
Projection: A Unified Approach to Semi-Infinite Linear Programs

and Duality in Convex Programming

Amitabh Basu
Kipp Martin

Christopher Thomas Ryan

April 5, 2013

Abstract

Fourier-Motzkin elimination is a projection algorithm for solving finite linear programs. We
extend Fourier-Motzkin elimination to semi-infinite linear programs which are linear programs
with finitely many variables and infinitely many constraints. Applying projection leads to new
characterizations of important properties for primal-dual pairs of semi-infinite programs such
as zero duality gap, feasibility, boundedness, and solvability. Extending the Fourier-Motzkin
elimination procedure to semi-infinite linear programs yields a new classification of variables
that is used to determine the existence of duality gaps. In particular, the existence of what the
authors term dirty variables can lead to duality gaps. Our approach has interesting applications
in finite-dimensional convex optimization. For example, sufficient conditions for a zero duality
gap, such as existence of a Slater point, are reduced to guaranteeing that there are no dirty
variables. This leads to completely new proofs of such sufficient conditions for zero duality.
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1 Introduction

Duality is an important theoretical and practical topic in optimization. In order to better
understand the structure of an optimization problem (called the primal), and design solution
algorithms, it is often useful to consider its dual (or duals). A key determinant of the usefulness
of the dual is the duality gap which is the difference between the optimal value of a primal and
the optimal value of the dual. Establishing that the primal and dual have zero duality gap is
particularly desirable and is a subject of intense study throughout the field of optimization.

Linear programming is a perfect example. Every linear program has a well-understood dual
with the simple property that when the primal is feasible with bounded optimal value, there is
zero duality gap. Moreover, optimal solutions to both the primal and dual are guaranteed to
exist. For more general problems, additional conditions are needed to establish zero duality gap
and the existence of an optimal solution.

Much research has focused on sufficient conditions for zero duality gap. Possibly the most
well-known sufficient condition for zero duality gap is the Slater condition for convex program-
ming. Slater’s condition states that when the feasible region of the primal convex program
has an interior point (sometimes called a Slater point) there is zero duality gap. “Slater-like”
conditions are also prevalent in conic programming, where the existence of interior points to the
dual conic program guarantees a zero duality gap (see for instance, Gartner and Matousék [8]).
Less well-known is the duality theory of semi-infinite linear programs. These are linear opti-
mization problems with a finite number of variables and possibly infinitely many constraints.
In this paper we use this theory to understand the duality of both convex and conic programs.
In semi-infinite linear programming, a variety of sufficient conditions for zero duality gap have
been introduced (see for example, Anderson and Nash [1], Charnes, Cooper and Kortanek [2],
Duffin and Karlovitz [6], Goberna and López [9], and Karney [10]). We provide an alternate
and unifying approach to duality in semi-infinite linear programs.

We extend Fourier-Motzkin elimination (projection) [7, 11] to semi-infinite systems of lin-
ear inequalities as a method to study duality. Taking the dictum expressed by Duffin and
Karlovitz [6] of “the desirability of omitting topological considerations” to its logical conclusion,
the method of projection is purely algebraic. It is simply the aggregation of pairs of linear
inequalities using nonnegative multipliers. Applying Fourier-Motzkin elimination to a semi-
infinite linear program reveals important properties about the semi-infinite linear program that
can only be obtained through this elimination (or projection) process. In particular, Fourier-
Motzkin elimination reveals the existence of what the authors term “dirty” variables. Dirty
variables are necessary for the existence of a duality gap. The dirty variable characterization
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also has important implications for finite dimensional problems. For example, sufficient con-
ditions for a zero duality gap in a finite-dimensional convex optimization problem, such as
existence of a Slater point, are reduced to guaranteeing that there are no dirty variables in an
appropriately defined semi-infinite linear program.

The extension of Fourier-Motzkin elimination to semi-infinite linear programs involves sub-
tleties that do not arise in standard Fourier-Motzkin theory where the number of inequalities is
finite. Sections 2 and 3 provide a cogent framework for analyzing semi-infinite linear programs.
Applying projection leads to new characterizations of important properties for primal-dual pairs
of semi-infinite programs such as zero duality gap, feasibility and boundedness, and solvability.
These results have implications for finite-dimensional conic linear programs and convex opti-
mization. See Section 5 and Section 6, respectively. Applications of the results from Section 3
to the generalized Farkas’ theorem and additional sufficient conditions for zero duality gap in
semi-infinite linear programs are in Section 7 and Section 8, respectively. Concluding remarks
are in Section 9.

We begin with a brief notation review and a summary of our results.

Notation

Let Y be a vector space. The algebraic dual of Y , denoted Y ′, is the set of linear functionals
with domain Y . Let ψ ∈ Y ′. The evaluation of ψ at y is denoted by 〈y, ψ〉; that is, 〈y, ψ〉 = ψ(y).

Let P be a convex cone in Y . A convex cone P is pointed if and only if P ∩ −P = {0}. A
pointed convex cone P in Y defines a vector space ordering �P of Y , with y �P y′ if y−y′ ∈ P .
The dual cone of P is P ′ = {ψ ∈ Y : 〈y, ψ〉 ≥ 0 for all y ∈ P}. Elements of P ′ are called positive
linear functionals in Y . A cone P is reflexive if P ′′ = P under the natural embedding of Y ↪→ Y ′′.

Let A be a linear mapping from vector space X to vector space Y . The algebraic adjoint
A′ : Y ′ → X ′ is defined by A′(ψ) = ψ ◦A and satisfies 〈x,A′(ψ)〉 = 〈A(x), ψ〉 where ψ ∈ Y ′ and
x ∈ X.

Given any set I, RI denotes the vector space of real-valued functions u with domain I, i.e.,
u : I → R. For u ∈ RI the support of u is the set supp(u) = {i ∈ I : u(i) 6= 0}. The subspace
R(I) are those functions in RI with finite support. Let ≥ denote the standard vector space
ordering on RI . That is, u ≥ v if and only if u(i) ≥ v(i) for all i ∈ I. The subspace R(I)

inherits this ordering. Let RI+ (resp. R(I)
+ ) denote the pointed cone of u ∈ RI (resp. u ∈ R(I)

+ )

with u ≥ 0. Using the standard embedding of R(I) into (RI)′ for u ∈ RI and v ∈ R(I), write
〈u, v〉 =

∑
i∈I u(i)v(i). The latter sum is well-defined since v has finite support.

For all h ∈ I, define a function eh ∈ RI by eh(i) = 1 if h = i, and eh(i) = 0 if h 6= i for all
i ∈ I. When I = {1, 2, . . . , n}, RI is Rn and e1, e2, ...en correspond to the standard unit vectors
of Rn.

The optimal value of optimization problem (*) is denoted by v(*).

Our results

The main topic of study is the semi-infinite program

infx∈Rn c>x
s.t.

∑n
k=1 a

k(i)xk ≥ b(i) for i ∈ I (SILP)

where I is an arbitrary (potentially infinite) index set, c ∈ Rn, and b, ak ∈ RI for k = 1, . . . , n,
and its finite support dual

sup
∑
i∈I b(i)v(i)

s.t.
∑
i∈I a

k(i)v(i) = ck for k = 1, . . . , n

v ∈ R(I)
+ .

(FDSILP)
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Our main results on this primal-dual pair are summarized in Table 1 (see page 23). These include
a sufficient condition for primal solvability (Theorem 3.10) and characterizations of both dual
solvability (Theorem 3.20) and zero duality gap (Theorem 3.21). Here, zero duality gap means
v(SILP) = v(FDSILP) when (SILP) is feasible.

We identify a special class of semi-infinite linear programs, termed tidy semi-infinite linear
programs, where zero duality gap is guaranteed to hold (Theorem 3.24). The name tidy comes
from the fact that the Fourier-Motzkin elimination procedure eliminates (or “cleans up”) all
primal decision variables. In our terminology, there are no “dirty” decision variables.

Theorem 3.24. If (SILP) is feasible and tidy then

(i) (SILP) is solvable,

(ii) (FDSILP) is feasible and bounded,

(iii) there is a zero duality gap for the primal-dual pair (SILP) and (FDSILP).

In particular, the method of projection is used to prove a result due to Duffin and Karlovitz [6]
on duality gaps for semi-infinite linear programs with bounded feasible regions by showing such
semi-infinite linear programs are tidy (Theorem 3.25 establishes a slightly more general result).

A number of sufficient conditions for zero duality gap in semi-infinite linear programs due
to Karney [10] also follow directly from our results in Section 3. This is shown in Section 8.

Applications in Convex Optimization

The theory of tidy semi-infinite linear programs is leveraged to establish important duality
results in conic and convex programming. In conic programming the standard primal is

infx∈X 〈x, φ〉
s.t. A(x) �P d

(ConLP)

where X and Y are vector spaces, A : X → Y is a linear mapping, d ∈ Y , P is a pointed convex
cone in Y and φ is a linear functional on X. The standard dual (also a conic program) is

supψ∈Y ′ 〈d, ψ〉
s.t. A′(ψ) = φ

ψ ∈ P ′.
(ConLPD)

We study a semi-infinite linear program that is equivalent to (ConLP) and use the method of
projection to give a new proof of the following well-known duality result for conic programs.

Theorem 5.12 (Slater’s theorem for conic programs). Let X and Y be finite-dimensional vector
spaces, and let P be reflexive. Assume the primal conic program (ConLP) is feasible. Suppose
there exists ψ∗ ∈ int(P ′) with A′(ψ∗) = c. Then the primal-dual pair (ConLP)-(ConLPD) has
a zero duality gap. Moreover, the primal is solvable.

Our proof uses the interior point ψ∗ to construct a set of constraints that show the asso-
ciated semi-infinite linear program is tidy. Thus, zero duality gap and primal solvability are
established in a transparent “algebraic” manner. Alternate proofs (see for instance Gartner and
Matousék [8]) are based on a intermediate result called regular duality, a core theorem in its own
right. According to regular duality, the primal optimal value corresponds to limiting values of
sequences of points in the dual space, which are dual feasible in a limiting sense. Regular duality
is also established in this paper as a consequence of our method of projection (Theorem 5.10),
but this intermediate step is unnecessary in our proof of Theorem 5.12.

In addition, we prove Theorem 5.8 below. A more restricted version of this result is known
in the classical conic programming literature (see for example Duffin [5]). Our result is obtained
with a completely new proof using projection techniques.
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Theorem 5.8 (Zero duality gap via boundedness). Let X be finite-dimensional. If P is re-
flexive and there exists a scalar γ such the set {x : A(x) �P d and 〈x, φ〉 ≤ γ} is nonempty and
bounded, then there is no duality gap for the primal-dual pair (ConLP)-(ConLPD).

In particular, conic programs with bounded feasible regions always have zero duality gaps.

Next, consider the following general convex program

maxx∈Rn f(x)
s.t. gi(x) ≥ 0 for i = 1, . . . , p

x ∈ Ω
(CP)

where f(x) and gi(x) for i = 1, . . . , p are concave functions, and Ω is a closed, convex set. Define
the Lagrangian function L(λ) := max{f(x) +

∑p
i=1 λigi(x) : x ∈ Ω}. The Lagrangian dual is

inf
λ≥0

L(λ). (LD)

Slater’s condition is a key result in finite-dimensional convex programming.

Theorem 6.4 (Slater’s theorem for convex programs). Suppose the convex program (CP)
is feasible and bounded. Moreover, suppose there exists x∗ ∈ Ω such that gi(x

∗) > 0 for all
i = 1, . . . , p. Then there is zero duality gap between the convex program (CP) and its Lagrangian
dual (LD). Moreover, there exists λ∗ ≥ 0 such that v(LD) = L(λ∗), i.e., the Lagrangian dual is
solvable.

Our proof uses the fact that the Slater point x∗ corresponds to a useful constraint in the
semi-infinite linear program representing the Lagrangian dual. The structure of this constraint
implies the boundedness of the feasible region for a fixed objective value. By Theorem 3.25,
this implies zero duality gap and dual solvability. As in the case of conic programs, the result
is established in a transparent “algebraic” manner using the method of projection.

Beyond these results in conic and convex programming, the method of projection is used to
elegantly prove several foundational results for semi-infinite linear programs. In the process, new
structural insights are given. These results include finite approximability of semi-infinite linear
programs (see our Theorem 8.3 that generalizes Theorem 2.1 in Karney [10]) and the generalized
Farkas’ theorem for infinite systems of linear inequalities (see our Theorem 7.1 and Theorem
3.1 in Goberna and López [9]). Goberna and López use the latter result as the main tool for
deriving their own set of necessary and sufficient conditions for zero duality in semi-infinite linear
programs. Thus, our methodology can, in principle, be used as an alternate starting point to
derive their results.

2 Fourier-Motzkin elimination

In this section we extend Fourier-Motzkin elimination to semi-infinite linear systems. For
background on Fourier-Motzkin elimination applied to finite linear systems see Fourier [7],
Motzkin [11], and Williams [12]. In this section, Fourier-Motzkin elimination elimination is
used to characterize the feasibility and boundedness of semi-infinite systems of linear inequal-
ities. In addition, useful properties are shown about the Fourier-Motzkin multipliers which
appear while aggregating constraints. These properties prove critical in our approach to duality
theory.

Consider the semi-infinite linear system

a1(i)x1 + a2(i)x2 + · · ·+ an(i)xn ≥ b(i) for i ∈ I (2.1)
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where I is an arbitrary index set. Denote the set of (x1, . . . , xn) ∈ Rn that satisfy these
inequalities by Γ. The projection of Γ into the subspace of Rn spanned by {ej}nj=2 is

P (Γ;x1) := {(x2, x3, . . . , xn) ∈ Rn−1 : ∃x1 ∈ R s.t. (x1, x2, . . . , xn) ∈ Γ}. (2.2)

Under certain conditions, the projection P (Γ;x1) is characterized by aggregating inequalities in
the original system. Define the sets

H+(k) := {i ∈ I | ak(i) > 0}
H−(k) := {i ∈ I | ak(i) < 0}
H0(k) := {i ∈ I | ak(i) = 0}

(2.3)

based on the coefficients of variable xk in (2.1).
For now, assume H+(1) and H−(1) are both nonempty. As in the finite case, eliminate

variable x1 by adding all possible pairs of inequalities with one inequality in H+(1) and the
other from H−(1). Since there are potentially infinitely many constraints this may involve
aggregating an infinite number of pairs. The resulting system is

n∑
k=2

ak(i)xk ≥ b(i) for i ∈ H0(1) (2.4)

n∑
k=2

(
ak(p)

a1(p)
− ak(q)

a1(q)

)
xk ≥

b(p)

a1(p)
− b(q)

a1(q)
for p ∈ H+(1) and q ∈ H−(1). (2.5)

Denote the set of (x2, . . . , xn) ∈ Rn−1 that satisfy the constraints in (2.4)-(2.5) by FM(Γ;x1).

Remark 2.1. One way to view the inequalities (2.5) is the following : pick a pair (p, q) of
inequalities with p ∈ H+(1) and q ∈ H−(1). Then form a new constraint by multiplying the
first constraint by 1

a1(p) , multiplying the second constraint by − 1
a1(q) , and adding them together.

This “eliminates” x1 from this pair of constraints. Of course, one can achieve this by choosing
any common multiple of 1

a1(p) and − 1
a1(q) as the multipliers prior to adding them together, and

achieve a “scaled” inequality describing the same halfspace (with x1 “eliminated”). /

A key result is that the inequalities in (2.4)-(2.5) describe the projected set P (Γ;x1).

Theorem 2.2. If H+(1) and H−(1) are both nonempty, then P (Γ;x1) = FM(Γ;x1).

Proof. Since H+(1) and H−(1) are both nonempty,

(x2, x3, . . . , xn) ∈ P (Γ;x1)
⇔ ∃x1 ∈ R such that a1(i)x1 + a2(i)x2 + . . .+ an(i)xn ≥ b(i) for i ∈ I

⇔ ∃x1 ∈ R such that


∑n
k=2 a

k(i)xk ≥ b(i) ∀i ∈ H0 and

x1 ≥ b(p)
a1(p) −

∑n
k=2

ak(p)
a1(p)xk, ∀p ∈ H+(1) and

x1 ≤ b(q)
a1(q) −

∑n
k=2

ak(q)
a1(q)xk, ∀q ∈ H−(1)


⇔

{ ∑n
k=2 a

k(i)xk ≥ b(i) ∀i ∈ H0 and
b(p)
a1(p) −

∑n
k=2

ak(p)
a1(p)xk ≤

b(q)
a1(q) −

∑n
k=2

ak(q)
a1(q)xk ∀p ∈ H+(1),∀q ∈ H−(1)

}
⇔ (x2, x3, . . . , xn) ∈ FM(Γ;x1).

Note that the second to last equivalence holds because bothH+(1) andH−(1) are nonempty.

Equally as important to our theory is how “dual information” is accrued during the process
of elimination. The following result captures the essence of this idea.
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Corollary 2.3. If H+(1) and H−(1) are both nonempty, then there exists an index set Ĩ and

uh ∈ R(I)
+ for h ∈ Ĩ such that the projection P (Γ;x1) is

P (Γ;x1) = {(x2, . . . , xn) | ã2(h)x2 + · · ·+ ãn(h)xn ≥ b̃(h) for h ∈ Ĩ}

where b̃, ã2, . . . , ãn ∈ RĨ are given by

(i) b̃(h) = 〈b, uh〉 for all h ∈ Ĩ,

(ii) ãk(h) = 〈ak, uh〉 for all k = 2, . . . , n and h ∈ Ĩ,

(iii) 〈a1, uh〉 = 0 for all h ∈ Ĩ.

Proof. By Theorem 2.2, P (Γ;x1) = FM(Γ;x1). Show that FM(Γ;x1) has the required repre-
sentation. Since H+(1) and H−(1) are both nonempty, take Ĩ = H0(1)∪ (H+(1)×H−(1)). For

each h ∈ H0(1), take uh ∈ R(I)
+ as the function with value 1 at h and 0 otherwise. For each

h = (p, q) ∈ H+(1)×H−(1), take uh ∈ R(I)
+ as the function uh : I → R defined by

uh(i) =


1

a1(p) , when i = p

− 1
a1(q) , when i = q

0, otherwise.

Now define b̃, ã2, . . . , ãn using the equations from (i) and (ii) in the statement of the corollary.
The proof is then complete by observing that FM(Γ;x1) = {(x2, . . . , xn) | ã2(h)x2 + · · · +
ãn(h)xn ≥ b̃(h) for h ∈ Ĩ} with these definitions.

Below is a formal statement of Fourier-Motzkin elimination, which applies the above proce-
dure sequentially for each variable.

Fourier-Motzkin Elimination Procedure

Input: A semi-infinite linear inequality system

a1(i)x1 + a2(i)x2 + · · ·+ an(i)xn ≥ b(i) for i ∈ I.

Output: A semi-infinite linear inequality system

ã`(h)x` + ã`+1(h)x`+1 + · · ·+ ãn(h)xn ≥ b̃(h) for h ∈ Ĩ . (2.6)

The variables x`, . . . , xn form a subset of the variables of the input system relabeled according to
a permutation π : {1, . . . , n} → {1, . . . , n}. We allow ` ∈ {1, . . . , n, n+ 1} , interpreting ` = n+1

to mean that the left-hand side is zero. We also output a set of vectors {uh ∈ R(I)
+ : h ∈ Ĩ}.

Procedure:

1. Initialization: D ← {1, . . . , n}, Ĩ ← I, ãk ← ak for all k ∈ D, b̃ ← b, and j ← 1. For
each h ∈ Ĩ = I, set uh ← eh.

2. Elimination: While (j ≤ n) do:

a. Define the sets H+(j), H−(j) and H0(j) as follows.

H+(j) := {h ∈ Ĩ | ãj(h) > 0}
H−(j) := {h ∈ Ĩ | ãj(h) < 0}
H0(j) := {h ∈ Ĩ | ãj(h) = 0}

b. If H+(j) 6= ∅ and H−(j) 6= ∅ do:
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(i) Set Ĩ ← H0(j) ∪ [H+(j)×H−(j)] and D ← D \ {j}.
(ii) For each k ∈ D define âk : Ĩ → R by

âk(h) :=

{
ãk(h) for h ∈ H0(j)

ãk(p)
ãj(p) −

ãk(q)
ãj(q) for h = (p, q) ∈ H+(j)×H−(j)

(iii) For each h ∈ Ĩ, define ûh ∈ R(I)
+ by

ûh :=

{
uh for h ∈ H0(j)

1
ãj(p)u

p − 1
ãj(q)u

q for h = (p, q) ∈ H+(j)×H−(j)

(iv) For each k ∈ D, set ãk ← âk. For each h ∈ Ĩ, set uh ← ûh.

(v) Define b̂ : Ĩ → R by

b̂(h) :=

{
b̃(h) for h ∈ H0(j)

b̃(p)
ãj(p) −

b̃(q)
ãj(q) for h = (p, q) ∈ H+(j)×H−(j)

and set b̃← b̂.

end do.

c. If H+(j) ∪H−(j) = ∅ then set D ← D \ {j}.
d. j ← j + 1.

end do.

3. Output formatting: Upon termination D is either empty or, for some ` ∈ {1, . . . , n},
can be written D = {d1, . . . , dn−`+1} where di ∈ {1, . . . , n} with di ≤ dj for i ≤ j. Let
D = {1, . . . , n} \ D = {d̄1, . . . , d̄`−1} where d̄i ∈ {1, . . . , n} and d̄i ≤ d̄j for i ≤ j. In
other words, ` − 1 variables were eliminated and the rest n − ` + 1 variables indexed by
the indices in D are not eliminated.

a. If D = ∅, output the system

0 ≥ b̃(h) for h ∈ Ĩ .

b. Else if D 6= ∅, reassign the indices in D by di ← `− 1 + i for i = 1, . . . , n− `+ 1. If D
is nonempty, reassign the indices in D by d̄i ← i for i = 1, . . . , `− 1. This defines the
permutation π described in the output. Now, construct the system

ã`(h)x` + ã`+1(h)x`+1 + . . .+ ãn(h)xn ≥ b̃(h) for h ∈ Ĩ .

Definition 2.4 (Clean and dirty variables). At the end of the Fourier-Motzkin procedure, the
variables x1, . . . , x`−1 are called clean variables and the variables x`, . . . , xn are called dirty
variables. Thus, a dirty variable is one that the Fourier-Motzkin procedure could not eliminate
and a clean variable is one that the procedure could eliminate.

Definition 2.5 (Canonical form). A semi-infinite linear system (2.1) is said to be in canonical
form if the permutation π output by the Fourier-Motzkin elimination is the identity permutation.

Lemma 2.6. For every semi-infinite linear system, there exists a permutation of the variables
that puts it into canonical form. Moreover, if you apply the Fourier-Motzkin procedure to the
original system and to the permuted system, they result in the same system of inequalities in
the output.
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Proof. The permutation output by the Fourier-Motzkin procedure is one such desired permu-
tation.

Remark 2.7. In light of Lemma 2.6, we assume without loss, that semi-infinite linear systems
are always given in canonical form before applying the Fourier-Motzkin elimination procedure.
There may exist multiple permutations of the variables which put a given semi-infinite system
into canonical form. Moreover, two different permutations may lead to systems in canonical
form with a different number of clean and dirty variables. For our purposes, this will not make
a difference and any permutation that puts the semi-infinite system into a canonical form will
suffice.

Definition 2.8. The finite support element, uh for every h ∈ Ĩ, that is generated by the Fourier-
Motzkin elimination procedure is called a Fourier-Motzkin elimination multiplier, or simply a
multiplier.

The key property of the Fourier-Motzkin elimination procedure is that it characterizes geo-
metric projections. For ` ≤ n define

P (Γ;x1, . . . , x`−1) := {(x`, . . . , xn) ∈ Rn−`+1 : ∃x1, . . . , x`−1 s.t. (x1, . . . , x`−1, x`, . . . , xn) ∈ Γ}.

Theorem 2.9. Apply the Fourier-Motzkin elimination procedure with input inequality system

(2.1) to produce output system (2.6). For all h ∈ Ĩ, the finite-support multipliers uh ∈ R(I)
+

generated by the Fourier-Motzkin procedure satisfy

(i) b̃(h) = 〈b, uh〉,
(ii) ãk(h) = 〈ak, uh〉 for all k = `, . . . , n, and

(iii) 〈ak, uh〉 = 0 for all k = 1, . . . , `− 1.

In addition, if not all variables are eliminated, and in the output system (2.6) ` ≤ n, then

P (Γ;x1, . . . , x`−1) = {(x`, . . . , xn) | (2.6) holds}.

Proof. If ` = 1, then only Step 2d. of the Fourier-Motzkin elimination procedure is executed
and the original system remains unchanged so Ĩ = I, ãk = ak, k = 1, . . . , n and b̃ = b. Based
on the initialization step, uh = eh for h ∈ Ĩ and (i)-(iii) follow. If ` ≥ 2, since the system is in
canonical form, the result follows from recursively applying Corollary 2.3.

Corollary 2.10 (Clean projection). Let (2.1) be a semi-infinite linear system and let 1 ≤M <
min{`, n} where ` is the index of the first dirty variable in the output system (2.6). After the
while loop in Step 2 of the Fourier-Motzkin elimination procedure iterates M times, we have
the following intermediate system (recall (2.1) is assumed to be in canonical form)

ãM+1(h)xM+1 + ãM+2(h)xM+2 + · · ·+ ãn(i)xn ≥ b̃(h) for h ∈ Ĩ . (2.7)

Then

P (Γ;x1, . . . , xM ) = {(xM+1, . . . , xn) | (2.7) holds}.

Proof. Follows from a finite number of applications of Corollary 2.3.

Partition the index set Ĩ in (2.6), into two sets H1 := {h ∈ Ĩ : ãk(h) = 0 for all k ∈ {`, . . . , n}
and H2 := Ĩ \H1. Rewrite (2.6) as

0 ≥ b̃(h) for h ∈ H1 (2.8)

ã`(h)x` + ã`+1(h)x`+1 + · · ·+ ãn(h)xn ≥ b̃(h) for h ∈ H2. (2.9)

If H2 = ∅ (that is, ` = n+ 1), then system (2.8)-(2.9) is a clean system. Otherwise, if H2 6= ∅,
(2.8)-(2.9) is a dirty system. In a dirty system, for any k ∈ {`, . . . , n}, either ãk(h) ≥ 0 for all
h ∈ H2, or ãk(h) ≤ 0 for all h ∈ H2. Moreover,

∑n
k=` |ãk(h)| > 0 for h ∈ H2.
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Definition 2.11. Given a dirty system (2.8)-(2.9) and a real number δ ≥ 0, let x(δ; `) denote
the tuple (x̄`, . . . , x̄n) where for each k ∈ {`, . . . , n}, x̄k = δ if ãk(h) ≥ 0 for all h ∈ H2 and
x̄k = −δ otherwise. Let xk(δ; `) denote the kth entry of x(δ; `).

Remark 2.12. When I is a finite set, the concept of a dirty variable is unnecessary. In the finite
case, there is always a value of δ such that x(δ, `) is a feasible solution to (2.9). It is therefore
legitimate to drop the constraints indexed by H2 from further consideration. Therefore, when
implementing the Fourier-Motzkin procedure in the finite case, if variable xk is dirty, then one
would drop all the constraints h for which ãk(h) > 0 (or ãk(h) < 0). /

Theorem 2.13 (Feasibility). Applying Fourier-Motzkin elimination to (2.1) results in sys-
tem (2.8)-(2.9). If H2 6= ∅ then the system is feasible (i.e. Γ is nonempty) if and only if

(i) b̃(h) ≤ 0 for all h ∈ H1, and

(ii) suph∈H2
b̃(h)/

∑n
k=` |ãk(h)| <∞.

Moreover, if H2 = ∅ then Γ is nonempty if and only if (i) holds.

Proof. If H2 6= ∅, then Γ is nonempty if and only if P (Γ;x1, . . . , x`−1) is nonempty. By The-
orem 2.9, P (Γ;x1, . . . , x`−1) is defined by (2.8)-(2.9). Therefore, it suffices to show (2.8)-(2.9)
has a feasible solution if and only if conditions i) and ii) hold.

(=⇒) Assume x̄`, . . . , x̄n be a feasible solution to (2.8)-(2.9). Let δ = max{|x̄`|, |x̄`+1|, . . . , |x̄n|}.
First, all inequalities in H1 are satisfied and this gives condition i). Moreover, for all h ∈ H2,
b̃(h) ≤

∑n
k=` ã

k(h)x̄k ≤
∑n
k=` |ãk(h)||x̄k| ≤ δ(

∑n
k=` |ãk(h)|). This implies for every h ∈ H2,

b̃(h)/
∑n
k=` |ãk(h)| ≤ δ <∞ and this gives condition ii).

(⇐=) Assume i) and ii) hold. By ii) there exits a δ ≥ max{0, suph∈H2
b̃(h)/

∑n
k=` |ãk(h)|}.

Show that x(δ; `) is a feasible solution to (2.8)-(2.9). It suffices to show (2.9), since (2.8) is
implied by condition i). For any h ∈ H2,

∑n
k=` ã

k(h)xk(δ; `) = δ(
∑n
k=` |ãk(h)|) ≥ b̃(h), where

the last inequality follows from the fact that δ ≥ suph∈H2
b̃(h)/

∑n
k=` |ãk(h)|. Thus, x(δ; `) is a

feasible solution.
Now consider the case H2 = ∅. If the inequalities in the original system hold (that is, Γ 6= ∅)

then the inequalities 0 ≥ b̃(h) for h ∈ H1 must also hold, since these inequalities are consequences
of the original system. Thus, (i) holds. Conversely, suppose b̃(h) ≤ 0 for all h ∈ H1. Now, just
before xn is eliminated in the Fourier-Motzkin elimination procedure (xn must be eliminated
since H2 = ∅) the system stored in the algorithm (after a scaling as stated in Remark 2.1) is

0 ≥ b̂(h) for h ∈ H0(n) (2.10)

xn ≥ b̂(h′) for h′ ∈ H+(n) (2.11)

−xn ≥ b̂(h′′) for h′′ ∈ H−(n). (2.12)

When xn is eliminated, system (2.8)-(2.9) is derived with b̃(h) = b̂(h′)+ b̂(h′′) where h = (h′, h′′)
for h′ ∈ H+(n) and h′′ ∈ H−(n). By hypothesis, b̃(h) ≤ 0 for all h ∈ H1 and this implies

b̂(h′) ≤ −b̂(h′′). Then there exists an xn such that b̂(h′) ≤ xn ≤ −b̂(h′′) for all h′ ∈ H+(n) and
h′′ ∈ H−(n) and this xn that satisfies (2.11) and (2.12). Note that (2.10) holds by hypothesis
since H0(n) ⊆ H1. Thus, (2.10)-(2.12) is a feasible system. By Corollary 2.10 this system
is the projection P (Γ;x1, . . . , xn−1). Thus, P (Γ;x1, . . . , xn−1) is nonempty and therefore Γ is
nonempty.

Remark 2.14. In the proof of Theorem 2.8 it was shown that when Γ is nonempty and

δ ≥ max{0, sup
h∈H2

b̃(h)/

n∑
k=`

|ãk(h)|},

the tuple x(δ; `) as defined in Definition 2.11 is feasible to (2.8)-(2.9) and thus can be extended
to a feasible vector in Γ. This fact is used in later development. /
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We next characterize the boundedness of the feasible set Γ.

Theorem 2.15 (Boundedness). If Γ is a bounded set, then applying Fourier-Motzkin elimina-
tion to the system (2.1) that defines Γ, gives the system (2.8)-(2.9) with H2 = ∅.

Proof. Prove the contrapositive and assume H2 is nonempty. This implies the existence of dirty
variables. Since Γ 6= ∅, suph∈H2

b̃(h)/
∑n
k=` |ãk(h)| <∞ by Theorem 2.13. For any

δ ≥ max{0, sup
h∈H2

b̃(h)/

n∑
k=`

|ãk(h)|},

x(δ; `) is feasible for the system (2.8)-(2.9) by Remark 2.14. The components of x(δ; `) be-
come arbitrarily large in absolute value as δ → ∞. Since (2.8)-(2.9) describes the projection
P (Γ;x`, . . . , xn) there are feasible solutions for Γ which take arbitrarily large values in the com-
ponents x`, . . . , xn. This contradicts the fact that Γ is bounded.

Example 2.16. The opposite implication in Theorem 2.15 does not hold in general. For
example, consider the linear system −x1 − x2 ≥ 0, x1 + x2 ≥ 0. The feasible region is the
unbounded line x1 + x2 = 0; but H2 is empty when applying the Fourier-Motzkin elimination
procedure because the output is the degenerate system 0 ≥ 0. /

Theorem 2.17 below provides a very useful property about Fourier-Motzkin elimination mul-
tipliers that plays a pivotal role in establishing duality results in Section 3.3.

Theorem 2.17. Applying Fourier-Motzkin elimination to (2.1) gives (2.6). Let ū ∈ R(I)
+ such

that 〈ak, ū〉 = 0 for k = 1, . . . ,M with ` − 1 ≤ M ≤ n. Then, there exists a nonempty finite
index set Ī ⊆ Ĩ such that for all h ∈ Ī the Fourier-Motzkin multipliers uh satisfy 〈ak, uh〉 = 0
for k = 1, . . . ,M . Moreover, there exist scalars λh ≥ 0 for h ∈ Ī so that u =

∑
h∈Ī λhu

h.

Proof. Proceed by induction on n. First prove the inductive step on n and then the n = 1 step.
Assume the result is true for an n − 1 variable system and show that this implies the result is
true for an n variable system. Apply Fourier-Motzkin elimination to the n− 1 variable system

a1(i)x1 + a2(i)x2 + · · ·+ an(i)xn−1 ≥ b(i) for i ∈ I, (2.13)

obtained by dropping the last column in system (2.1). The result is

â`n−1(h)x`n−1
+ â`n−1+1(h)x`n−1+1 + · · ·+ ân−1(h)xn−1 ≥ b̂(h) for h ∈ Î (2.14)

where `n−1 denotes the first index of the dirty variables in the Fourier-Motzkin elimination
output. There are two cases to consider.

Case 1: M < n. Variable `− 1 is the last clean variable in (2.1). The assumption that M < n,
together with the theorem hypothesis that ` − 1 ≤ M, implies ` − 1 < n so the last clean
variable in (2.1) is strictly less than variable n. Then the last clean variable in (2.13) is the
same as the last clean variable in (2.1). This implies Fourier-Motzkin elimination applied to
both systems yields identical multiplier vectors. Invoke the induction hypothesis for the n − 1
variable system (2.13). Denote by Mn−1 the value of M and `n−1 the value of ` when the
induction hypothesis is applied to (2.13). Since ` − 1 ≤ M < n and the last clean variable
for (2.1) is the same as the last clean variable for (2.13), it is valid to set Mn−1 = M and
`n−1 − 1 = `− 1. Because Fourier-Motzkin elimination applied to both systems yields identical
multiplier vectors, the induction hypothesis implies that the Fourier-Motzkin multipliers also
satisfy the requirements of the theorem for the n variable system.

Case 2: M = n. In this case 〈ak, u〉 = 0 for k = 1, . . . , n. Therefore it is valid to apply the
induction hypothesis to the n−1 variable system (2.13) with Mn−1 = n−1 and `n−1 = min{`, n}.
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Then there exists a finite index set {1, . . . , t} = I ⊆ Î and multipliers wj such that 〈ak, wj〉 = 0
for all k = 1, . . . , n− 1 and j = 1, . . . , t and scalars α̂j ≥ 0 such that

ū =
∑t
j=1 α̂jw

j . (2.15)

The multipliers wj , j = 1, . . . , t, are used to show that column n is clean in (2.1) and that u is
a nonnegative combination of multipliers that result from eliminating this last column n.

By Theorem 2.9, the scalars 〈an, wj〉 are among the coefficients on xn before that variable
is processed when Fourier-Motzkin elimination is applied to (2.1). Either

(i) 〈an, wj〉 = 0 for j = 1, . . . , t

or

(ii) there exists j+, j− ∈ {1, . . . , t} such that 〈an, wj+〉 > 0 and 〈an, wj−〉 < 0.

Conditions (i) and (ii) are exhaustive since 0 = 〈an, ū〉 =
∑t
j=1 α̂j〈an, wj〉 for α̂j ≥ 0 and so

if 〈an, wj〉 ≥ 0 for j = 1, . . . , t (similiarly 〈an, wj〉 ≤ 0 for j = 1, . . . , t) then 〈an, wj〉 = 0 for
j = 1, . . . , t.

If (i) holds, and 〈an, wj〉 = 0 for j = 1, . . . , t, then 〈ak, wj〉 = 0 for j = 1, . . . , t, k = 1, . . . , n;
thus wj for j = 1, . . . , t are Fourier-Motzkin multipliers when Fourier-Motzkin is applied to
(2.1), and ū =

∑t
j=1 α̂jw

j and Case 2 is proved.
If (ii) holds then xn is a clean variable with respect to the system produced during the

Fourier-Motzkin procedure before variable xn is processed: it has both a positive coefficient
〈an, wj+〉 > 0 and a negative coefficient 〈an, wj−〉 < 0.

Define three sets J+, J− and J0 where j ∈ J+ if 〈an, wj〉 > 0, j ∈ J− if 〈an, wj〉 < 0 and
j ∈ J0 if 〈an, wj〉 = 0. In case (ii) both J+ and J− are nonempty. As discussed in case (i), for
j ∈ J0, wj is already a Fourier-Motzkin multiplier which satisfies 〈ak, wj〉 = 0 for k = 1, . . . ,M
and so they meet the specifications of the theorem. Now consider the wj for j ∈ J+ and
j ∈ J−. Each pair of (j+, j−) ∈ J+ × J− yields a final Fourier-Motzkin multiplier which is

a conic combination of wj
+

and wj
−

. In order to simplify the analysis, normalize the wj so
that 〈an, wj〉 = 1 for j ∈ J+ and 〈an, wj〉 = −1 for j ∈ J−. Let αj be the multipliers after
the corresponding scaling of α̂j for j ∈ J+ ∪ J−. With this scaling, from Step 2.b.(iii) of the

Fourier-Motzkin procedure, the uj
+j− = wj

+

+ wj
−

for all (j+, j−) ∈ J+ × J− are among the
Fourier-Motzkin elimination multipliers for the full system. It suffices to show that there exists
multipliers θj+j− such that

ū =
∑
j∈J0

α̂jwj +
∑

j+∈J+

∑
j−∈J−

θj+j−u
j+j− (2.16)

and

〈ak, uj
+j−〉 = 〈ak, wj

+

+ wj
−
〉 = 0 for k = 1, . . . ,M. (2.17)

Condition (2.17) follows since 〈ak, wj〉 = 0 for k = 1, . . . ,M−1 and 〈an, wj+〉 = −〈an, wj−〉 = 1
for all j+ ∈ J+ and j− ∈ J−.

To establish (2.16) consider a transportation linear program with supply nodes indexed by
J+ and demand nodes indexed by J−. Each supply node j ∈ J+ has supply αj . Each demand
node j ∈ J− has demand −αj . Since

0 = 〈an, ū〉 = 〈an,
∑
j∈J0

αjw
j +

∑
j∈J+∪J−

αjw
j〉 =

∑
j∈J+∪J−

αj〈an, wj〉 =
∑
j∈J+

αj −
∑
j∈J−

αj

total supply is equal to total demand. Therefore the transportation problem has a feasible
solution θj+,j− which is the flow from supply node j+ to demand node j−. This feasible flow
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satisfies ∑
j−∈J−

θj+,j− = αj+ , for j+ ∈ J+

∑
j+∈J+

θj+,j− = αj− , for j− ∈ J−

and so ∑
j+∈J+

∑
j−∈J−

θj+,j−u
j+,j− =

∑
j+∈J+

∑
j−∈J−

θj+,j−(wj
+

+ wj
−

)

=
∑

j+∈J+

∑
j−∈J−

θj+,j−w
j+ +

∑
j+∈J+

∑
j−∈J−

θj+,j−w
j−

=
∑

j+∈J+

αj+w
j+ +

∑
j−∈J−

αj−w
j− .

Combining this with (2.15) yields (2.16).
Next, consider the base case n = 1. By hypothesis, this forces M = 1, i.e., 〈a1, u〉 = 0. If

the coefficient of x1 is zero for all the constraints indexed by supp(u), then the Fourier-Motzkin
procedure initialization step gives multiplers wj = ej , j ∈ supp(u). Then u =

∑
j∈supp(u) u(j)wj .

Otherwise, if variable x1 has nonzero coefficients in the system indexed by supp(u), it follows
that variable x1 has both positive and coefficients in this system, since u is nonegative and
〈a1, u〉. Define the usual multiplier vector for each pair of positive and negative coefficients.
Again, assume without the loss, the rows are scaled such that the positive coefficients are 1
and the negative coefficients -1. Create a transportation problem as above where each node has
supply of uj if j corresponds to a row with +1, or demand −uj corresponds to a row with a -1.
Solving this transportation problem, and using the same logic as before, gives the coefficients
θj+,j−1 to be used on the multiplier vectors uj

+,j− in order to generate u. This completes the
proof.

3 Solvability and duality theory using projection

3.1 The projected system

The semi-infinite linear program

infx∈Rn c>x
s.t. a1(i)x1 + a2(i)x2 + · · ·+ an(i)xn ≥ b(i) for i ∈ I (SILP)

is the primal problem. Reformulate (SILP) as

inf z (3.1)

s.t. − c1x1 − c2x2 − · · · − cnxn + z ≥ 0 (3.2)

a1(i)x1 + a2(i)x2 + · · ·+ an(i)xn ≥ b(i) for i ∈ I. (3.3)

Let Λ ⊆ Rn+1 denote the set of (x1, . . . , xn, z) that satisfy (3.2)-(3.3). Consider z as the (n+1)st
variable and constraint (3.2) as the 0th constraint in the system.

Remark 3.1. This formulation allows for v(SILP) = +∞ or v(SILP) = −∞. The former arises
when the feasible region is empty. The latter signifies that the primal is unbounded. /
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Applying Fourier-Motzkin elimination procedure to the input system (3.2)-(3.3) gives the
output system (2.6), rewritten as

0 ≥ b̃(h), h ∈ I1
ã`(h)x` + ã`+1(h)x`+1 + · · ·+ ãn(h)xn ≥ b̃(h), h ∈ I2

z ≥ b̃(h), h ∈ I3
ã`(h)x` + ã`+1(h)x`+1 + · · ·+ ãn(h)xn + z ≥ b̃(h), h ∈ I4

(3.4)

where I1, I2, I3 and I4 are disjoint with Ĩ = I1 ∪ · · · ∪ I4. Note that z can never be eliminated,
so system (3.4) is always dirty and I3 ∪ I4 6= ∅. This formatting also assumes that every time a
constraint involving z was aggregated, a multiplier of 1 is used. This can always be achieved by
Remark 2.1. It is possible that all other variables can be eliminated when I2 = I4 = ∅ (that is,
` = n+ 1). By construction, |

∑n
k=` ã

k(h)| > 0 for all h ∈ I2 ∪ I4.
By Theorem 2.9, system (3.4) describes the projection P (Λ;x1, . . . , x`−1) (recall the assump-

tion that the system of inequalities (3.2)-(3.3) is in canonical form). Therefore, to solve (SILP)
it suffices to consider the optimization problem

infz,x`,...,xn z
s.t. (3.4).

(3.5)

A further step (Lemma 3.7) is to examine the geometric projection of Λ onto the z-variable space
in terms of the data from the output system (3.4). It is easier to characterize the boundedness
and solvability of (SILP) in this one-dimensional space.

3.2 Primal results

3.2.1 Primal feasibility

Feasibility of (SILP) is determined by looking at the constraints indexed by I1, I2, I3 and I4.

Theorem 3.2 (Primal Feasibility). (SILP) is feasible if and only if

(i) b̃(h) ≤ 0 for all h ∈ I1,

(ii) sup
h∈I2

b̃(h)∑n
k=` |ãk(h)|

<∞,

(iii) sup
h∈I3

b̃(h) <∞,

(iv) sup
h∈I4

b̃(h)∑n
k=` |ãk(h)|+ 1

<∞.

Proof. The result follows directly from applying Theorem 2.13 to the dirty system (3.4) with
H1 = I1 and H2 = I2 ∪ I3 ∪ I4.

Remark 3.3. Some readers may find it counter-intuitive that primal feasibility involves consid-
eration of constraints involving z (those indexed by I3 and I4), a variable that does not appear
in the initial description (3.3) of the feasible region. However, this is indeed the case since
during Fourier-Motzkin elimination the constraints involving only x1, . . . , xn can be mixed with
constraints involving z in such a way that careful consideration of all four types of constraints
(those indexed by I1 through I4) is necessary. Example 3.4 below demonstrates this.

Alternatively, one could apply Fourier-Motzkin elimination to (2.1) and obtain (2.8)-(2.9).
By Theorem 2.13, the conditions for feasibility are

(i) b̃(h) ≤ 0 for all h ∈ H1,

(ii) suph∈H2
b̃(h)/

∑n
k=` |ãk(h)| <∞.

The key point is that the inequalities indexed by H1 and H2 in (2.8)-(2.9) are not identical to
the inequalities indexed by I1 and I2 in (3.4).
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Example 3.4. Consider the following instance of (SILP)

inf x2

x2 ≥ i for i = 1, 2, . . . (3.6)

x1 ≥ 0 (3.7)

−x1 + x3 ≥ 0 (3.8)

x1 − x3 ≥ −1. (3.9)

The two sets of interest are: Γ =
{
x ∈ R3 : (3.6)− (3.9)

}
and Λ = {(x, z) ∈ Γ : −x2 + z ≥ 0} .

Applying Fourier-Motzkin elimination to the inequalities describing Γ gives

0 ≥ −1

x2 ≥ i for i = 1, 2, . . .

x3 ≥ 0.

and x2 is a dirty variable. Applying Fourier-Motzkin elimination to the inequalities describing
Λ gives

0 ≥ −1

x3 ≥ 0

z ≥ i for i = 1, 2, . . .

and x2 is now a clean variable. Note that |H2| =∞ but |I2| = 1. /

Corollary 3.5 below states some consequences of primal feasibility for (SILP) which are useful
later. The proof is analogous to the proof of Theorem 2.13. First introduce the function

ω(δ) := sup
h∈I4

{
b̃(h)− δ

n∑
k=`

|ãk(h)|
}

(3.10)

that is used throughout the paper. Note ω can take values in the extended reals. If I4 = ∅ then
ω(δ) = −∞, and ω(δ) can diverge to +∞. Observe ω is a nonincreasing function of δ since∑n
k=` |ãk(h)| ≥ 0.

Corollary 3.5. If (SILP) is feasible then

(i) δ2 := sup
h∈I2

b̃(h)∑n
k=` |ãk(h)|

<∞,

(ii) δ3 := sup
h∈I3

b̃(h) <∞,

(iii) lim
δ→∞

ω(δ) <∞,

(iv) (x(δ̄; `), z̄) ∈ P (Λ;x1, . . . , x`−1) for all δ̄, z̄ ∈ R such that δ̄ ≥ max {0, δ2} and z̄ ≥
max{δ3, ω(δ̄)}. Moreover, by conditions i), ii) and iii) above, at least one such pair (δ̄, z̄)
of real number exists.

Proof. Conditions i)-ii) follow immediately from Theorem 3.2. Condition iii) follows from the
claim below and condition iv) of Theorem 3.2.

Claim 3.6. sup
h∈I4

b̃(h)∑n
k=` |ãk(h)|+ 1

<∞ ⇐⇒ lim
δ→∞

ω(δ) <∞.
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Proof of Claim 3.6. (=⇒) Let δ̄ = suph∈I4 b̃(h)/(
∑n
k=` |ãk(h)| + 1) < ∞. This implies δ̄ ≥

b̃(h)/(
∑n
k=` |ãk(h)| + 1) for every h ∈ I4. Rearranging, δ̄(

∑n
k=` |ãk(h)| + 1) ≥ b̃(h), which

implies δ̄ ≥ b̃(h) − δ̄(
∑n
k=` |ãk(h)|) for all h ∈ I4. Thus, δ̄ ≥ sup{b̃(h) − δ̄(

∑n
k=` |ãk(h)|) :

h ∈ I4} = ω(δ̄). Thus, ∞ > δ̄ ≥ ω(δ̄) and since ω(δ) is a nonincreasing function, this yields
limδ→∞ ω(δ) <∞.

(⇐=) Since limδ→∞ ω(δ) <∞ and ω(δ) is a nonincreasing function, there exists δ̄ <∞ such

that δ̄ ≥ ω(δ̄). The reasoning is as follows: limδ→∞ ω(δ) < ∞ implies there exists a δ̂ such

that ω(δ̂) = c < ∞. Take δ̄ ≥ max{δ̂, c}. Since ω(δ) is nonincreasing in δ, ω(δ̄) ≤ ω(δ̂) =
c ≤ δ̄. Now, because δ̄ ≥ ω(δ̄) it follows δ̄ ≥ sup{b̃(h) − δ̄(

∑n
k=` |ãk(h)|) : h ∈ I4}. Hence,

δ̄ ≥ b̃(h) − δ̄(
∑n
k=` |ãk(h)|) for all h ∈ I4. Rearranging, δ̄ ≥ b̃(h)/(

∑n
k=` |ãk(h)| + 1) for every

h ∈ I4 and so ∞ > δ̄ ≥ suph∈I4 b̃(h)/(
∑n
k=` |ãk(h)|+ 1).

Prove condition iv) in the statement of the corollary by verifying that the constraints indexed
by I1, I2, I3 and I4 are satisfied by (x(δ̄; `), z̄) ∈ P (Λ;x1, . . . , x`−1) when δ̄ ≥ max {0, δ2} and
z̄ ≥ max{δ3, ω(δ̄)}. Since δ2, δ3 and limδ→∞ ω(δ) are all finite, and ω(δ) is a nonincreasing
function, there exists at least one such pair (δ̄, z̄) of real numbers.

Since (SILP) is feasible, the constraints in I1 are satisfied by condition i) in Theorem 3.2.
By definition, δ2 ≥ b̃(h)/

∑n
k=` |ãk(h)| for all h ∈ I2, which implies δ̄

∑n
k=` |ãk(h)| ≥ b̃(h) for all

h ∈ I2. Since
∑n
k=` ãk(h)xk(δ̄; `) = δ̄

∑n
k=` |ãk(h)| by construction of x(δ̄; `), (x(δ̄; `), z̄) satisfies

the constraints indexed by I2 in (3.4).
Since z̄ ≥ δ3, all the constraints indexed by I3 are satisfied. Finally, since z̄ ≥ ω(δ̄),

z̄ ≥ suph∈I4{b̃(h) − δ̄
∑n
k=` |ak(h)|} and so for all h ∈ I4, z̄ +

∑n
k=` a

k(h)xk(δ̄; `) = z̄ +

δ̄
∑n
k=` |ak(h)| ≥ b̃(h). Conclude (x(δ̄; `), z̄)) satisfies the constraints indexed by I4, and therefore

feasible to (3.4). Thus, (x(δ̄; `), z̄)) ∈ P (Λ;x1, . . . , x`) by Theorem 2.9.

3.2.2 Primal boundedness

To establish boundedness and solvability, we start by giving a characterization of the closure of
the projection of the feasible region described by (3.4) onto the z-variable space.

Lemma 3.7. Assume (SILP) is feasible and applying Fourier-Motzkin elimination to (3.2)-(3.3)
gives (3.4). Let P (Λ;x1, . . . , xn) denote the projection of Λ into the z-variable space. Then, the
closure of P (Λ;x1, . . . , xn) is given by the system of inequalities

z ≥ sup
h∈I3

b̃(h) (3.11)

z ≥ lim
δ→∞

ω(δ). (3.12)

Proof. Since (SILP) is feasible, conditions ii) and iii) in Corollary 3.5 imply that suph∈I3 b̃(h) <
∞ and limδ→∞ ω(δ) <∞. Let δ2 and δ3 be as defined in i)-ii) of Corollary 3.5.

First, suppose z̄ satisfies (3.11)-(3.12) and show z̄ ∈ cl(P (Λ;x1, . . . , xn)). Consider the
following two exhaustive cases.

Case 1: z̄ > limδ→∞ ω(δ). Since ω(δ) is nonincreasing in δ, there exists δ̂ ∈ R such that z̄ > ω(δ̂).

Choose δ̄ ≥ max{0, δ̂, δ2}. By (3.11), z̄ ≥ suph∈I3 b̃(h) = δ3. Also, z̄ > ω(δ̂) ≥ ω(δ̄) since ω(δ)
is nonincreasing. Thus, (x(δ̄; `), z̄) satisfies the hypotheses of condition iv) of Corollary 3.5.
Therefore (x(δ̄; `), z̄) ∈ P (Λ;x1, . . . , x`−1) and this implies z̄ ∈ P (Λ;x1, . . . , xn).

Case 2: z̄ = limδ→∞ ω(δ). Since ω(δ) nonincreasing in δ, there exists a sequence of real numbers

(δ̄m)m∈N such that for every m ∈ N, δ̄m ≥ max{0, δ2} and zm := ω(δ̄m) → z̄. Since ω(δ) is
nonincreasing and z satisfies (3.11), zm = ω(δ̄m) ≥ limδ→∞ ω(δ) = z̄ ≥ suph∈I3 b̃(h). Hence
zm ≥ max{δ3, ω(δ̄m)} and by Corollary 3.5(iv), (x(δ̄m; `), zm) ∈ P (Λ;x1, . . . , x`−1). Therefore
zm ∈ P (Λ;x1, . . . , xn) and zm → z̄. This implies z̄ ∈ cl(P (Λ;x1, . . . , xn)).
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Conversely, let z̄ ∈ cl(P (Λ;x1, . . . , xn)) and show z̄ satisfies (3.11) and (3.12). Since z ∈
cl(P (Λ;x1, . . . , xn)) there exists a sequence zm ∈ P (Λ;x1, . . . , xn) where zm → z̄. Since zm ∈
P (Λ;x1, . . . , xn) there exists an xm = (xm` , . . . , x

m
n ) such that (xm, zm) satisfies the constraints

of system (3.4). This implies zm ≥ suph∈I3 b̃(h). Since zm → z̄, conclude z̄ ≥ suph∈I3 b̃(h).

Also, since (xm, zm) satisfies (3.4), zm ≥ suph∈I4{b̃(h) −
∑n
k=` a

k(h)xmk }. Letting δ̄m =

maxk=`,...,n |xmk | gives zm ≥ suph∈I4{b̃(h)−
∑n
k=` a

k(h)xmk } ≥ suph∈I4{b̃(h)−δ̄m
∑n
k=` |ak(h)|} =

ω(δ̄m). Thus, zm ≥ ω(δ̄m) ≥ limδ→∞ ω(δ) for all m, where the last inequality holds since ω(δ)
is nonincreasing. Since zm → z̄, conclude z̄ ≥ limδ→∞ ω(δ). Hence z̄ is a feasible solution to
system (3.11)-(3.12).

By Lemma 3.7, if (SILP) is feasible, then its optimal value is found by solving the optimiza-
tion problem

infz z
s.t. (3.11)− (3.12).

(3.13)

This follows because the optimal value of a continuous objective function over a convex feasible
region is the same the optimal value of that objective when optimized over the closure of the
region. The next two results follow directly from this observation.

Lemma 3.8. If (SILP) is feasible then v(SILP) = max
{

suph∈I3 b̃(h), limδ→∞ ω(δ)
}
.

Theorem 3.9 (Primal boundedness). A feasible (SILP) is bounded if and only if I3 6= ∅ or
limδ→∞ ω(δ) > −∞.

Proof. By contrapositive in both directions. By Lemma 3.8, v(SILP) = −∞ if and only if
max{suph∈I3 b̃(h), limδ→∞ ω(δ)} = −∞ if and only if suph∈I3 b̃(h) = −∞ and limδ→∞ ω(δ) =

−∞. Note that suph∈I3 b̃(h) = −∞ if and only if I3 = ∅.

3.2.3 Primal solvability

An instance of (SILP) is solvable if the infimum value of its objective is attained. Note that
an optimal solution v(SILP) may exist to (3.13) even though an optimal solution to (SILP)
does not exist (see for instance Example 3.11 below). This is due to the fact that (3.13) is an
optimization problem over the closure of the projection P (Λ;x1, . . . , xn), and hence an optimal
solution to (3.5) may exist in the closure but not the projection itself. Thus, the solution may
not “lift” to an optimal solution of (SILP). A sufficient condition for when this “lifting” can
occur is given in Theorem 3.10.

Theorem 3.10 (Primal solvability). If (SILP) is feasible and suph∈I3 b̃(h) > limδ→∞ ω(δ), then

(SILP) has an optimal solution with value v(SILP) = suph∈I3 b̃(h).

Proof. Let z∗ = v(SILP). Since (SILP) is feasible, by part (ii) of Corollary 3.5 it follows that
∞ > suph∈I3 b̃(h) > limδ→∞ ω(δ). Moreover, by Lemma 3.8, z∗ = suph∈I3 b̃(h). Let δ2 be as
defined in Corollary 3.5. Since ω(δ) is a nonincreasing function, there exists δ∗ ≥ max{0, δ2}
such that ω(δ∗) < suph∈I3 b̃(h) = z∗. Then, (x(δ∗; `), z∗) satisfies the hypotheses of condition
iv) in Corollary 3.5 and so (x(δ∗; `), z∗) ∈ P (Λ;x`, . . . , xn), showing that there exists a feasible
point (x1, . . . , xn, z) in Λ where z = z∗. Thus there is a feasible point for (SILP) with value
z∗ = v(SILP).

In light of the previous result, an immediate question is whether primal solvability holds when
limδ→∞ ω(δ) = suph∈I3 b̃(h). The following two examples demonstrate that such problems can
be either solvable or not solvable.
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Example 3.11. Consider the following instance of (SILP)

inf x1

x1 + 1
t2x2 ≥ 1

t2 + 1
t for t ≥ 1

x1 ≥ 0.
(3.14)

Applying Fourier-Motzkin elimination to

−x1 + z ≥ 0
x1 + 1

t2x2 ≥ 1
t2 + 1

t for t ≥ 1
x1 ≥ 0

(3.15)

yields (by eliminating x1)

1
t2x2 + z ≥ 1

t2 + 1
t for t ≥ 1

z ≥ 0.
(3.16)

The only I3 constraint is z ≥ 0 so suph∈I3 b̃(h) = 0. Show that for δ ≥ 3/2,

ω(δ) = sup
t≥1

{
1
t2 + 1

t −
δ
t2

}
= sup

t≥1

{
(1−δ)
t2 + 1

t

}
= 1

4(δ−1) .

When δ ≥ 1 and t 6= 0, the function (1−δ)
t2 + 1

t is concave and quadratic in 1
t . The supremum

is achieved by t∗ = −2(1 − δ). When δ ≥ 3/2, t∗ ≥ 1 and substituting the optimal value of t∗

into (1−δ)
t2 + 1

t gives 1
4(δ−1) . Clearly, limδ→∞ ω(δ) = 0 = suph∈I3 b̃(h) and so by Lemma 3.8 the

optimal value is 0.
However, for z = 0 the system (3.16) has no possible feasible assignment for x2. Indeed,

for any proposed x̄2 take t ≥ x̄2. This implies 1
t2 x̄2 + 0 ≤ 1

t <
1
t2 + 1

t , which means (x̄2, 0) is
infeasible to (3.16) and the primal is not solvable. /

Example 3.12. Consider the following instance of (SILP)

inf x1

x1 ≥ 0

− x2 ≥ −1

x1 − 1
i x2 ≥ 0 for i = 3, 4, . . .

Applying Fourier-Motzkin elimination to

−x1 + z ≥ 0

x1 ≥ 0

− x2 ≥ −1

x1 − 1
i x2 ≥ 0 for i = 3, 4, . . .

yields (after projecting out x1)

−x2 ≥ −1

z ≥ 0

− 1
i x2 + z ≥ 0 for i = 3, 4, . . .

Observe I3 = {1} and suph∈I3 b̃(h) = 0. Note

ω(δ) = sup
{
b̃(h)− δ

∑
h∈I4

|ãk(h)| : h ∈ I4
}

= sup {0− δ/h : h = 3, 4, . . . } = 0.

Thus, limδ→∞ ω(δ) = 0 = suph∈I3 b̃(h). By Lemma 3.8, this implies v(SILP) = 0 and this value
is obtained for the feasible solution x1 = x2 = 0 and the primal is solvable. /
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3.3 Dual results

The next step is to develop a duality theory for (SILP) using Fourier-Motzkin elimination. The
standard dual problem in the semi-infinite linear programming literature (see for instance [2])
is the finite support (Haar) dual introduced in Section 1 and reproduced here for convenience.

sup
∑
i∈I b(i)v(i)

s.t.
∑
i∈I a

k(i)v(i) = ck for k = 1, . . . , n

v ∈ R(I)
+

(FDSILP)

In this section, we characterize when (FDSILP) is feasible, bounded, and solvable. Later
in Section 3.3.4 we characterize when there is zero duality gap between (SILP) and (FDSILP);
that is, v(SILP) = v(FDSILP).

As in the case of the primal, allow v(FDSILP) to take on values in the extended reals.
(FDSILP) is unbounded when v(FDSILP) = ∞. When v(FDSILP) = −∞, the problem is
infeasible.

In the remainder of this section, assume Fourier-Motzkin elimination has been applied to
(3.2)-(3.3) yielding (3.4). Our attention turns to the multipliers generated in Step 2.b.(iii) of
the Fourier-Motzkin elimination procedure. These multipliers generate solutions to (FDSILP).

First a small, but important, distinction. The multipliers uh generating (3.4) are real-valued
functions defined on the set {0} ∪ I where the inequality (3.2) has index 0. However, solutions
to (FDSILP) are real-valued functions defined only on I. Thus, it is useful to work with the
restriction vh : I → R of uh to I. That is, vh(i) = uh(i) for i ∈ I. Conversely, given a function
v : I → R and a real number v0, let u = (v0, v) denote the extension of v onto the index set
{0} ∪ I where u(0) = v0 and u(i) = v(i) for all i ∈ I. Lemma 3.13 gives basic properties of vh

that are used later.

Lemma 3.13. If Fourier-Motzkin elimination is applied to (3.2)-(3.3) yielding (3.4), then

(i) for every h ∈ I1 ∪ I2 ∪ I3 ∪ I4, b̃(h) = 〈b, vh〉.
(ii) for h ∈ I1, uh(0) = 0 and vh is a recession direction for the feasible region of (FDSILP).

(iii) for h ∈ I2, uh(0) = 0 and vh satisfies
∑
i∈I a

k(i)vh(i) = 0 for k = 1, . . . , ` − 1, and∑
i∈I a

k(i)vh(i) = ãk(h) for k = `, . . . , n.

(iv) for h ∈ I3, uh(0) = 1 and vh is a feasible solution to (FDSILP), and

(v) for h ∈ I4, uh(0) = 1 and vh satisfies
∑
i∈I a

k(i)vh(i) − ck = 0 for k = 1, . . . , ` − 1, and∑
i∈I a

k(i)vh(i)− ck = ãk(h) for k = `, . . . , n.

Proof. We establish parts (i), (ii) and (iv) only. The other parts are seen analogously.

(i) By Theorem 2.9, for all h: b̃(h) = 〈(0, b), uh〉 = 〈b, vh〉.
(ii) The constraints indexed by I1 do not involve z and so the multipliers uh for h ∈ I1 must

have uh(0) = 0. By Theorem 2.9(ii), for h ∈ I1, 0 = 〈(−ck, ak), uh〉 = 〈ak, vh〉 for all
k = 1, . . . , n. This implies vh satisfies

∑
i∈I a

k(i)vh(i) = 0. In addition, uh ≥ 0 implies

vh ≥ 0 and vh is a recession direction for the feasible region of (FDSILP).

(iv) The constraints indexed by I3 must involve z and so the multipliers uh for h ∈ I3 must have
uh(0) > 0. Assume uh(0) = 1, which is without loss by Remark 2.1. By Theorem 2.9(ii),
for h ∈ I3, 0 = 〈(−ck, ak), uh〉 = −ck + 〈ak, vh〉 for all k = 1, . . . , n. This implies vh

satisfies the equality constraints of (FDSILP). In addition, uh ≥ 0 implies vh ≥ 0 and vh

is a feasible solution to (FDSILP).

19



3.3.1 Dual feasibility

The next two subsections relate dual feasibility and boundedness to properties of the projected
system (3.4). Theorem 2.17 and Lemma 3.13 play pivotal roles in the proofs.

Theorem 3.14 (Dual Feasibility). (FDSILP) is feasible if and only if I3 6= ∅.

Proof. (=⇒) If (FDSILP) is feasible, there is a v ≥ 0 with finite support such that
∑
i∈I ak(i)vi =

ck, k = 1, . . . , n and this implies 〈(−ck, ak), (1, v)〉 = 0, k = 1, . . . , n. Then, by applying The-
orem 2.17 to (3.2)-(3.3) with M = n, there exists an index set Ī ⊆ (I1 ∪ I3) and multipliers
uh : {0} ∪ I → R for h ∈ Ī such that

(1, v) =
∑
h∈Ī

λhu
h

=
∑

h∈Ī∩I1

λhu
h +

∑
h∈Ī∩I3

λhu
h

=
∑

h∈Ī∩I1

λh(0, vh) +
∑

h∈Ī∩I3

λh(1, vh)

where λh ≥ 0 for all h ∈ Ī and vh is the restriction of uh onto I. The third equality follows
from Lemma 3.13(ii) and (iv). Now, the 1 in the first component of (1, v) implies that Ī ∩ I3
cannot be empty, and hence I3 cannot be empty.

(⇐=) Take any uh with h ∈ I3. By Lemma 3.13(iv), vh is a feasible solution to (FDSILP).

3.3.2 Dual boundedness

To characterize dual boundedess, first establish weak duality.

Lemma 3.15 (Weak Duality). Suppose b̃(h) ≤ 0 for all h ∈ I1. If v is a feasible dual solution
to problem (FDSILP) then

(i) there exists an h̄ ∈ I3 such that b̃(h̄) ≥ 〈b, v〉,
(ii) 〈b, v〉 is a lower bound on the optimal solution value of (SILP).

Proof. Applying Theorem 2.17 as in the proof of Theorem 3.14 implies there exists an index set
Ī ⊆ I1 ∪ I3 such that

(1, v) =
∑

h∈Ī∩I1

λh(0, vh) +
∑

h∈Ī∩I3

λh(1, vh).

Reasoning about the components of (1, v̄) separately gives,

v̄ =
∑

h∈Ī∩I1

λhv
h +

∑
h∈Ī∩I3

λhv
h (3.17)

and 1 =
∑
h∈Ī∩I3 λh. Lemma 3.13(i) and the hypothesis b̃(h) ≤ 0 for all h ∈ I1 imply 〈b, vh〉 ≤ 0

for all h ∈ I1. Thus, (3.17) gives 〈b, v〉 ≤
∑
h∈Ī∩I3 λh〈b, v

h〉 ≤ 〈b, vh̄〉 = b̃(h̄) for some h̄ ∈ Ī ∩ I3,
where the second inequality follows because the λh for h ∈ I3 are nonnegative and sum to 1.
This implies i). Now ii) follows immediately from Lemma 3.8.

Theorem 3.16 (Dual boundedness). Suppose (FDSILP) is feasible. Then (FDSILP) is bounded
if and only if

(i) b̃(h) ≤ 0 for all h ∈ I1 and
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(ii) suph∈I3 b̃(h) <∞.

Proof. (⇐=) By contrapositive. Suppose (FDSILP) is unbounded and show that if condition i)
holds, then ii) does not hold. Assume b̃(h) ≤ 0 for all h ∈ I1. Since (FDSILP) is unbounded, for
every M ∈ N there exists a feasible v̄M with 〈b, v̄M 〉 ≥ M . By Lemma 3.15, there exists some
hM ∈ I3 such that b̃(hM ) ≥ 〈b, v̄M 〉 ≥ M . Thus, suph∈I3 b̃(h) ≥ b̃(hM ) ≥ M for all M ∈ N and

this implies suph∈I3 b̃(h) =∞. Therefore, (ii) does not hold.
(=⇒) By contrapositive. Assume condition i) does not hold. Thus, there exists h∗ ∈ I1

such that b̃(h∗) > 0 and by Lemma 3.13(ii), 〈ak, vh∗〉 = 0 for all k = 1, . . . , n. Now, consider
any v̄ feasible to (FDSILP), which exists since (FDSILP) is feasible. Then, v̄ + λvh

∗
is also

feasible for all λ ≥ 0. Now, the objective value for these feasible solutions equal 〈b, v̄ + λvh
∗〉 =

〈b, v̄〉 + λ〈b, vh∗〉. Since 〈b, vh∗〉 = b̃(h∗) > 0, letting λ → ∞, yields unbounded values for the
objective value of (FDSILP).

Next assume condition ii) does not hold. This implies there is a sequence of {hm}m∈N in I3
such that, by Lemma 3.13(i), 〈b, vhm〉 = b̃(hm)→∞. By Lemma 3.13(iii), each vhm is a feasible
solution to (FDSILP) and thus (FDSILP) is unbounded.

Remark 3.17. Observe that there are two distinct ways for a feasible (FDSILP) to be un-
bounded. The first is when there there is a recession direction to the feasible region that drives
the objective value to +∞. From Lemma 3.13(ii) every h ∈ I1 yields a recession direction vh.
In addition, if b̃(h) > 0 then 〈b, vh〉 > 0 and so moving within the feasible region along recession
direction vh drives the objective to +∞. This argument was given in full detail in the proof of
Theorem 3.16.

Contrary to our intuition from finite dimensions, the second way (FDSILP) may have an
unbounded objective value can occur when the feasible region itself is bounded. This happens
when there are no recession directions and suph∈I3 b̃(h) =∞. This occurs when (FDSILP) has
a sequence of feasible solutions whose values converge to +∞. Consider the following example

inf x1

s.t. x1 ≥ i for i ∈ N

with finite support dual

sup
∑
i∈N

iv(i)

s.t.
∑
i∈N

v(i) = 1

v(i) ≥ 0 for i ∈ N

The feasible region of the finite support dual is bounded (note that 0 ≤ v(i) ≤ 1 for all i)
and there is no recession direction. However, the problem is still unbounded. Consider the
sequence of feasible extreme point solutions em. Clearly, supm→∞

∑
i∈N ie

m(i) = m → ∞.
Thus (FDSILP) is unbounded.

Fourier-Motzkin elimination can identify which of the conditions of Theorem 3.16 are violated
and result in an unbounded problem. Applying Fourier-Motzkin elimination to the system

−x1 + z ≥ 0

x1 ≥ i for i = 1, 2, . . .

yields (after eliminating x1)

z ≥ i for i = 1, 2, . . . .

Thus, I1 = ∅ so there are no recession directions, but I3 = {1, 2, . . . } and suph∈I3 b̃(h) =∞. /
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3.3.3 Dual solvability

To characterize dual solvability, begin with a characterization of the optimal dual value.

Theorem 3.18. If b̃(h) ≤ 0 for all h ∈ I1 then v(FDSILP) = suph∈I3 b̃(h).

Proof. By Lemma 3.15(ii), for every dual feasible solution v̄ there exists an h ∈ I3 with b̃(h) ≥
〈b, v̄〉. Hence, suph∈I3 b̃(h) ≥ 〈b, v̄〉 for all feasible v̄. This implies suph∈I3 b̃(h) ≥ v(FDSILP).

Conversely, by Lemma 3.13(iii), every h ∈ I3 yields a vh with vh feasible to (FDSILP) and b̃(h) =
〈b, vh〉. Hence b̃(h) = 〈b, vh〉 ≤ v(FDSILP) for all h ∈ I3. Thus, suph∈I3 b̃(h) ≤ v(FDSILP) and
the result follows.

Corollary 3.19. If either (SILP) is feasible or (FDSILP) is feasible and bounded, then v(FDSILP) =
suph∈I3 b̃(h).

Proof. If (SILP) is feasible, then by Theorem 3.2(ii) b̃(h) ≤ 0 for all h ∈ I1. The result follows
from Theorem 3.18. If (FDSILP) is feasible and bounded then by Theorem 3.16(i) b̃(h) ≤ 0 for
all h ∈ I1. Once again, the result follows from Theorem 3.18.

Theorem 3.20 (Dual solvability). (FDSILP) has an optimal solution if and only if

(i) b̃(h) ≤ 0 for all h ∈ I1, and

(ii) suph∈I3 b̃(h) is realized for at least one h ∈ I3.

Proof. (=⇒) Let v∗ be an optimal solution to (FDSILP) with optimal value v(FDSILP) =
〈b, v∗〉. This implies (FDSILP) is both feasible and bounded. By Theorem 3.16(i), b̃(h) ≤ 0 for all
h ∈ I1, establishing condition (i). Apply Lemma 3.15(i) and conclude there exists a vh

∗
for some

h∗ ∈ I3 with 〈b, vh∗〉 ≥ 〈b, v∗〉 = v(FDSILP). By Lemma 3.13(iv), vh
∗

is feasible to (FDSILP)
and 〈b, vh∗〉 ≤ v(FDSILP). Hence b̃(h∗) = 〈b, vh∗〉 = v(FDSILP) = suph∈I3 b̃(h), where the first
equality holds from Lemma 3.13(i), the second equality holds from the arguments in the previous
two sentences, and the third equality holds from Corollary 3.19. Thus, b̃(h∗) = suph∈I3 b̃(h),
establishing condition (ii).
(⇐=) By hypothesis there is an h∗ ∈ I3 such that suph∈I3 b̃(h) = b̃(h∗) <∞. The fact that I3 is
nonempty implies (FDSILP) is feasible by Theorem 3.14. Thus, by Theorem 3.16 (FDSILP) is
bounded. Since (FDSILP) is feasible and bounded, by Corollary 3.19 suph∈I3 b̃(h) = v(FDSILP).

Moreover, Lemma 3.13(i) and (iv) imply that b̃(h∗) = 〈b, vh∗〉 and vh
∗

is a feasible solution to
(FDSILP). Putting this together, v(FDSILP) = suph∈I3 b̃(h) = b̃(h∗) = 〈b, vh∗〉 and vh

∗
is an

optimal solution to (FDSILP).

3.3.4 Zero duality gap and strong duality

The primal-dual pair (SILP) and (FDSILP) has a zero duality gap if (SILP) is feasible and
v(SILP) = v(FDSILP).

Theorem 3.21 (Zero Duality Gap). There is a zero duality gap for the primal-dual pair (SILP)
and (FDSILP) if and only if

(i) (SILP) is feasible,

(ii) suph∈I3 b̃(h) ≥ limδ→∞ ω(δ).

Proof. (=⇒) Assume zero duality gap. Condition (i) holds by definition of zero duality gap.
Since (SILP) is feasible, by Corollary 3.19,

sup
h∈I3

b̃(h) = v(FDSILP) = v(SILP) = max{ sup
h∈I3

b̃(h), lim
δ→∞

ω(δ)} ≥ lim
δ→∞

ω(δ),
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where the third equality holds by Lemma 3.8. Thus condition ii) holds.
(⇐=) Now assume conditions (i) and (ii) hold. By i) (SILP) is feasible. By Lemma 3.8,

v(SILP) = max{suph∈I3 b̃(h), limδ→∞ ω(δ)} = suph∈I3 b̃(h), where the second equality follows

from condition ii). Also, Corollary 3.19 implies v(FDSILP) = suph∈I3 b̃(h). Thus, v(SILP) =
v(FDSILP) and there is a zero duality gap.

Combining solvability and duality, strong duality holds if there is a zero duality gap and
there is an optimal solution to (SILP) and (FDSILP). Putting several previous results together
gives Theorem 3.22.

Theorem 3.22 (Strong Duality). Strong duality holds for the primal-dual pair (SILP) and
(FDSILP) if

(i) (SILP) is feasible,

(ii) suph∈I3 b̃(h) > limδ→∞ ω(δ),

(iii) suph∈I3 b̃(h) is realized for at least one h ∈ I3.
Conversely, if strong duality holds for the primal-dual pair (SILP) and (FDSILP) then (i) and
(iii) hold as well as

(ii’) suph∈I3 b̃(h) ≥ limδ→∞ ω(δ).

Proof. Suppose conditions (i) to (iii) hold. Conditions (i) and (ii) imply primal solvability via
Theorem 3.10. Since (SILP) is feasible, by Theorem 3.2(i), b̃(h) ≤ 0 for all h ∈ I1. Combined
with condition (iii) dual solvability follows from Theorem 3.20. Conditions (i) and (ii) imply
the sufficient conditions for zero duality gap given in Theorem 3.21 and the duality gap is zero.

Conversely, suppose strong duality holds. Then there is a zero duality gap and so Theo-
rem 3.21, (i) and (ii’) hold. Theorem 3.20(ii) implies condition (iii).

In the example below strong duality holds but condition ii) in Theorem 3.22 is not satisfied.

Example 3.23 (Example 3.12 revisited). In this example the primal is solvable with objective
value v(SILP) = 0. Recall also that suph∈I3 b̃(h) = 0 is attained since I3 is a singleton. This
implies it is dual solvable and there is zero duality gap. This problem satisfies strong duality.
However, suph∈I3 b̃(h) = limδ→∞ ω(δ). Therefore condition (ii) in Theorem 3.22 is not satisfied,
but condition (ii’) is satisfied. /

3.4 Summary of primal and dual results

Table 1 summarizes the main results of this section. For brevity in displaying conditions, define
S := suph∈I3 b̃(h) and L := limδ→∞ ω(δ).

Result Sets involved Characterization

Primal feasibility (Thm 3.2) I1, I2, I3, I4 Conditions i)-iv) of Theorem 3.2
Primal boundedness (Thm 3.9) I3, I4 Primal feas. and (I3 6= ∅ OR L > −∞)
Primal solvability* (Thm 3.10) I3, I4 Primal feasible and S > L

Dual feasibility (Thm 3.14) I3 I3 6= ∅
Dual boundedness (Thm 3.16) I1, I3 Dual feas., b̃(h) ≤ 0 for all h ∈ I1, S <∞

Dual solvability (Thm 3.20) I1, I3 b̃(h) ≤ 0 for all h ∈ I1, sup defining S realized
Zero duality gap (Thm 3.21) I3, I4 S ≥ L and Primal feasible

Table 1: Summary of results from Section 3. All results are characterizations
except primal solvability, where a sufficient conditions is given.
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The next two subsections illustrate insights that are gained by applying the results in Table 1
to two special cases of (SILP).

3.5 Tidy semi-infinite linear programs

An instance of (SILP) is tidy if, after applying Fourier-Motzkin elimination to (3.2)-(3.3), z is
the only dirty variable remaining. Tidy semi-infinite linear programs play a fundamental role in
applications of our theory in later sections. The key properties of tidy systems are summarized
in the following theorem.

Theorem 3.24 (Tidy semi-infinite linear programs). If (SILP) is feasible and tidy then

(i) (SILP) is solvable,

(ii) (FDSILP) is feasible and bounded,

(iii) there is a zero duality gap for the primal-dual pair (SILP) and (FDSILP).

Proof. Since (SILP) is tidy, I2 = I4 = ∅. Since z cannot be eliminated, I4 = ∅ implies I3 6= ∅. In
addition, I4 = ∅ means ω(δ) = −∞ for all δ and limδ→∞ ω(δ) = −∞. Moreover, since I3 6= ∅ it
follows that suph∈I3 b̃(h) > −∞. Then, suph∈I3 b̃(h) > limδ→∞ ω(δ) and Theorem 3.10 implies
the primal is solvable. This establishes (i).

Since I3 6= ∅, (FDSILP) is feasible by Theorem 3.14. Since the primal is feasible, Theo-
rem 3.2(i) and (ii) imply that the dual is bounded via Theorem 3.16. This establishes (ii).

Since the primal is feasible and suph∈I3 b̃(h) > limδ→∞ ω(δ), Theorem 3.21 implies that there
is a zero duality gap. This establishes (iii).

The following result provides a sufficient condition for the tidiness of a semi-infinite linear
program.

Theorem 3.25 (Bounded System). If there exists a γ ∈ R such that the system

−c1x1 − c2x2 − · · · − cnxn ≥ −γ
a1(i)x1 + a2(i)x2 + · · ·+ an(i)xn ≥ b(i) for i ∈ I (3.18)

is feasible and bounded then (SILP) is feasible and tidy. In particular, if the set of solutions
(x1, . . . , xn) that satisfy (3.18) is feasible and bounded for some γ ∈ R, then (SILP) is solvable
and there is zero duality gap.

Proof. Let Γγ denote the set of those x ∈ Rn that satisfy (3.18). Observe that the columns
in systems (3.18) and (3.2)-(3.3) are identical for variables x1, . . . , xn. This means if xk is
eliminated when Fourier-Motzkin elimination is applied to one system, it will be eliminated in
exactly the same order in the other. In particular, at each step of the elimination process, the sets
H0(k),H+(k) andH−(k) are identical for the two systems. By hypothesis, Γγ is non-empty and
bounded so Theorem 2.15 guarantees that applying Fourier-Motzkin elimination to (3.18) results
in a clean system. Thus, variables x1, . . . , xn are eliminated during the procedure and so those
variables are eliminated when applying Fourier-Motzkin elimination to (2.8)-(2.9). Thus, (SILP)
is tidy. Since Γγ is non-empty, (SILP) is feasible and tidy and the hypotheses of Theorem 3.24
are met. Then by Theorem 3.24, (SILP) is solvable and there is a zero duality gap for the
primal-dual pair (SILP) and (FDSILP).
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3.6 Finite linear programs

Another special case is a semi-infinite linear program with finitely many constraints, i.e. a finite
linear program, or just a linear program. Finite linear programs are a special case of (SILP)
and our analysis applies directly.

For finite linear programs, I1, I2, I3 and I4 are always finite sets. This simplifies the charac-
terizations in Table 1 since the supremums are taken over finite sets. Take, for example, primal
feasibility (Theorem 3.2). Conditions ii)-iv) always hold from the finiteness of I2, I3 and I4
respectively. Thus to determine primal feasibility it suffices to check if b̃(h) ≤ 0 for all h ∈ I1.
This result is well known (see for instance, Motzkin [11]).

As another example, strong duality holds for a finite linear program when the primal is
feasible and bounded. Our framework recovers this result.

Theorem 3.26 (Finite Case). If I is a finite index set and (SILP) is feasible and bounded,
then strong duality holds for the primal-dual pair (SILP) and (FDSILP).

Proof. Show that conditions (i)-(iii) of Theorem 3.22 hold. By hypothesis (SILP) is feasible and
bounded so i) holds. When I is a finite set, I4 has finite cardinality so limδ→∞ ω(δ) = −∞.
Combining this with the hypothesis that the primal is bounded implies I3 6= ∅ by Theorem 3.9.
Thus condition (ii) in Theorem 3.22 holds. Finally, (iii) holds since I3 is finite whenever I is
finite.

Beyond this, the analysis of this section reveals important differences between a finite linear
programs and a semi-infinite linear program. Consider the following well-known facts about
finite linear programs:

(i) if the primal is infeasible then the dual must be either infeasible or unbounded, and

(ii) if the primal has a finite optimal objective value, then the dual must be feasible and
bounded with the same objective value (that is, strong duality always holds).

The following two examples demonstrate that (i) and (ii) need not hold for general semi-
infinite linear programs.

Example 3.27. Consider the following problem

inf x1

1

i
x2 ≥ 1 for i = 1, 2, . . .

x1 ≥ 0.

This problem is infeasible since for any x2, there exists sufficiently large i such that 1
i x2 < 1.

Add the constraint −x1 + z ≥ 0, apply Fourier-Motzkin elimination and project out the
clean variable x1 to get the following system.

1

i
x2 ≥ 1 for i = 1, 2, . . .

z ≥ 0,

In this system I1 = I4 = ∅ and I3 is a singleton. This implies that suph∈I3 b̃(h) is achieved and
the dual is solvable. /

Example 3.28 (Example 3.11 revisited). In Example 3.11, the primal problem has a finite
optimal value of 0. This optimal value remains greater than or equal to zero even without
the non-negativity constraint on x1 in (3.14). This is because ω(δ) still equals 1

4(δ−1) and

limδ→∞ ω(δ) = 0. Then by Lemma 3.8, the optimal primal value is greater than or equal to
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zero. However, the finite support dual of this semi-infinite linear program is infeasible. The
objective coefficient of x2 in the primal is 0 and the coefficient of x2 is strictly positive in the
constraints. This implies that the only possible dual element satisfying the dual constraint
corresponding to x2 is u = 0; however, the objective coefficient of x1 is 1 and this dual vector
does not satisfy the dual constraint corresponding to x1. Alternatively, the infeasibility of the
dual follows from Theorem 3.14 because in this case I3 = ∅. /

4 Feasible sequences and regular duality of semi-infinite
linear programs

When I3 is empty in (3.4), there is no a feasible solution to (FDSILP) as shown in Theorem 3.14.
Nevertheless, if the primal problem has optimal solution value z∗, we show there is a sequence
{hm} ∈ I4 for m ∈ N with the desirable property that for all k = 1, . . . , n, ãk(hm) converges
to zero and b̃(hm) converges to z∗ as m → ∞. In Theorem 4.3 it is shown that there is a
sequence of finite support elements with nice limiting properties, and whose objective values
converges to the primal optimal value. The terminology for this phenomenon, standard in conic
programming, is introduced next. The concepts date back to Duffin [4].

A sequence vm ∈ R(I), m ∈ N of finite support elements is a feasible sequence for (FDSILP) if
vm ≥ 0 for all m ∈ N, and for every k = 1, . . . , n, limm→∞(

∑
i∈I a

k(i)vm(i)) = ck. For a feasible
sequence (vm)m∈N, its value is defined by value((vm)m∈N) := lim supm→∞

∑
i∈I b(i)v

m(i). For
a given (FDSILP), its limit value (a.k.a. subvalue) is

sup{value((vm)m∈N) | (vm)m∈N is a feasible sequence for (FDSILP)}.

Since any feasible solution v ∈ R(I) to (FDSILP) naturally corresponds to a feasible sequence
(where every element in the sequence is v), the limit value of (FDSILP) is greater than or equal
to its optimal value. We prove a remarkable theorem (Theorem 4.3 below) relating the limit
value of (FDSILP) and the optimal value of the primal (SILP).

Lemma 4.1 (Weak Duality-II). Let x̄ be a feasible solution to the primal (SILP) and let
(vm)m∈N be a feasible sequence for (FDSILP). Then c>x̄ ≥ value((vm)m∈N).

Proof. Since x̄ is a feasible solution to the primal (SILP), a1(i)x̄1 + . . .+an(i)x̄n ≥ b(i) for every
i ∈ I. For each vm, since vm(i) ≥ 0 for all i ∈ I, vm(i)a1(i)x̄1 + . . .+ vm(i)an(i)x̄n ≥ b(i)vm(i)
for every i ∈ I. Therefore, summing over all the indices i ∈ I, gives (

∑
i∈I v

m(i)a1(i))x̄1 + · · ·+
(
∑
i∈I v

m(i)an(i))x̄n ≥
∑
i∈I b(i)v

m(i) for all m ∈ N. Thus,

c1x̄1 + . . .+ cnx̄n = limm→∞[(
∑
i∈I v

m(i)a1(i))x̄1 + · · ·+ (
∑
i∈I v

m(i)an(i))x̄n]
= lim supm→∞[(

∑
i∈I v

m(i)a1(i))x̄1 + · · ·+ (
∑
i∈I v

m(i)an(i))x̄n]
≥ lim supm→∞[

∑
i∈I b(i)v

m(i)]
= value((vm)m∈N),

where the first equality follows from the definition of feasible sequence.

The following lemma is required for the main result of the section (Theorem 4.3). Applying
Fourier-Motzkin elimination on (SILP) gives (3.4). Recall the function ω(δ) = sup{b̃(h) −
δ
∑n
k=` |ãk(h)| : h ∈ I4} defined in (3.10).

Lemma 4.2. Suppose limδ→∞ ω(δ) = d such that −∞ < d <∞. Then there exists a sequence
of indices hm in I4 such that such that limm→∞ b̃(hm) = d and limm→∞ ãk(hm) = 0 for all
k = `, . . . , n. Moreover, b̃(hm) ≥ d for all m ∈ N.
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Proof. Since ω(δ) is a nonincreasing function of δ, ω(δ) ≥ d for all δ. Therefore, d ≤ sup{b̃(h)−
δ
∑n
k=` |ãk(h)| : h ∈ I4} for every δ. Let Ī ⊆ I4 be such that for all h ∈ Ī, b̃(h) < d. Show that

it is sufficient to consider indices in I4 \ Ī . Given any δ ≥ 0, b̃(h) − δ
∑n
k=` |ãk(h)| < d for all

h ∈ Ī. Since d ≤ sup{b̃(h)− δ
∑n
k=` |ãk(h)| : h ∈ I4}, given δ ≥ 0,

sup{b̃(h)− δ
n∑
k=`

|ãk(h)| : h ∈ I4} = sup{b̃(h)− δ
n∑
k=`

|ãk(h)| : h ∈ I4 \ Ī}.

Thus, ω(δ) = sup{b̃(h)− δ
∑n
k=` |ãk(h)| : h ∈ I4 \ Ī} for all δ ≥ 0.

First show that there exists a sequence of indices hm ∈ I4 \ Ī such that ãk(hm) → 0 for
all k = `, . . . , n. Begin by showing that inf{

∑n
k=` |ãk(h)| : h ∈ I4 \ Ī} = 0. This implies that

there is a sequence hm ∈ I4 \ Ī such that limm→∞
∑n
k=` |ãk(hm)| = 0 which in turn implies that

limm→∞ ãk(hm) = 0 for all k = `, . . . , n. Suppose to the contrary that inf{
∑n
k=` |ãk(h)| : h ∈

I4 \ Ī} = β > 0. Since ω(δ) is nonincreasing and limδ→∞ ω(δ) = d <∞, there exists δ̄ ≥ 0 such
that ω(δ̄) <∞. Observe that d = limδ→∞ ω(δ) = limδ→∞ ω(δ̄ + δ). Then, for every δ ≥ 0,

ω(δ̄ + δ) = sup{b̃(h)− (δ̄ + δ)
n∑
k=`

|ãk(h)| : h ∈ I4 \ Ī}

= sup{b̃(h)− δ̄
n∑
k=`

|ãk(h)| − δ
n∑
k=`

|ãk(h)| : h ∈ I4 \ Ī}

≤ sup{b̃(h)− δ̄
n∑
k=`

|ãk(h)| − δβ : h ∈ I4 \ Ī}

= sup{b̃(h)− δ̄
n∑
k=`

|ãk(h)| : h ∈ I4 \ Ī} − δβ

= ω(δ̄)− δβ.

Therefore, d = limδ→∞ ω(δ̄ + δ) ≤ limδ→∞(ω(δ̄)− δβ) = −∞, since β > 0 and ω(δ̄) <∞. This
contradicts −∞ < d. Thus β = 0 and there is a sequence hm ∈ I4 \ Ī such that ãk(hm)→ 0 for
all k = `, . . . , n.

Now show there is a subsequence of b̃(hm) that converges to d. Since limδ→∞ ω(δ) = d, there
is a sequence (δp)p∈N such that δp ≥ 0 and ω(δp) < d + 1

p for all p ∈ N. It was shown above

that the sequence hm ∈ I4 \ Ī is such that limm→∞
∑n
k=` |ãk(hm)| = 0. This implies that for

every p ∈ N there is an mp ∈ N such that for all m ≥ mp, δp
∑n
k=` |ãk(hm)| < 1

p . Thus, one

can extract a subsequence (hmp
)p∈N of (hm)m∈N such that δp

∑n
k=` |ãk(hmp

)| < 1
p for all p ∈ N.

Then

d+
1

p
> ω(δp) = sup{b̃(h)− δp

n∑
k=`

|ãk(h)| : h ∈ I4 \ Ī}

≥ b̃(hmp
)− δp

n∑
k=`

|ãk(hmp
)|.

The second inequality, along with δp
∑n
k=` |ãk(hm)| < 1

p , and the fact that hmp
∈ I4\I implies

b̃(hmp) ≥ d, gives d+ 2
p ≥ b̃(hmp) ≥ d and b̃(hmp), p ∈ N is the desired subsequence.

Theorem 4.3 (Regular duality of semi-infinite linear programs). If (SILP) has an optimal

primal value z∗, where −∞ < z∗ <∞, then the limit value d̂ of (FDSILP) is finite and z∗ = d̂.
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Proof. By Lemma 3.8, z∗ = max{sup{b̃(h) : h ∈ I3}, limδ→∞ ω(δ)}. If z∗ = sup{b̃(h) : h ∈ I3},
then by Theorem 3.21, there is a zero duality gap, i.e., z∗ = d∗ where d∗ is the optimal value
of (FDSILP). From Lemma 4.1, d̂ ≤ z∗, so z∗ = d∗ implies d̂ ≤ d∗. By definition of limit value,

d̂ ≥ d∗. Therefore, d∗ = d̂ = z∗.
In the other case when z∗ = limδ→∞ ω(δ), by Lemma 4.2 there is a sequence hm ∈ I4 such

that limm→∞ b̃(hm) = z∗ and limm→∞ ãk(hm) = 0 for all k = `, . . . , n. By Lemma 3.13 there

exist vhm ∈ R(I)
+ for each m ∈ N such that −ck +

∑
i∈I v

hm(i)ak(i) = 0 for k = 1, . . . , ` −
1, −ck +

∑
i∈I v

hm(i)ak(i) = ãk(hm) for k = `, . . . , n, and
∑
i∈I b(i)v

hm(i) = b̃(hm). Since

limm→∞ ãk(hm) = 0 for all k = `, . . . , n, and limm→∞ b̃(hm) = z∗, vhm , m ∈ N is a feasible

sequence with value z∗. Thus, d̂ ≥ z∗. Again, from Lemma 4.1, d̂ ≤ z∗, so z∗ = d̂.

5 Application: Conic linear programs

Recall the definition of (ConLP) in Section 1 and its standard dual (ConLPD). They are
reproduced here for convenience. The conic primal is

infx∈X 〈x, φ〉
s.t. A(x) �P d

(ConLP)

where X and Y are vector spaces, A : X → Y is a linear mapping, d ∈ Y , P is a pointed convex
cone in Y and φ is a linear functional on X. The conic dual is

supψ∈Y ′ 〈d, ψ〉
s.t. A′(ψ) = φ

ψ ∈ P ′.
(ConLPD)

Let F = {x ∈ X | A(x) �P d} denote the feasible region of (ConLP). In our development, it
is convenient to assume that the algebraic adjoint A′ of linear map A is surjective (in order to
apply the Open Mapping Theorem). Lemmas 5.1–5.3 and Remark 5.4 show this assumption
can be made without loss of generality. For any linear map T defined on X, let ker(T ) = {x ∈
X : T (x) = 0} denote the kernel of T .

Lemma 5.1. Given a linear mapping A : X → Y , ker(A) = {0} if and only if A′ is surjective.

Proof. (=⇒) If ker(A) = {0}, then A is one-to-one and there is a linear map A−1 : Im(A)→ X.
Let φ be an arbitrary linear functional in X ′. Show there exists a linear functional ψ ∈ Y ′ such
that φ = A′(ψ). Define the linear functional φ ◦ A−1 on Im(A) and let ψ be any extension of
this linear functional from Im(A) to Y . Thus ψ ∈ Y ′. Show φ = A′(ψ). For any x ∈ X,
〈x,A′(ψ)〉 = 〈A(x), ψ〉 = (φ ◦ A−1)(A(x)) = φ(x) = 〈x, φ〉. The second equality follows since
A(x) ∈ Im(A).

(⇐=) Consider x ∈ X such that A(x) = 0. Show that for every φ ∈ X ′, 〈x, φ〉 = 0. This
would imply that x = 0. Since A′ is surjective, for every φ ∈ X ′ there exists ψ ∈ Y ′ such that
A′(ψ) = φ. Thus, 〈x, φ〉 = 〈x,A′(ψ)〉 = 〈A(x), ψ〉 = 〈0, ψ〉 = 0.

Lemma 5.2. If (ConLP) is feasible and bounded, then ker(A) ⊆ ker(φ).

Proof. Prove the contrapositive and assume that there is an r ∈ ker(A) \ ker(φ). Without loss
of generality assume 〈r, φ〉 < 0 (otherwise make the argument with −r). Let x̄ be a feasible
solution to (ConLP), i.e., A(x̄) �P d. Since r ∈ ker(A), A(x̄+λr) �P d for all λ ≥ 0. But since
〈r, φ〉 < 0, 〈x̄+ λr, φ〉 → −∞ as λ→∞, contradicting the boundedness of (ConLP).

28



Lemma 5.3. Let X be a finite-dimensional space, so that orthogonal complements of subspaces
are well-defined. Let φ̄ = φ|ker(A)⊥ be the linear functional on ker(A)⊥ defined by the restriction

of φ to ker(A)⊥. Similarly, let Ā = A|ker(A)⊥ denote the restriction of the linear map A. Consider
the optimization problem

infx∈ker(A)⊥ 〈x, φ̄〉
s.t. Ā(x) �P d.

(5.1)

If (ConLP) is feasible and bounded, the optimal value of (ConLP) equals the optimal value
of (5.1). Moreover, if O is the set of optimal primal solutions for (ConLP), and O is the set of
optimal primal solutions for (5.1), then O = O + ker(A).

Proof. Since (ConLP) is feasible and bounded, ker(A) ⊆ ker(φ) by Lemma 5.2. For any x
feasible to (ConLP), let r ∈ ker(A) and x̄ ∈ ker(A)⊥ such that x = x̄+r. Since ker(A) ⊆ ker(φ),
〈r, φ〉 = 0. Thus, 〈x, φ〉 = 〈x̄+r, φ〉 = 〈x̄, φ〉 = 〈x̄, φ̄〉, the last equality follows since x̄ ∈ ker(A)⊥.
Similarly, Ā(x̄) = A(x̄) = A(x̄+ r) = A(x) �P d. Thus, x̄ is a feasible solution to (5.1) with the
same objective value as 〈x, φ〉.

Remark 5.4. By Lemma 5.3, when (ConLP) is feasible and bounded, it suffices to consider
a restricted optimization problem like (5.1). Note that ker(Ā) = {0}. Thus, without loss of
generality, it is valid to assume that for an instance of a feasible and bounded (ConLP) in a
finite-dimensional space X, the linear map A has zero kernel, i.e., it is one-to-one. This implies
that A′ is surjective by Lemma 5.1. /

Construct the following primal-dual pair of semi-infinite linear programs in the case where
X is finite-dimensional and the cone P is reflexive. Recall that a cone P is reflexive if P ′′ = P
under the natural embedding of Y ↪→ Y ′′. The significance of this property will become apparent
in Theorem 5.5. The primal semi-infinite linear program is

infx∈Rn c>x
s.t. a1(ψ)x1 + a2(ψ)x2 + · · ·+ an(ψ)xn ≥ b(ψ) for all ψ ∈ P ′ (ConSILP)

where X is isomorphic to Rn with respect to a basis e1, . . . , en and c ∈ Rn represents the linear
functional φ ∈ X ′ (also using the isomorphism of X ′ and Rn). In (ConSILP), the elements
aj ∈ RP ′ j = 1, . . . , n and b ∈ RP ′ , are defined by aj(ψ) := 〈A(ej), ψ〉 and b(ψ) := 〈d, ψ〉. The
finite support dual of (ConSILP) is

sup
∑
ψ∈P ′ b(ψ)v(ψ)

s.t.
∑
ψ∈P ′ a

k(ψ)v(ψ) = ck for k = 1, . . . , n

v ∈ R(P ′)
+ .

(ConFDSILP)

The close connection of this primal-dual pair to the conic pair (ConLP)–(ConLPD) is shown in
Theorem 5.5 and Theorem 5.7.

Theorem 5.5 (Primal correspondence). Assume P is reflexive and X is finite-dimensional. Let
e1, . . . , en be the basis of X used to define (ConSILP) and (ConFDSILP). Then, v(ConLP) =
v(ConSILP). Moreover, the set of feasible solutions to (ConLP) is isomorphic to the set of
feasible solutions to (ConSILP) under this basis.

Proof. Since X is isomorphic to Rn with respect to the basis e1, . . . , en and c ∈ Rn represents
the linear functional φ ∈ X ′ the objective functions of both problems are identical (under this
isomorphism). The result follows if the feasible regions of both problems are isomorphic under
this same mapping.

Let F denote the feasible region of (ConLP) and F̂ denote the feasible region of (ConSILP).
Show F is isomorphic to F̂ under the basis e1, . . . , en. First show that if x = x1e

1+. . .+xne
n ∈ F
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then (x1, . . . , xn) ∈ F̂ . If x ∈ F , then A(x) �P d. Therefore, A(x)−d ∈ P and so for all ψ ∈ P ′,
〈(A(x)− d), ψ〉 ≥ 0. Writing A(x) =

∑n
j=1 xjA(ej) and using the linearity of ψ, it follows that

(x1, . . . , xn) ∈ F̂ .
Next show that if (x1, . . . , xn) ∈ F̂ , then x = x1e

1 + . . .+xnen ∈ F . Show the contrapositive,
i.e. if x 6∈ F then (x1, . . . , xn) 6∈ F̂ . If x 6∈ F , then A(x) − d 6∈ P and since P is reflexive,
A(x)− d 6∈ P ′′ (under the natural embedding of Y ↪→ Y ′′). Therefore, there exists ψ ∈ P ′ such
that 〈(A(x)− d), ψ〉 < 0. Again, using the linearity of ψ it follows that (x1, . . . , xn) 6∈ F̂ .

Remark 5.6. The condition that P is reflexive naturally holds in many important special cases
of conic programming. Once such case is when X and Y are finite dimensional spaces and P
is a closed, pointed cone in Y . Then P is easily seen to be reflexive. This case includes lin-
ear programming, semi-definite programming (SDPs) and copositive programming. The above
reformulation as a semi-infinite linear program works for any such instance. /

Theorem 5.7 (Dual Correspondence). Assume P is reflexive and X is finite-dimensional. Let
e1, . . . , en be the basis of X used to define (ConSILP) and (ConFDSILP). Then, v(ConLPD) =

v(ConFDSILP). Moreover, there exists maps T : P ′ → R(P ′)
+ and T̂ : R(P ′)

+ → P ′ such that if
ψ ∈ P ′ is a feasible solution to (ConLPD) then T (ψ) is a feasible solution to (ConFDSILP).
Conversely, if v ∈ R(P ′) is a feasible solution to (ConFDSILP) then T̂ (v) is a feasible solution
to (ConLPD).

Proof. It suffices to construct maps T and T̂ which satisfy the following properties.

(i) 〈ek, A′(ψ∗)〉 =
∑
ψ∈P ′ a

k(ψ)T (ψ∗)(ψ), for every ψ∗ ∈ P ′ and all k = 1, . . . , n.

(ii) 〈d, ψ∗〉 =
∑
ψ∈P ′ b(ψ)T (ψ∗)(ψ), for every ψ∗ ∈ P ′.

(iii)
∑
ψ∈P ′ a

k(ψ)v(ψ) = 〈ek, A′(T̂ (v))〉, for every v ∈ R(P ′)
+ and all k = 1, . . . , n.

(iv)
∑
ψ∈P ′ b(ψ)v(ψ) = 〈d, T̂ (v)〉, for every v ∈ R(P ′)

+ .

The map T is defined as follows. For any ψ∗ ∈ P ′, T (ψ∗) is the finite support element v∗ ∈
R(P ′) where the only non-zero component of v∗ is 1 and corresponds to ψ∗. For any k ∈
{1, . . . , n},

∑
ψ∈P ′ a

k(ψ)v∗(ψ) = ak(ψ∗) = 〈A(ek), ψ∗〉 = 〈ek, A′(ψ∗)〉 and (i) is satisfied. Also,∑
ψ∈P ′ b(ψ)v∗(ψ) = b(ψ∗) = 〈d, ψ∗〉 and (ii) is satisfied.

The map T̂ is defined as follows. For any v∗ ∈ R(P ′), T̂ (v∗) =
∑
ψ∈P ′ v

∗(ψ)ψ where the sum

is well-defined because v∗ has finite support. Since v∗ has nonnegative entries, T̂ (v∗) ∈ P ′. Now,∑
ψ∈P ′ a

k(ψ)v∗(ψ) =
∑
ψ∈P ′〈A(ek), ψ〉v∗(ψ) = 〈A(ek),

∑
ψ∈P ′ v

∗(ψ)ψ〉 = 〈A(ek), T̂ (v∗)〉 =

〈ek, A′(T̂ (v∗)〉 and (iii) is satisfied. Also,
∑
ψ∈P ′ b(ψ)v∗(ψ) =

∑
ψ∈P ′〈d, ψ〉v∗(ψ) = 〈d,

∑
ψ∈P ′ v

∗(ψ)ψ〉 =

〈d, T̂ (v∗)〉 and (iv) is satisfied.

5.1 Zero duality gap via boundedness

We prove Theorem 5.8 in this section. A more restricted version of this result is known in the
classical conic programming literature (see for example Duffin [5]). Our result is obtained with
a completely new proof using projection techniques.

Theorem 5.8 (Zero duality gap via boundedness). Let X be finite-dimensional. If P is re-
flexive and there exists a scalar γ such the set {x : A(x) �P d and 〈x, φ〉 ≤ γ} is nonempty and
bounded, then there is no duality gap for the primal-dual pair (ConLP)-(ConLPD).

Proof. By Theorem 5.5, the primal optimal value of (ConLP) is equal to the optimal value
of the (ConSILP). By Theorem 3.25 there is a zero duality gap between the primal dual
pair (ConSILP)-(ConFDSILP). Finally, from Theorem 5.7, the optimal value of (ConFDSILP)
is equal to the optimal value of (ConLPD).
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Corollary 5.9. Semi-definite programs (SDPs) and copositive programs with nonempty, bounded
feasible regions have zero duality gap.

5.2 Regular duality for conic programs

We now prove a central result of conic programming, known as regular duality, using the machin-
ery of FM elimination. First, some notions from conic programming (see Chapter 4 of Gartner
and Matousék [8] for more details). A sequence (ψm)m∈N, is called a feasible sequence for the
dual program (ConLPD) if ψm ∈ P ′ for all m ∈ N and

lim
m→∞

A′(ψm) = φ.

The value of a feasible sequence (ψm)m∈N is 〈d, (ψm)m∈N〉 = lim supm→∞〈d, ψm〉. The limit
value (a.k.a. subvalue) of the dual program (ConLPD) is

sup{〈d, (ψm)m∈N〉 | (ψm)m∈N is a feasible sequence for (ConLPD)}.

A simple proof of regular duality for conic programs is easily obtained using projection (see
Theorem 4.7.3 in Gartner and Matousek [8] for the more standard proof technique).

Theorem 5.10 (Regular duality for conic programs). Assume X is finite-dimensional and P
is reflexive. If the primal conic program (ConLP) is feasible and has a finite optimal value z∗,

then the dual program (ConLPD) has a finite limit value d̂ and z∗ = d̂.

Proof. By Theorem 5.5, the optimal value of (ConSILP) is equal to z∗ and z∗ is finite since the
optimal value of (ConLP) is finite. By Theorem 4.3, the limit value of (ConFDSILP) equals the
optimal value of (ConSILP). By Theorem 5.7, every feasible sequence (ψm)m∈N for (ConLPD)
maps to a feasible sequence (T (ψm))m∈N for (ConFDSILP). Similarly, every feasible sequence
(um)m∈N for (ConFDSILP) maps to a feasible sequence (T̂ (um))m∈N for (ConLPD). Thus, the

limit value d̂ of (ConLPD) is equal z∗, the limit value of (ConFDSILP).

5.3 Zero duality gap via Slater’s condition

Assume throughout this section X and Y are finite-dimensional spaces, and P is reflexive (note
that any closed cone is reflexive because Y is finite-dimensional). As before, identify X with Rn.
Let B(x, ε) ⊆ Rn denote the open ball of radius ε with center x ∈ Rn. Identify the objective
linear functional φ ∈ X ′ with the vector c ∈ Rn.

Lemma 5.11. Assume A′ : Y ′ → X ′ is surjective and there exists ψ∗ ∈ int(P ′) with A′(ψ∗) = c.
Then there exists ε > 0 and ψ̄ ∈ P ′, such that for all c̄ ∈ B(c, ε), c̄>x ≥ 〈d, ψ̄〉 is a constraint
in (ConSILP).

Proof. For each ψ ∈ P ′, the constraint in (ConSILP) corresponding to ψ is
∑n
j=1 xj〈A(ej), ψ〉 ≥

〈d, ψ〉. The left hand side of the inequality is the same as
∑n
j=1 xj〈ej , A′(ψ)〉 = 〈x,A′(ψ)〉.

Since A′ is a linear map between finite-dimensional spaces, it is continuous and by assumption,
surjective. By the Open Mapping theorem, A′ maps open sets to open sets. Since ψ∗ ∈ int(P ′)
there exists an open ball B∗ ⊆ P ′ containing ψ∗. Thus, A′(B∗) is an open set containing c.
Therefore, there exists an ε > 0 such that B(c, ε) ⊆ A′(B∗). Thus, for every c̄ ∈ B(c, ε), there
exists ψ̄ ∈ B∗ such that A′(ψ̄) = c̄. Since all ψ ∈ B∗ ⊆ P ′ give constraints 〈x,A′(ψ)〉 ≥
〈d, ψ〉 in (ConSILP), for every c̄ ∈ B(c, ε) there is the constraint c̄>x = 〈x,A′(ψ̄)〉 ≥ 〈d, ψ̄〉
in (ConSILP).

Theorem 5.12 (Slater’s theorem for conic programs). If the primal conic program (ConLP) is
feasible and there exists ψ∗ ∈ int(P ′) with A′(ψ∗) = c, then there is a zero duality gap for the
primal dual pair (ConLP)-(ConLPD). Moreover, the primal is solvable.
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Proof. By hypothesis, there exists ψ∗ ∈ int(P ′) with A′(ψ∗) = c so the dual conic pro-
gram (ConLPD) is feasible. Since (ConLP) is also feasible by hypothesis, feasibility of (ConLPD)
implies (ConLP) is both feasible and bounded. Then by Remark 5.4, it is valid to assume A′ is
surjective.

Claim 5.13. The variables x1, . . . , xn remain clean when Fourier-Motzkin elimination is applied
to (ConSILP).

Proof. Since A′(ψ∗) = c, there is a constraint c>x ≥ 〈d, ψ∗〉 in the system (ConSILP). The
constraint −c>x + z ≥ 0 is also present when Fourier-Motzkin elimination is performed on a
semi-infinite linear program. By Lemma 5.11, there exists ε > 0 such that every c̄ ∈ B(c, ε)
gives a constraint c̄>x ≥ b′ in (ConSILP). Thus, for any δ < ε, both (c + δej)>x ≥ bj+ and

(c−δej)>x ≥ bj− are constraints for every j = 1, . . . , n, (where bj+ and bj− are some real numbers).

Case 1: cj = 0 for all j = 1, . . . , k. In this case the constraints are ε
2xj ≥ bj+ and − ε

2xj ≥ bj−

in the system. During Fourier-Motzkin, for each j = 1, . . . , n, the constraints ε
2xj ≥ bj+ and

− ε
2xj ≥ b

j
− remain in the system until variable xj is reached. This makes all variables x1, . . . , xn

clean throughout the Fourier-Motzkin procedure.
Case 2: cj 6= 0 for some j = 1, . . . , k. Relabel the variables and assume that c1 6= 0. Thus, the

coefficient of x1 in −c>x + z ≥ 0 has opposite sign to the coefficient of x1 in the constraints
(c+ δej)>x ≥ bj+ and (c− δej)>x ≥ bj− for j = 2, . . . , n. Thefefore x1 is clean, and when x1 is

eliminated, the constraint −c>x + z ≥ 0 is aggregated with the constraints (c + δej)>x ≥ bj+
and (c − δej)>x ≥ bj−, for each j = 2, . . . , n. This leaves the constraints δxj + z ≥ bj+ and

−δxj + z ≥ bj− in the system for j = 2, . . . , n, after x1 is eliminated. As in Case 1, these
constraints remain in the system variable until xj is reached. This makes all variables x1, . . . , xn
clean throughout the Fourier-Motzkin procedure.

Since variables x1, . . . , xn are clean throughout the Fourier-Motzkin procedure, and (ConSILP)
is feasible (since (ConLP) is feasible), the problem is feasible and tidy and by Theorem 3.24, there
is a zero duality gap between the pair (ConSILP)-(ConFDSILP), and (ConSILP) is solvable. By
Theorems 5.5 and 5.7, this implies that there is zero duality gap for the pair (ConLP)-(ConLPD),
and the primal (ConLP) is solvable.

Remark 5.14. Since the dual conic program (ConLPD) is also a conic program, one can
consider (ConLPD) as a primal conic program. In this case the dual is (ConLP). By Theo-
rem 5.12, there is a zero duality gap between this primal-dual pair if there is a point x∗ such
that A(x∗)− d ∈ int(P ). Moreover, the dual is solvable. /

6 Application: Convex programs

Recall the convex program (CP) and its Lagrangian dual (LD) introduced in Section 1. They
are reproduced below for convenience. The primal is

maxx∈Rn f(x)
s.t. gi(x) ≥ 0 for i = 1, . . . , p

x ∈ Ω
(CP)

where f(x) and gi(x), i = 1, . . . , p are concave functions, and Ω is a closed, convex set. The
dual is

inf
λ≥0

L(λ) (LD)

32



where L is the Lagrangian function

L(λ) := max{f(x) +

p∑
i=1

λigi(x) : x ∈ Ω}.

Construct a semi-infinite linear program which is shown in Theorem 6.1 to have the same optimal
value as the Lagrangian dual (LD). This semi-infinite linear program is

inf σ
s.t. σ −

∑p
i=1 λigi(x) ≥ f(x) for x ∈ Ω

λ ≥ 0.
(CP-SILP)

Construct the finite support dual for (CP-SILP). There are two sets of constraints in (CP-SILP).
There are typically an uncountable number of constraints indexed by x ∈ Ω and a finite number
of nonnegativity, λ ≥ 0, constraints indexed by {1, . . . , p}. Thus, the finite support dual elements
belong to R(Ω∪{1,...,p}). The finite support dual defined over (u, v) ∈ R(Ω) × Rp is

(CP-FDSILP) sup
∑
x∈Ω

u(x)f(x) (6.1)

s.t.
∑
x∈Ω

u(x) = 1 (6.2)

−
∑
x∈Ω

u(x)gi(x) + vi = 0 for i = 1, . . . , p (6.3)

(u, v) ∈ R(Ω)
+ × Rp+. (6.4)

Recall v(CP) is the optimal value of (CP), v(LD) is the optimal value of (LD), v(CP-SILP) is
the optimal value of (CP-SILP) and v(CP-FDSILP) is the optimal value of (6.1)-(6.4).

Theorem 6.1. v(LD) = v(CP-SILP). Moreover, (CP-SILP) is solvable if and only if there
exists λ∗ ≥ 0 such that L(λ∗) = infλ≥0 L(λ).

Proof. First show v(LD) ≥ v(CP-SILP). If, for every λ ≥ 0, L(λ) = ∞ then v(LD) = ∞
and the result is immediate. Else, consider any λ̄ ≥ 0 such that L(λ̄) < ∞. Set σ̄ = L(λ̄).
Then (σ̄, λ̄) is a feasible solution to (CP-SILP) with the same objective value as L(λ̄). Thus,
L(λ̄) ≥ v(CP-SILP). Since λ̄ ≥ 0 was chosen arbitrarily, infλ≥0 L(λ) ≥ v(CP-SILP).

Now show v(CP-SILP) ≥ v(LD). If (CP-SILP) is infeasible then v(CP-SILP) = ∞ and
the result is immediate. Otherwise, consider any feasible solution (σ̄, λ̄) to (CP-SILP). Then
σ̄ ≥ L(λ̄) and thus σ̄ ≥ infλ≥0 L(λ). Since σ̄ is the objective value of this feasible solution to
(CP-SILP), the optimal value of (CP-SILP) is greater than or equal to infλ≥0 L(λ).

The second part follows from very similar arguments.

Theorem 6.2. v(CP) = v(CP-FDSILP).

Proof. First show v(CP) ≥ v(CP-FDSILP). If (6.2)-(6.4) is infeasible, then v(CP-FDSILP) =
−∞ and the result is immediate. Assume (6.2)-(6.4) has feasible solution (ū, v̄). Let x̄ =∑
x∈Ω xū(x). This sum is well-defined because ū has finite support. Show x̄ is feasible to (CP).

First, since Ω is convex, by (6.2) x̄ ∈ Ω. By (6.3), −
∑
x∈Ω ū(x)gi(x)+vi = 0 for all i = 1, . . . , p.

Since vi ≥ 0,
∑
x∈Ω ū(x)gi(x) ≥ 0. By (6.2) and concavity of gi, gi(x̄) = gi(

∑
x∈Ω xū(x)) ≥∑

x∈Ω ū(x)gi(x) ≥ 0 for all i = 1, . . . , p. Thus the constraints of (CP) are satisfied. Since f is
concave, f(x̄) = f(

∑
x∈Ω xū(x)) ≥

∑
x∈Ω ū(x)f(x) which is the objective value of (ū, v̄) in (6.1).

Now show that v(CP-FDSILP) ≥ v(CP). If (CP) is infeasible, then v(CP) = −∞ and the

result is immediate. Otherwise, consider any feasible solution x̄ to (CP). Let ū ∈ R(Ω)
+ be
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defined by ū(x̄) = 1 and ū(x) = 0 for all x 6= x̄. Define v̄ ∈ Rp by v̄i = gi(x̄). Since x̄ is feasible
to (CP), v̄ ∈ Rp+. Thus, (ū, v̄) is a feasible solution to (6.1). The objective value of (ū, v̄) in
(6.1) is f(x̄) which is the objective value x̄ in (CP).

Remark 6.3. Theorems 6.1 and 6.2 imply

v(CP-SILP) = v(LD) ≥ v(CP) = v(CP-FDSILP)

where the inequality follows from weak duality of the Lagrangian dual (or the weak duality of
semi-infinite linear programs as discussed in Section 3). /

Theorem 6.4 (Slater’s theorem for convex programs). Assume the convex program (CP) is
feasible and bounded, i.e., −∞ < v(CP) < ∞ and there exists x∗ ∈ Ω such that gi(x

∗) > 0
for all i = 1, . . . , p. Then there is a zero duality gap between the convex program (CP) and its
Lagrangian dual (LD) and there exists λ∗ ≥ 0 such that v(LD) = L(λ∗), i.e., the Lagrangian
dual is solvable.

Proof. Write the semi-infinite linear program defined by system (CP-SILP) as in Section 3

z − σ ≥ 0
σ −

∑p
i=1 λigi(x) ≥ f(x) for x ∈ Ω

λi ≥ 0 for i = 1, . . . , p.
(6.5)

Without loss of generality, assume that f(x) is bounded above on Ω. It is valid to replace the
objective function f(x), by the concave function f̃(x) = min{f(x), B}, where B is an upper
bound on v(CP). Such a bound exists by hypothesis. Therefore, z = σ = B, λ = 0 is a feasible
solution to (6.5). Let γ be any value of z that is feasible in (6.5) and show

γ − σ ≥ 0
σ −

∑p
i=1 λigi(x) ≥ f(x) for x ∈ Ω

λi ≥ 0 for i = 1, . . . , p
(6.6)

is bounded. By hypothesis, (CP) has a Slater point x∗. Consider the sub-system of (6.6)

γ − σ ≥ 0
σ −

∑p
i=1 λigi(x

∗) ≥ f(x∗)
λi ≥ 0 for i = 1, . . . , p.

(6.7)

Since x∗ is a Slater point, gi(x
∗) > 0, i = 1, . . . , p; which together with σ ≤ γ implies

0 ≤ λi ≤ (γ − f(x∗))/gi(x
∗) for i = 1, . . . , p,

which in turn implies f(x∗) ≤ σ ≤ γ and the set of feasible solutions to (6.7) is bounded.
Since (6.7) is a sub-system of (6.6), the set of feasible solutions to (6.6) is bounded. Then
by Theorem 3.25, v(CP-SILP) = v(CP-FDSILP) and (CP-SILP) is solvable. By Remark 6.3,
v(CP) = v(LD). Moreover, since (CP-SILP) is solvable, by Theorem 6.1 there exists λ∗ such
that v(LD) = L(λ∗).

The following example demonstrates that it is possible to identify a zero duality gap with
techniques of this paper, even when a Slater condition fails.

Example 6.5. Consider the convex optimization problem

maxx∈Rn 0
s.t. 1− x2

1 − x2
2 ≥ 0

−1 + x1 ≥ 0.
(6.8)
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The feasible region is the singleton {(1, 0)} and so no Slater point exists, however there is a zero
duality gap. For this instance, (CP-SILP) is

inf σ
s.t. σ + λ1(x2

1 + x2
2 − 1) + λ2(1− x1) ≥ 0 for x ∈ Rn

λ ≥ 0.
(6.9)

Setting (σ, λ1, λ2) = (0, 0, 0) shows that this semi-infinite linear program (SILP) is feasible.
Notice also that the right-hand function b : Rn → R, is the zero function. Applying Fourier-
Motzkin elimination to (6.9) gives b̃(h) = 0 for all h and this implies suph∈I3 b̃(h) = 0. Also, for
any δ ≥ 0,

ω(δ) = sup
h∈I4

{
b̃(h)− δ

n∑
k=`

|ãk(h)|

}
= sup
h∈I4

{
−δ

n∑
k=`

|ãk(h)|

}
≤ 0.

Then suph∈I3 b̃(h) ≥ limδ→∞ ω(δ) and by Theorem 3.21 there is a zero duality gap between
(6.9) and its finite support dual. By Theorem 6.1 and 6.2 this implies there is a zero duality
gap between (6.8) and its Lagrangian dual. /

7 Application: Generalized Farkas’ Theorem

In this section, Fourier-Motzkin elimination is used to prove the generalized Farkas’ theorem.
Consider a closed convex set given as the intersection of (possibly infinitely many) halfspaces

P = {x ∈ Rn | a1(i)x1 + · · ·+ an(i)xn ≥ b(i) for i ∈ I}, (7.1)

where I is any index set, a1, . . . , an and b are elements of RI . An inequality c>x ≥ d is a
consequence of the system of inequalities a1(i)x1 + . . . an(i)xn ≥ b(i), i ∈ I if c>x ≥ d for every
x ∈ P . If P = ∅, then every inequality is a consequence the inequalities a1(i)x1 + . . . an(i)xn ≥
b(i), i ∈ I. Let αi denote the vector in Rn given by αi = (a1(i), . . . , an(i))>. The notation 0n is
used to denote the n-dimensional vector of zeros.

Theorem 7.1 (Generalized Farkas’ Theorem, see Theorem 3.1 in Goberna and López [9]). The
inequality c>x ≥ d is a consequence of (αi)>x ≥ b(i) for all i ∈ I, if and only if at least one of
the following holds:

(i) [
c
d

]
∈ cl

(
cone

({[
0n
−1

]
,

[
αi

b(i)

]
; i ∈ I

}))

(ii) [
0n
1

]
∈ cl

(
cone

({[
αi

b(i)

]
; i ∈ I

}))
.

Proof. First show that the condition is sufficient. Assume (i) holds. If

[
γ
δ

]
is any vec-

tor in cone

({[
0n
−1

]
,

[
αi

b(i)

]
; i ∈ I

})
, then γ>x ≥ δ for every x ∈ P . Since

[
c
d

]
∈

cl

(
cone

({[
0n
−1

]
,

[
αi

b(i)

]
; i ∈ I

}))
, there exists a sequence limj→∞

[
γj

δj

]
=

[
c
d

]
such that each

[
γj

δj

]
belongs to cone

({[
0n
−1

]
,

[
αi

b(i)

]
; i ∈ I

})
. Thus, (γj)>x− δj ≥ 0
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for every j and every x ∈ P and limj→∞((γj)>x − δj) = c>x − d ≥ 0 for every x ∈ P . Thus
c>x ≥ d is a consequence. Now assume that (ii) above holds. Then, by the same reasoning,
0>n x ≥ 1 is satisfied for all x ∈ P . This implies P = ∅ and then any inequality c>x ≥ d is a
consequence.

For the other direction, assume c>x ≥ d is a consequence. There are two cases, depending
on whether P is empty or not.
Case 1: P = ∅. Apply the Fourier-Motzkin elimination procedure to the constraints that define
P in (7.1) and obtain the system (2.8)-(2.9) with the corresponding index sets H1 and H2. Since
P = ∅, by Theorem 2.13 either b̃(h) > 0 for some h∗ ∈ H1, or sup{b̃(h)/

∑n
k=` |ãk(h)| : h ∈

H2} =∞. Consider these two cases in turn:

Case 1a: b̃(h∗) > 0 for some h∗ ∈ H1. By Theorem 2.9, there exists uh
∗ ∈ R(I)

+ with finite

support such that 〈aj , uh∗〉 = 0 for all j = 1, . . . , n and 〈b, uh∗〉 > 0. Using the multiplers uh∗

〈b,uh∗ 〉
for the constraints corresponding to the non-zero elements in uh

∗
to aggregate constraints, gives[

0n
1

]
∈ cone

({[
αi

b(i)

]
; i ∈ I

})
. Condition (ii) in the statement of the theorem is satisfied.

Case 1b: suph∈H2
b̃(h)/

∑n
k=` |ãk(h)| =∞. This implies that there is a sequence hm ∈ H2,

m = 1, 2, . . . such that b̃(hm)/
∑n
k=` |ãk(hm)| > m. This implies b̃(hm) > 0 for all m. Rearrang-

ing the terms, gives

lim
m→∞

∑n
k=` |ãk(hm)|
b̃(hm)

= 0.

The above limit implies

lim
m→∞

ãk(hm)

b̃(hm)
= 0

for k = `, ` + 1, . . . , n. By Theorem 2.9, there exists uhm ∈ R(I)
+ with finite support such that

〈aj , uhm〉 = 0 for j = 1, . . . , ` − 1, 〈aj , uhm〉 = ãj(hm) for j = `, . . . , n and 〈b, uhm〉 = b̃(hm).

Since b̃(hm) > 0, 〈aj , u
hm

b̃(hm)
〉 = 0 for all j = 1, . . . , ` − 1, 〈aj , u

hm

b̃(hm)
〉 = ãj(hm)

b̃(hm)
for j = `, . . . , n

and 〈b, u
hm

b̃(hm)
〉 = 1. Since limm→∞

ãj(hm)

b̃(hm)
= 0 for j = 1, . . . , n, this gives a sequence of points in

cone

({[
αi

b(i)

]
; i ∈ I

})
that converges to

[
0n
1

]
and condition (ii) holds.

Case 2: P 6= ∅. Consider the semi-infinite linear program

infx∈Rn c>x
s.t. a1(i)x1 + a2(i)x2 + · · ·+ an(i)xn ≥ b(i), for i ∈ I. (7.2)

If P 6= ∅, the semi-infinite linear program defined by (7.2) is feasible, i.e., z∗ < ∞. Since
c>x ≥ d is a consequence, (7.2) is bounded, i.e., z∗ ≥ d > −∞. Reformulate as in (3.1)-(3.3)
and apply Fourier-Motzkin elimination and obtain the system (3.4) with the corresponding index
sets I1, I2, I3 and I4. Then by Lemma 3.8 the primal optimal value is

z∗ = max{ sup
h∈I3

b̃(h), lim
δ→∞

ω(δ)}.

Again consider two cases :
Case 2a: z∗ = suph∈I3 b̃(h). This implies that for any fixed ε > 0 there is an h∗ ∈ I3

such that b̃(h∗) ≥ z∗ − ε ≥ d − ε. Since h∗ ∈ I3, Lemma 3.13(iv) implies that there ex-

ists vh
∗ ∈ R(I) such that 〈aj , vh∗〉 = cj and b̃(h∗) = 〈b, vh∗〉 ≥ d − ε. Thus,

[
c

d− ε

]
is in
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cone

({[
0n
−1

]
,

[
αi

b(i)

]
; i ∈ I

})
where the multiplier for

[
0n
−1

]
is b̃(h∗) − (d − ε). Since

this is true for any ε > 0,[
c
d

]
∈ cl

(
cone

({[
0n
−1

]
,

[
αi

b(i)

]
; i ∈ I

}))
and condition (i) of the theorem holds.

Case 2b: z∗ = limδ→∞ ω(δ). Since −∞ < z∗ < ∞, by Lemma 4.2, there exists a sub-

sequence of indices hm,m = 1, 2, . . . such that hm ∈ I4, ãk(hm) → 0 for all k = `, . . . , n,
b̃(hm) → z∗ and b̃(hm) ≥ z∗ for all m ∈ N. Let α̃m ∈ Rn be defined by (α̃m)k = 0 for
k = 1, . . . , ` − 1 and (α̃m)k = ãk(hm) for k = `, . . . , n. By Lemma 3.13(v), for each m ∈ N,
α̃m = αm − c, for some αm ∈ cone({αi}i∈I). Renaming b̃(hm) = bm, gives[

αm

bm

]
∈ cone

({[
αi

b(i)

]
; i ∈ I

})
and [

α̃m

0

]
=

[
αm − c
bm − d

]
+ (bm − d)

[
0n
−1

]
.

Since α̃m → 0 as m→∞, [
αm − c
bm − d

]
+ (bm − d)

[
0n
−1

]
→ 0

⇒
[
αm

bm

]
+ (bm − d)

[
0n
−1

]
−
[
c
d

]
→ 0

⇒
[
αm

bm

]
+ (bm − d)

[
0n
−1

]
→
[
c
d

]
.

Now bm ≥ d because bm = b̃(hm) ≥ z∗ ≥ d. Therefore[
c
d

]
∈ cl

(
cone

({[
0n
−1

]
,

[
αi

b(i)

]
; i ∈ I

}))
and condition (i) of the theorem holds.

8 Application: Further results for semi-infinite linear pro-
grams

8.1 Additional sufficient conditions for zero duality gap

By looking at the recession cone of (3.18) it is possible gain further insights and discover useful
sufficient conditions for zero duality gaps in general semi-infinite linear programs. We show
results first discovered by Karney [10] follow directly and easily from our methods. The recession
cone of (3.18) is defined by the system

− c1x1 − c2x2 − · · · − cnxn ≥ 0 (8.1)

a1(i)x1 + a2(i)x2 + · · ·+ an(i)xn ≥ 0 for i ∈ I. (8.2)

Applying Fourier-Motzkin elimination to (8.1)-(8.2) gives

0 ≥ 0 for h ∈ H1 (8.3)

ã`(h)x` + ã`+1(h)x`+1 + · · ·+ ãn(h)xn ≥ 0 for h ∈ H2. (8.4)
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Following the notation conventions of Karney [10], K denotes the recession cone of (SILP),
given by the inequalities (8.2) and N denotes the null space of the objective function vector c.

Lemma 8.1. If H2 is nonempty in (8.4), then there exists a ray r ∈ Rn satisfying (8.1)-(8.2)
with at least one of the inequalities in (8.1)-(8.2) satisfied strictly.

Proof. If H2 is nonempty, there is a k ≥ ` such that ãk(h) is nonzero for at least one h ∈ H2.
Since xk is a dirty variable, the nonzero ãk(h) are of the same sign for all h ∈ H2. If the ãk(h)
are all nonnegative, then set xk = 1 and xi = 0 for i 6= k; if the ã`(h) are all nonpositive, then set
xk = −1 and xi = 0 for i 6= k. This solution to (8.3)-(8.4) satisfies at least one of the inequalities
in (8.3)-(8.4) strictly. Since this is the projection of some r satisfying (8.1)-(8.2), this r must
satisfy at least one inequality in (8.1)-(8.2) strictly, since all inequalities in (8.3)-(8.4) are conic
combinations of inequalities in (8.1)-(8.2).

Theorem 8.2. If (SILP) is feasible and K ∩N is a subspace, then v(SILP) = v(FDSILP).

Proof. Case 1: H2 in (8.4) is empty. Observe that the columns in systems (8.1)-(8.2) and (3.2)-
(3.3) are identical for variables x1, . . . , xn. This means if xk is eliminated when Fourier-Motzkin
elimination is applied to one system, it is eliminated in the other system. Since H2 in (8.4) is
empty, (SILP) is tidy. Then by Theorem 3.24, v(SILP) = v(FDSILP).

Case 2: H2 in (8.4) is not empty. If H2 is not empty, by Lemma 8.1, there exists r satis-
fying (8.1)-(8.2) such that at least one of the inequalities in (8.1)-(8.2) is satisfied strictly. If
cT r < 0 and r ∈ K, then v(SILP) = −∞. Therefore (FDSILP) is infeasible by weak duality and
v(SILP) = v(FDSILP) = −∞. If cT r = 0 then the constraint (8.1) is tight at r and so r ∈ N .
Then r ∈ K∩N which is a subspace by hypothesis. Then −r ∈ K∩N . This implies r ∈ K∩−K.
But this means that r satisfies all inequalities in (8.2) at equality and this contradicts the fact
established for this case that at least one inequality in (8.1)-(8.2) is strict.

8.2 Finite approximation results

Consider an instance of (SILP) and the corresponding finite support dual (FDSILP). For any
subset J ⊆ I, define SILP(J) as the semi-infinite linear program with only the constraints
indexed by J and the same objective function, and v(J) the optimal value of SILP(J). For
example, if J is a finite subset of I, SILP(J) is a finite linear program.

Theorem 8.3. If (SILP) is feasible, then v(FDSILP) = sup{v(J) : J is a finite subset of I}.

Proof. First show v(FDSILP) ≤ sup{v(J) : J is a finite subset of I}. By hypothesis, (SILP)
is feasible and this implies by Corollary 3.19 that v(FDSILP) = suph∈I3 b̃(h). Therefore, for

every ε > 0, there exists h∗ ∈ I3 such that v(FDSILP) − ε ≤ b̃(h∗). By Lemma 3.13(iv),
there exists vh

∗ ∈ R(I) with support J∗ such that b̃(h∗) = 〈b, vh∗〉 =
∑
i∈J∗ b(i)v

h∗(i), and∑
i∈J∗ a

k(i)vh
∗
(i) = ck. Since (SILP) is feasible, SILP(J∗) is feasible; let x̄ be any feasible

solution to this finite LP. Thus,

cT x̄ =
∑n
k=1 ckx̄k

=
∑n
k=1(

∑
i∈J∗ a

k(i)vh
∗
(i))x̄k

=
∑
i∈J∗(

∑n
k=1 a

k(i)x̄k)vh
∗
(i)

≥
∑
i∈J∗ b(i)v

h∗(i)

= b̃(h∗).

Since this holds for any feasible solution to SILP(J∗), v(J∗) ≥ b̃(h∗) ≥ v(FDSILP) − ε.
Thus, for every ε > 0, there exists a finite J∗ ⊆ I such that v(J∗) ≥ v(FDSILP) − ε. Hence,
v(FDSILP) ≤ sup{v(J) : J is a finite subset of I}.
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Next show that v(FDSILP) ≥ sup{v(J) : J is a finite subset of I}. Consider any finite
J∗ ⊆ I. It suffices to show that v(FDSILP) ≥ v(J∗). If v(J∗) = −∞, then the result is
immediate. So assume v(J∗) > −∞. Then SILP(J∗) is bounded. Since (SILP) is feasible by
hypothesis, SILP(J∗) is also feasible. Then by Theorem 3.26, there exists v∗ ∈ RJ∗ such that∑
i∈J∗ b(i)v

∗(i) = v(J∗) and
∑
i∈J∗ a

k(i)v∗(i) = ck. Define v̄ ∈ R(I) by v̄(i) = v∗(i) for i ∈ J∗
and v̄(i) = 0 for i 6∈ J∗. Thus, v̄ is a feasible solution to (FDSILP) with objective value v(J∗).
Therefore, v(FDSILP) ≥ v(J∗).

Theorem 8.3 is used to prove a series of results by Karney [10]. Consider a semi-infinite
linear program with countably many constraints, i.e., I = N. For every n ∈ N, let Pn denote the
finite linear program formed using the constraints indexed by {1, . . . , n} and the same objective
function. Let v(Pn) denote its optimal value.

Corollary 8.4. If (SILP) is feasible with I = N, then limn→∞ v(Pn) = v(FDSILP).

Proof. Since {1, . . . , n} is a finite subset of I, v(Pn) ≤ sup{v(J) : J is a finite subset of I} =
v(FDSILP) < ∞ where the equality follows from Theorem 8.3 and the “<” follows from
weak duality since (SILP) is feasible. Since v(Pn) is a nondecreasing sequence of real num-
bers bounded above, limn→∞ v(Pn) exists and limn→∞ v(Pn) ≤ v(FDSILP). Next prove that
limn→∞ v(Pn) ≥ v(FDSILP). Observe that for any finite subset J∗ ⊆ I there exists n∗ ∈ N
such that J∗ ⊆ {1, . . . , n∗} and this implies v(Pn∗) ≥ v(J∗). Thus, limn→∞ v(Pn) ≥ sup{v(J) :
J is a finite subset of I} = v(FDSILP) where the equality follows from Theorem 8.3.

Corollary 8.5 (Karney [10] Theorem 2.1). If the feasible region of (SILP) with I = N is
nonempty and bounded, then limn→∞ v(Pn) = v(SILP).

Proof. This follows from Theorem 3.25 and Corollary 8.4.

Corollary 8.6 (Karney [10] Theorem 2.4). If (SILP) with I = N is feasible and the zero vector
is the unique solution to the system (8.1)-(8.2), then limn→∞ v(Pn) = v(SILP).

Proof. If the zero vector is the unique solution to the system (8.1)-(8.2), then the recession cone
of (3.18) is {0} and (3.18) is bounded for any value of γ such that (3.18) is feasible (such a γ exists
because (SILP) is feasible). The result then follows from Theorem 3.25 and Corollary 8.4.

Corollary 8.7 (Karney [10] Theorem 2.5). Assume (SILP) with I = N is feasible and let r be
a ray satisfying (8.1)-(8.2). If r is not an element of the null space N, then limn→∞ v(Pn) =
v(SILP) = −∞.

Proof. If r ∈ K and r /∈ N, then cT r < 0. This implies v(SILP) = −∞ and (FDSILP) is
infeasible by weak duality. Then v(SILP) = v(FDSILP) = −∞ and the result follows from
Corollary 8.4.

Corollary 8.8 (Karney [10] Theorem 2.6). If (SILP) is feasible and K∩N is a linear subspace,
then limn→∞ v(Pn) = v(SILP).

Proof. This follows from Theorem 8.2 and Corollary 8.4.
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9 Conclusion

This paper explores two related themes. The first is how the powerful extension of Fourier-
Motzkin elimination to semi-infinite systems of linear inequalities is used to prove and provide
insights about duality theory for semi-infinite linear programs. This was the topic of Section 3
where projection is used to characterize feasibility, boundedness, solvability and the duality
gap between primal and dual semi-infinite linear programs. In Sections 7 and 8 we established
connections between our approach and the duality theories of Goberna and Lopez [9] and Kar-
ney [10] respectively. In particular, we prove the generalized Farkas’ theorem in Section 7, a
result which forms the basis of most of Goberna and Lopez’s arguments. Hence, in principle,
their work can be obtained from the Fourier-Motzkin approach. In Section 8, we explicitly show
how Karney’s results follow directly from the Fourier-Motzkin approach. This underscores our
claim that projection is a universal and unifying approach to the study of semi-infinite linear
programming.

The second theme is that semi-infinite linear programming has implications for finite dimen-
sional convex optimization. Sections 5 and 6 illustrate how both well-known and lesser-known
duality results in conic and convex programming are special cases of semi-infinite linear pro-
gramming duality.

The connection between semi-infinite linear programming and convex optimization is made
clear by the method of projection. Fourier-Motzkin elimination is purely algebraic. It is simply
the aggregation of pairs of linear inequalities using nonnegative multipliers. The key insight
is that topological conditions common in duality theory of finite-dimensional convex optimiza-
tion are implied by the algebraic conditions for solvability and duality in semi-infinite linear
programming via projection.

Both themes, and the connections between them, deserve further exploration. Regarding the
first, it might be fruitful to further explore the connections between our characterization of zero
duality gap and the characterization presented in Theorem 8.2 of Goberna and López [9]. Gob-
erna and López’s approach is topological and based on separating hyperplane theory, whereas
our approach is purely algebraic. Our proof of the generalized Farkas’ theorem (see our Theo-
rem 7.1 and Theorem 3.1 in Goberna and López [9]) provides a useful starting point for further
exploration.

Regarding the second theme, there are at least two avenues for further research. First, all
the duality results for finite-dimensional convex optimization considered here were derived by
showing the associated semi-infinite linear program was tidy. Recall that when (SILP) is tidy,
limδ→∞ ω(δ) = −∞. This condition (along with primal feasibility) suffices to establish primal
solvability (Theorem 3.10) and zero duality gap (Theorem 3.21). However, tidiness is far from
necessary, as demonstrated in Examples 3.12 and 6.5. Exploring how to translate more subtle
sufficient conditions for zero duality gap arising from finite values for limδ→∞ ω(δ) into the
language of finite dimensional convex optimization could prove fruitful.

A second avenue is to examine algorithmic approaches to solving convex programs from
the viewpoint of semi-infinite programming. As an example, Wolfe [13] proposed a method for
solving (CP) using column generation. See also Dantzig [3]. The restricted master of Dantzig
and Wolfe corresponds to a modified (CP-FDSILP) containing a finite subset of columns. At
each step of the Dantzig and Wolfe algorithm, a column with a negative reduced cost is added
to the current restricted master. This results in a new restricted master with one more column.
Dantzig [3] proves that the optimal value of the restricted master converges to the optimal value
of the convex program (CP) as the number of iterations (columns in the restricted master)
goes to infinity. In other words, once the number of columns becomes infinite, it is possible
to recover the optimal value of the convex program. It would be an interesting project to see
if an alternate proof of Dantzig’s result, and possibly further insight into his algorithm, derive
from a deeper understanding of the semi-infinite linear programs (CP-SILP) and (CP-FDSILP)
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associated with the convex program (CP).
This paper has not addressed the algorithmic aspects of Fourier-Motzkin elimination applied

to semi-infinite linear programs. Obviously, when applied to semi-infinite linear programs,
Fourier-Motzkin elimination is not a finite process. However, if the functions b, ak ∈ RI for
k = 1, . . . , n could be characterized in a reasonably simple format, then symbolic elimination
might be possible. This is another avenue of research.
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