk
) :=




σ1(X∗
εk

)
σ2(X∗

εk
)

. . .

σm(X∗
εk

)


 ,

which implies
Aεk

= U(X∗
εk

)T X∗
εk

V1(X∗
εk

) = Σ(X∗
εk

). (3.11)

From (3.10) and (3.11), we have

(A(X∗
εk

)− b
)T A(X∗

εk
) + τ

m∑

i=1

σ2
i (X∗

εk
)(σ2

i (X∗
εk

) + ε2k)
p
2−1 = 0.

When k →∞, we obtain that X∗
εk
→ X∗ and σi(X∗

εk
) → σi(X∗) (i = 1, 2, · · · ,m). Hence,

A(X∗)T (A(X∗)− b) + τ

m∑

i=1

σp
i (X∗) = 0,

i.e.
A(X∗)T (A(X∗)− b) + τ‖X∗‖p

p = 0,

and X∗ satisfies the first order necessary condition of Problem (P).

(2) Let X̂∗ be the global minimizer of Problem (P). Then from the following three inequalies,

F (X∗
εk

) ≤ F (εk, X∗
εk

) ≤ F (εk, X̂∗) ≤ F (X̂∗) +
τm|εk|p

p
.

When k → ∞, implies that X∗
εk
→ X∗ and F (X∗) ≤ F (X̂∗). Hence, X∗ is the global minimizer of

Problem (P). ¤

Let us introduce Ā(ε) as

Ā(ε) =




ā1
11(ε) ā1

22(ε) · · · ā1
mm(ε)

ā2
11(ε) ā2

22(ε) · · · ā2
mm(ε)

...
...

...
āq
11(ε) āq

22(ε) · · · āq
mm(ε)


 ,

where
āi

jj(ε) :=
[
U(X∗

ε )T AiV (X∗
ε )

]
ii

(i = 1, 2, · · · , q and j = 1, 2, · · · ,m).

The following theorem presents the lower bound for the singular values at the solution of the smoothing
model (Pε).
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Theorem 3.3 Let L̃ε := κ




τ

‖Ā(ε)‖
√

2F (X0) +
2τm|ε|p)

p




1
1−p

and fixed ε 6= 0. Suppose X∗
ε is a

local miminizer of Problem (Pε) and F (X∗
ε ) ≤ F (X0), we have

for any i ∈ {1, 2, · · · ,m}, σi(X∗
ε ) < L̃ε ⇒ σi(X∗

ε ) ≤ |ε|, (3.12)

where κ :=
(

1
2

) 1
1−p

< 1.

Proof. By the definition of F (ε, ·), we have

(A(H)T (A(X∗
ε )− b)

)2 ≤ ‖A(H)‖22 · ‖A(X∗
ε )− b‖22

≤ ‖A(H)‖22
(
‖A(X∗

ε )− b‖22 +
τ

p

m∑

i=1

(σ2
i (X∗

ε ) + ε2)
p
2

)

= 2‖A(H)‖22F (ε,X∗
ε )

≤ ‖A(H)‖22
(

2F (X∗
ε ) +

2τm|ε|p
p

)

≤ ‖A(H)‖22
(

2F (X0) +
2τm|ε|p

p

)
.

Since X∗
ε ∈ Sol(Pε), the equation (3.8) implies

A(H)T (A(X∗
ε )− b) + τ(diagA(ε))T




σ1(X∗
ε )(σ2

1(X∗
ε ) + ε2)

p
2−1

σ2(X∗
ε )(σ2

2(X∗
ε ) + ε2)

p
2−1

...

σm−1(X∗
ε )(σ2

m−1(X
∗
ε ) + ε2)

p
2−1

σm(X∗
ε )(σ2

m(X∗
ε ) + ε2)

p
2−1




= 0,

where A(ε) := U(X∗
ε )HV T

1 (X∗
ε ). Set

H(ε) := U(X∗
ε )




0
. . .

0
1

0
. . .

0

0




V (X∗
ε )T ,

then

A(H(ε)) =




ā1
ii(ε)

ā2
ii(ε)
...

āq
ii(ε)


 = Ā(ε)em

i ,

where em
i is the ith column of the identity matrix Im. Hence,we obtain

τσi(X∗
ε )(σ2

i (X∗
ε ) + ε2)

p
2−1 ≤ |A(H(ε))T (A(X∗

ε )− b) |

≤ ‖A(H(ε))‖2
√

2F (X0) +
2τm|ε|p

p

≤ ‖Ā(ε)‖
√

2F (X0) +
2τm|ε|p

p
.
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Suppose σi(X∗
ε ) > |ε|, then we have

2σ2
i (X∗

ε ) > σ2
i (X∗

ε ) + ε2 ⇒ (2σ2
i (X∗

ε ))
p
2−1 < (σ2

i (X∗
ε ) + ε2)

p
2−1.

Therefore,

τ(2
p
2−1)σp−1

i (X∗
ε ) ≤ ‖Ā(ε)‖

√
2F (X0) +

2τm|ε|p)
p

,

which implies

σi(X∗
ε ) ≥




τ(2
p
2−1)

‖Ā(ε)‖
√

2F (X0) +
2τm|ε|p)

p




1
1−p

> κ




τ

‖Ā(ε)‖
√

2F (X0) +
2τm|ε|p)

p




1
1−p

= L̃ε.

Hence we can claim that, for i ∈ {1, 2, · · · ,m}, if σi(X∗
ε ) < L̃ε then σi(X∗

ε ) ≤ |ε|. ¤

Theorem 3.4 Let X∗
εk

be a local minimizer of Problem (Pεk
) with F (X∗

εk
) ≤ F (X0) and {X∗

εk
} be a

convergent sequence. Then there is an integer K > 0 such that for any k ≥ K, there is X∗ ∈ Sol(P)
such that

Γεk
:= {i ∈ {1, 2, · · · ,m} | σi(X∗

εk
) ≤ |εk|}

= {i ∈ {1, 2, · · · ,m} | σi(X∗) = 0} =: Γ. (3.13)

Proof. Since the level set {X : F (X) ≤ F (X0)} is bounded, the sequence {X∗
εk
} is bounded. From (1)

of Theorem 3.2, any accumulation point of {X∗
εk
} lies in the set Sol(P), it follows from the assumptions

in the theorem that
lim

k→∞
dist(X∗

εk
,Sol(P)) = 0,

which implies that there exists X∗ ∈ Sol(P) such that limk→∞X∗
εk

= X∗ and there exists an integer

K > 0 such that for k ≥ K, |εk| < L̃

2
< L̃εk

,

dist(X∗
εk

, X∗) = ‖X∗
εk
−X∗‖ ≤ L̃

2
,

and F (X∗) ≤ F (X0) hold. Then we have σi(X∗)− σi(X∗
εk

) ≤ ∣∣σi(X∗)− σi(X∗
εk

)
∣∣ ≤ ‖X∗ −X∗

εk
‖ <

L̃

2
.

If i ∈ Γεk
, we have

σi(X∗) ≤ σi(X∗
εk

) +
L̃

2
< L̃.

Assume that σi(X∗) 6= 0, from Corollary 2.2, we have

τL̃p−1 < τσp−1
i (X∗) ≤ |ÃT (Ãz∗ − b)|i ≤ ‖Ã‖ · ‖Ãz∗ − b‖2.

where z∗ := (σ1(X∗), σ2(X∗), · · · , σr(X∗))T ∈ Rr. By the fact that A(X∗) = Ãz∗ (see Appendix A), we
have

τL̃p−1 < ‖Ã‖ · ‖Ãz∗ − b‖2 = ‖Ã‖ · ‖A(X∗)− b‖2 ≤ ‖Ã‖
√

2F (X0),

which leads to the following contradiction:

L̃ >

(
τ

‖Ã‖
√

2F (X0)

) 1
1−p

> κ

(
τ

‖Ã‖
√

2F (X0)

) 1
1−p

= L̃.

where κ :=
(

1
2

) 1
1−p

< 1. Therefore, we obtain that σi(X∗) = 0, which means that Γεk
⊂ Γ.
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On the other hand, if i ∈ Γ then σi(X∗) = 0 and

σi(X∗
εk

) = σi(X∗
εk

)− σi(X∗) ≤ ‖X∗
εk
−X∗‖ ≤ L̃

2
< L̃εk

.

From (3.12), we can deduce that σi(X∗
εk

) ≤ |εk|. Hence, Γ ⊂ Γεk
, i.e. the conclusion (3.13) is true. ¤

4. The Majorization Method for the Smoothing Model

The purpose of this section is to introduce the majorization method for solving Problem (Pε). For
notational convenience, we define W (ε,X) by

W (ε,X) := U(X)Diag
(
(σ2

1(X) + ε2)
p
2−1, · · · , (σ2

m(X) + ε2)
p
2−1

)
U(X)T ,

where U(X) is the left singular matrix of X. From Theorem 3.1, the first order directional derivative of
F (ε,X) with respect to the variable X along the direction H can be written as

DF (ε,X)[H] = 〈A∗(A(X)− b) + τW (ε,X)X, H〉,

which implies
DXF (ε,X) = A∗(A(X)− b) + τW (ε,X)X,

where A∗ is the adjoint of A defined by

A∗(y) := y1A1 + y2A2 + · · ·+ yqAq =
q∑

j=1

yjAj .

In the sequel, we treat ε as a decision variable of F (ε,X). Then

DεF (ε,X) = τε traceW (ε,X), if ε 6= 0.

Since F (ε,X) is a nonconvex function, we shall construct the following problem

(SPεk)
{

minimize F̂ k(ε,X)
subject to X ∈Mm×n,

to obtain the next iterate in the kth iteration, where

F̂ k(ε,X) := F1(X) + F̂ k
2 (ε,X),

and

F̂ k
2 (ε,X) := F2(εk, Xk) + 〈DXF2(εk, Xk), X −Xk〉+ DεF2(εk, Xk) · (ε− εk)

+
τρk

2
[‖X −Xk‖2F + (ε− εk)2

]
.

It is not difficult to find that
F̂ k

2 (εk, Xk) = F2(εk, Xk). (4.1)

Meanwhile, we wish that F̂ k
2 (ε,X) may satisfy the following condition by choosing the parameter ρk

dynamically:
F̂ k

2 (ε,X) ≥ F2(ε,X), for all X ∈Mm×n and ε 6= 0. (4.2)

If (4.1) and (4.2) hold, the function F̂ k
2 (ε,X) is called a majorization function of F2(ε,X) at Xk.

Note that the idea of using majorization function in optimization was dated back to Ortega and
Rheinboldt [30] for studying the line search strategy. After that, many contributions for majorization
methods have been made. For instance, Leeuw et al. [31, 32, 33, 34, 35] proposed many algorithms for
multidimensional scaling problems. And recently, Gao and Sun [36] design a majorized penalty approach
for the calibrating rank constrained correlation matrix problems.
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If we choose ρk sufficiently large, Problem (SPεk) becomes a continuous convex programming problem.
Let the pair (X̂∗

k , ε̂∗k) be a optimal solution of Problem (SPεk), then we have
{

DX F̂ k(ε̂∗k, X̂∗
k) = 0,

DεF̂
k(ε̂∗k, X̂∗

k) = 0,

which implies 


A∗(A(X̂∗

k)− b) + DXF2(εk, Xk) + τρk(X̂∗
k −Xk) = 0,

DεF2(εk, Xk) + τρk(ε̂∗k − εk) = 0,

i.e. 



A∗(A(X̂∗
k)) + τρkX̂∗

k = τρkXk − τW (εk, Xk)Xk +A∗(b),

ε̂∗k = εk

(
1− 1

ρk
traceW (εk, Xk)

)
.

(4.3)

We set the pair (X̂∗
k , ε̂∗k) satisfied the above relationship (4.3) to be the next iterate pair (Xk+1, εk+1).

Now, the method for solving Problem (Pε) is summarized as follows:
The majorization method

Step 0 Choose the tradeoff parameter τ , the initial ε0 6= 0 and the initial X0. Construct Problem (Pε0)
and set k := 0.

Step 1 Select ρk satisfying (4.1) and (4.2). Construct the majorization function F̂ k
2 (ε,X) and solve the

following (SPεk) problem {
minimize F̂ k(ε,X)
subject to X ∈Mm×n,

to get the new iterate pair (Xk+1, εk+1).

Step 2 Set k := k + 1 and goto Step 1.

Theorem 4.1 Let the pairs {(Xk, εk)} be the sequence generated by the above majorization method.
Then

(1) {F (εk, Xk)} is a monotonically decreasing sequence.

(2) The difference between F (εk, Xk) and F (εk+1, Xk+1) is given as follows

F (εk, Xk)− F (εk+1, Xk+1) ≥ 1
2
‖A(Xk+1)−A(Xk)‖22 +

τρk

2
(‖Xk+1 −Xk‖2F + (εk+1 − εk)2

)
.

(3) Let ωk :=
(

1− 1
ρk

traceW (εk, Xk)
)

and |ωk| ∈ (0, 1). Then any accumulation point of the bounded

sequence {Xk} contained in the level set {X : F (X) ≤ F (X0)} satisfies the necessary condition of
Problem (P).

Proof. (1) By the definition of F , we have

F (εk+1, Xk+1) = F1(Xk+1) + F2(εk+1, Xk+1)
≤ F1(Xk+1) + F̂ k

2 (εk+1, Xk+1)
= F̂ k(εk+1, Xk+1)
≤ F̂ k(εk, Xk)
= F1(Xk) + F̂ k

2 (εk, Xk)
= F1(Xk) + F2(εk, Xk)
= F (εk, Xk),

15



where the first inequality uses the property of the majorization function given in (4.2), the second one
uses the fact that (Xk+1, εk+1) is the solution of Problem (SPεk), the fourth equation uses the property
of the majorzation function given in (4.1).

(2) The difference between F (εk, Xk) and F (εk+1, Xk+1) satisfies

F (εk+1, Xk+1)− F (εk, Xk)
≤ F̂ k(εk+1, Xk+1)− F (εk, Xk)
= F1(Xk+1) + F̂ k

2 (εk+1, Xk+1)− F1(Xk)− F2(εk, Xk)

=
1
2
‖A(Xk+1)− b‖22 −

1
2
‖A(Xk)− b‖22

+〈DXF2(εk, Xk), Xk+1 −Xk〉+ DεF2(εk, Xk) · (εk+1 − εk)

+
τρk

2
(‖Xk+1 −Xk‖2F + (εk+1 − εk)2

)
. (4.4)

For simplicity, we divide the right hand term in (4.4) into the following two parts

L1 :=
1
2
‖A(Xk+1)− b‖22 −

1
2
‖A(Xk)− b‖22 + 〈DXF2(εk, Xk), Xk+1 −Xk〉+

τρk

2
‖Xk+1 −Xk‖2F ,

and

L2 := DεF2(εk, Xk) · (εk+1 − εk) +
τρk

2
(εk+1 − εk)2.

Then (4.4) can be rewritten as

F (εk+1, Xk+1)− F (εk, Xk) ≤ L1 + L2. (4.5)

From (4.3) and Step 1 in the majorization method, we have

A∗(A(Xk+1)) + τρkXk+1 = τρkXk − τW (εk, Xk)Xk +A∗(b)

and
DεF2(εk, Xk) + τρk(εk+1 − εk) = 0.

Hence,

(A(Xk+1)− b)T (A(Xk+1)−A(Xk)) + τρk‖Xk+1 −Xk‖2F + 〈DXF2(εk, Xk), Xk+1 −Xk〉 = 0,

DεF2(εk, Xk) · (εk+1 − εk) + τρk(εk+1 − εk)2 = 0. (4.6)

By the equation (4.6), we can obtain that (for details, see Appendix C)

L1 = −1
2
‖A(Xk+1)−A(Xk)‖22 −

τρk

2
‖Xk+1 −Xk‖2F , (4.7)

and

L2 = −τρk

2
(εk+1 − εk)2. (4.8)

From the inequality (4.5) and the equations (4.7),(4.8), we have

F (εk, Xk)− F (εk+1, Xk+1) ≥ 1
2
‖A(Xk+1)−A(Xk)‖22 +

τρk

2
(‖Xk+1 −Xk‖2F + (εk+1 − εk)2

)
.

(3) To prove the remaining part of this theorem, we assume that X∗ is an accumulation point of
{Xk}, then exists an index set {ks} ⊆ {1, 2, · · · , } such that

lim
s→+∞

Xks = X∗. (4.9)
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From the second part of the theorem, we obtain

lim
s→+∞

ks∑

i=0

(
1
2
‖A(Xi+1)−A(Xi)‖22 +

τρi

2
(‖Xi+1 −Xi‖2F + (εi+1 − εi)2

))

≤ lim inf
s→+∞

(
F (ε0, X0)− F (εks+1, Xks+1)

)

≤ F (ε0, X0) < +∞,

which implies

lim
i→∞

‖Xi+1 −Xi‖F = 0, lim
i→∞

‖A(Xi+1)−A(Xi)‖2 = 0, lim
i→∞

|εi+1 − εi| = 0.

From the equation (4.9), the relationship εk+1 = εk · ωk and 0 < |ωk| < 1, we have

lim
i→∞

Xi+1 = lim
i→∞

Xi = X∗ and lim
i→∞

εi = 0.

By the first equation of (4.3) and Step 1 of the majorization method,

A∗(A(Xk+1)) + τρkXk+1 = τρkXk − τW (εk, Xk)Xk +A∗(b).

Then
〈A∗(A(Xk+1)− b), Xk〉+ 〈τρk(Xk+1 −Xk), Xk〉 = 〈−τW (εk, Xk)Xk, Xk〉,

i.e.

A(Xk)T
(A(Xk+1)− b

)
+ 〈τρk(Xk+1 −Xk), Xk〉+ τ

m∑

i=1

(σ2
i (Xk) + εk)

p
2−1σ2

i (Xk) = 0.

Hence, when k → +∞, we have

A(X∗)T (A(X∗)− b) + τ

m∑

i=1

σp
i (X∗) = 0,

which implies that X∗ satisfies the necessary condition of Problem (P) such that

A(X∗)T (A(X∗)− b) + τ‖X∗‖p
p = 0.

¤

5. An Application to Matrix Completion Problem

5.1 Smoothing majorization algorithm

This subsection presents implementation details of the smoothing majorization algorithm applied to
the matrix completion (MC) problem

(MC)





minimize
1
2
‖PΩ(X −XR)‖22 +

τ

p
‖X‖p

p

subject to X ∈Mm×n,
(5.1)

where the operator A := PΩ and b := PΩ(XR), Ω is the observation index of the given recovery matrix
XR with the known rank r and the size of Ω is q. We denote Ω as follows

Ω := {(i1, j1), (i2, j2), · · · , (iq, jq) | i1, i2, · · · , iq ∈ [1, 2, · · · ,m], j1, j2, · · · , jq ∈ [1, 2, · · · , n]}.

The corresponding As for the operator A(·) are given by

As := E(is, js), s = 1, 2, · · · , q,
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where E(is, js) denotes the matrix whose (is, js) entry equals 1 and all others are 0. Hence,

PΩ(X) =
(
Xi1j1 , Xi2j2 , · · · , Xiqjq

)T ∈ Rq,

where Xisjs
denotes the (is, js) entry of the matrix X.

As mentioned previously, some authors have also conducted the research on (MC) problem via lp
regularization. Mohan et al. [19] studied the constrained version of Problem (5.1), i.e.

{
minimize fp(X) = trace(XT X + εI)

p
2

subject to PΩ(X −XR) = 0.

The update strategy of [19] may be expressed as




W k
p = ((Xk)T Xk + εkI)

p
2−1,

Xk+1 = (Xk − skXkW k
p )Ωc + (XR)Ω,

εk = ε0/(η)k,

sk+1 = (εk+1)1−
p
2 .

(5.2)

Lai et al. [20] considered the following problem
{

minimize trace(XT X + ε2I)
p
2 +

1
2τ
‖PΩ(X −XR)‖22

subject to X ∈Mm×n.

The update strategy of [20] was given by




Xk = Sol
(
τpXW k−1

p +A∗(A(X)− b) = 0
)
,

(Xk)T Xk = V k(Σk)2(V k)T ,
εk = min{εk−1, εsσr+1(Xk)}, εs := 0.9,

W k
p = V k[(Σk)2 + (εk)2I]

p
2−1(V k)T .

It is not difficult to find that the above update strategies of regularization parameter ε are based on
the computational experience from the authors. As Mohan et al. pointed out in the section 6.1 of [19],
the regularization parameter εk plays an important role in the recovery. Hence, we have the reason for
studying the self-adaptive update scheme for the parameter εk. From (4.3), we have

A∗(A(Xk+1)) + τρkXk+1 = τρkXk − τW (εk, Xk)Xk +A∗(b),

DεF2(εk, Xk) + τρk(εk+1 − εk) = 0.

Since the operator A(·) equals PΩ(·), the above update strategy can be rewritten as




(Xk+1)Ω =
(

τρk

1 + τρk
Xk − τ

1 + τρk
W (εk, Xk)Xk +

1
1 + τρk

A∗(b)
)

Ω

,

(Xk+1)Ωc =
(

Xk − 1
ρk

W (εk, Xk)Xk

)

Ωc

,

εk+1 = εk

(
1− 1

ρk
traceW (εk, Xk)

)
,

where (Xk+1)Ω denotes the matrix whose (i, j) entry equals (Xk+1)ij if the index (i, j) lies in Ω and zero
otherwise. The definition of (Xk+1)Ωc is similar as (Xk+1)Ω. Obviously, if we set τ = 0, we have





(Xk+1)Ω = A∗(b) = (XR)Ω,

(Xk+1)Ωc =
(

Xk − 1
ρk

W (εk, Xk)Xk

)

Ωc

,

εk+1 = εk

(
1− 1

ρk
traceW (εk, Xk)

)
.

(5.3)

Note that, comparing with Mohan’s update strategy, the parameter ρk plays a similar role as sk in (5.2).
However, the self-adaptive update in our strategy is displayed in the updating formula of the variable ε.

18



Next, we will discuss how to choose the majorization parameter ρk and the stop criterion, which are
the important issues both in algorithm and in theory. From (3) of Theorem 4.1, we know that εk → 0 as
k → +∞, which is guaranteed by choosing |ωk| ∈ (0, 1), i.e.

−1 < 1− 1
ρk

traceW (εk, Xk) < 1 ⇒ ρk >
1
2
traceW (εk, Xk).

In addition, the majorization parameter ρk should make

F̂ k
2 (ε,X) ≥ F2(ε,X), for all X ∈Mm×n and ε 6= 0,

be satisfied, so that ρk should be sufficiently large. Hence, in the numerical experiments, we set

ρk := 106 · traceW (εk, Xk).

Next, the stop criterion for (5.1) will be present. There are many types of stop criterions for (MC)
problem such as

(1) The SVT algorithm [8]:
‖PΩ(Xk −XR)‖F

‖PΩ(XR)‖F
< 10−4.

(2) The IRLS slgorithm [19]:
‖Xk −XR‖F

‖XR‖F
< 10−3. (5.4)

(3) The IRucLq algorithm [20]:

|εk − εk−1|
max{1, εk−1} < 10−5 or |εk| < 10−5.

In this paper, we set (5.4) to be the stop criterion of our algorithm. Now, we present the smoothing
majorization algorithm for matrix completion problem (5.1).
Algorithm (MAMC)

Step 0. (Initial) Choose the tradeoff parameter τ , the initial ε0 6= 0 and the initial X0. Construct the
smoothing problem (Pε0) and set k := 0.

Step 1. (Test stop criterion) If
‖Xk −XR‖F

‖XR‖F
< tol := 10−3,

is satisfied, stop; else, goto Step 2.

Step 2. (Update the iterate) Set the majorization parameter ρk as follows

ρk = 106 · traceW (εk, Xk).

Compute the next iterate (Xk+1, εk+1) via the following equations




(Xk+1)Ω =
(

τρk

1 + τρk
Xk − τ

1 + τρk
W (εk, Xk)Xk +

1
1 + τρk

A∗(b)
)

Ω

,

(Xk+1)Ωc =
(

Xk − 1
ρk

W (εk, Xk)Xk

)

Ωc

,

εk+1 = εk

(
1− 1

ρk
traceW (εk, Xk)

)
.

Step 3. (Update the counter) Set k := k + 1 and goto Step 1.
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5.2 Numerical experiments

In this subsection, we report numerical results on a series of matrix completion problems to show the
effectiveness and robustness of Algorithm MAMC. All tests were performed in the double precision on an
Aoc desktop computer (3.3GHz, Intel double-cores processor, 4096Mbyte of RAM) under Ubuntu 12.04
operation system and Matlab 2010a Unix version. The recovery matrix XR was exactly of low rank with
the form

XR = (ML ∗MR)/‖ML ∗MR‖F ,

where ML,MR were generated by Matlab’s command randn(m, r) and randn(r, n), ML ∈ Mm×r and
MR ∈ Mr×n. The largest number of iterate was set to 10000. The initial pair (X0, ε0) was given as
follows

X0 = PΩ(XR), ε0 = 1.

The labels in the following tables are list as follows:

(m,n) : the size of the matrix Xk,

p : the regularization parameter,
r : the rank of the matrix XR,

SR : the sampling ratio,
FR : the degrees of freedom in a rank r matrix,

iter : the number of iterations for MAMC in the section 5.2.1,
iter1, iter2, iter3, iter4 : the number of iterations for MAMC, sIRLS, SVT and FPC,

time : the cputime of iterations for MAMC in the section 5.2.1,
time1, time2, time3, time4 : the cputime for MAMC, sIRLS, SVT and FPC,

res : the residual of the final iterate in the section 5.2.1,
res1, res2, res3, res4 : the residual for MAMC, sIRLS, SVT and FPC.

5.2.1 Test for MAMC

We consider four groups of tests: (A),(B)(C) and (D).

(A) The first group test is focusing on the sensitivity of MAMC algorithm to SR. SR denotes the
sampling ratio and SR:= q/(mn), where q is the size of Ω. Table 5.1 gives the numerical results for
MAMC algorithm under SR= 0.57 and SR= 0.39. Figure 5.1 and Figure 5.2 show that with the size
of the matrix increased, the number of iterations is decreased but the cputime is increased. There exist
two main reasons to explain this phenomenon, one is the complexity of the singular value decomposition
(SVD); the other is the multiply operation for the large-scale matrices. When the size of the matrix grows
up, computing the (SVD) in each iteration will become the bottleneck of the algorithm. Meanwhile, a
large quantity of matrix multiplication calculations in each iteration must be executed. In both [19] and
[20], the truncated SVD for weighting matrix computation is used. In Algorithm MAMC here, we use
the svds in the matlab solver and run a further procedure that makes the singular values after σr(Xk)
become zero.

TABLE 5.1(a): Numerical Results for SR= 0.57.

m n p r SR FR iter time res
100 100 0.1 10 0.57 0.33 38 0.493186 9.67×1E-4
200 200 0.1 10 0.57 0.17 19 0.395697 9.33×1E-4
300 300 0.1 10 0.57 0.11 16 0.557317 7.39×1E-4
400 400 0.1 10 0.57 0.08 13 0.793902 9.99×1E-4
500 500 0.1 10 0.57 0.06 13 1.469702 7.45×1E-4
600 600 0.1 10 0.57 0.058 12 2.055558 8.00×1E-4
700 700 0.1 10 0.57 0.049 12 2.637797 6.25×1E-4
800 800 0.1 10 0.57 0.044 11 3.135172 8.72×1E-4
900 900 0.1 10 0.57 0.039 11 4.029796 7.37×1E-4
1000 1000 0.1 10 0.57 0.035 11 4.970550 6.48×1E-4
2000 2000 0.1 10 0.57 0.017 10 20.145275 6.09×1E-4
3000 3000 0.1 10 0.57 0.011 9 44.749802 9.54×1E-4
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TABLE 5.1(b): Numerical Results for SR= 0.39.

m n p r SR FR iter time res
100 100 0.1 10 0.39 0.49 114 1.322021 9.75×1E-4
200 200 0.1 10 0.39 0.25 46 0.842838 9.10×1E-4
300 300 0.1 10 0.39 0.17 33 1.279406 9.11×1E-4
400 400 0.1 10 0.39 0.13 27 1.884999 9.73×1E-4
500 500 0.1 10 0.39 0.10 25 2.720678 9.04×1E-4
600 600 0.1 10 0.39 0.084 23 3.778318 9.02×1E-4
700 700 0.1 10 0.39 0.073 21 4.589086 9.67×1E-4
800 800 0.1 10 0.39 0.064 21 6.070084 8.15×1E-4
900 900 0.1 10 0.39 0.057 20 7.578933 9.49×1E-4
1000 1000 0.1 10 0.39 0.051 20 9.090852 7.60×1E-4
2000 2000 0.1 10 0.39 0.026 17 33.955004 8.72×1E-4
3000 3000 0.1 10 0.39 0.017 16 79.631080 9.36×1E-4
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FIG. 5.1(a): The number of iterations when SR= 0.57.
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FIG. 5.1(b): The cputime of iterations when SR= 0.57.
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FIG. 5.1(c): The residual of the final iterate when SR= 0.57.
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FIG. 5.2(a): The number of iterations when SR= 0.39.
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FIG. 5.2(b): The cputime of iterations when SR= 0.39.
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FIG. 5.2(c): The residual of the final iterate when SR= 0.39.

(B) The second group test reports the performance for Hard problem that is defined in the paper [19],
i.e. FR:= r(2n− r)/q > 0.4. Table 5.2 shows that our algorithm can also solve Hard problem efficiently
and has the high successful probability that is showed in the column of “ratio”.

TABLE 5.2: Numerical results for hard problem (FR > 0.4).

m n p r SR FR ratio iter time res
40 40 0.1 9 0.5 0.82 70% 1907 15.289274 9.99×1E-4
50 50 0.1 5 0.3 0.62 80% 1099 6.372210 9.98×1E-4
50 50 0.1 10 0.5 0.69 90% 335 3.245435 9.97×1E-4
100 100 0.1 14 0.3 0.87 70% 3598 46.151422 9.99×1E-4
100 100 0.1 16 0.35 0.83 80% 2277 31.450614 9.99×1E-4
200 200 0.1 10 0.2 0.49 80% 348 6.445658 9.90×1E-4
300 300 0.1 20 0.2 0.64 80% 588 39.801940 9.97×1E-4
400 400 0.1 30 0.2 0.72 80% 932 116.129172 9.96×1E-4
500 500 0.1 15 0.1 0.60 80% 1249 157.815187 9.97×1E-4
1000 1000 0.1 20 0.1 0.40 80% 363 223.761061 9.90×1E-4

(C) The third group test gives the numerical results for different rank r on the 200 × 200 matrices.
In Table 5.3, we choose five different values of p(p = 0.1, 0.3, 0.5, 0.7, 0.9) to test the efficiency of the
algorithm under different rank r(r = 10, 12, 14, 16, 18, 20). From Figure 5.3, it can be observed that no
matter which p you choose, the cputime of iterations increases with the enhancement of the rank r.
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TABLE 5.3: Numerical results for different r.

m n p r SR FR iter time res
0.1 0.512631
0.3 0.517313

200 200 0.5 10 0.5 0.19 25 0.502533 9.94×1E-4
0.7 0.494348
0.9 0.514325
0.1 0.622265
0.3 0.645685

200 200 0.5 12 0.5 0.23 29 0.631189 9.85×1E-4
0.7 0.665399
0.9 0.628557
0.1 0.707813
0.3 0.707156

200 200 0.5 14 0.5 0.27 30 0.708456 9.79×1E-4
0.7 0.691847
0.9 0.694773
0.1 0.916020
0.3 0.936906

200 200 0.5 16 0.5 0.31 38 0.934552 8.94×1E-4
0.7 0.920090
0.9 0.923550
0.1 1.056108
0.3 1.024769

200 200 0.5 18 0.5 0.34 40 1.054809 9.79×1E-4
0.7 1.018782
0.9 1.016996
0.1 1.284547
0.3 1.281448

200 200 0.5 20 0.5 0.38 47 1.315969 9.92×1E-4
0.7 1.300480
0.9 1.318522
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FIG. 5.3: Numerical results for different r.
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FIG. 5.4: Numerical results for different p.

(D) The last group test gives the numerical results for different p. Table 5.4 manifests the numerical
results on the different size of matrices. Similar as Figure 5.3, our algorithm seems to be insensitive to
the value of p, which is shown in Figure 5.4.
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TABLE 5.4: Numerical results for different p (p = 0.1, 0.3, 0.5, 0.7, 0.9).

m n p r SR FR iter time res
0.1 0.456394
0.3 0.452486

100 100 0.5 10 0.57 0.33 37 0.453866 8.99×1E-4
0.7 0.445611
0.9 0.438291
0.1 0.372217
0.3 0.393038

200 200 0.5 10 0.57 0.17 19 0.418714 8.25×1E-4
0.7 0.368374
0.9 0.364371
0.1 0.579001
0.3 0.584276

300 300 0.5 10 0.57 0.11 15 0.590302 9.06×1E-4
0.7 0.584102
0.9 0.608856
0.1 1.005568
0.3 1.000946

400 400 0.5 10 0.57 0.08 14 0.989718 7.37×1E-4
0.7 1.008598
0.9 0.990242
0.1 1.396654
0.3 1.417247

500 500 0.5 10 0.57 0.06 13 1.399342 6.22×1E-4
0.7 1.435313
0.9 1.406271
0.1 1.958660
0.3 1.942243

600 600 0.5 10 0.57 0.058 12 1.910733 7.29×1E-4
0.7 1.941489
0.9 1.935927
0.1 2.599485
0.3 2.599628

700 700 0.5 10 0.57 0.049 12 2.631520 6.28×1E-4
0.7 2.592599
0.9 2.629972
0.1 3.236286
0.3 3.234253

800 800 0.5 10 0.57 0.044 11 3.235572 8.46×1E-4
0.7 3.264344
0.9 3.228259
0.1 4.074461
0.3 4.034496

900 900 0.5 10 0.57 0.039 11 4.079118 7.06×1E-4
0.7 4.038276
0.9 4.019235
0.1 4.858736
0.3 4.918483

1000 1000 0.5 10 0.57 0.035 11 4.916488 6.33×1E-4
0.7 4.891239
0.9 4.931551
0.1 20.040831
0.3 20.028482

2000 2000 0.5 10 0.57 0.017 10 19.964494 6.05×1E-4
0.7 20.048369
0.9 20.107799
0.1 44.434241
0.3 44.428431

3000 3000 0.5 10 0.57 0.011 9 44.456686 9.45×1E-4
0.7 44.438987
0.9 44.375215

5.2.2 Test for different algorithms without noisy under the known rank

In this subsection, we compare Algorithm MAMC with sIRLS [19], SVT [8] and FPCA [9]. The true
rank of XR is known priori and set the payoff parameter τ := 0, i.e use the update strategy (5.3). In
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Table 5.5, we list the numerical results for the algorithms on the different size of matrices. Numerical
results show that our algorithm is very efficient, which can be seen in Figure 5.5.

TABLE 5.5: Numerical results for different algorithms.

m 100 200 300 400 500 600
n 100 200 300 400 500 600
p 0.9 0.9 0.9 0.9 0.9 0.9
r 10 10 10 10 10 10

SR 0.57 0.57 0.57 0.57 0.57 0.57
FR 0.34 0.17 0.12 0.08 0.07 0.058
iter1 56 26 22 19 18 17
iter2 160 160 160 160 160 160
iter3 181 88 71 59 55 51
iter4 307 174 133 115 103 99
time1 0.69 0.52 0.77 1.15 2.01 2.68
time2 2.04 2.37 3.01 3.96 5.28 6.75
time3 4.18 2.00 2.20 2.09 3.36 3.96
time4 6.56 5.24 5.80 6.94 8.18 10.25
res1 9.9E-5 8.8E-5 9.1E-5 8.4E-5 7.8E-5 7.4E-5
res2 9.2E-5 4.6E-5 4.1E-5 3.5E-5 3.4E-5 3.3E-5
res3 2.5E-4 1.5E-4 1.3E-4 1.2E-4 1.2E-4 1.2E-4
res4 2.6E-5 9.9E-5 6.5E-5 4.7E-5 3.8E-5 3.1E-5
m 700 800 900 1000 2000 3000
n 700 800 900 1000 2000 3000
p 0.9 0.9 0.9 0.9 0.9 0.9
r 10 10 10 10 10 10

SR 0.57 0.57 0.57 0.57 0.57 0.57
FR 0.050 0.044 0.039 0.035 0.018 0.012
iter1 16 15 15 15 13 13
iter2 160 160 160 160 160 160
iter3 51 48 46 45 37 34
iter4 93 89 86 81 81 73
time1 3.45 4.27 5.46 6.59 25.54 64.54
time2 8.39 10.42 12.60 14.99 52.93 127.19
time3 4.30 6.17 8.22 9.44 36.35 82.58
time4 10.29 11.72 17.04 23.39 66.42 148.14
res1 7.3E-5 9.7E-5 7.5E-5 6.2E-5 8.4E-5 5.6E-5
res2 3.3E-5 3.2E-5 3.1E-5 3.0E-5 2.8E-5 2.8E-5
res3 1.0E-4 1.0E-4 1.1E-4 1.0E-4 1.0E-4 1.0E-4
res4 2.7E-5 2.3E-5 2.0E-5 1.8E-5 8.9E-6 5.9E-6
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FIG. 5.5(a): The cputime for different algorithms.
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FIG. 5.5(b): The number of iterations for different algorithms.
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FIG. 5.5(c): The residual for different algorithms.
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FIG. 5.6(a): The cputime for different algorithms.
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FIG. 5.6(b): The number of iterations for different algorithms.
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FIG. 5.6(c): The residual for different algorithms.

5.2.3 Test for different algorithms with noisy under the known rank

The numerical results for the above mentioned algorithms on randomly noisy matrix completion
problems is demonstrated in this subsection. Now, we consider the following noisy matrix completion
problem

minimize rank(X)
subject to PΩ(X) = PΩ(XR) + N,

where N denotes the noise. We denote NM := rankn(m,n) and set N := (1e − 4) ∗ NM/norm(NM).
The true rank of XR is known priori. The tolerance of stop criterion and the payoff parameter are set to
tol := 1e−3, τ := 1e−6, respectively. Table 5.6 shows that MAMC algorithm has successful recovery for
noisy matrix completion problem efficiently. Compared with other algorithms, Algorithm MAMC has a
good performance as a whole, which can be seen in Figure 5.6.
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TABLE 5.6: Numerical results for different algorithms.

m 100 200 300 400 500 600
n 100 200 300 400 500 600
p 0.9 0.9 0.9 0.9 0.9 0.9
r 10 10 10 10 10 10

SR 0.57 0.57 0.57 0.57 0.57 0.57
FR 0.34 0.17 0.12 0.08 0.07 0.058
iter1 35 19 16 13 13 12
iter2 120 120 120 120 120 120
iter3 106 57 46 39 36 34
iter4 220 124 97 86 79 72
time1 0.44 0.41 0.56 0.87 1.69 2.26
time2 1.68 2.02 2.56 3.35 4.40 5.21
time3 2.34 1.44 1.69 1.83 2.63 3.19
time4 5.28 4.25 4.89 5.98 7.15 8.49
res1 9.6E-4 8.5E-4 7.8E-4 9.2E-4 7.7E-4 7.9E-4
res2 8.3E-4 5.1E-4 4.8E-4 5.1E-4 5.3E-4 5.5E-4
res3 2.0E-3 1.4E-3 1.2E-3 1.1E-3 1.4E-3 1.1E-3
res4 2.6E-4 9.9E-5 6.6E-5 4.7E-5 3.8E-5 3.2E-5
m 700 800 900 1000 2000 3000
n 700 800 900 1000 2000 3000
p 0.9 0.9 0.9 0.9 0.9 0.9
r 10 10 10 10 10 10

SR 0.57 0.57 0.57 0.57 0.57 0.57
FR 0.050 0.044 0.039 0.035 0.018 0.012
iter1 12 11 11 11 10 9
iter2 120 120 120 120 120 120
iter3 33 31 30 29 24 22
iter4 70 65 64 63 60 57
time1 3.11 3.71 4.48 5.68 20.83 47.33
time2 6.67 8.04 9.54 11.13 40.54 95.64
time3 3.39 5.37 6.46 6.91 23.72 54.75
time4 10.64 11.64 13.98 18.79 56.01 127.69
res1 6.3E-4 8.3E-4 7.3E-4 6.7E-4 6.4E-4 9.6E-4
res2 5.7E-4 5.9E-4 6.1E-4 6.2E-4 8.2E-4 9.6E-4
res3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 9.9E-4 1.0E-3
res4 2.7E-5 2.4E-5 2.1E-5 1.9E-5 9.8E-6 6.9E-6

5.2.4 Test for different algorithms without noisy under the unknown rank

In this subsection, we report the numerical results of the above mentioned algorithms for exact
matrix completion problems when the true rank of XR is unknown. τ is set to 1e− 6. Similar as [19], we
choose r to be min{rmax, r̂} and r̂ is the largest integer such that σr̂(Xk) > 0.2σ1(Xk). The numerical
results are displayed in Table 5.7. In Table 5.8, we report the results for different r on the 1000 × 1000
matrices. From Figure 5.7 and Figure 5.8, we can see that our algorithm returns solutions of high quality.

TABLE 5.7: Numerical results for different algorithms.

m 100 200 300 400 500 600 700 800 900 1000 2000
n 100 200 300 400 500 600 700 800 900 1000 2000
p 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
r 10 10 10 10 10 10 10 10 10 10 10

SR 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
FR 0.34 0.17 0.12 0.08 0.07 0.058 0.050 0.044 0.039 0.035 0.018
iter1 46 21 18 15 13 12 12 11 11 11 10
iter2 120 120 120 120 120 120 120 120 120 120 120
iter3 106 57 46 39 36 34 33 31 30 29 24
iter4 220 124 98 87 79 73 71 66 65 65 63
time1 0.87 0.69 1.15 1.59 2.52 2.67 3.19 3.44 4.33 5.34 21.55
time2 1.65 2.09 3.03 4.42 6.48 9.12 12.49 16.84 23.00 30.10 65.94
time3 2.33 1.44 1.69 1.77 2.66 3.24 4.07 4.63 6.32 6.45 23.63
time4 5.32 4.20 4.92 5.99 7.08 8.96 9.37 9.63 13.39 18.28 53.62
res1 9.8E-4 8.9E-4 8.3E-4 6.6E-4 10.0E-4 10.0E-4 6.6E-4 8.9E-4 7.2E-4 6.4E-4 6.2E-4
res2 8.8E-4 4.0E-4 3.3E-4 2.9E-4 2.8E-4 2.7E-4 2.6E-4 2.6E-4 2.6E-4 2.5E-4 2.3E-4
res3 2.0E-3 1.4E-3 1.2E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 9.9E-4
res4 2.6E-4 9.9E-5 6.5E-5 4.7E-5 3.8E-5 3.1E-5 2.7E-5 2.3E-5 2.0E-5 1.8E-5 8.9E-6
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TABLE 5.8: Numerical results for different r.

m 1000 1000 1000 1000 1000 1000
n 1000 1000 1000 1000 1000 1000
p 0.9 0.9 0.9 0.9 0.9 0.9
r 10 12 14 16 18 20

SR 0.57 0.57 0.57 0.57 0.57 0.57
FR 0.035 0.042 0.049 0.056 0.063 0.069
iter1 11 11 11 12 12 13
iter2 120 120 120 120 120 120
iter3 29 30 31 32 33 34
iter4 65 66 71 73 75 79
time1 5.31 6.22 6.69 8.40 9.23 11.76
time2 29.15 29.70 30.35 32.78 33.62 34.24
time3 6.26 7.66 8.80 9.33 9.64 10.44
time4 19.68 21.16 24.93 26.21 32.43 46.59
res1 6.6E-4 7.5E-4 9.3E-4 6.7E-4 8.2E-4 7.3E-4
res2 2.6E-4 2.5E-4 2.6E-4 2.6E-4 2.8E-4 2.9E-4
res3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3
res4 1.8E-5 1.8E-5 1.8E-5 1.8E-5 1.8E-5 1.8E-5
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FIG. 5.7(a): The cputime for different algorithms.
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FIG. 5.7(b): The number of iterations for different algorithms.
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FIG. 5.7(c): The residual for different algorithms.
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FIG. 5.8(a): The cputime for different r.
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FIG. 5.8(b): The number of iterations for different r.
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FIG. 5.8(c): The residual for different r.

5.2.5 Test for different algorithms with noisy under the unknown rank

We demonstrate the numerical results of the above mentioned algorithms for noisy matrix completion
problems in this subsection. In this case, the true rank of XR is unknown and the payoff parameter τ is
set to 1e−6. The strategy of estimating the true rank is same as that in the subsection 5.2.4. The results
are displayed in Table 5.9 and Table 5.10. From Figure 5.9 and Figure 5.10, our algorithm MAMC is still
more powerful than sIRLS, SVT and FPCA.
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FIG. 5.9(a): The cuptime for different algorithms.
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FIG. 5.9(b): The number of iterations for different algorithms.
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FIG. 5.9(c): The residual for different algorithms.

10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

50
Numerical results for different algorithms

r

ti
m

e
(s

e
c
o
n
d
)

 

 
 MAMC
 sIRLS
 SVT
 FPCA

FIG. 5.10(a): The cputime for different r.

TABLE 5.9: Numerical results for different algorithms.

m 100 200 300 400 500 600 700 800 900 1000 2000
n 100 200 300 400 500 600 700 800 900 1000 2000
p 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
r 10 10 10 10 10 10 10 10 10 10 10

SR 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
FR 0.34 0.17 0.12 0.08 0.07 0.058 0.050 0.044 0.039 0.035 0.018
iter1 44 22 18 14 14 13 12 11 11 11 10
iter2 120 120 120 120 120 120 120 120 120 120 120
iter3 106 57 46 39 36 34 33 31 30 29 24
iter4 220 124 97 86 79 72 70 65 64 63 60
time1 0.94 0.76 1.19 1.63 2.76 3.03 3.37 3.47 4.32 5.22 21.50
time2 1.70 2.26 3.08 4.38 6.37 9.07 12.15 17.93 23.90 31.79 67.41
time3 2.29 1.49 1.72 1.74 2.41 3.15 3.42 4.49 5.68 6.49 24.78
time4 5.35 4.08 4.86 6.20 7.79 8.54 8.67 9.97 13.98 17.73 57.52
res1 9.7E-4 8.0E-4 8.0E-4 8.8E-4 7.1E-4 6.6E-4 6.2E-4 8.2E-4 7.3E-4 6.6E-4 6.3E-4
res2 7.9E-4 5.0E-4 4.9E-4 5.1E-4 5.2E-4 5.6E-4 5.6E-4 5.9E-4 6.0E-4 6.2E-4 8.2E-4
res3 2.0E-3 1.4E-3 1.2E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 9.9E-4
res4 2.6E-4 9.9E-5 6.6E-5 4.8E-5 3.9E-5 3.2E-5 2.7E-5 2.4E-5 2.1E-5 1.9E-5 9.9E-5

TABLE 5.10: Numerical results for different r.

m 1000 1000 1000 1000 1000 1000
n 1000 1000 1000 1000 1000 1000
p 0.9 0.9 0.9 0.9 0.9 0.9
r 10 12 14 16 18 20

SR 0.57 0.57 0.57 0.57 0.57 0.57
FR 0.035 0.042 0.049 0.056 0.063 0.069
iter1 11 11 11 12 12 13
iter2 120 120 120 120 120 120
iter3 29 30 31 32 33 34
iter4 63 65 68 72 74 76
time1 5.25 5.63 7.26 8.59 8.99 11.89
time2 29.71 29.99 32.70 33.21 34.72 35.30
time3 6.51 7.12 9.16 9.20 9.55 10.37
time4 17.84 21.82 25.52 27.67 34.82 45.37
res1 7.0E-4 7.7E-4 6.1E-4 7.2E-4 8.2E-4 7.0E-4
res2 6.2E-4 5.9E-4 5.6E-4 5.3E-4 5.3E-4 5.2E-4
res3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.1E-3 1.2E-3
res4 1.9E-5 1.9E-5 1.9E-5 1.9E-5 1.9E-5 1.9E-5

30



10 12 14 16 18 20
0

20

40

60

80

100

120
Numerical results for different algorithms

r

it
e

r

 

 
 MAMC
 sIRLS
 SVT
 FPCA

FIG. 5.10(b): The number of iterations for different r.
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FIG. 5.10(c): The residual for different r.

5.2.6 Test for real problems

In this subsection, we implement our algorithm and sIRLS to tackle the matrix completion problem
whose data taken from the well-known MovieLens data sets [37]. MovieLens data sets were collected by
the GroupLens Research Project at the University of Minnesota. This data set consists of

(1) 100,000 ratings (1-5) from 943 users on 1682 movies.

(2) Each user has rated at least 20 movies.

(3) Simple demographic info for the users (age, gender, occupation, zip)

We consider MovieLens 100k data set for our numerical experiments. The MovieLens 100k data set
includes four small splits such as (u1.base,u1.test), (u2.base,u2.test), (u3.base,u3.test), (u4.base,u4.test)
and two medium splits such as (ua.base,ua.test), (ub.base,ub.test). To measure the accuracy of the
completed matrix, as in Goldberg et al. [38] , we define the mean absolute error (MAE) of the output
matrix X generated by the algorithm as follows

MAE :=

∑
(i,j)∈Ω |Xij −Mij |

|Ω| ,

where Ω is the support set of M , |Ω| is the cardinality of Ω and M is generated by u*.test. The size of M
equals (max(u*.test(:, 1)),max(u*.test(:, 2))) and M(u*.test(i, 1),u*.test(i, 2)) := u*.test(i, 3). Similar as
M , the initial matrix X0 is generated by the data set u*.base.

The normalized mean absolute error (NMAE) is used to measure the accuracy of the approximated
completion X,

NMAE :=
MAE

rmax − rmin
,

where rmax, rmin denote the upper and the lower bounds of the ratings respectively, i.e.

rmax = max{u*.test(:, 3)} and rmin = min{u*.test(:, 3)}.
Furthermore, the stop criterion in this test is given by

‖Xk −Xk−1‖F

‖Xk‖F
< tol := 1e− 3.

We choose p = 0.1 and set the estimate rank of X to be equal to 5. In Table 5.11, we report the NAME
for our algorithm MAMC and sIRLS for different splits of MovieLens 100k data set.
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TABLE 5.11: NAME for MAMC and sIRLS.

SPLITS MAMC sIRLS
(u1.base, u1.test) 0.186715 0.191970
(u2.base, u2.test) 0.184374 0.186562
(u3.base, u3.test) 0.184691 0.186755
(u4.base, u4.test) 0.185341 0.188907
(ua.base, ua.test) 0.193442 0.198626
(ub.base, ub.test) 0.196911 0.200994

From Table 5.11, our algorithm MAMC has a better NAME than sIRLS.

6. Concluding Remarks

In this paper, we propose a smoothing majorization method for solving the l2-lp matrix minimization
problem, which is an approximation optimization model for the low rank recovery problem. The lower
bound for nonzero singular values in any local optimal solution of the l2-lp problem is established. A
smoothing function for the l2-lp objective function is used to design a smoothing majorization method
for solve the l2-lp problem, in which the smoothing parameter is treated as a variable. Because our
objective function is non-smooth, non-Lipschitz, non-convex function, the smoothing techniques and the
idea of majorization are applied to alleviate these difficulties. The convergence theorem indicates that
any accumulation point of the sequence generated by the smoothing majorization method satisfies the
necessary optimality condition for the l2-lp problem. As an application, a smoothing majorization algo-
rithm MAMC is present for solving the well-known matrix completion problem. Numerical experiments
show that our algorithm can provide a high quality recovery solution more efficient compared with several
well-known methods using nuclear norm regularization and seems to be insensitive to the choice of p,
which is apparently different from sIRLS algorithm in this regard.
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Appendix A.

We simplify the function ϕ(·) as follows

ϕ(z) = F (U∗[Diag(z, 0m−r) 0](V ∗)T )

=
1
2
‖A(U∗[Diag(z, 0m−r) 0](V ∗)T )− b‖22 +

τ

p
‖U∗[Diag(z, 0m−r) 0](V ∗)T ‖p

p

= ϕ1(z) +
τ

p

r∑

i=1

zp
i ,

where z := (z1, z2, · · · , zr)T and ϕ1(z) :=
1
2
‖A(U∗[Diag(z, 0m−r) 0](V ∗)T ) − b‖22. By the definition of

the operator A, we have

A(U∗[Diag(z, 0m−r) 0](V ∗)T ) =




〈A1, U
∗[Diag(z, 0m−r) 0](V ∗)T 〉

〈A2, U
∗[Diag(z, 0m−r) 0](V ∗)T 〉

...
〈Aq, U

∗[Diag(z, 0m−r) 0](V ∗)T 〉


 .

By the rule of trace operation for nonsymmetric matrices, we have

〈Ai, U
∗[Diag(z, 0m−r) 0](V ∗)T 〉 = trace(AT

i U∗[Diag(z, 0m−r) 0](V ∗)T )
= trace((V ∗)T AT

i U∗[Diag(z, 0m−r) 0])
= 〈(U∗)T AiV

∗, [Diag(z, 0m−r) 0]〉.

Denote Ãi := (U∗)T AiV
∗(i = 1, 2, · · · , q), we obtain that

〈Ai, U
∗[Diag(z, 0m−r) 0](V ∗)T 〉 = 〈Ãi, [Diag(z, 0m−r) 0]〉, (0.1)

where Ãi and [Diag(z, 0m−r) 0] have the following form respectively,

Ãi =




ãi
11 ãi

12 · · · ãi
1n

ãi
21 ãi

22 · · · ãi
2n

...
...

...
ãi

m1 ãi
m2 · · · ãi

mn


 , [Diag(z, 0m−r) 0] =




z1

. . .

zr

0
. . .

0

0




.
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Hence, we have

ÃT
i [Diag(z, 0m−r) 0] =




ãi
11 ãi

21 · · · ãi
m1

ãi
12 ãi

22 · · · ãi
m2

...
...

...
ãi
1n ãi

2n · · · ãi
mn







z1

. . .

zr

0
. . .

0

0




=




z1ã
i
11 z2ã

i
21 · · · zrã

i
r1

z1ã
i
12 z2ã

i
22 · · · zrã

i
r2

...
...

...
z1ã

i
1n z2ã

i
2n · · · zrã

i
rn

0



n×n

. (0.2)

By the relationship (0.1) and (0.2), we obtain that

〈Ai, U
∗[Diag(z, 0m−r) 0](V ∗)T 〉 = 〈Ãi, [Diag(z, 0m−r) 0]〉

= trace(ÃT
i [Diag(z, 0m−r) 0])

= z1ã
i
11 + z2ã

i
22 + · · ·+ zrã

i
rr

=
(
ãi
11 ãi

22 · · · ãi
rr

)



z1

z2

...
zr


 .

If we denote the matrix Ã as follows,

Ã :=




ã1
11 ã1

22 · · · ã1
rr

ã2
11 ã2

22 · · · ã2
rr

...
...

...
ãq
11 ãq

22 · · · ãq
rr


 ,

then we have
A(U∗[Diag(z, 0m−r) 0](V ∗)T ) = Ãz.

Hence,

ϕ1(z) =
1
2
‖A(U∗[Diag(z, 0m−r) 0](V ∗)T )− b‖22 =

1
2
‖Ãz − b‖22.

and

ϕ(z) = ϕ1(z) +
τ

p

r∑

i=1

zp
i =

1
2
‖Ãz − b‖22 +

τ

p

r∑

i=1

zp
i .

Appendix B.

By the definitions of Q(X) and Ξ(H), we have

Q(X)T Ξ(H)Q(X)

=
1
2




U(X)T V1(X)T

0
√

2V2(X)T

(U(X)↑)T (−V1(X)↑)T




(
0 H

HT 0

)(
U(X) 0 U(X)↑

V1(X)
√

2V2(X) −V1(X)↑

)

=
1
2




V1(X)T HT U(X)T H√
2V2(X)T HT 0

(−V1(X)↑)T HT (U(X)↑)T H




(
U(X) 0 U(X)↑

V1(X)
√

2V2(X) −V1(X)↑

)

=
1
2




A + AT
√

2B (AT −A)I↑m√
2BT 0

√
2BT I↑m

I↑m(A−AT )
√

2I↑mB −I↑m(A + AT )I↑m


 ,
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where A := U(X)T HV1(X), B := U(X)T HV2(X). For simplify, we divide DiagDfε(λ(Ξ(X)) into three
blocks as follows

DiagDfε(λ(Ξ(X)) =




W1

W2

W3


 ,

where

W1 := Diag[(w1, w2, · · · , wm)T ],
W2 := Diag[(wm+1, wm+2, · · · , wn)T ],
W3 := Diag[(wn+1, wn+2, · · · , wn+m)T ].

So we have

〈[DiagDfε(λ(Ξ(X)))] , Q(X)T Ξ(H)Q(X)〉

=

〈


W1

W2

W3


 ,

1
2




A + AT
√

2B (AT −A)I↑m√
2BT 0

√
2BT I↑m

I↑m(A−AT )
√

2I↑mB −I↑m(A + AT )I↑m




〉

=
1
2
trace







W1(A + AT )
√

2W1B W1(AT −A)I↑m√
2W2B

T 0
√

2W2B
T I↑m

W3I
↑
m(A−AT )

√
2W3I

↑
mB −W3I

↑
m(A + AT )I↑m







=
1
2
trace(W1(A + AT ))− 1

2
trace(W3I

↑
m(A + AT )I↑m)

= (diagA)T




w1 − wn+m

w2 − wn+m−1

...
wm−1 − wn+2

wm − wn+1




= 2(diagA)T




pσ1(X)(σ2
1(X) + ε2)

p
2−1

pσ2(X)(σ2
2(X) + ε2)

p
2−1

...

pσm−1(X)(σ2
m−1(X) + ε2)

p
2−1

pσm(X)(σ2
m(X) + ε2)

p
2−1




.

Appendix C.

By the equation (4.6), we obtain that

L1 =
1
2

(A(Xk+1) +A(Xk)− 2b
)T (A(Xk+1)−A(Xk)

)

+〈DXF2(εk, Xk), Xk+1 −Xk〉+
τρk

2
‖Xk+1 −Xk‖2F .

=
1
2

(A(Xk+1)− b
)T (A(Xk+1)−A(Xk)

)
+

1
2

(A(Xk)− b
)T (A(Xk+1)−A(Xk)

)

− (A(Xk+1)− b
)T (A(Xk+1)−A(Xk)

)− τρk‖Xk+1 −Xk‖2F
+

τρk

2
‖Xk+1 −Xk‖2F

= −1
2

(A(Xk+1)− b
)T (A(Xk+1)−A(Xk)

)
+

1
2

(A(Xk)− b
)T (A(Xk+1)−A(Xk)

)

−τρk

2
‖Xk+1 −Xk‖2F

= −1
2
‖A(Xk+1)−A(Xk)‖22 −

τρk

2
‖Xk+1 −Xk‖2F .

and

L2 = DεF2(εk, Xk) · (εk+1 − εk) +
τρk

2
(εk+1 − εk)2

= −τρk(εk+1 − εk)2 +
τρk

2
(εk+1 − εk)2 = −τρk

2
(εk+1 − εk)2.
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