Decentralised Shared Resource Constraint Scheduling with Confidentiality Protection

Gaurav Singh®*, Christine M O’Keefe®

ACSIRO Mathematics, Informatics and Statistics, Postal Bag 33, South Clayton VIC 3169, Australia
b CSIRO Mathematics, Informatics and Statistics, GPO Box 664, Canberra ACT 2601 Australia

Abstract

As resources become scarce and expensive, it has become increasingly important for players in a decentralised supply chain to
collaborate. One of the main challenges in collaboration is to find close to globally optimal solutions without sharing individual
player’s private data. Taking a decentralised resource constrained scheduling problem as an example we present a methodology
which can be used to calculate correct lower and upper bounds on the objective functions without needing to share any private data

from individual players.

Key words: decentralised scheduling, single shared resource, total weighted tardiness, release dates, precedences

1. Introduction

As resources like electricity and water are becoming very
scarce and expensive, the supply chains are becoming very
complicated and competitive. In order to reduce the cost of op-
erating a supply chain it has also become important for various
independent players within the supply chain to cooperate and
share the scarce resources. In mineral supply chains these re-
sources can be of many forms like electricity, number of trains,
train tracks, stockyard capacities at the port and ship loading
capacities. In what follows, the problem considered in this pa-
per is motivated by the mining sites that are not connected to
the main electricity grid. One power plant may provide elec-
tricity (the shared resource) to several mining operations. For
environmental reasons the government may introduce a cap on
the total amount of electricity that can be produced. Therefore,
the mineral processing tasks of the mines have to be scheduled
in such a way that the total electricity produced at the power
plant does not exceed this cap. However, the mines are oper-
ated by competing companies and even though they are willing
to cooperate, they do not wish to reveal confidential informa-
tion about their operations to their competitors or to the power
plant. Such confidential information would include details of
the mineral processing tasks including: first time when the task
could be started, amount of time required to process the job,
due date and importance of completing the job before the due
date. Such information could potentially be used by competi-
tors or the power plant to attempt to prevent the mine delivering
on time, or to attempt to gain a competitive advantage.

The problem considered in this paper is a particular form
of resource constrained scheduling problem, and has attracted
some recent attention [1, 2, 3, 4]. In this problem, processors
(mines) have jobs (mining operations) to be executed that each

*Corresponding author
Email addresses: Gaurav.Singh@csiro.au (Gaurav Singh),
Christine.OKeefe@csiro.au (Christine M O’Keefe)

Preprint submitted to Elsevier

require certain proportion of a shared resource (electricity). A
limited quantity of this resource is provided by the central re-
source manager (the power plant). This corresponds to a renew-
able resource in the terms used by Brucker et al [5].

A comprehensive survey of models and solution methods for
resource constrained scheduling can be found in [5, 6, 7]. Most
of the problems in the literature consider minimising makespan
as the objective. In this paper we consider minimising total
weighted tardiness as the objective. Recently, there has also
been some interest in minimising earliness-tardiness as the ob-
jective [8].

Shackelford and Corne [9] describe a collaborative evolu-
tionary scheduling system, which enables the search to be
guided by both the standard schedule quality criteria and also a
human scheduler’s non-formalised knowledge and experience.

An agent-based approach is presented by Lu and Yih [10]
and Singh and Weiskircher [1, 2]. In [10], the software agents
try to find balanced schedules to meet heterogeneous objectives
of production entities within a collaborative manufacturing sys-
tem in a manufacturing environment. The agents only exchange
simple index data to reduce the communication and computa-
tion load of the control system. In [1, 2], a negotiation system
was presented for solving a decentralised collaborative schedul-
ing problem with a single shared resource and its performance
was compared against a centralised genetic algorithm. It was
shown that, even though the negotiation system obeys strict in-
formation decentralization to compute a feasible solution and
while a central genetic algorithm has complete information and
was given much longer computation time, the negotiation sys-
tem can often find better solutions than the central genetic al-
gorithm.

A more theoretical approach is taken in the paper by
Cheng et al [11] where they look at the problem of multi-agent
scheduling on a shared machine. They show that the prob-
lem is strongly NP-complete in general and present a pseudo-
polynomial algorithm for integral weight as well as a fully

August 16, 2012

polynomial-time approximation scheme.

Confessore, Giordani and Rismondo [12] suggested a multi-
agent system that uses combinatorial auctions to allocate a
shared resource among a number of projects. Their approach
performs well on relatively small instances but is so far lim-
ited to exclusive shared resources that can only be used by one
project at any point in time. For more papers on decentralised
scheduling see [1, 13, 14, 15, 16] and [17].

Recently, Singh and Ernst [3] have presented a Volume al-
gorithm [18] inspired Lagrangian relaxation based heuristic for
the centralised version of the problem considered in this paper.
That is, it was assumed that data is centralised and all the nec-
essary information is available to all the players. It was shown
that for large number of players, Lagrangian relaxation can out
perform meta-heuristics like Simulated Annealing and Genetic
Algorithms.

As the above literature review has shown there has been con-
siderable interest in using distributed optimisation techniques in
solving resource constrained scheduling problems. But, all the
papers have assumed that the data is centralised and all the play-
ers are willing to share necessary information. The problem be-
comes more challenging when, for commercial sensitivity rea-
sons, the players are not interested in sharing any information
and in this case it is not easy to even calculate an objective value
for a given schedule.

In this paper, we use secure multiparty computation [19, 20,
21] methods in the Lagrangian relaxation algorithm of [3] and
show that it can be implemented without any player revealing
any confidential information to any other processor or the cen-
tral resource manager. These methods can be vulnerable to at-
tack from colluding parties, however in our context we assume
collusion does not occur as all parties are motivated to coop-
erate in order to ensure that the amount of electricity produced
at the power plant does not exceed the cap. If this assumption
is not valid, then additional measures as in Section 3 can be
used to prevent collusion attacks for an honest majority of par-
ties. We show how secure multiparty computation techniques
can be applied to exactly calculate the global lower bounds and
upper bounds on the problem without sharing any confidential
information. We also present two different heuristic procedures
which are also shown to converge to Nash’s equilibrium. Re-
sults from computational experiments are also presented.

The rest of the paper is organized as follows. In the next
Subsection we provide a formal description of the problem. In
Section 2 we review the integer linear program for this problem
from [3]. In Section 3 we present the details of Secure Mul-
tiparty Computation used in our algorithm. This is followed
by a Lagrangian relaxation based approximation algorithm in
Section 4. In Section 5 we present results from computational
experiments and in Section6 we describe how our technique can
be used for other problems. We then conclude in Section 7.

1.1. The Problem Description

The problem considered in this paper can be translated
into the following machine scheduling problem. Sup-
pose several jobs need to be scheduled on m proces-
sors, M = {My,..., M,,}, each one of them representing a

mine/player. Each processor or mine or player M; has a finite
set J' of n’ mineral processing jobs, {j¢, ... ,jfﬂ }, which need
to be completed. Each job, j € J* is characterized by:

1. Release Time, r;: the first time when the job becomes
available.

2. Processing Time, p;: the amount of time required in order
to complete the processing of job j.

3. Due Date, d;: the desired time by which the job needs to
be completed.

4. Weight, w;: a value, which reflects the importance of com-
pleting the job before its due date.

5. Resource Requirement of the Job, I;: amount of the
shared resource required in order to complete the job’s
processing.

6. Machine, M;: the specified processor on which processing
of the job needs to be completed.

There are no set-up times between the jobs. Each processor
can process at most one job at a time. Each job can be processed
only on its specified processor. No pre-emption is allowed. The
processing of a job cannot be started before its release time. All
the processors are available from time zero onwards. All data
are assumed to be deterministic and integer valued, except for
the w; values which does not necessarily have to be an integer.

There are arbitrary precedence relations, —, between jobs
which belong to the same processor. In this relation, if 7,k €
J%and j — k, then the processing of job k cannot be started
until the processing of job j is completed on processor i.

We assume that the values r;, p;, d;, w;, R; and M are con-
fidential for every job j € J*,i = 1,..., m. We further assume
that all the precedence relations — between jobs are confiden-
tial.

For every job j € [J¢, a feasible schedule o assigns a start
time s; (o) such that s;(o) > r;. The completion time, C; (o),
of this job in schedule o can be defined as, s;(c) +p;. If j, k €
J"and j — k, then Cj(0) < si(0).

Let o be a feasible schedule and S; be the set of all the jobs
being processed or starting their processing in this schedule at
time point ¢t. More formally,

Sy ={jlj e LT & sj(0) <t < sj(0) +p;}

Also, let R,,q, be the maximum resource available at any
given time. We will say o is also a “resource-feasible” schedule
if

ZRjSRmaz VtZO
JES:

That is the total resource consumed by all the jobs running or
starting their processing at time ¢ should not be more than the
maximum available resource, R,,,,. For the purposes of this
paper, we assume that R,,,, is known by all the processors.

The objective is to find a resource-feasible schedule o, which
minimizes the criterion of total weighted tardiness (T'WT),
which is defined as

TWT(0) =3 w; - T;(0).

where T (o) is the tardiness of the job j in schedule o and is
defined as max{C;(co) — d;,0}.

Singh and Ernst [3] showed that, the problem for even a
single mine, denoted as 1|d;,r;, prec|Xw; - T}, is also NP-
hard. Therefore, they proposed a method designed to find near-
optimal solutions, in the case that there is free exchange of re-
quired information between the processors.

In this paper, we modify the Singh-Ernst [3] Lagrangian
relaxation based algorithm to adapt it to the case in which
the processors do not reveal their confidential information
r;,pj,d;, w;, R; and M;. However, we do assume that the
value R,,,. is known by each processor.

2. An Integer Linear Program

Singh and Ernst [3] have presented a integer linear program-
ming formulation of the centralised problem described in pre-
vious section. For sake of completeness we present the model
here. Let J = U™, J¢ be the set of all the jobs. For every job
J € J we first calculate, cj;, which reflects the cost of starting
j at time ¢ — p; and finishing at ¢£. More formally,

cjp = wjmax{t —d;,0} V¢, Vjel

Note that each value c;; depends on the confidential infor-
mation w; and d; of job j € J. It can be calculated by the
processor M; on which job j will be processed, and can be held
confidential by that processor.

We also define following binary variables

if 7 € J is completed by time ¢

1 .
it = { 0 otherwise Vi, VjeJ

The objective function to be minimised is the total weighted
tardiness, given as

minz Z cit(Zjt — Zjt—1) e))
JET >0

It can be noted that the total weighted tardiness is a function
of processor’s confidential information. Our revised algorithm
will avoid the need for the processors to reveal confidential in-
formation in minimising this objective function.

The various constraints can also be modeled as

1. Release date constraints:
Zjt =0Vjeld, Vt:O,...,rj + pj -1

2. Not more than one job on any processor:

> (zjgp, —ze) S1VE Vi=1,...,m
JET?

3. Once job is completed it stays as completed:
Zjt > zjp1 Vj € J, VE>0

4. All jobs must be completed:
zir=1Vjel

where T is the end of time horizon.

5. Precedence Relations:
2pt < Zit—py v.] — k, Vit
6. Central Resource Constraint:

> Ri(zjttp; — 2jt) < Roaa Vt. @)

jeI
Note that in this formulation, constraints 1-5 depend only on
local processor information. In other words, if each processor
checks these constraints for its own jobs then the constraints are
checked for every job. Each processor can determine whether
the relevant constraints are satisfied without needing informa-
tion from any other processor and without revealing any infor-
mation to any other processor. In contrast, constraint 6 requires
information on all jobs, that is, requires information from all
processors. Our revised algorithm will enable this constraint to
be checked without the need for any processor to reveal confi-
dential information to any other party.

Our revised algorithm depends on Secure Multiparty Com-

putation, as introduced in the next Section.

3. Secure Multiparty Computation

In this Section we give a brief introduction to secure multi-
party computation, including details about secure sum, the tech-
nique used in our heuristic [19], see [20, 21].

Suppose that a number of participants wish to each provide
an input and jointly conduct a computation such as finding the
sum of their individual inputs. Suppose further that the input
held by each participant is confidential and so the participants
do not wish to reveal their input to the others. If there is an addi-
tional independent party trusted by all the participants, a trusted
third party, then all participants can send their individual inputs
to the trusted third party who then conducts the computation
and returns the result to the participants. In this way, at the end
of the computation, no participant knows anything except its
own input and the result, however the trusted third party knows
all inputs as well as the result. The idea of secure multiparty
computation is to avoid the need for a trusted third party, while
still ensuring that at the end of the computation, no participant
knows anything except its own input and the result.

3.1. Secure Sum

In the context of this paper, we only require secure sum; and
we follow the account in [20]. Suppose that sites 1,2,...,s
hold values v1, ve, ..., vs respectively, and know that the sum
V =37, v; lies in the interval [0, — 1]. One site is desig-
nated to be the master site, say site 1. Site 1 generates a random
number g, uniformly chosen on the interval [0, n — 1], adds it to
its local value v and sends the sum V; = g + v; mod n to site
2. Since g was chosen uniformly from [0, n — 1], the number
g + v1 mod n is also distributed randomly on [0, n] and site 2
learns nothing about the value of v;. For k = 2,...,s — 1,
the following steps are performed: site k receives the value
Vier, = g + Z;:ll v; mod n. This value is uniformly dis-
tributed on [0, n — 1], so site k learns nothing. Site k now com-
putes Vi, = Vi_1 + v mod n and passes it to site k + 1. Site

s performs the calculation as above, and sends the result to site
1. Site 1 now subtracts ¢ mod n to obtain Vy, =V = Zf:l V.

As discussed in [20], this method is vulnerable to attack if
parties collude. For example, sites £—1 and k+1 can determine
the value vy. The method can easily be extended to work for an
honest majority as follows. First, each site &k divides its value vy
into ¢ shares so that the sum of the shares is the value v;. The
secure sum protocol is repeated £ times, with each site using one
of its shares in each iteration, but with the sites numbered in a
different order each time so that no site has the same neighbor
twice. Then the ¢ results are added to obtain the overall sum.
Increasing ¢ increases the number of parties that would need to
collude to learn information about a value.

4. A Lagrangian Relaxation based Algorithm

In this Section we present a modified version of the La-
grangian relaxation based method from [3] which was inspired
by the Volume Algorithm presented in [18]. We relax the set
of constraints (2), the resource consumption constraints using
Lagrangian relaxation techniques and introduce the Lagrange
multipliers, \;, for time point t. The motivation to use La-
grangian relaxation techniques was the fact that it allowed to
decompose the problem into subproblems for each processors,
which can then be solved independently.

By relaxing the constraints (2), the Lagrangian Dual can be
obtained as:

LRR(\) =min» > cji(zje — zje-1) +

jeJ t>0

Z Rj((zjt-i'm - th) - Rmam) 3)
jel

PR
t
The above equation can be rearranged to give

LRR()\) = mlnz Z C;‘t(zjt - th—l) — Riaz Z At
t

JET t>0
where
min{p;,t}
C;-t =cjt + Z At—iRj- “4)
=1

One can note that, c;t gives the total “cost” of completing the
job j at time ¢, as it is sum of job’s weighted tardiness and the
cost of using [7; amount of resource during the job’s execution.
The objective for the i*" subproblem then becomes

LRR()\)" = min Z Zc;-t(zjt — Zjt—1).

JETI >0

Note that the i*" subproblem only involves information about
the processor M; through the variables c;; and R;; it does not
require information about any other processor.

Algorithm 1 provides the various steps involved in this al-
gorithm. This algorithm is motivated by the volume algo-
rithm [18] and incorporates in each iteration the direction of
movement as a convex combination of the current and previous

subgradients. The main idea is to accelerate solution’s con-
vergence by avoiding the usual zig-zag behavior of the sub-
gradient algorithm. Here, at each iteration k, vectors DF =
{D¥, ..., Dk} represent the violation of constraints (2) at each
time ¢, S represents the convex combination of the current and
previous subgradients and 3 provides the direction of the cur-
rent subgradient.

The algorithm proceeds in two stages. In the first stage, the
individual processor independently solve the subproblems us-
ing only their local information. So the first stage does not
require any processor to reveal confidential information to an-
other processor or to any other party. The second stage of the
algorithm, which is a collaborative protocol to seek an overall
solution, makes use of secure multiparty computation to avoid
the need for any processor to reveal confidential information to
another processor or to any other party.

4.1. An Iterative Heuristic

As Singh-Ernst [3] noted when all the sub-problems com-
prise of only one job, with 7; = 0,w; = 1 and R; = Ryas
for all the jobs, 5 € J. Then, finding a “resource-feasible”
schedule is equivalent to 1|| > T problem, which is known to
be NP-hard [22]. Therefore, in general sense, the problem of
finding a “resource-feasible” schedule from a feasible schedule
is NP-hard. Which justifies the use of a heuristic procedure to
calculate an upper bound for the problem.

In this section we present a general framework that is used
to calculate an upper bound for our problem. In this framework
the processors apply strategies using information from the sys-
tem in order to achieve their goals. The processors, however,
have incomplete information of the full system as the data is
decentralised.

In each step of the framework the processors schedule their
jobs based on release dates, precedence constraints, due dates
and job weights and taking into account the availability of the
shared resource in the complete schedule. The processors use
ILP from Section 2 with constraints relevant to only their re-
quirements and instead of constraint (2) the following con-
straint is used

if Rj > RRy, then 2jy4,, < 2jy, Vt Vj € J"

where RR; is the available resource at time ¢. In the first iter-
ation it is assumed that the all of the resource is available i.e.
RR; = Ryq.. The constraint ensures that a processor’s job is
not running during the time ¢ if the amount of resource available
is not sufficient to complete this job.

The resource manager receives a schedule, o; from processor
i, and resource requirement, R;, for every job j € J*. The
resource manager internally sets

1. release date of a job j as s;(0;) Vj € J, and

2. if sj(0;) < si(o;) thensets j — k Vj, k € J"

3. processing time p; of a job can also be calculated from
s;j(0;) and resource utilisation.

The resource manager next creates a random list of jobs and
Algorithm 2 is used to find a “resource-feasible” schedule, o.

Algorithm 1: Lagrangian Relaxation based Algorithm

Data: Initialization. Setk =0, p = 1.5, LB* =0,
UB* =00, \" = (A, \), -, A\%) = (0,0,---,0),
S =1(0,---,0), * = X%, 4,00 = 0.65, gap = oo
1 while £ < 500]| p > 0.0001|| gap > 0.05 do
2 The processors independently solve the subproblems
with LRR(\F) as the objective for the i*"
subproblem, without the receipt or transmission of any
confidential information. Let {27, } V¢, j € J be the
solution from the subproblems

3 Find the resource remaining,
m
k __ / /
Dt = Rmaw - E E (th+17j B th) X Rj’Vt
i=1 jeJt

Note that the processors can independently compute
the subtotals 3¢ 7: (244, — 27;) X R;, and then can
use the Secure Sum protocol of Section 3.1 to compute
the overall sum without revealing their individual
subtotals to each other

4 Set the lower bound,

LB¥ =Y LRR(\)' = Rpas Y Af.

t

The processors use the Secure Sum protocol of Section
3.1 to compute) . LRR(\)" without revealing their
individual subtotals to each other

5 Use heuristic procedure described in Section 4.1 or in
Section 4.2 to calculate an upper bound, U B*.

6 if UB* > UB" then

7 L Set UB* = UB*

8 Set 3=S5-DF and ||S]|>?=S"S

9 | if3>0& LB* < LB* then

10 A* =)k

1 LB* = LB*

12 p = min{1.3p, 2.0}

13 else

14 | p=1095p

15 Let v* be the solution that minimises

[y D* + (1 = 7)8]|.
16 if v* < 0 then

17 | Y = Ymaa/10.0
18 else

19 L v = min{Y*, Vimaz }
20 | SetS=~S+(1—~)D*
21 The Lagrange multipliers (Vt) are adjusted as

B* - LB*
)\f+1 = maX{O,)\iC — pa]HSH?)St}

Setgap:%andk:k+l

Finally, the resource manager uses Secure Sum described in
Section3.1 to find the total weighted tardiness of the schedule
o.. Theorem 1 shows that the schedule o, is a resource-feasible
schedule.

If for every job j € J, s;(0;) = s;(o.), then the process
stops. As this indicates that the schedules sent by the proces-
sors had no resource conflict. Otherwise, the resource manager
returns back a modified schedule of each processor together
with the resource profile { RR;}, which indicates the remain-
ing shared resource at any time ¢. Each processor then tries to
improve on the schedule sent by the resource manager by re-
arranging its jobs and taking the resource profile into account.
The iteration continues until no processor can find a schedule
which can improve the schedule sent by the resource manager.
There are two things which can be noted about this procedure:

e The final solution where the solution terminates is a Nash’s
equilibrium, as no processor is able to improve their own
schedule by keeping every other processor’s resource allo-
cations as is.

e Also, as there are only finite set of schedules, the proce-
dure must terminate after certain iterations.

Theorem 1. The schedule generated by the resource manager
is a resource-feasible schedule for all processors.

PROOF. Let o, be the schedule generated by the resource man-
ager at some iteration of the procedure described in Section 4.1
and let o; be the ¢th processor’s feasible solution which was
used to generate the schedule o.. It is easy to see from Al-
gorithm 2, that o, always satisfies the resource constraint. It
therefore, suffices to show that the o, is feasible for an individ-
ual processor. In order to do so there are two important prop-
erties to be checked. Firstly, a job 5 must not start before its
release date, ;. Since, s;j(o.) > s;(o;) and s;(0;) > rj, it
shows that s;(o.) > r;.

Secondly, if jobs j — k for a processor ¢, then as o; is a
feasible schedule s;(o;) < si(o;). Therefore, using condition
2, 7 — k is preserved in the schedule o, as well.

Algorithm 2: A Serial List Scheduling based Algorithm
Data: A list of jobs 7 ={j1...7n}
Result: A “resource-feasible” schedule o,.

1 while 7! = (do

2 Let j be the first job such that forno: € J,7 — j

3 set t = max{r;, max{s;(c) + p; } }
11—
4 Let t,,, > t be the earliest time when processor M is

idle and at least /2; amount of resource is available
during the interval [t,,, t, + pj)

5 sett = t, ands;(o) =t
6 | J=J\{}
7 return o

It is easy to see that if o* is an optimal schedule for the prob-
lem, then it is possible to construct a list of all the jobs, for
which Algorithm 2 produces the same schedule as 0.

4.2. A leader-follower based heuristic

At each iteration of this heuristic the resource manager ran-
domly picks a processor with unscheduled jobs as leader. The
leader then uses the ILP to optimise only its objective within
the current availability of the resource. Based on the schedule
of the leader the resource profile is updated and another proces-
sor with unscheduled jobs is selected as leader. The algorithm
continues until jobs of all the processors have been scheduled.
Once again, the resource manager uses Secure Sum described
in Section 3.1 to find the total weighted tardiness of the final
schedule obtained by this procedure. It is known ([23]) that
the procedure terminates with a solution which is also a Nash’s
equilibrium. Algorithm 3 provides a high-level description of
this algorithm.

Algorithm 3: Leader-Follower based Heuristic

Input: Set. b = 0, converged = false, UB* = o

1

2 while b < 100 || converged = false do

3 Create a random list of processors

4 Use the leader-follower procedure to create a
resource-feasible schedule

5 Use the secure sum procedure to calculate U B®

6 | ifUB* > UB?" then

| UB*=UB"

9 if no processor is able to reduce its TWT then

10 ‘ set converged = true

11 else

12 | b+ =1

13|

14 return U B*

5. Computational Experiments

For a fair comparison we used the same instances as in [3].
There were 800 problem instances with 3 to 12 processors each
with 10.5 jobs on average. This gave us on average 80 instances
for a particular number of processor. The instances were also
generated such that at least two processors can execute jobs
simultaneously. In our experiments, we applied four solution
methods to the problem instances:

1. LR: The Lagrangian Relaxation based algorithm pre-
sented in [3].

2. LRIH: The Lagrangian Relaxation method described in
4 and upper bound procedure as “iterative heuristic” de-
scribed in 4.1.

3. LRLF: The Lagrangian Relaxation method described in 4
and upper bound procedure as “leader-follower heuristic”
described in 4.2. As every iteration of this heuristic is cpu-
intensive, the algorithm is only called every 10th iteration
and every iteration when the best solution is updated.

4. SAS: The simulated annealing based heuristic presented
in [3].

Out of these four methods, LRIH and LRLF methods are decen-
tralised methods that use the secure computation technique and
other two methods are centralised methods from the literature
used for comparison purposes.

All algorithms ran on 64-bit 2.93 GHz Intel Xeon(R) with
8 GB of main memory. We measured two values for each prob-
lem instance for each of the three methods: solution quality
i.e. Total Weighted Tardiness (TWT) and the CPU time in secs.
Note that for both measures, smaller values are better. When
comparing any two methods, say A and B, we first calculated
the ratios TWT(A)/LB and TWT(B)/LB, where TWT(A)
is the Total Weighted Tardiness found by the method A and LB
is the lower bound found by the LR method. We then com-
puted for each problem instance the difference between these
ratios for the two methods. Finally, Student’s t-test was applied
to the resulting data in order to obtain the estimated mean and
the 95% confidence interval for the mean. This allowed us to
filter out the absolute differences between the objective func-
tion values of different problem instances, since we are only
interested in which algorithm is better for each instance. For all
two measures, we divided the problem instances into 10 groups
corresponding to the number of processors.

Figure 1 shows the 95% confidence intervals of Stu-
dent’s t-test on the differences of relative TWT between pairs
(LRIH, LR), (LRLF, LR), (LRIH, SAS), (LRLF, SAS) and
(LRLELRIH). The results indicate following:

1. For 3,4,5 processors the difference between the two heuris-
tic procedure was only marginal.

2. For 6 or more processors the LRIH method found better
results than the LRLF method. This difference does not
increases much with increase on number of processors.

3. For up to 7 processors, the SAS method found better solu-
tions than the LRLF or LRIH methods. But for larger num-
ber of processors it is interesting that the LRIH and LRLF
methods found better solutions than the SAS method.
There is also a very clear pattern that for large number
of processors the difference between quality of solutions
found by LRIH and LRLF methods is only increasing.

4. For small number of processors (3,4 and 5) the LRIH
and LRLF methods could find better solutions than the
LR method. But for larger number of processors the LR
method found better solutions. Although, this difference
is not increasing much with increase in number of proces-
sors.

5. The difference between LRIH method and LR method for
for more than 6 processors was close to 5%. We find it
interesting that the LRIH method has incomplete informa-
tion of the problem as compared to LR method and still it
manages to find good solutions. This also reflects on the
price of anarchy for these problems as around 5%.

Figure 2 shows the 95% confidence intervals of Student’s t-
test on the difference of relative lower bounds found by pairs
(LRIH,LR) and (LRLELR). As the results indicate the quality

LRIH-LR
LRLF-LR
LRIH-SAS
LRLF-SAS

l LRLF-LRIH

0.3

0.2

95% C.1. for difference in TWT
0.0 0.1

| |

_ |
e
e
=N

lea® =
. RS

— G *

-0.1
|

Number of processors

Figure 1: Confidence intervals of Student’s t-test on the differences of the rela-
tive TWT

of lower bound found by the LRLF and LRIH methods do not
differ much and for small processors number the lower bounds
are worst than the LR method. But, for instances with large
number of processors the difference is very marginal.

Figure 3 shows the average CPU time in seconds for various
methods. As this figure indicates that method LRIH is quite
comparable with LR method and on average used same (and
sometimes smaller) time compared with LR method. For large
number of processors LRLF method has a high cpu utilisation.
This is because, with increase in the number of processors, the
Leader-Follower heuristic takes longer time to converge to an
equilibrium.

6. A Generalised Procedure

The Lagrangian relaxation method presented in this paper
can be easily extended to other problems which have indepen-
dent players and data is decentralised. Indeed, these problems
will usually have some constraints which are local to the par-
ticular player and then there are some constraints which link
these independent players like the resource constraint in the
problem considered here. In this case, as shown in this paper,
all the linking constraints can be relaxed and a Lagrangian re-
laxation based algorithm can be developed. Using secure sum
techniques, the algorithm can estimate the true lower and upper
bounds without disclosing any private information of individual
player.

7. Conclusion

Motivated from decentralised supply chains, in this paper,
we presented a decentralised Lagrangian relaxation method,
which allows us to calculate the true lower and upper bounds
on the problem without disclosing any private information of

L
Y @”"” ,,,,,,,,,
o n n
o
2 9 II
5
(=}
53]
5 4
E
o
- <
s < |
v 9 H
o
c
o
g 4
o
& g
= o 7]
(@) T
X
wn
I 4
8
Sl — LRIH-LR
— LRLF-LR

T T T T T T T T T T
3 4 5 6 7 8 9 10 11 12

Number of processors

Figure 2: Confidence intervals of Student’s t-test on the differences of the lower
bound

8000

W Average LR mAverage LRIH Average LRLF

7000
6000
5000

4000

cputime (Secs)

3000

it

Number of Processors

Figure 3: Average CPU time (secs) for methods LR, LRIH and LRLF

any player. We also present two heuristic procedures which
converge to Nash’s equilibrium and compare their performance
with algorithms in the literature. Our results show that even
with partial information the algorithms presented in this paper
are quite competitive and find solutions very close to the cen-
tralised algorithms in the literature.

The algorithm presented in this paper cannot be applied to
the case when the objective function is non-additive, for exam-
ple minimising maximum tardiness. In the future, we want to
develop strategies which can be used for the case when the ob-
jective function is non-additive.

References

[1] G. Singh, R. Weiskircher, Collaborative resource constraint schedul-
ing with a fractional shared resource, in: proceedings of 2008
IEEE/WIC/ACM International Conference on Intelligent Agent Technol-
ogy (IAT-08), IEEE Computer Society, Sydney, Australia, 2008, pp. 359—
365.

[2] G. Singh, R. Weiskircher, A multi-agent system for decentralised frac-
tional shared resource constraint scheduling, Web Intelligence and Agent
Systems 9 (2) (2011) 99-108.

[3] G. Singh, A. Ernst, Resource constraint scheduling with a fractional
shared resource, Operations Research Letters 39 (5) (2011) 363-368.

[4] D. Thiruvady, A. Ernst, G. Singh, Parallel ant colony optimization for
resource constrained multiple machine job scheduling, Computers and
Operations Research submitted.

[5] P. Brucker, A. Drexl, R. Mohring, K. Neumann, E. Pesch, Resource-
constrained project scheduling: Notation, classification, models, and
methods, European Journal of Operational Research 112 (1) (1999) 3—
41.

[6] E. Demeulemeester, W. Herroelen, Project Scheduling: A Research
Handbook, Kluwer: Boston, 2002.

[7]1 C.S. K. Neumann, J. Zimmermann, Project Scheduling with Time Win-
dows and Scarce Resources, Springer: Berlin, 2003.

[8] F. Ballestin, N. Trautmann, An iterated-local-search heuristic for the
resource-constrained weighted earliness-tardiness project scheduling
problem, International Journal of Production Research 46 (22) (2008)
6231-6249.

[9]1 M. Shackelford, D. Corne, Collaborative evolutionary multi-project re-
source scheduling, in: Proc. of 2001 Congress on Evolutionary Compu-
tation, Vol. 2, 2001.

[10] T. P. Lu, Y. Yih, An agent-based production control framework for
multiple-line collaborative manufacturing, International Journal of Pro-
duction Research 39 (10) (2001) 2155-2176.

[11] T.C.E. Chenga, C. T. Ng, J. J. Yuan, Multi-agent scheduling on a single
machine to minimize total weighted number of tardy jobs, Theoretical
Computer Science 362 (2006) 273-281.

[12] G. Confessore, S. Giordani, S. Rismondo, A market-based multi-agent
system model for decentralized multi-project scheduling, Annals of Op-
erations Research 150 (1) (2006) 115-135.

[13] E. Kutanoglu, D. Wu, On combinatorial auction and lagrangean relax-
ation distributed resource scheduling, IIE Transactions 31 (1999) 813—
826.

[14] X.Li, L.-K. Soh, Hybrid negotiation for resource coordination in multia-
gent systems, Web Intelligence and Agent Systems 3 (4) (2005) 231-259.

[15] S. Albayrak, D. Milosevic, Multi-domain strategy coordination approach
for optimal resource usage in agent based filtering framework, Web Intel-
ligence and Agent Systems 4 (2) (2006) 239-253.

[16] P.Dewan, S. Joshi, Dynamic single-machine scheduling under distributed
decision-making, International Journal of Production Research 38 (16)
(2000) 3759-3777.

[17] P. Dewan, S. Joshi, Auction-based distributed scheduling in dynamic job
shop environment, International Journal of Production Research 40 (5)
(2002) 1173-1191.

[18] F.Barahona, R. Anbil, The volume algorithm: producing primal solutions
with a subgradient method, Mathematical Programming 87 (3) (2000)
385399.

[19] A. Yao, How to generate and exchange secrets, in: Proceedings of the
27th IEEE Symposium on Foundations of Computer Science, IEEE,
1986, pp. 162-167.

[20] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, M. Zhu:2002, Tools for
privacy preserving distributed data mining, SIGKDD Explorations 4 (2)
(2002) 28-34.

[21] B. Pinkas, Cryptographic techniques for privacy-preserving data mining,
SIGKDD Explorations 4 (2) (2002) 12-19.

[22] J. K. Lenstra, A. H. G. R. Kan, P. Brucker, Complexity of machine
scheduling problems, Annals of Discrete Mathematics 1 (1977) 343-362.

[23] T. Roughgarden, Stackelberg scheduling strategies, in: 31st ACM Sym-
posium on Theory of Computing (STOC), ACM, New York, USA, 2001,
pp. 104-113.

