
Quadratic Outer Approximation for
Convex Integer Programming

Christoph Buchheim and Long Trieu

Fakultät für Mathematik, Technische Universität Dortmund
{christoph.buchheim,long.trieu}@math.tu-dortmund.de

Abstract. We present a quadratic outer approximation scheme for solv-
ing general convex integer programs, where suitable quadratic approxi-
mations are used to underestimate the objective function instead of clas-
sical linear approximations. As a resulting surrogate problem we con-
sider the problem of minimizing a function given as the maximum of
finitely many convex quadratic functions having the same Hessian ma-
trix. A fast algorithm for minimizing such functions over integer vari-
ables is presented. Our algorithm is based on a fast branch-and-bound
approach for convex quadratic integer programming proposed by Buch-
heim, Caprara and Lodi [5]. The main feature of the latter approach
consists in a fast incremental computation of continuous global minima,
which are used as lower bounds. We generalize this idea to the case of k
convex quadratic functions, implicitly reducing the problem to 2k − 1
convex quadratic integer programs. Each node of the branch-and-bound
algorithm can be processed in O(2kn) time. Experimental results for a
class of convex integer problems with exponential objective functions
are presented. Compared with Bonmin’s outer approximation algorithm
B-OA and branch-and-bound algorithm B-BB, running times for both
ternary and unbounded instances turn out to be very competitive.

1 Introduction

Many optimization problems arising in real world applications can be formulated
as convex mixed-integer nonlinear programs (MINLP) of the form

min f(x)

s.t. gj(x) ≤ 0 ∀j = 1, . . . ,m

xi ∈ Z ∀i ∈ I ,

where f, g1, . . . , gm : Rn → R are convex functions and I ⊆ {1, . . . , n} is the
set of indices of integer variables. Allowing both integrality and nonlinearity
makes this class of problems extremely hard. In fact, MINLP comprises the
NP-hard subclasses of mixed-integer linear programming (MILP) and general
nonlinear programming (NLP). The restriction to convex MINLP preserves NP-
hardness, as MILP is still contained as a special case. The most important exact
approaches applied to convex MINLP are branch-and-bound by Dakin [7], gener-
alized Benders decomposition by Geoffrion [10], outer approximation by Duran

2 Christoph Buchheim and Long Trieu

and Grossmann [8] and Fletcher and Leyffer [9], branch-and-cut by Quesada
and Grossmann [12], and the extended cutting plane method by Westerlund and
Pettersson [15]. A detailed survey of algorithms and software for solving convex
MINLP is given by Bonami, Kilinç and Linderoth [3].

In the further course of this paper, for simplicity, we focus on the pure integer
case with box-constraints, thus assuming I = {1, . . . n} and l ≤ x ≤ u for some
fixed lower and upper bound vectors l ∈ (R∪{−∞})n and u ∈ (R∪{∞})n. Note
that the resulting box-constrained convex integer nonlinear program (INLP) of
the form

min f(x)
s.t. x ∈ B , (1)

where B := {x ∈ Zn | l ≤ x ≤ u}, still belongs to the class of NP-hard problems,
since minimizing a convex quadratic function over the integers is equivalent to
the Closest Vector Problem, which is known to be NP-hard [14]. The algorithm
for solving convex INLP presented in the following is based on the outer approx-
imation scheme.

1.1 Organization of the Paper

After giving a short recapitulation of the standard linear outer approximation
scheme, we describe our quadratic outer approximation scheme in Section 2.
Section 3 presents our approach for solving a convex piecewise quadratic integer
program with constant Hessian matrix, which occurs as a surrogate problem
in every iteration of our extended outer approximation scheme. In Section 4,
we present computational results and compare the effectiveness of the proposed
algorithm, applied to a special class of convex integer nonlinear optimization
problems, with existing state-of-the-art software. Finally, we summarize our main
results and give a short outlook in Section 5.

2 Outer Approximation

2.1 Linear Outer Approximation

The main idea of the classical linear outer approximation approach is to equiv-
alently transform the original integer nonlinear problem into an integer linear
problem by iteratively adding linearizations to the objective function. As soon as
we obtain an iterate that has already been computed in an earlier iteration, we
have reached optimality. Applied to (1), we get the simplified scheme described
in Algorithm 1. The main computational effort of the presented approach lies in
the computation of the integer minimizer in Step 3 of each iteration, by solving
a box-constrained convex piecewise linear integer program, which can be formu-
lated as an integer linear program (ILP). The approach is illustrated in Fig. 1.

Quadratic Outer Approximation 3

Algorithm 1: Linear Outer Approximation Scheme

input : convex and continuously differentiable function f
output: integer minimizer x∗ ∈ B of f

1. set k := 1 and choose any x1 ∈ B
2. compute supporting hyperplane for f in xk:

f(x) ≥ f(xk) +∇f(xk)>(x− xk)

3. compute xk+1 ∈ B as an integer minimizer of

max
i=1,...,k

{f(xi) +∇f(xi)>(x− xi)}

4. if xk+1 6= xi for all i ≤ k, set k := k + 1 and go to 2, otherwise, xk+1 is optimal

−5

 0

 5

 10

 15

−2 −1 0 1 2

−5

 0

 5

 10

 15

−2 −1 0 1 2

−5

 0

 5

 10

 15

−2 −1 0 1 2

−5

 0

 5

 10

 15

−2 −1 0 1 2

Fig. 1. Linear Outer Approximation applied to f : [−2, 2]→ R, f(x) = (x+1)2+ex
2−2.

Iterates are x1 = 0, x2 = −2, x3 = −1, and x4 = −1

2.2 Quadratic Outer Approximation

The main drawback of Linear Outer Approximation is that in general many
iterations are necessary to obtain an appropriate approximation of the origi-
nal objective function. The basic idea of our approach is to modify Step 2 of
Algorithm 1 by replacing the linearizations by appropriate quadratic underesti-
mators. Unfortunately, the second-order Taylor approximation is not necessarily
a global underestimator of the original function. One important challenge there-
fore is to find a suitable quadratic underestimator. The following observation
gives a sufficient condition for an underestimator to be feasible.

Theorem 1. Let f be twice continuously differentiable and let Q ∈ Rn×n such
that Q 4 ∇2f(x) for all x ∈ Rn. Consider the supporting quadratic function

T (x) := f(xk) +∇f(xk)>(x− xk) + 1
2 (x− xk)>Q(x− xk).

Then f(x) ≥ T (x) for all x ∈ Rn.

Proof. By construction, we have ∇2(f −T)(x) = ∇2f(x)−Q < 0 for all x ∈ Rn

and ∇(f − T)(xk) = ∇f(xk) − ∇f(xk) = 0. This implies that f − T is convex
with minimizer xk, yielding f(x)−T (x) ≥ f(xk)−T (xk) = 0 for all x ∈ Rn. ut

The entire quadratic outer approximation scheme is described in Algorithm 2.

4 Christoph Buchheim and Long Trieu

Algorithm 2: Quadratic Outer Approximation Scheme

input : convex and twice continuously differentiable function f ,
matrix Q s.t. 0 4 Q 4 ∇2f(x) for all x ∈ Rn

output: integer minimizer x∗ ∈ B of f

1. set k := 1 and choose any x1 ∈ B
2. compute supporting quadratic underestimator for f in xk:

f(x) ≥ f(xk) +∇f(xk)>(x− xk) + 1
2

(x− xk)>Q(x− xk)

3. compute xk+1 ∈ B as an integer minimizer of

max
i=1,...,k

{f(xi) +∇f(xi)>(x− xi) + 1
2

(x− xi)>Q(x− xi)}

4. if xk+1 6= xi for all i ≤ k, set k := k + 1 and go to 2, otherwise, xk+1 is optimal

In Step 2 of Algorithm 2, the new underestimator for a given iterate xk is
computed as follows:

f(xk) +∇f(xk)>(x− xk) + 1
2 (x− xk)>Q(x− xk)

= f(xk)−∇f(xk)>xk + 1
2 x

k>Qxk︸ ︷︷ ︸
=:ck+1

+ (∇f(xk)> − xk>Q)︸ ︷︷ ︸
=:L>k+1

x+ 1
2 x
>Qx ,

the new quadratic underestimator

1
2 x
>Qx+ L>k+1x+ ck+1

is a convex quadratic function with Hessian Q < 0 not depending on k.

Step 3 of Algorithm 2 requires to compute an integer minimizer of a quadratic
program instead of a linear program, as was the case in Algorithm 1. Although
the hardness of this surrogate problem increases from a practical point of view,
this approach might pay off if the number of iterations decreases significantly
with respect to linear approximation. In fact, we observed in our experiments
that the number of iterations stays very small in general, even for problems in
higher dimensions; see Section 4.

However, the surrogate problem of solving a convex box-constrained piecewise
quadratic integer program, being the most expensive ingredient in Algorithm 2,
requires an effective solution method to keep the whole algorithm fast. The
surrogate problem can be formulated as an integer quadratic program (IQP), it
is of the form

min
x∈B

max
i=1,...,k

(
1
2 x
>Qx+ L>i x+ ci

)
, (2)

where Q < 0, L1, . . . , Lk ∈ Rn, and c1, . . . , ck ∈ R. At this point it is crucial to
underline that the Hessian Q of each quadratic function is the same, so that we

Quadratic Outer Approximation 5

can rewrite (2) as

min
x∈B

(
1
2 x
>Qx+ max

i=1,...,k
(L>i x+ ci)

)
,

which in turn can be reformulated as an integer quadratic program using a
dummy variable α ∈ R:

min 1
2 x
>Qx+ α

s.t. L>i x+ ci ≤ α ∀i = 1, . . . , k

x ∈ B
α ∈ R .

(3)

The quadratic outer approximation scheme is illustrated in Fig. 2. In this exam-
ple, the algorithm terminates after two iterations.

−5

 0

 5

 10

 15

−2 −1 0 1 2

−5

 0

 5

 10

 15

−2 −1 0 1 2

−5

 0

 5

 10

 15

−2 −1 0 1 2

Fig. 2. Quadratic Outer Approximation for f : [−2, 2] → R, f(x) = (x + 1)2 + ex
2−2,

using Q = 2 + 2e−2. The iterates are x1 = 0, x2 = −1, and x3 = −1

3 Convex Piecewise Quadratic Integer Programming

Solving the convex piecewise quadratic integer program (2) in each iteration
is the core task of the quadratic outer approximation scheme. We implicitly
reduce this problem, in iteration k, to at most 2k − 1 convex quadratic integer
programs, which are solved by a fast branch-and-bound algorithm proposed by
Buchheim, Caprara and Lodi [5]. Our computational results in Section 4 show
that only few iterations of Algorithm 2 are necessary in general to solve an
instance to optimality, so that the number 2k − 1, though being exponential,
remains reasonably small in practice.

3.1 Branch-and-Bound for Convex Quadratic Integer Programming

For a better understanding of the branch-and-bound algorithm, we shortly sum-
marize its key ingredients. For given Q < 0, L ∈ Rn, and c ∈ R, consider the
convex quadratic integer program

min
x∈Zn

f(x) = 1
2 x
>Qx+ L>x+ c .

6 Christoph Buchheim and Long Trieu

For simplicity, assume Q to be positive definite. In this case, we can easily
determine the unique global minimizer x̄ of f over Rn by solving a system of
linear equations, as

x̄ = −Q−1L with f(x̄) = c− 1
2 L
>Q−1L,

which we can use as a lower bound for f over Zn. Simple rounding of the con-
tinuous minimizer

xj := bx̄je, j = 1, . . . , n

to the next integer yields a trivial upper bound f(x) for f over Zn.
In our branch-and-bound scheme, we branch by fixing the variables in in-

creasing distance to their values in the continuous relaxation. By exploiting the
convexity of f and its symmetry with respect to x̄, we can cut off the current
node of the tree and all its siblings as soon as we fix a variable to some value for
which the resulting lower bound exceeds the current best known upper bound.
Using these ingredients we get a straightforward branch-and-bound algorithm
with running time O(n3) per node, mainly for computing the continuous mini-
mizer by solving a linear system of equations. However, the running time of this
computation can be improved to even linear running time per node, in two steps.

First, note that after fixing the first d variables, the problem reduces to the
minimization of

f̄ : Zn−d → R, x 7→ 1
2 x
>Q̄dx+ L̄>x+ c̄

where Q̄d � 0 is obtained by deleting all rows and columns of Q corresponding
to fixed variables and L̄ and c̄ are adapted properly. The main idea is to fix
the variables in a predetermined order. Following this approach, the reduced
matrices Q̄d only depend on the depth d, but not on specific fixings. This implies
that only n different matrices Q̄d appear in the entire branch-and-bound tree, so
that their inverse matrices can be predetermined in a preprocessing phase. The
resulting running time reduces to O((n− d)2) per node.

The second improvement is a consequence of the following observation [5]:

Theorem 2. For each d ∈ {0, . . . , n− 1}, there exist vectors zd, vd ∈ Rn−d and
a scalar sd ∈ R, only depending on Q and the chosen order of variables, such
that the following holds: if x̄old ∈ Rn−d denotes the minimizer of f̄ after fixing
variables x1, . . . , xd, and xd+1 is fixed to rd+1 ∈ Z, then the resulting continuous
minimizer and associated minimum can be computed incrementally by

x̄new := x̄old + αzd

and
f̄(x̄new) := f̄(x̄old) + α

(
(x̄old)>vd + L̄>zd

)
+ α2sd

where α = rd+1 − x̄old1 .

As a conclusion, if zd, vd and sd are computed in a preprocessing phase for
all d = 0, . . . , n− 1, the resulting total running time per node is O(n− d).

Quadratic Outer Approximation 7

3.2 Lower Bound Computation for the Surrogate Problem

To solve the surrogate problem (2) with a branch-and-bound algorithm, we com-
pute a lower bound at every node by solving its continuous relaxation

min
x∈Rn−d

max
i=1,...,k

(
1
2 x

T Q̄dx+ L̄T
i x+ c̄i

)
.

The main idea is to decompose this problem into subproblems, namely the min-
imization of several auxiliary quadratic functions defined on affine subspaces
of Rn−d, and finally make use of the incremental computation technique de-
scribed in the last subsection. To describe this decomposition procedure, we
need to introduce some definitions. First, we define

f̄(x) := max
i=1,...,k

f̄i(x)

as the maximum of the reduced functions

f̄i(x) := 1
2 x
>Q̄dx+ L̄>i x+ c̄i, i = 1, . . . , k .

For all J ⊆ {1, . . . , k}, J 6= ∅, we define

UJ := {x ∈ Rn−d | f̄i(x) = f̄j(x) ∀i, j ∈ J}

and consider the auxiliary function

f̄J(x) : UJ → R, f̄J(x) := f̄i(x), i ∈ J .

As all functions f̄i have the same Hessian matrix Q̄d, each set UJ is an affine
subspace of Rn−d. In particular, we can compute the minimizers x∗J of all f̄J
incrementally as described in Section 3.1.

Theorem 3. For each J ⊆ {1, . . . , k} with J 6= ∅, let x∗J be a minimizer of f̄J
over UJ . Then the global minimum of f̄ is

min {f̄J(x∗J) | ∅ 6= J ⊆ {1, . . . , k}, f̄(x∗J) = f̄J(x∗J)}.

Proof. We clearly have “≤”. To show “≥”, let x∗ ∈ Rn−d be the global minimizer
of f̄ and define

J∗ := {i | f̄i(x∗) = f̄(x∗)} 6= ∅.
Then it follows that x∗ ∈ UJ∗ and f̄(x∗) = f̄J∗(x

∗). Moreover, x∗ minimizes f̄J∗

over UJ∗ , hence x∗ = x∗J∗ by strict convexity. In summary,

f̄(x∗J∗) = f̄(x∗) = f̄J∗(x
∗) = f̄J∗(x

∗
J∗) ,

from which the result follows. ut

Corollary 1. The running time of the modified branch-and-bound algorithm for
solving the surrogate problem (2) is O(2k · (n− d)) per node.

Note that the index set J does not need to be considered any more in the current
node and its branch-and-bound subtree as soon as the value of f̄J(x∗J) exceeds
the current upper bound.

8 Christoph Buchheim and Long Trieu

4 Experimental Results

To show the potential of our approach, we carried out two types of experiments.
First, we compared our branch-and-bound algorithm for solving the surrogate
problems (2), called CPQIP, to CPLEX 12.4 [1]. Second, we created a class of
hard convex integer programs, to illustrate the effectiveness of our quadratic
outer approximation algorithm, called QOA, and to compare its performance to
that of Bonmin-OA and Bonmin-BB 1.5.1 [13] using Cbc 2.7.2 and Ipopt 3.10.

4.1 Implementation Details

We implemented our algorithm in C++. To speedup our algorithm, we used a
straightforward local search heuristic to determine a good starting point. We
start by taking the origin x = (0, . . . , 0) and continue to increase the first vari-
able x1 until no further improvement can be found. In the same way we test if
decreasing the variable leads to a better solution. We repeat this procedure for
every consecutive variable x2, . . . , xn. The improvement in running time can be
seen in Table 2. Another small improvement in running time can be achieved by
using the optimal solution x∗k of the surrogate problem in iteration k to get an
improved global upper bound UB for the next iteration, i.e.

UB := max
i=1,...,k+1

1
2 x
∗
k
>Qx∗k + L>i x

∗
k + c .

4.2 Surrogate Problem

We randomly generated 160 instances for the surrogate problem (2), 10 for each
combination of n ∈ {20, 30, 40, 50} and k ∈ {2, . . . , 5}. We chose B = Zn, i.e., we
consider unbounded instances. For generating the positive semidefinite matrix Q,
we chose n eigenvalues λi uniformly at random from [0, 1] and orthonormalize
n random vectors vi, where all entries are chosen uniformly at random from
[−10, 10], then we set Q =

∑n
i=1 λiviv

>
i . The entries of all Li and ci, i = 1, . . . , k,

were chosen uniformly at random from [−10, 10].
We compared our algorithm CPQIP with the Mixed-Integer Quadratic Pro-

gramming (MIQP) solver of CPLEX 12.4 [1] applied to the QP model (3). For
both approaches, we used a time limit of 3 hours and an absolute optimality
tolerance of 10−6. The relative optimality tolerance of CPLEX was set to 10−10.

The results are summarized in Table 1. Running times are measured in cpu
seconds and the numbers of nodes explored in the branch-and-bound trees are
given in the corresponding column. First, we can observe that our algorithm
could solve 158 out of 160 instances in total within the given time limit, while
CPLEX 12.4 managed to solve only 154 instances. Second, for instances with a
large number n of variables but small k, our approach turns out to be significantly
faster. Instances of this type are the most relevant instances in a quadratic outer
approximation scheme, as shown in Section 4.3.

As expected, CPQIP tends to be slower than CPLEX on most of the instances
with k = 5, since the running time per node in our branch-and-bound algorithm
is exponential in k.

Quadratic Outer Approximation 9

CPQIP CPLEX 12.4

n k solved time nodes solved time nodes

20 2 10/10 0.02 1.39e+4 10/10 0.24 2.52e+3
20 3 10/10 0.03 9.84e+3 10/10 0.18 1.68e+3
20 4 10/10 0.06 9.51e+3 10/10 0.21 1.59e+3
20 5 10/10 0.05 2.91e+3 10/10 0.10 1.14e+3

30 2 10/10 0.07 4.23e+4 10/10 0.90 1.33e+4
30 3 10/10 0.40 1.09e+5 10/10 1.94 2.81e+4
30 4 10/10 4.48 4.20e+5 10/10 7.75 9.06e+4
30 5 10/10 4.57 2.63e+5 10/10 2.90 3.92e+5

40 2 10/10 10.41 5.35e+6 10/10 138.77 1.31e+6
40 3 10/10 30.70 7.18e+6 10/10 69.58 7.91e+5
40 4 10/10 66.13 7.15e+6 10/10 73.32 8.28e+5
40 5 10/10 141.53 7.21e+6 10/10 92.80 1.00e+6

50 2 10/10 320.30 1.45e+8 10/10 2337.91 1.81e+8
50 3 10/10 844.18 1.72e+8 8/10 646.15 5.41e+7
50 4 10/10 1925.06 1.79e+8 8/10 864.92 6.95e+7
50 5 8/10 1650.26 6.90e+7 8/10 931.00 7.50e+7

Table 1. Average running times, numbers of instances solved and average numbers
of branch-and-bound nodes for CPQIP and CPLEX 12.4 on randomly generated un-
bounded instances of problem type (2)

4.3 Quadratic Outer Approximation Scheme

In order to evaluate the entire quadratic outer approximation scheme, we con-
sider the following class of problems:

min
x∈Zn

f(x), f : D ⊆ Rn → R, f(x) =

n∑
i=1

exp(qi(x)) (4)

where qi(x) = x>Qix+L>i x+ci. We assume Qi � 0 for all i = 1, . . . n, so that f
is a strictly convex function.

In order to determine a feasible matrix Q according to Theorem 1, we first
compute mi := minx∈D qi(x) for all i = 1, . . . , n and then choose

Q :=

n∑
i=1

2Qi exp(mi) � 0 .

It is easy to see that ∇2f(x) − Q < 0 for all x ∈ Rn, so that Q can be used
in Algorithm 2. The quality of Q and therefore of the quadratic underestimator
strongly depends on D: the smaller the set D is, the larger are the mi, and the
better is the global underestimator.

To test the quadratic outer approximation scheme, we randomly generated
ternary and unbounded instances of type (4), i.e., we consider both D = [−1, 1]
and D = Rn. All data were generated in the same way as in Section 4.2, except

10 Christoph Buchheim and Long Trieu

that all coefficients of Q and Li, ci, i = 1, . . . , n, were scaled by 10−5, to avoid
problems with the function evaluations.

We tested our algorithm against Bonmin-OA and Bonmin-BB [13, 2], which
are state-of-the-art solvers for convex mixed-integer nonlinear programming.
While Bonmin-OA is a decomposition approach based on outer approxima-
tion [8, 9], Bonmin-BB is a simple branch-and-bound algorithm based on solving
a continuous nonlinear program at each node of the search tree and branching on
the integer variables [11]. Again the time limit per instance was set to 3 hours.

QOA(h) QOA Bonmin-OA Bonmin-BB

n solved ø it mx time (s) solved ø it mx time (s) solved time (s) solved time (s)

20 10/10 1.00 1 0.03 10/10 2.00 2 0.07 10/10 91.53 10/10 2.12
30 10/10 1.50 4 5.87 10/10 2.50 4 28.46 5/10 1017.99 10/10 148.85
40 10/10 1.40 3 20.19 10/10 2.40 4 65.42 0/10 — 9/10 4573.80
50 10/10 2.00 3 69.54 10/10 3.10 4 151.88 0/10 — 0/10 —
60 9/10 2.11 4 1154.66 9/10 3.00 5 1692.76 0/10 — 0/10 —
70 5/10 3.80 6 3363.11 4/10 3.75 5 2916.21 0/10 — 0/10 —

Table 2. Running times, number of instances solved, average and maximum number
of iterations of QOA(h), QOA compared to Bonmin-OA and Bomin-BB for randomly
generated ternary instances of problem type (4)

QOA(h) Bonmin-BB

n solved ø it mx time (s) solved time (s)

20 10/10 2.30 3 0.12 10/10 113.13
30 8/10 3.12 5 26.38 1/10 4897.10
40 6/10 2.83 3 134.42 0/10 —
50 2/10 3.00 3 7630.12 0/10 —

Table 3. Running times, number of instances solved, average and maximum number
of iterations of QOA(h) compared to Bonmin-BB for randomly generated unbounded
instances of problem type (4)

Results for ternary and unbounded instances are shown in Table 2 and 3,
respectively. “QOA(h)” denotes our quadratic approximation scheme using the
local search heuristic, while in “QOA” the heuristic was turned off. Running
times are again measured in seconds. The columns named “ø it” and “mx” show
the average and maximum number of iterations in our approach, respectively.

Overall our quadratic outer approximation approach could solve more in-
stances and seems to be considerably faster for the ternary instances as well as
the unbounded instances. For the unbounded instances, we unfortunately expe-
rienced some numerical issues, because the function evaluations seem to cause

Quadratic Outer Approximation 11

problems. While Bonmin-OA did not converge properly, the branch-and-bound
algorithm Bonmin-BB, which seems to be faster than B-OA in all cases, some-
times computed solutions which were slightly worse than ours and hence not
always optimal. In the ternary case, no such problems occured in any of the
approaches tested.

An important observation in all our experiments is that both the average
and maximum number of iterations in our outer approximation scheme tend to
be small, here up to 4 for the instance sizes we could solve to optimality within
the given time limit. In particular, the number of iterations does not seem to
increase significantly with the number of variables n, contrary to the standard
linear outer approximation approach.

5 Conclusion

We proposed a quadratic outer approximation scheme for solving convex integer
nonlinear programs, based on the classical linear outer approximation scheme.
From our computational results, we can conclude that quadratic underestimators
have the potential to yield significantly better approximations, which might lead
to considerably fewer iterations of the entire algorithm. While the standard linear
outer approximation scheme requires to solve an integer linear program in each
iteration, our method requires the solution of integer quadratic programs with
linear constraints. Therefore we proposed an algorithm which is based on the
reduction of the surrogate problems to a set of unconstrained convex quadratic
integer programs, which are effectively solved by a branch-and-bound algorithm
introduced by Buchheim et al. [5].

For future work it remains to study possible and good choices of Q for other
classes of problems. Moreover, the running time could be further reduced by,
e.g., trying to eliminate non-active underestimators or approximately solving
the surrogate problem instead of solving it to optimality, in order to obtain
additional quadratic underestimators quickly. Furthermore, our approach could
be extended to constrained convex integer programs by using penalty functions.
For this, note that a feasible Q stays feasible if adding a convex penalty function
to the objective function.

Finally, one could also consider using non-convex quadratic underestimators
for non-convex nonlinear integer optimization within our framework, assum-
ing that a fast algorithm for solving non-convex quadratic integer programs is
at hand; potential candidates are the algorithms proposed by Buchheim and
Wiegele [4] or by Buchheim, De Santis, Palagi and Piacentini [6]. Such an exten-
sion would allow our approach to be applied to a much wider class of problems
than classical linear outer approximation.

References

[1] IBM ILOG CPLEX Optimizer 12.4, 2013. URL www.ibm.com/software/

integration/optimization/cplex-optimizer.
[2] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D.

Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algo-
rithmic framework for convex mixed integer nonlinear programs. Discrete
Optimization, 5(2):186 – 204, 2008.

[3] P. Bonami, M. Kilinç, and J.T. Linderoth. Algorithms and Software for
Solving Convex Mixed Integer Nonlinear Programs, volume 154 of IMA Vol-
umes in Mathematics and its Applications: Mixed Integer Nonlinear Pro-
gramming, chapter Part I: Convex MINLP, pages 1–39. Springer, 2012.

[4] C. Buchheim and A. Wiegele. Semidefinite relaxations for non-convex
quadratic mixed-integer programming. Mathematical Programming, 2012.
To appear.

[5] C. Buchheim, A. Caprara, and A. Lodi. An effective branch-and-bound
algorithm for convex quadratic integer programming. Mathematical Pro-
gramming, 135:369–395, 2012.

[6] C. Buchheim, M. De Santis, L. Palagi, and M. Piacentini. An exact algo-
rithm for quadratic integer minimization using ellipsoidal relaxations. Tech-
nical report, Optimization Online, 2012.

[7] R.J. Dakin. A tree-search algorithm for mixed integer programming prob-
lems. The Computer Journal, 8:250–255, 1965.

[8] M.A. Duran and I.E. Grossmann. An outer-approximation algorithm for a
class of mixed-integer nonlinear programs. Mathematical Programming, 36:
307–339, 1986.

[9] R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by
outer approximation. Mathematical Programming, 66:327–349, 1994.

[10] A. Geoffrion. Generalized Benders Decomposition. Journal of Optimization,
10:237–260, 1972.

[11] O.K. Gupta and A. Ravindran. Branch and bound experiments in convex
nonlinear integer programming. Management Science, 31(12):1533–1546,
1985.

[12] I. Quesada and I.E. Grossmann. An LP/NLP based branch-and-bound
algorithm for convex MINLP. Computers and Chemical Engineering, 16:
937–947, 1992.

[13] Bonmin 1.5.1: Basic Open source Nonlinear Mixed INteger programming,
2013. URL www.coin-or.org/Bonmin.

[14] P. Van Emde Boas. Another NP-complete problem and the complexity of
computing short vectors in a lattice. Technical Report 81-04, University of
Amsterdam, Department of Mathematics, 1981.

[15] T. Westerlund and F. Pettersson. A cutting plane method for solving convex
MINLP problems. Computers and Chemical Engineering, 19:131–136, 1995.

