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Abstract. Recent studies in theoretical computer science have exploited new
algorithms and methodologies based on statistical physics for investigating the
structure and the properties of the Satisfiability problem. We propose a charac-
terization of the SAT problem as a physical system, using both quantum and
classical statistical-physical models. We associate a graph to a SAT instance and
we prove that a Bose-Einstein condensation occurs in the instance with higher
probability if the quantum distribution is adopted in the generation of the graph.
Our method allows a comprehensive analysis of the SAT problem based on a
new definition of entropy of an instance, without requiring the computation of its
truth assignments. Finally, we develop four new SAT solvers based on quantum
and classical statistical distributions, and we test them on both random and real-
life SAT instances. As a result, our method can be readily used to develop fast
and efficient solvers of large-scale computational problems, namely AI planning,
model checking, and hardware and software verification.

1 Introduction

Nowadays, the SAT problem is regularly used for solving large-scale computational
problems, such as AI planning, protein structure prediction, haplotype inference, circuit-
level prediction of crosstalk noise, model checking, and hardware and software verifi-
cation [1]. As a result, it has received significant research attention [2, 3], and numerous
solver algorithms have been proposed and improved (e.g., by analyzing the structure
of each instance [4]). Since evaluating all these techniques requires the generation of
hard satisfiable instances, several methods for generating random instances have been
presented to test the solvers performance [5, 6].

Although many SAT solvers are based on local search techniques [7, 8] and on Con-
flict Directed Clause Learning algorithms (CDCL) [9], new methods for the SAT prob-
lem analysis consist of translating each instance into a graph (e.g., by using the planar
graph approach [10] or the Bose-Einstein distribution and the S2G algorithm [11]).

Over the last few years, several research fields have witnessed a remarkable ex-
pansion due to the collaboration between physicists and computer scientists [12–14].
Therefore, studying the k-SAT problem through models studied in statistical physics
represents an unprecedented opportunity to find a new characterization for the satisfia-
bility problem.

In this work, we prove that the S2G algorithm is unlikely to generate Bose-Einstein
condensed graphs by using the Maxwell-Boltzmann distribution (i.e., classical physics
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G = (V,E) k-SAT Statistical physics
node clause degeneration state of the energy level of the node
edge link between two clauses one particle for each degeneration state involved

node weight fitness of a clause value of the energy level
edge weight probability of being established weight on particles

out-degree update parameter θ temperature of the system

Table 1. Dictionary translating the graph (left) into the k-SAT problem (centre) and statistical
physics language (right).

instead of quantum physics). To this aim, we propose a S2G algorithm based on the
Maxwell-Boltzmann distribution and produce its phase diagrams, which we compare to
the Bose-Einstein case. We also define the entropy of a k-SAT instance and we intro-
duce its temperature, in order to translate each instance into a complete physical system
(summarized in Table 1). Finally, we propose four SAT solvers inspired by CHAINSAT
[15] and augmented with classical and quantum statistical-physical approaches to clas-
sify an instance. The analysis of the physical parameters of our algorithm allows us to
establish a priori which of the four SAT solvers is the best for each instance.

2 A characterization of SAT through quantum physics

By translating a SAT formula into a graph, the S2G algorithm [11] shows evidence of a
process equivalent to the Bose-Einstein condensation in quantum physics. A vertex vi is
a clauseCi of the k-SAT formula F = C1∧C2∧...∧Cm. The graph is built by defining
global and local fitness functions (named fG and fL respectively) for evaluating literals
and clauses. Then, a metric is defined to compute how many literals are not in common
between two clauses. This metric is proved to be related to the Hamming distance [16].

2.1 The Bose-Einstein distribution

Let us consider an isolated system ofN identical and indistinguishable bosons confined
to a space of volume V and sharing a given energy E. Let us assume that these bosons
can be distributed into a set of energy levels, where each level Ei is characterized by an
energy εi and a degeneration gi, representing the number of different physical states that
can be found at that level. TheN identical and indistinguishable particles are distributed
among the energy levels, and each level Ei contains ni particles, to be accommodated
among its gi quantum states. One can readily check that ni particles may be put on the
level Ei (consisting of gi states) in [ni + (gi − 1)]! different ways. Since bosons are
indistinguishable and the physical states are equivalent, the number of possible assign-
ments of ni bosons on Ei is wi = (ni+gi−1)!

ni!(gi−1)! =
(
ni+gi−1

ni

)
. By iterating for all the

energy levels Ei, a distribution {ni} (i.e., a distribution with ni particles on the level
Ei, ∀i) can be obtained in W =

∏
i wi different ways. Specifically, wi is the number

of distinct microstates associated with the ith level of the spectrum, while W is the
number of distinct microstates associated with the whole distribution set {ni}.

The distribution corresponding to the statistical equilibrium is the most probable
one, thus it is the one that may be reached in the largest number of possible ways.
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Hence, we compute the maximum W subject to the conservation of the number of
particles

∑
i ni = N and to the preservation of the energy of the system

∑
i εini = E.

Using the method of Lagrange’s multipliers (applied to logW ), we have the following
definition of Bose-Einstein distribution:

ni =
gi

eα+βεi − 1
, (1)

where α = − µC
kBT

and β = 1
kBT

are inversely proportional (by means of Boltzmann’s
constant kB) to the absolute temperature T of the system at the equilibrium, and µC
represents the chemical potential [17].

Given an ideal Bose-Einstein gas in equilibrium below its transition temperature,
the Bose-Einstein Condensation (BEC) is the property that a finite fraction of particles
occupies the lowest energy level. Below a critical temperature TBEC near to 0 K, all
the particles become absolutely identical, with no possible measurement that can tell
them apart. The gas shows a very unusual state of aggregation of particles, called Bose-
Einstein condensate, also referred to as “the fifth state of matter”. According to Penrose
and Onsager [18], we can provide a criterion of BEC for an ideal gas in equilibrium:
BEC ⇐⇒ 〈n0〉

N = eO(1), No BEC ⇐⇒ 〈n0〉
N = o(1), where 〈n0〉 is the average

number of particles that occupy the lowest energy level E0.

2.2 Condensation phenomena in a SAT formula

The graph construction is thought of as a dynamical process. Given the graph G =
(V,E) at the (i − 1)th iteration, the S2G algorithm adds a clause Cti to G as a node
v(Cti), by estimating the probability of being connected to each node v(Ctj ) already in

the graph as Πtj =
ktj ·f

L(Ctj )∑|V |
ν=1 ktν ·fL(Ctν )

, where ktj = degree(v(Ctj )) is the connectivity

of Ctj (i.e., the number of links shared by v(Ctj )), and fL(Ctj ) is the fitness of the
clause Ctj . This probability distribution ensures that a new vertex is likely linked to
an existing one with high fitness value or/and high connectivity [19]. A node v(Cti)
entering the graph is assigned the energy εti = −T · log fLr (Cti), where T = 1/β, and
β is a parameter used to model the temperature of the system.

In the mapping of S2G to quantum physics, every clause of the graph is associated
with the degeneration state of the energy level of that clause. For each link established
between two clauses, the S2G algorithm assigns a particle to each of the two degen-
eration states of the two clauses involved. The S2G-PA version of the algorithm also
includes the concept of preferential attachment. In particular, at each iteration i, the
node that joins the graph is forced to connect to a number of nodes between 1 and a
fixed upper bound ρ. Furthermore, an outgoing link is rewarded θ < 1, whereas an
incoming link is rewarded 1, and therefore the graph is regarded as a directed graph.
The condensation of the SAT formula over its fittest clause is eventually mapped to the
emergence of a star-like topology in the graph. This phenomenon is associated with the
BEC of bosons on the lowest energy level available.
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3 The Maxwell-Boltzmann S2G

An approach to construct graph from k-SAT instances may also involve the classical
physics, namely the Maxwell-Boltzmann (MB) distribution. Here we address the key
question whether the S2G algorithm [11] could generate Bose-Einstein (BE) condensed
graphs by using the MB distribution. In particular, we prove that the BEC in the satisfi-
ability problem is more likely to occur if we use the BE distribution in the construction
of the graph. To this end, we develop a new version of the S2G algorithm to generate
graphs based on the MB distribution and analyze their phase diagrams, comparing the
behavior in the MB and BE cases.

3.1 The Maxwell-Boltzmann distribution

From the classical-physics standpoint, particles must be regarded as distinguishable
entities. The N particles are distributed among the energy levels, and each level Ei
contains ni particles. Note that the set {ni} of the occupation numbers does not fully
describe the system, since particle are distinguishable. Therefore, we need to distinguish
between which particles are occupying each energy level. In other words, we need to
count not merely the possible sets {{ni}i} of occupation numbers, but also the possible
microstates in each set.

The number of possible sets of occupation numbers is counted by taking into ac-
count that particles are distinguishable. Therefore, the selection of which particle is
accommodated on which energy level must be ordered. At this stage, we do not investi-
gate the order inside energy levels because we will do so when counting the microstates.
As a result, the distribution set ni is obtainable in N !∏

i ni!
different ways. Nevertheless,

due to the Gibbs correction factor (see [17]) or, equivalently, using Stirling’s approxi-
mations for the factorial N !, we obtain the correct counting 1∏

i ni!
.

As regards microstates, since particle are distinguishable, when accommodating ni
particles on the energy level Ei, any of its ni particles may be put into any of its gi
quantum states independently from one another, and all the resulting microstates are
considered as distinct. In other words, each particle must be assigned one of the gi
quantum states, and this can be done in gi different ways. By iterating this assignment
independently from one particle to another, ni particles may be put on the level Ei
(consisting of gi states) in gnii different ways.

Combining the two results, we finally obtain W =
∏
i
g
ni
i

ni!
, which is the total num-

ber of possible distinct microstates of the system. Using the same method as in the BE
case, this expression leads to the following definition of Maxwell-Boltzmann distribu-
tion:

ni =
gi

eα+βεi
. (2)

3.2 A S2G version based on classical physics

Since particles in the MB distribution are distinguishable, the idea underlying the MB
version of the S2G algorithm is that also the links between clauses must be distin-
guishable. Therefore, when we run the S2G algorithm using the MB distribution, we
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(a) BE case (b) MB case

Fig. 1. Different graphs with the same FW = 1. In (a), a BEC has taken place (i.e., one node has
a huge fraction of edges and the remaining fraction is shared among all the other nodes), while
(b) does not show any condensation.

(i) switch off the preferential attachment (PA) used in [11], and (ii) ensure that if a new
node i will be linked to a node j with probability pij , then degree(i) = degree(i) +
pij and degree(j) = degree(j) + pij . This new pattern could provide graphs with
many connected components. Hence, the original definition of Fraction Winner FW =
wlinks/tlinks, where wlinks = number of links shared by the winner, and tlinks =
number of links of the whole graph [11], leads to graphs with the same FW, but with
different topological structure (Figure 1).

Our goal is to study whether the graph built by using the MB distribution can show
cases of BEC. For this reason, we introduce a new definition of FW, which takes into ac-
count the presence of connected components. Let G(V,E) be a graph with |V | vertices
and |E| edges. We compute the number of connected components (CCs) by running
the Depth First Search (DFS) Algorithm [20]. From the CCs, we obtain the number of
nodes shared by these components (CNs), namely all the nodes of G with nonzero de-
gree. Then, we define the Generalized Fraction Winner as GFW = FW · CNs/|V |. It is
important to underline that this definition is a generalization of the previous definition
of FW. Indeed, in the BE construction, the PA ensures that CNs = |V |. In Figure 2 we
show the comparison between the GFW in the BE and MB cases. Remarkably, the MB
values are always lower than BE values, indicating that the probability of Bose-Einstein
condensation is higher if the BE distribution is adopted in the S2G algorithm.

4 Experimental results

4.1 The entropy of a k–SAT instance

The aim of this section is to characterize the k-SAT problem as a physical system,
in order to analyze the complexity of certifying the satisfiability of a random k-SAT
instance and eventually to find a satisfying assignment. Let us introduce a definition of
entropy for a k-SAT instance, based on a discretized form of the von Neumann entropy
[22]:

VNd(x, p, q) = −
1

n

n∑
i=0

p(xn) log [q(xn)p(xn)] , (3)

where p and q are respectively a true distribution and an approximated distribution of a
random discretized variable x with n possible values. In this work, we set n = number
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Fig. 2. Generalized Fraction Winner BE-MB. This plot shows the comparison between the GFW
in the MB and BE cases. The MB plots always shows lower values than BE plots. Hence, BEC
takes place under BE conditions with more probability than under MB conditions. The exper-
imental data points have been fitted with a sixth-order regression curve using the least-squares
approach. The gray box shows the region of the phase diagram where the phase transition between
satisfiable and unsatisfiable instances of 3-SAT is located [21].
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of energy levels, and we compute entropy every time that a new clause is added to the
graph. The final entropy is computed after that the last clause of the k-SAT instance is
added to the final graph. In a BE system, when a new node ν is added to the graph using
the S2G algorithm, we define:

qBE(ν) = number of different physical states gi on the level
Ei/number of nodes already added to the graph;

pBE(ν) =

{
1 if ν has been added to the level Ei
0 otherwise.

Conversely, in a MB system we set

qMB(ν) = number of different physical states gi on the level
Ei/number of nodes already added to the graph;

pMB(ν) = probability pi, computed by S2G, that a new node
is added to the level Ei.

In the characterization, the number of nodes of the graph equals the number of avail-
able degeneration states, q is the expected distribution followed by the new node when
linking to an existing one, and p is the actual distribution, outcome of the actual link
established.

In Figure 3 we plot the von Neumann final entropy as function of the clauses-to-
variables ratio α. The BE systems always have lower entropy than the MB ones, and
the entropy behavior is in keeping with the distribution of BEC shown in [11]. Hence,
the larger is the probability that BEC occurs, the larger is the entropy. Moreover, the
plot shows that when α decreases the entropy increases. This process is associated with
an increment of the spatial (geometric) disorder of the particles [23]. It follows that the
disorder of the particles is related to the satisfiability of the instance (which depends on
the value of α). In this way, we are able to characterize the complexity of certifying the
satisfiability of a k-SAT instance by computing its entropy (see Table 2). We have also
performed further analyses, omitted due to lack of space, using the Rényi entopy [24]
and the information gain [25] to confirm our results.

Entropy Particle status Information SAT-instance structure SAT/UNSAT Probability of BEC
high disorder high many free variables available to satisfy the few clauses of the formula SAT high
low order low few free variables available to satisfy the many clauses of the formula UNSAT low

Table 2. Dictionary translating entropy status of the SAT formula into its structure. When avail-
able, a free variable can be set to TRUE or FALSE so as to satisfy the instance. An instance in
the SAT or UNSAT phase is satisfiable or unsatisfiable (respectively) with high probability.

4.2 The role of the non-integer out-degree θ

In [11], the parameter θ ∈]0; 1] represents the out-degree increment of the node v(Cti)
linked to the existing node v(Ctj ) during the generation of the graph. In particular,
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Fig. 3. von Neumann entropy of 3-SAT. Whenα decreases the entropy increases. Since the entropy
represents the spatial disorder of the particles [23], in the k-SAT problem the physical concept
of disorder is related to the complexity of certifying the satisfiability of the instance. The plot
shows that BE systems always have lower entropy than MB ones, in agreement with the physical
distribution of particles. Indeed, BE systems are often characterized by particles established on
the same energy level, which in case of BEC is the lowest available.

the same edge between the new node v(Cti) and v(Ctj ) increases their connectiv-
ities kti and ktj as kti = kti + θ and ktj = ktj + 1. Making use of the relation
ki = θ · od(v(Ci)) + id(v(Ci)), where od and id are the out-degree and in-degree
of v(Cti) respectively, nodes aim to connect to a particular node, which gets richer and
richer. Indeed, as incoming links are rewarded more than outgoing links (1 and θ < 1
respectively), the connectivity of the node that acquires links increases much more than
the connectivity of the nodes linking to it. In this work, we aim to show the connection
between θ and the temperature of the system under investigation, namely the k-SAT
instance.

It is largely known that BEC takes place only in a dilute gas of bosons cooled to
temperatures near to the absolute zero [26]. Therefore, we analyze the system focusing
on values of θ near to zero, in order to prove that for low values of θ the BEC takes place
with more probability than for high values of θ. In order to understand the role played
by θ, we analyze 41 different values of θ ∈]0, 1]. Figure 4 shows that the probability
of BEC increases as θ decreases. Hence, if θ approaches zero, the number of BECs
increases, suggesting that the parameter θ in the S2G algorithm is related to the absolute
temperature in the corresponding physical system.
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Fig. 4. Fraction Winner of 3-SAT. We report the number of links shared by the winner node
against α. The FW is almost linear for θ ∈ [0.25, 1]. For θ ∈ [0.05, 0.20], we observe a nonlinear
variation, meaning that if θ approaches 0, the number of BEC cases increases in a nonlinear way.
This behavior of θ is strongly related to the physical property of having a large number of BECs
when the absolute temperature approaches 0.

In order to investigate thoroughly the nonlinearity shown by the FW as function
of θ, we define g(α) as the third-order polynomial fitting computed with the least-
squares approach for each curve plotted in Figure 4. We define the following measure
of nonlinearity over an interval [a, b] as

∫ b
a
|g′′(α)|. Using this formula we can compute

the amount of variation in the first derivative of g, thus quantifying the nonlinearity of
g in its domain. Notably, the results shown in Figure 5 allow to identify some clusters
of fraction winner plots showing similar nonlinear behavior.

5 The Maxwell-Boltzmann CHAINSAT

In section 3 we focused on the fraction winner related to the MB and the BE distribu-
tions. The different results obtained by running the S2G algorithm with these two distri-
butions lead to the creation of the final graphs with different topological structures. That
is, the energy assigned by S2G to each clause (i.e., the weight of the clause) changes
depending on the distribution used. In order to study the changes that each distribution
involves, here we run the LC version of CHAINSAT [11] using the weight provided
by the S2G algorithm run with MB and BE distributions. The SAT instances are cre-
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Fig. 5. Nonlinearity of the Fraction Winner as function of θ. The plots of the FW have been clus-
tered according to their nonlinearity, with θ ∈ ]0, 0.26]. When θ approaches 0, the FW exhibits a
linear behavior, while the nonlinearity starts from θ = 0.04. Interestingly, in [0.09, 0.14] there is
a large increment of nonlinearity.

ated through A. van Gelder’s generator MKCNF.C1. We investigate how the number of
satisfied clauses and the number of flips change in each modified version of CHAIN-
SAT (named MB-CHAINSAT and BE-CHAINSAT). Surprisingly, as shown Figure 9,
by comparing the percentage of satisfied clauses we can speculate that MB-ChainSAT
satisfies the same number of instances as BE-ChainSAT.

We investigate this comparison more thoroughly by analyzing the difference of
satisfied clauses for each value of n (number of variables). In particular, we observe
that MB-CHAINSAT and BE-CHAINSAT satisfy approximately the same number of
clauses (Table 3). We also study the number of flips performed by the two algorithms,
that is their computational effort. Figure 6 displays the number of flips (normalized to 1)
obtained by running BE-CHAINSAT and MB-CHAINSAT. MB-CHAINSAT requires
a higher computational effort than BE-CHAINSAT, except for n = 25. A detailed
analysis of the number of flips is shown in Table 3.

The average number of flips used for solving an instance with MB-CHAINSAT
is 1223655.71 against 1211622.34 with BE-CHAINSAT. Therefore, on average, BE-
CHAINSAT needs a lower computational effort than MB-CHAINSAT. This is due to

1 ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances.
We set the generator to obtain both satisfiable and unsatisfiable formulas, so as to obtain a purely uniform random k-SAT
distribution.
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Fig. 6. Computational Effort of LC-CHAINSAT. We plot the number of flips (normalized to
1) performed by BE-CHAINSAT and MB-CHAINSAT, using the LC version. BE-CHAINSAT
employs less flips than MB-CHAINSAT, therefore requiring a lower computational effort. This
highlights the importance of the topological structure of a graph. Since with the BE distribution
the graph has a FW higher than the graph built with the MB distribution, there exists a node that,
sharing a large number of links, allows to find a solution performing less flips.

the structure of the BE-graphs, with a fraction winner higher than MB-graphs (as shown
in Section 3): a node that shares more links enables to find a truth assignment for the
instance, performing less flips. Therefore, if we consider graphs with n > 25 and our
LC version of CHAINSAT, BE-CHAINSAT performs better than MB-CHAINSAT, as
it solves the same number of instances performing less flips.

Conversely, when using the NLC version of CHAINSAT [11], Figure 7 shows that
MB-CHAINSAT generally outperforms BE-CHAINSAT in terms of satisfied clauses,
but whenm approximates 400, BE-CHAINSAT satisfies more clauses than MB-CHAINSAT.
We investigate this comparison more thoroughly by analyzing the difference of satis-
fied clauses for each value of n (number of variables). The results are shown in Table 4.
Finally, in Figure 8 we show that in the NLC case MB-CHAINSAT is computationally
less expensive than BE-CHAINSAT.

In conclusion, for the LC version, the BE distribution (namely, BE-CHAINSAT)
always obtains better results than MB-CHAINSAT and CHAINSAT, as it solves the
same percentage of clauses with a lower number of flips. For the NLC version, the
MB distribution (namely, MB-CHAINSAT), outperforms the other algorithms for each
value of n.
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Fig. 7. MaxSAT for NLC-CHAINSAT. We plot the percentage of clauses satisfied by BE-
CHAINSAT and MB-CHAINSAT as function of the number of clauses m and variables n, by
using the Not-Linked-Clauses versions (NLC). MB-CHAINSAT seems to solve a higher percent-
age of clauses than BE-CHAINSAT. Actually, MB-CHAINSAT outperforms BE-CHAINSAT
only for few values of α. The two algorithms solve exactly the same number of instances for
n = 50, n = 75 and n = 100. (A more detailed analysis is shown in Table 4.)
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Fig. 9. MaxSAT for LC-ChainSAT. We plot the percentage of clauses satisfied by BE-ChainSAT
and MB-ChainSAT as function of the number of clauses m and variables n, by using the Linked-
Clauses version (LC). Although MB-ChainSAT seems to solve a higher percentage of clauses
than BE-ChainSAT, the detailed analysis in Table 3 highlights that they solve the same number
of instances for each value of n.
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LC-Maxwell Boltzman LC-Bose Einstein ChainSAT
n MaxSAT Flips MaxSAT Flips MaxSAT Flips
25 0.8567 1185219.00 0.8567 1187645.11 0.8567 1176755.92
50 0.8580 1200317.11 0.8580 1159281.68 0.8580 1165854.05
75 0.8587 1228486.09 0.8587 1219520.08 0.8587 1231789.81
100 0.8590 1280600.65 0.8590 1280042.75 0.8590 1296716.23

Average 0.8581 1223655.71 0.8581 1211622.34 0.8581 1217779.00

Table 3. Summary of LC SAT solvers performance. For each value of n (number of variables), we
report the percentage of satisfied clauses and the number of flips performed by MB-CHAINSAT,
BE-CHAINSAT and CHAINSAT, using the LC version. All the algorithms ensure the same per-
centage of satisfied clauses. In terms of flips, CHAINSAT outperforms MB-CHAINSAT and BE-
CHAINSAT only for n = 25. When n > 25, BE-CHAINSAT outperforms MB-CHAINSAT and
CHAINSAT, as it solves the same percentage of clauses with a lower number of flips.

NLC-Maxwell Boltzman NLC-Bose Einstein ChainSAT
n MaxSAT Flips MaxSAT Flips MaxSAT Flips
25 0.8567 1175219.03 0.8563 1177645.11 0.8567 1176755.92
50 0.8577 1162949.63 0.8580 1166531.26 0.8580 1165854.05
75 0.8587 1211373.56 0.8587 1229056.62 0.8587 1231789.81
100 0.8590 1269268.24 0.8587 1275695.48 0.8590 1296716.23

Average 0.8580 1204702.62 0.8579 1212232.12 0.8581 1217779.00

Table 4. Summary of NLC SAT solvers performance. For each value of n (number of vari-
ables), we report the percentage of clauses satisfied and the number of flips performed by MB-
CHAINSAT, BE-CHAINSAT and CHAINSAT by using the NLC version. As regards flips, MB-
CHAINSAT outperforms the other algorithms for each value of n.

6 Discussion

In this research work, we have proposed a statistical-physical characterization for the
Satisfiability problem. Starting from the S2G algorithm, we have developed a new algo-
rithm in order to translate a SAT instance into a graph by using the BE (quantum) or the
MB (classical) statistical distributions. The phase diagram of the graph provided by the
algorithm shows evidence of condensation as the clauses-to-variables ratio decreases.
Furthermore, we have carried out a systematic study to employ the characterization
in the well-known CHAINSAT solver [15], without requiring a priori investigation of
its solutions. The fitness-based sorting provided by our algorithm allows to enhance
CHAINSAT.

In order to investigate the role of the quantum physics in our algorithm, we have
cross-compared the behavior of our algorithm when using classical or quantum physics.
From the phase diagrams, it is evident that graphs are more likely to undergo BEC if
they are generated through the algorithm based on quantum physics. Moreover, when
using our quantum and classical algorithms to drive the CHAINSAT solver, BE-CHAINSAT
is computationally less or more expensive than MB-CHAINSAT, in terms of flips per-
formed, depending on the CHAINSAT version used.

Notably, we have also defined the entropy of a SAT instance according to the in-
formation gained during the generation of its graph through S2G. From a statistical-
physical standpoint, we have shown that the temperature of the SAT problem is mapped
by the parameter representing the out-degree assigned dynamically to the nodes of the
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graph associated with the instance. These findings highlight the emergence of a compre-
hensive characterization of the k-SAT problem using the classical and quantum particle
distributions of statistical physics.
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