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Abstract

We present a double projection algorithm for solving variational inequalities

without monotonicity. If the solution of dual variational inequality does exist,

then the sequence produced by our method is globally convergent to a solution.

Under the same assumption, the sequence produced by known methods has only a

subsequence converging to a solution. Numerical experiments are reported.
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1. Introduction

We consider the classical variational inequality problem VI(F ,C), which is to find a

point x∗ ∈ C such that

〈F (x∗), y − x∗〉 ≥ 0 for all y ∈ C, (1)

where C is a nonempty closed convex subset of Rn, F is a continuous operator from

Rn into itself, and 〈·, ·〉 denotes the usual inner product in Rn.
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Let S be the solution set of VI(F ,C) and SD be the solution set of the dual varia-

tional inequality:

SD := {x ∈ C|〈F (y), y − x〉 ≥ 0, for all y ∈ C}.

Since F is continuous and C is convex, we have

SD ⊂ S. (2)

We use ST and SN to denote the trivial solution set and the nontrivial solution set of

VI(F ,C), respectively; that is,

ST : = {x∗ ∈ C|〈F (x∗), y − x∗〉 = 0, for all y ∈ C},

SN : = S \ ST .

The projection-type algorithms for solving nonlinear variational inequality problem

have been extensively studied in the literature, such as Goldstein-Levitin-Polyak Pro-

jection methods [1, 2]; proximal point methods [3]; extragradient projection methods

[4, 5, 6, 7]; combined relaxation (CR) methods [8, 10, 9]; double projection methods

[11, 12, 13]; self-adaptive projection methods [14, 15, 16]. To prove the global conver-

gence of generated sequence, all these methods have the common assumption S ⊂ SD,

that is,

for any x∗ ∈ S, 〈F (y), y − x∗〉 ≥ 0 for all y ∈ C. (3)

This assumption is a direct consequence of pseudomotonicity of F on C in the sense of

Karamardian [17]. F is said to be pseudomonotone on C; i.e., for all x, y ∈ C,

〈F (x), y − x〉 ≥ 0 =⇒ 〈F (y), y − x〉 ≥ 0.

In the proof of convergence of iterated sequence {xk} under the assumption of (3), all

above methods adopt three similar steps:

(a) For any x̂ ∈ SD,

‖xk+1 − x̂‖2 ≤ ‖xk − x̂‖2 − αk‖rµk(xk)‖2, (4)

where αk > 0 and rµk(xk) is the natural residual function defined in the next

section.

(b) {‖xk+1−x̂‖} is decreasing, {xk} is bounded and its cluster point, say x̄ is a solution

of variational inequality.

(c) Note that the inequality (4) holds for any x̂ ∈ SD and x̄ ∈ S. The assumption (3)

implies that we can replace x̂ by x̄ in (a). It can be proved that xk converging to

x̄.
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Now we weaken the assumption (3) to the following

∃ x0 ∈ S, such that 〈F (y), y − x0〉 ≥ 0 for all y ∈ C. (5)

Note that x0 ∈ S ∩ SD. The inequality in the step (a) holds for the point x0 (it is not

known whether such an inequality holds for other points in S), that is

‖xk+1 − x0‖2 ≤ ‖xk − x0‖2 − αk‖rµk(xk)‖2. (6)

Thus we cannot replace x0 by x̄ in the step (c), because x̄ in the step (b) is not

necessarily equal to the given point x0.

Note that the assumption (5) is equivalent to SD 6= ∅, by (2). Moreover, (3) implies

(5), but not the converse, see Example 4.2. Assume that F is quasimonotone on C;

i.e., for all x, y ∈ C,

〈F (x), y − x〉 > 0 =⇒ 〈F (y), y − x〉 ≥ 0.

Then SN 6= ∅ implies SD 6= ∅; see Proposition 2.1. Recently, [18, 19] proposed an inte-

rior proximal algorithm for solving quasimonotone variational inequalities, the global

convergence is obtained under more assumptions than SD 6= ∅.
Under the assumption of SD 6= ∅, [8] proposed a method and proved the sequence

produced has a subsequence converging to a solution; see also Theorem 1(i) in [9].

Related results are contained in the monograph [10].

Our main purpose in this paper is to suggest a new method which produces a

globally convergent sequence, under the only assumption SD 6= ∅. Known methods

either assume more conditions or prove only the sequence produced has a subsequence

converging to a solution.

The organization of this paper is as follows. We present the algorithm in the next

section and establish convergence analysis in Section 3. Numerical experiments are

reported in Section 4.

2. Algorithm and preliminary results

Let intC denote the interior of C. The projection from x ∈ Rn onto C is defined by

PC(x) := argmin{‖y − x‖ | y ∈ C}. The distance from x ∈ Rn to C is defined by

dist(x,C) := inf{‖y − x‖ | y ∈ C}.

The natural residual function rµ(·) is defined by rµ(x) := x−PC(x−µF (x)), where µ > 0

is a parameter. If µ = 1, we write r(x) for rµ(x).

Algorithm 2.1. Choose x0 ∈ C as an initial point, σ ∈ (0, 1) and γ ∈ (0, 1). Set

k = 0. Compute zk := PC(xk − F (xk))
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Step 1. Compute r(xk) = xk − zk. If r(xk) = 0, stop. Otherwise, go to Step 2.

Step 2. Compute yk = xk − ηkr(x
k), where ηk = γmk , with mk being the smallest

nonnegative integer satisfying

〈F (xk)− F (xk − γmr(xk)), r(xk)〉 ≤ σ‖r(xk)‖2. (7)

Step 3. Compute xk+1 = PC∩H̃k
(xk), where H̃k :=

⋂j=k
j=0Hj with Hj := {v : hj(v) ≤ 0}

is a hyperplane defined by the function

hj(v) := 〈F (yj), v − yj〉. (8)

Let k = k + 1 and return to Step 1.

F being continuous, Step 2 is well-defined. Moreover, if SD 6= ∅, then Step 3 is

well-defined, as SD ⊂ C ∩ H̃k and hence C ∩ H̃k is nonempty for every k.

The following four results are well-known in the literature; see [20].

Lemma 2.1. For any x ∈ Rn and z ∈ C, 〈PC(x)− x, z − PC(x)〉 ≥ 0.

Lemma 2.2. Let µ > 0. Then x∗ ∈ S if and only if ‖rµ(x∗)‖ = 0.

Lemma 2.3. For every x ∈ C,

〈F (x), rµ(x)〉 ≥ µ−1‖rµ(x)‖2. (9)

Lemma 2.4. Let K be a nonempty closed convex subset of Rn and xk+1 = PK(xk).

Then for any x∗ ∈ K, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2. (10)

Lemma 2.5. ([12]) Let C ⊂ Rn be a closed convex subset of Rn, h be a real-valued

function on Rn, and K := {x ∈ C : h(x) ≤ 0}. If K is nonempty and h is Lipschitz

continuous on C with modulus θ > 0, then

dist(x,K) ≥ θ−1 max{h(x), 0} for all x ∈ C. (11)

Lemma 2.6. ([21]) Let F be a continuous and quasimonotone operator. If for some

x0 ∈ C, we have 〈F (y), x0 − y〉 ≥ 0, then at least one of the following must hold:

〈F (x0), x0 − y〉 ≥ 0, or 〈F (y), x− y〉 ≤ 0 for all x ∈ C. (12)

Lemma 2.7. Let F be a continuous and quasimonotone operator. Then SN ⊂ SD.
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Proof. Let x∗ ∈ SN . Fix any y ∈ C. Since SN ⊂ S, we have 〈F (x∗), y − x∗〉 ≥ 0. By

Lemma 2.6, one of the following must hold:

〈F (y), y − x∗〉 ≥ 0, or 〈F (x∗), x− x∗〉 ≤ 0 for all x ∈ C.

Since x∗ ∈ S, the second inequality implies that x∗ ∈ ST , which contradicts x∗ ∈ SN .

Thus the first inequality must hold: 〈F (y), y−x∗〉 ≥ 0. The conclusion follows as y ∈ C
is taken arbitrarily.

Theorem 2.1. If intC is nonempty, then x∗ ∈ ST if and only if F (x∗) = 0.

Proof. Clearly, we need to prove only the necessary condition. Let x∗ ∈ ST . Assume

that F (x∗) 6= 0. By the definition of ST , we have

〈F (x∗), y − x∗〉 = 0 for all y ∈ C. (13)

Since intC is nonempty, we can suppose there exists x0 ∈ intC and a sufficiently small

positive number t > 0 such that x0 − tF (x∗) ∈ C. By (13), we have

0 =〈F (x∗), (x0 − tF (x∗))− x∗〉

=− t‖F (x∗)‖2 + 〈F (x∗), x0 − x∗〉

=− t‖F (x∗)‖2.

Which contradicts the assumption of F (x∗) 6= 0. This completes the proof.

Proposition 2.1. If either

(a) F is pseudomonotone on C and S 6= ∅;

(b) F is the gradient of G, where G is a differentiable quasiconvex function on an open

set K ⊃ C and attains its global minimum on C;

(c) F is quasimonotone on C, F 6= 0 and C is bounded;

(d) F is quasimonotone on C, F 6= 0 on C and there exists a positive number r such

that, for every x ∈ C with ‖x‖ ≥ r, there exists y ∈ C such that ‖y‖ ≤ r and

〈F (x), y − x〉 ≤ 0;

(e) F is quasimonotone on C and SN 6= ∅;

(f) F is quasimonotone on C, intC is nonempty and there exists x∗ ∈ S such that

F (x∗) 6= 0,

then SD is nonempty.

Proof. (a),(b),(c) and (d) are conclusions of Proposition 1 in [22], (e) is the corollary

of Lemma 2.7, (f) is the consequence of (e) and Theorem 2.1.
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Lemma 2.8. Let the function hk be defined by (8) and {xk} be generated by Algorithm

2.1. If SD 6= ∅, then hk(x
k) ≥ (1−σ)ηk‖r(xk)‖2 > 0 for all k. If x∗ ∈ SD, then hk(x

∗) ≤
0 for all k.

Proof. By the definition of yk, we have

hk(x
k) = ηk〈F (yk), r(xk)〉

≥ ηk(〈F (xk), r(xk)〉 − σ‖r(xk)‖2)

≥ (1− σ)ηk‖r(xk)‖2 > 0,

where the first inequality is obtained by (7) and the second inequality is obtained by (9).

If x∗ ∈ SD, so

hk(x
∗) = 〈F (yk), x∗ − yk〉 ≤ 0 for all k. (14)

Lemma 2.9. If {xk} is an infinite sequence generated by Algorithm 2.1 and x̃ is any

accumulation point of {xk}, then x̃ ∈
⋂∞
k=1Hk.

Proof. Let l be any given nonnegative integer and x̃ be an accumulation point of {xk}.
There exists a subsequence {xkm} of {xk}, such that limm→∞ x

km = x̃. By the definition

of xkm = PC∩H̃km−1
(xkm−1) and H̃km−1 =

⋂j=km−1
j=1 Hj , we have xkm ∈ Hl for all m ≥

l + 1. Since Hl is closed and limm→∞ x
km = x̃, we have x̃ ∈ Hl. This completes the

proof.

3. Convergence analysis

Theorem 3.1. If SD 6= ∅, then the infinite sequence {xk} generated by the Algorith-

m 2.1 converges to a solution of VI(F ,C).

Proof. We assume that {xk} is an infinite sequence generated by the Algorithm 2.1,

then r(xk) 6= 0 for every k. By the definition of xk+1 = PC∩H̃k
(xk) and Lemma 2.4, for

every x∗ ∈
⋂∞
k=0(Hk ∩ C) we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 = ‖xk − x∗‖2 − dist2(xk, C ∩ H̃k). (15)

It follows that the sequence {‖xk − x∗‖2} is nonincreasing, and hence is a convergent

sequence. This implies that {xk} is bounded and

lim
k→∞

dist(xk, C ∩ H̃k) = 0. (16)

Since F (x) and r(x) are continuous, the sequence {zk} is bounded, and so are {r(xk)}
and {yk}. Similarly, the continuity of F implies that {F (yk)} is a bounded sequence,

that is, for some M > 0,

‖F (yk)‖ ≤M for all k.
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By the definition of H̃k, we have H̃k ⊆ Hk for all k. It follows that

dist(xk, C ∩ H̃k) ≥ dist(xk, C ∩Hk). (17)

Therefore (16) implies that

lim
k→∞

dist(xk, C ∩Hk) = 0. (18)

Clearly each function hk is Lipschitz continuous on C with modulus M . By Lemma 2.5

and Lemma 2.8, we have

dist(xk, C ∩Hk) ≥M−1hk(xk) ≥M−1(1− σ)ηk‖r(xk)‖2. (19)

Thus (18) and (19) imply that lim
k→∞

ηk‖r(xk)‖2 = 0.

If lim
k→∞

sup ηk > 0, then we must have lim
k→∞

inf ‖r(xk)‖ = 0. Since {xk} is bounded

and r(x) is continuous, there exists an accumulation point x̂ of {xk} such that r(x̂) = 0.

By Lemma 2.2 and Lemma 2.9, we have x̂ ∈
⋂∞
k=1(Hk ∩ S). Replace x∗ by x̂ in (15).

We obtain that the sequence {‖xk − x̂‖2} is nonincreasing and hence is convergent.

Note that x̂ is an accumulation point of {xk}. It follows that {xk} converges to x̂.

If lim
k→∞

sup ηk = 0, then lim
k→∞

ηk = 0. Let x̄ be any accumulation point of {xk}. Then

there exists a subsequence {xkj} converges to x̄. By the choice of ηk, (7) is not satisfied

for mk − 1, that is,

〈F (xkj )− F (xkj − γ−1ηkjr(x
kj )), r(xkj )〉 > σ‖r(xkj )‖2. (20)

Since F (x) and r(x) are continuous, passing onto the limit in (20), we have

0 ≥ σ‖r(x̄)‖2 ≥ 0. (21)

Thus (21) implies that r(x̄) = 0. Therefore, x̄ ∈
⋂∞
k=1(Hk ∩ S). Applying the similar

argument in the previous case, we obtain {xk} converges to x̄ ∈ S. This completes the

proof.

Remark 3.1. Under the assumption of SD 6= ∅, the sequence produced by methods

in [1]-[16] has a subsequence converging to a solution while our method generates an

sequence globally converging to a solution. Note that S = SD when F is pseudomono-

tone on C. Thus our method not only can apply to solve pseudomonotone variational

inequalities under the assumption of S 6= ∅ but also can apply to solve quasimonotone

variational inequalities under the assumption of SD 6= ∅.
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4. Numerical experiments

In this section, we use some numerical experiments to test Algorithm 2.1. The MAT-

LAB codes are run on a PC (with CPU AMD(Athlon) Core(tm)X2 Dual) under MAT-

LAB Version 7.1.0.246(R14) Service Pack 3 which contains Optimization ToolboxVer-

sion 3.0. We take ‖r(x)‖ ≤ 10−4 as the termination criterion. That means when

‖r(x)‖ ≤ 10−4, the procedure stops. We choose γ = 0.4, σ = 0.99 for our algorithm.

We denote by x0 the initial point of the test problem and by x the solution of VI(F ,C).

We use nf for the total number of times that F is evaluated.

Table 1: Results for Example 4.1 and Example 4.2

Had-Sch-Problem SQM1-problem

x0 iter(nf) time x x0 iter(nf) time x

(0, 1) 2(3) 1.14063 (1,1) 1 95(97) 5.73438 0.00995113

(0, 0) 2(3) 1.0625 (1,1) 0.5 94(95) 6.5 0.00996295

(1, 0) 3(4) 1.20313 (1,1) 0.1 88(89) 5.4375 0.00996464

(0.5, 0.5) 1(2) 0.703125 (1,1) -0.1 12(13) 1.84375 -1

(0.2, 0.7) 2(3) 1.109381 (1,1) -0.5 2(3) 1.29688 -1

(0.1, 0.6) 2(3) 1.21875 (1,1) -0.8 1(2) 0.90625 -1

Table 2: Results for Example 4.3

SQM2-Problem

x0 a iter(nf) time x

(0, 0, 0, 0, 5) 5 33(34) 0.53125 (0.9991,0.9991,0.9991,0.9991,1.0034)

(0, 0, 5, 0, 0) 5 52(53) 0.6875 (0.9999,0.9999,1.0006,0.9999,0.9999)

(5, 0, 0, 0, 5) 5 31(32) 0.875 (1.0003,0.9999,0.9999,0.9999,0.9999)

(1, 1, 1, 1, 6) 10 103(104) 1.20313 (1.9997,1.9997,1.9997,1.9997,2.0011)

(1, 1, 6, 1, 1) 10 79(80) 0.953125 (1.9998,1.9998,2.0008,1.9998,1.9998)

(6, 1, 1, 1, 1) 10 63(64) 1.23438 (2.0007,1.9998,1.9998,1.9998,1.9998)

Example 4.1. Let C = [0, 1]× [0, 1] and t = (x1 +
√
x21 + 4x2)/2. We define

F (x1, x2) =

{
(−t/(1 + t),−1/(1 + t)) if (x1, x2) 6= (0, 0)

(0,−1) if (x1, x2) = (0, 0).

This example was proposed by Hadjisavvas and Schaible in [21], where F is quasimono-

tone. We call this test problem Had-Sch-Problem.
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Table 3: Results for Example 4.4

Dimension Algorithm 2.1 Algorithm 2.2 in [11]

n iter(nf) time iter(nf) time

50 17(52) 1.21875 23(71) 1.04688

100 17(52) 1.90625 23(71) 1.53125

200 18(55) 5.67188 25(77) 6.4375

500 19(58) 62.0781 25(77) 80.3438

Example 4.2. Let C = [−1, 1] and F (x) = x2. Then VI(F ,C) is a quasimonotone

variational inequality with SN = {−1}, ST = {0} and SD = {−1}. Thus S = SN∪ST 6⊂
SD. We call this test problem SQM1-problem.

Example 4.3. Let C = {x ∈ R5 : xi ≥ 0, i = 1, · · · , 5,
∑i=5

i=1 xi = a}, a > 0 and

G(x) =
1
2
xTHx+qT x+r∑i=5

i=1 xi
. Thus G is a smooth quasiconvex function and can attain it-

s minimum value on C (see Exercise 4.7 in [23]), where q = (−1, · · · ,−1)T ∈ R5,

r = 1 ∈ R and H is a positive diagonal matrix with elements uniformly drawn

from the (0.1, 1.6). Let F (x) = (F1(x), · · · , F5(x))T be the derivative of G(x). Then

Fi(x) =
hxi

∑i=5
i=1 xi−

1
2
h
∑i=5

i=1 x
2
i−1

(
∑i=5

i=1 xi)
2

and VI(F ,C) is a qusimonotone variational inequality

with SD = {(15a, · · · ,
1
5a)}, where h is the diagonal elements of H. We call this test

problem SQM2-problem.

Example 4.4. Consider the affine variational inequality problem with C = [0, 1]n and

F (x) = Mx+ d where

M =



4 −2

1 4 −2

1 4 −2

· · ·
1 4


and d =


−1

−1

· · ·
−1

 .

The initial point x0 = (0, . . . , 0). This problem is tested in [24].
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