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Abstract

We solve a linear robust problem with mixed-integer first-stage variables
and continuous second stage variables. We consider column wise uncer-
tainty. We first focus on a problem with right hand-side uncertainty which
satisfies a "full recourse property" and a specific definition of the uncer-
tainty. We propose a solution based on a generation constraint algorithm.
Then we give several generalizations of the approach: for left-hand side un-
certainty, for the cases where the "full recourse property" is not satisfied and
for uncertainty sets defined by a polytope.

1 Introduction

This paper deals with robust mixed-integer linear programming (MILP) to study
problems with uncertain data. This is a possible alternative to two-stage stochastic
linear programming introduced by Dantzig in [8]. In this framework the uncertain
data of the problem are modeled by random variables, and the decision-maker
looks for an optimal solution with respect to the expected objective value. He
makes decisions in two stages: first before discovering the actual value taken
by the random variables, second once uncertainty has been revealed. However,
this approach requires to know the underlying probability distribution of the data,
which is, in many cases, not available; furthermore the size of the resulting opti-
mization model increases in such a way that the stochastic optimization problem
is often not tractable. Robust optimization is a recent approach that does not rely
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on a prerequisite precise probability model but on mild assumptions on the uncer-
tainties involved in the problem, as bounds or reference values of the uncertain
data. It looks for a solution that remains satisfactory for all realizations of the
data (i.e. for worst scenarios). It was first explored by Soyster [13] who proposed
a linear optimization model for data given in a convex set. However this is an
over conservative approach that leads to optimal solutions too far from the one of
the nominal problem. Robust adjustable optimization models have been proposed
and studied to address this conservatism. More precisely, a lot of recent published
works cover robust linear programming with row-wise uncertainty for continu-
ous variables [3, 4, 6, 7] or discrete variables [1, 10] and, even more recently,
column-wise right-hand side uncertainty [5, 11, 14].

In [9], Gabrel et al. propose a solution based on the approaches given in
these last papers to solve a location transportation problem. We first show that
their solution can be applied to any linear program with mixed-integer first stage
variables and continuous recourse variables. We will also see that problems with
left-hand side uncertainty can be solved in the same way.

To the extent of our knowledge, in all works published until now, the authors
always assumed that the problem satisfies a "full recourse property" (see Section
2) which cannot be always satisfied for real problems: we show that, when this
property is not verified, we can modify the objective function in order to use the
previous approach to solve the problem.

Finally, we show that the method can also be used for an affine definition of
the uncertainty set which is more general than the one used in [9, 11, 14].

We focus here on a linear robust problem with right-hand and left hand-side
uncertainty, mixed-integer first-stage variables and continuous second-stage vari-
ables. In Section 2 we present the general problem. For the sake of clarity, we
first study the robust problem with right-hand side uncertainty and full recourse
property with a specific definition of the uncertainty set. In Section 3 we show
how to modelize and solve the recourse problem. In Section 4 we present the so-
lution for the robust problem. Finally, in Section 5 we show that our results can
be applied in case of left-hand side uncertainty, we study the cases where the full
recourse property is not verified and we extend our results to other definitions of
the uncertainty set.

2 A mixed-integer linear robust problem

We consider applications requiring decision-making under uncertainty which can
be modeled as a two-stage mixed-integer linear program with recourse. The set
of variables is partitioned into two distinct sets: the x variables, called decision



variables, concern the decisions to be taken in the first stage, before knowing the
realization of the uncertain events; the second stage variables y, called recourse
variables, will be fixed only after the uncertainty has been revealed.

We focus here on robust mixed-integer linear problems when the constraint
coefficients are uncertain, as well on the right-hand side as on the left-hand side.
In addition, we restrict our study to the case where the recourse variables y are
continuous variables while the decision variables x are mixed-integer variables.

The deterministic problem can be formulated as the following MILP (in this
paper we will omit the transpose sign ¥ when there is no possible confusion):

min ax + [y
$7y

Az + By >d (1)
Ce>b )
r, €Ny i=1,.,p, z, €eRy,i=(p1+1),...,p, ye R (3)

(P)

where A € Q7P Be QT™, d € QT,C e QV?, be Q",a € Q, p € Q,
and Q is the set of rational numbers.

We assume that there exists (z,y) such that (1)-(3) are satisfied and we say
that a solution z is feasible if x satisfies constraints (2) and (3). The uncertain
coefficients are those of d (right-hand side) and a part of A (left-hand side).

Given a mathematical program 7, we denote by v(7) the value of an optimal
solution. We assume that the program (P) satisfies the property P, called "full
recourse property": for any feasible values of the decision variables (here ) and
for any possible value of A and d, there exist values of the recourse variables
(here y) such that (1) is satisfied, that is such that there exists a feasible solution
of (P). Let us notice that the property P is always satisfied if there is a column
of B whose all terms are positive. The hypothesis that (P) satisfies the property
‘P cannot be always satisfied for real problems: we show in Section 5, that we can
extend our results when P is not satisfied.

We suppose that d belongs to a given set © which defines the set of possible
scenarios and for the sake of clarity we assume at first that the uncertainty con-
cerns only the right-hand side d of (1). We show in Section 5 that our results can
be extended when the matrix A is also uncertain.

Our robustness objective is to find a feasible solution z, y of (P) that min-
imizes the total cost involved by the worst possible scenario of d in connection
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with z. We can state the robust problem as the following mathematical program:
min ax + max min Sy
T de® y
By >d— Ax
(PR) y € R
Cx>b
T; € N, 1= 1, o P1, T; € R+, 1= (pl + 1), ey P

For any feasible x, we define the following linear program R(x) called "Recourse
Program":

max min (3
de® Y y

R(z) By >d— Ax
yeRY.
The robust program can then be rewritten as:
min oz + v(R(z))
(PR)| * o>
v, €N i=1,..,p, 1, €ER,, i=(p+1),....,p.

Let us define more precisely the uncertainty. Following the idea proposed by
Bertsimas and Sim [7] and Minoux [11], we suppose that each coefficient d;, t =
1,...,T belongs to an interval [d, — A, d, + A,;] where d, is a given value and
where A; > 0 is a given bound of the uncertainty of d. The uncertainty set ® is
therefore given by:

@ == {d dt € [Czt — At,CZt +At], VYt = 1, ,T}

For a fixed z, the worst scenario is obtained for d, = d; + A\, t = 1, ..., T. Indeed,
By > d + A — Az implies By > d — Ax for all d € ©. Thus this uncertainty
definition brings the robust problem back to a deterministic one. It provides a high
"protection” against uncertainty, but it is very conservative in practice and leads
to very expensive solutions. To avoid overprotecting the system, we impose, as

in [14], the constraint
T -
dy — d -
j :‘ t t‘ Sé,
Ay

t=1
A¢>0

where § is a positive integer which bounds the total scaled deviation of d from its
nominal value d. Notice that there always exists a worst scenario with d; > d;, Vt,
hence we can redefine the uncertainty set ® as

T
@Z{d dt:Jt—'—(StAh Z(Stgg, O§5t§1, Vt:]_,,T}

t=1



3 The recourse problem

To solve the recourse "max min" problem for given values of the decision vari-
ables, the minimization linear sub-program is transformed in a maximization pro-
gram by considering its dual. But that leads to a quadratic objective function. We
show that whatever the coefficients in the recourse problem, the quadratic terms
can be written as products of a 0-1 variable and a continuous but bounded variable,
which allows a linearization of these products.

Let = be a feasible solution and let d € ©, we define the following linear
program

min Sy
R(z,d) ’ By >d— Ax
yeRY.

We notice that }A%(:p, d) has a finite solution for all feasible = and for all possible
scenario d since (P) satisfies P, and since Sy > 0 for any feasible solution y of

A

R(z,d). Thus by the strong duality theorem, we have
v(R(x,d)) = v(DR(x,d)),

where DR(z, d) is the dual program of R(x, d):

max (d— Az)A
DR(z,d) AB < 4)
A e R &)

Then, for any feasible z, v(R(x)) = maxgep v(DR(z, d)).
Hence we can reformulate DR(x) as follows:

T

DE@)| ST <5 A ABSS [(ds + 0 — (Az)e)Me]
0<6,<1, t=1,..,7 AeRT. =1

where for a vector (u), we denote by (u); the t-th coordinate of (u). DR(x) can



be written

T
H}\%X ;[(Jt — (Ax)t))\t + At5t)\t]
AB < 4)
DR(x T
<> > 6<é (©)
t=1
0<6,<1t=1,..,T (7)
A e RL &)

However, this bilinear program with linear constraints is not concave. Therefore
computing the optimal solution of DR(x) written as above is not an easy task.
We now prove that we can solve DR(z) by solving an equivalent mixed-integer
linear program. To prove this claim, we need the following proposition:

Proposition 1. There is an optimal solution \*,6* of DR(x) such that 6] €
(01}, 1<t<T

Proof. For any fixed ), there is an optimal solution, (A, 0*), of DR(x), where §*
is an extreme point of the polyhedron defined by (6) and (7), that is to say, a point
such that §F € {0,1}, 1 <t < T, since ¢ is an integer.

More precisely ¢ = 1 for indices corresponding to the J largest A, )\,. [

Therefore we can assume that there is an optimal solution of DR(z), such
that \;0; belongs to {0, \;}. To linearize \;d;, we now prove that we can restrict
ourselves to the case where )\, is bounded by a constant A, for all ¢.

Proposition 2. There exists A > 0 such that the conditions \y < A, t =1,....,T,
can be added to D R(x) without loss of generality.

Proof. Let x be feasible. Let us rewrite DR(x) with the slack variables A\, >
0, t = 1,...,T. The constraints (4) become: B” X + X' = (. Let (\*, \*, §*) be
an optimal solution of DR(z), we can assume w.l.0.g. that (A*, \*) is an optimal
basic solution of D R(z) when 0 is set to 0*.

Therefore, there exists a basic matrix £ = (e;;) of (B" Ir) and basic vectors
A5, A% such that: (A% Vg)" = E~'5. Let é be an upper bound on the absolute
value of the coefficients of £~! for all basic matrices E of (B Ir), and let B =
ig}axqﬂi, we have \; < éBq, t = 1,...,T. Therefore there exists an optimal

.....

solution (A\*,8*) of DR(x) such that A is bounded by A = éf3q for any ¢ =
1,..T 0



We can now linearize D R(z) by substituting the new variables v, to the prod-
ucts \;d; and by adding the constraints: v, < Ay, vy < Ady, vy > N — A(1 — 0y),
Uy Z 0.

DR(x) is equivalent to the following mixed-integer linear program:

max Z?:ﬂ(czt — (Az)) A + A
AB <
Zle 5t < 5
LDR(:E) Vy S )\t, t= 1, ,T
Vi S A5t7 t= 1, ,T
AU E Ri
5, €{0,1}, t=1,..T.
Notice that the linearization constraints, v, > A\, — A(1 — &;), t = 1,...,T, can

be omitted since the coefficients of 1, in the objective function to maximize are
positive.

4 Solving the robust problem

In order to solve the robust problem (PR), we will first reformulate it as a linear
program and then use a constraint generation algorithm. In the previous section,
we proved that the recourse problem is equivalent to the linear program LD R(z).
Thus the robust problem can be reformulated as:

min ax + v(LDR(x))
(PR) Cx>b
T; € N, 1= 1, D1, T; € R+, 1= (pl -+ 1), ey D

Let Py be the polyhedron defined by the constraints of LDR(x) where we
replace &; € {0,1} by 0 < 6; < 1, and let (Pg); = conv(Pg N {6 € N™}), be
the convex hull of the feasible solution of LD R(x). Notice that this convex hull
does not depend on x. (Pg); is a polyhedron, thus we have

max ZtT:ﬂ(CZt — (Ax) )N + Ay

LDR(x) A
0] e (PQ)],

v

Let S = {(\*,0°,1°)1<s<s}, be the set of extreme points of (Pg);. For any
feasible x, there is s € {1, ..., S} such that (A\*, %, °) is an optimal solution of
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Algorithm 1 Constraint generation algorithm

1: (A2,8%,00) = (0,0,0). Set L < —o0, U ¢ 400,k + 1.
2: Solve the master problem :

min ax + z
T,z

2> 3 (de — (Ax) o)A + App, 0< s <k —1
(PR)k Cx>0b

zi € N7 1= 17"'7p17 T € R+7 1= (pl + 1)77])

z€R

Let (z*, 2¥) be the obtained solution.
L + azk 4 2*.
3: Solve LDR(x). Let (\F, 5%, %) be the optimal solution.

U « min{U, az® + v(DR(z*))}.

if U = L, then return (¥, 2*) else go to 4.
4: Add the constraint

T
Z — (Az))AF + Al

to the master problem (PR)*, k < k -+ 1 and go to 2.

LDR(x).
Thus the robust problem can be reformulated as the linear program:

min ax + 2
2 i
(PR) 2 DN+ A, 1<s< S (8)
Cx>b
neNi=1,..,p,z,€Ri=(p1+1),..,p, z€R

However, due to the potentially tremendous number of constraints, we solve
(PR) by a constraint generation algorithm as in [14] or [9]. Initially, we consider
a subset Sy of S; at a step k, we consider a subset S* of S and we solve a relaxed
program (PR)* of (PR), called master problem, which consists in solving (PR)
with the subset of constraints (8) corresponding to S* . The obtained solution in
denoted by (z*, 2¥).

Then we solve DR(x*), called slave problem, to check if (z*, z¥) is optimal. If
not, then a new constraint is added, i.e. an extreme point is added to S* (See
Algorithm 1).

On the basis that the number of extreme points of (Pg); is finite, one can prove
that this algorithm converges in a finite number of steps.



5 Some generalizations

5.1 Left-hand side uncertainty

In the previous sections, we assumed that the uncertainty concerned only the right-
hand side d of constraints (1). We now prove that our approach can be generalized
to the case where the constraint coefficients (A = (ay)1<i<7, 1<i<p). are also likely
to be uncertain. As before, we assume that each coefficient a;; belongs to an inter-
val [ay; — 'y, a; + T'y;], where ay; is a given value and where I'y; is a given bound
of the uncertainty of a,;.

Furthermore, in order to avoid overprotecting the system, we assume that the to-
tal scaled deviation of the uncertainty of the i-th column of A, a; = (ay;, t =
1,...,T), is bounded. Similarly to ®©, the uncertainty set .4; of a; is defined as :

A ={a; : ay; = ay — vilu, Zle Vi < iy 0 <y < 13,
where 7; is a given integer.
The robust problem can thus be formulated as:

min ax + max min Sy
x

V(‘IielAi’ y
Yaen "
By >d—(ay,...,a,)x
(PR yeRY . 2
Cx>b

T; € N, 1= 1, D1
Ti € RJr? 1= (pl + 1)7 Ty

And the recourse problem becomes:

I,{l(?%{ ZtT:l[(Jt — > L aum) A + Ao he + D0 Tz ]
AB < j
ZtT:1 o < 0

DR'(x) 0<6,<1,t=1,.T

A eRET

Yo <A, t=1,..,p
0<y; <1l,i=1,.,p t=1,..T.

We can then linearize the quadratic terms (d;\; and ~;;\;), to obtain a mixed-
integer linear recourse problem and then solve the robust problem as we did in the
previous sections.



5.2 Solving the problem without the full recourse property

In the previous sections, we assumed that the deterministic problem satisfied the
property P. We now prove that we can extend our results to the case where we
only assume that the robust problem (P R) have a finite optimal solution, i.e. there
exists M such that v(PR) < M. In addition, the method detects if the problem
has no solutions. For the sake of clarity, we give the proof for the case where all
the decision variables are integer. In fact, the proof for mixed integer variables is
based on the same ideas but is more complicated; it is given in [12].

First let us show how to obtain a new MILP, denoted (]5) such that the robust as-
sociated problem has the same optimal solution as the initial robust problem and
(P) satisfies P. To obtain (P), we add new recourse variables wy, t = 1,...,T.
As in the sections 2, 3 and 4, for the sake of clarity and w.l.0.g., we consider only
right-hand side uncertainty.

Let € be a given strictly positive value, we define the following MILP:

M T
mina:r;—l—ﬂy—i——Zwt
nyw € t=1
p Ar+ By+w >d (1e)
| oce=b )
r;eN 1=1,....p 3e)
y eRL, weRY (4¢)

We notice that since the variables w;, ¢t = 1, ..., T, are not bounded, (P.) sat-
isfies the property P.

We denote by (PR)., the robust problem associated to (P.), and by (R.(z)),
(R.(x,d)) and (DR.(x)) the associated subproblems as those defined in Section
3. Notice that since all the inputs, A, B,C,b,d, «, 3, A, of (PR) have rational
coefficients, we can reduce (P~R)€ and all the corresponding subproblems to pro-
grams where all the inputs are integer. Therefore we assume from now that all the
inputs are integer.

Proposition 3. v(PR.) satisfies 0 < v(PR.) < v(PR) < M.

Proof. Let (%, 7) be an optimal solution of (PR), By hypothesis, v(PR) < M
thus v(R(z)) < M. Let d be a scenario in ©. Since v(R(z)) = max v(R(z,d)),
€

we have v(R(%,d)) < M. Let i be an optimal solution of R(Z,d), we notice
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that (y,w) = (,0) is a feasible solution of (R.(&,d)) with the same cost. Thus
v(R.(&,d)) < v(R(&,d)), for any d € D, which implies v(R.(2)) < v(R(%)),
and 0 < v(PR.) < v(PR) < M. H

Let (z*,y*, w*) be an optimal solution of (P~R€),~and let d* be the worst sce-
nario for x*. Notice that Proposition 1 is valid for (DR.(z*)). Therefore d; = d;
or di = d; + Ay, and d; is an integer. From proposition 3, we have

MT
* * I *<M.
ar' + By + — Y wp <

t=1

Since az* + By* > 0, we have Zthl w; <eg,and thus w; <e, Vt=1,..,T.

We now prove that if (y*, w*) is a basic optimal solution of (R.(z*,d*)), then for
¢ small enough, we have w; = 0, V¢; and then (z*, y*) is admissible for (PR),
and therefore from proposition 3, v(PR) = v((PR).).

Let us rewrite (PR). with the positive slack variables s = (s;, t = 1,...,T):
the constraint (1) becomes Az + By + w — s = d. Let (z*,y*, w*, s*) be an
optimal solution where (y*, w*, s*) is a basic optimal solution of the program:

m1n6y+—2wt

. Yyow,s
R.(z*,d") . .
By+w—s:d — Ax

T
y e RY , s,w e Ry

which is equivalent to

_|_ R
min Sy Zwt
Rg(x*,d*) Yy
(B [T _[T) w| =d — Ax”*
S
yeRYL, s,we Rz.

Let L = (B Iy —Ir) = (lij) € Z™T) and 1)y = max;; |l;;|. We notice
that L has rank 7T'.

Proposition 4. If ¢ < W, then w; = 0, t = 1,...,T, for any optimal

solution (z*,y*, w*, s*) of (PR.)
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Proof. Assume that (y*, w*, s*) is a basic optimal solution of (R.(z*,d*)), where
d* is the worst scenario for z*. There exists a basic matrix £ € Z*T of L
and basic vectors y},, w};, s}, such that: E (v wh s%)" = d* — Az*. The matrix
E = (ey;) is invertible, and E~! = det ad]( ), where adj(E) is the adjugate
matrix of F. Therefore (g wh %) det(E) ——adj(E)(d* — Az"),

and 0 < w; = det (adj(E)(d* — Az*))y < e, where w; is a basic variable and

where ¢’ is the assomated index in (y};, w};, $};). Thus
ladj(E)(d" — Ax™))y| < | det(£)|. 9

Since F is a sub-matrix of L, we can, according to Hadamard’s inequality, bound
|det(E)| by (Ip)TTT2. If e < W, then according to (9), |(adj(E)(d* —
Az*))y| < 1. Since |(adj(E)(d*—Az*))y| € N, we have |(adj(E)(d*—Ax*))y|
0, therefore w; = 0 for any basic variable w; and thus w; = 0 forallt =1, ...,

Thus for any optimal solution (z*, 3*, w*, s*) of (PR.), w* = 0.

DHH

~Eventually, if we fix ¢ < W, then the optimal solution (z*, y*, w*) of
(PR)., verifies w* = 0, (z*,y") is an optimal solution of (PR), and v(PR) =
v((PR).).

Notice that this method can detect if v(PR) is finite or not. Indeed if the optimal
solution (z*, y*, w*) of (PR)., does not satisfy w* = 0, then v(PR) = 0o

5.3 Generalization to other uncertainty sets

In the previous sections, we assumed that uncertain coefficients could be written as
d, = d;+0,;A; Vt, where J, expresses the uncertainty on d; and satisfies Zthl o <
5. Now we generalize our results when the vector d can be written as d = d +
D¢, where the vector d and the matrix D are given and where § belongs to a
bounded polyhedron D whose extreme points (d*, ..., d*) are known. Notice that
this definition of the uncertainty covers the one given by Babonneau et al. in [2]
Let us rewrite the recourse problem:

max (d+ D3§ — Ax)\

AB <3
0eD
A eRL

DR/ (x)

Letv',...,v5 € [0, 1] be variables such that § = 37 d*v® and 327, v* = 1. We
can rewrite the recourse problem as

12



max (d — Az)A+ Y _(v°(Dd*)\)

AU
AB < 8
DR(z) s

szzl

s=1
0<vP<1, s=1,...,8

A e R

Using the same argument as in Proposition 1, we can prove that there exists an
optimal solution (A\*,v*) of DR'(z) such that either v** = 1 or v** = 0, s =

1.

, 5. Therefore we can linearize the quadratic terms v°\;, for all s and for all

t, as we did in Section 3, to obtain a mixed-integer linear recourse problem, and
finally we can solve the robust problem by using Algorithm 1.
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