
An Adaptive Accelerated Proximal Gradient Method and its

Homotopy Continuation for Sparse Optimization

Qihang Lin∗ Lin Xiao†

April 4, 2013

Abstract

We consider optimization problems with an objective function that is the sum of two convex
terms: one is smooth and given by a black-box oracle, and the other is general but with a
simple, known structure. We first present an accelerated proximal gradient (APG) method for
problems where the smooth part of the objective function is also strongly convex. This method
incorporates an efficient line-search procedure, and achieves the optimal iteration complexity
for such composite optimization problems. In case the strong convexity parameter is unknown,
we also develop an adaptive scheme that can automatically estimate it on the fly, at the cost of
a slightly worse iteration complexity.

Then we focus on the special case of solving the ℓ1-regularized least-squares problem in the
high-dimensional setting. In such a context, the smooth part of the objective (least-squares) is
not strongly convex over the entire domain. Nevertheless, we can exploit its restricted strong
convexity over sparse vectors using the adaptive APG method combined with a homotopy
continuation scheme. We show that such a combination leads to a global geometric rate of
convergence, and the overall iteration complexity has a weaker dependency on the restricted
condition number than previous work.

1 Introduction

Exploiting problem structure has become an important theme in recent advances in convex opti-
mization. It is well known that proper use of problem structure at the numerical linear algebra
level may dramatically improve the efficiency of an optimization method. More recently, it has
become clear that exploiting problem structure can also lead to more efficient optimization meth-
ods in terms of their iteration complexity, sometimes significantly surpassing the limitations of the
black-box complexity theory (see [Nes08] for an excellent discussion). Such examples start with the
theory of self-concordant functions for interior-point methods [NN94], to the more recent develop-
ment of smoothing technique [Nes05], minimization of composite objective functions [Nes07], and
acceleration via manifold identification (e.g., [Wri12]).

In this paper, we first develop an adaptive accelerated proximal gradient method for minimizing
composite objective functions that are strongly convex, without the knowledge of their convexity
parameters or any lower bound. Then we employ this method in a homotopy continuation scheme
for sparse optimization (with ℓ1-regularization), and show that it achieves an improved iteration
complexity than previous methods for solving the sparse least-squares problem.

∗Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, 15213. Email: qihangl@andrew.cmu.edu
†Machine Learning Groups, Microsoft Research, Redmond, WA 98052. Email: lin.xiao@microsoft.com

1

1.1 Minimizing composite objective functions

We consider first-order methods for minimizing composite objective functions, i.e., the problem of

minimize
x∈Rn

{
φ(x) , f(x) + Ψ(x)

}
, (1)

where f(x) and Ψ(x) are lower-semicontinuous, proper convex functions [Roc70, Section 7]. We
assume that domΨ is closed, and f is differentiable on an open set containing domΨ. We also
assume that ∇f is Lipschitz continuous on domΨ, i.e., there exists a constant Lf such that

‖∇f(x)−∇f(y)‖2 ≤ Lf‖x− y‖2, ∀x, y ∈ domΨ. (2)

In general, Ψ(x) can be nondifferentiable, hence so does φ(x). Further assumptions on f and Ψ,
which correspond to richer structure, will be added as we narrow down the potential applications
and aim for more efficient first-order methods.

If we ignore the structure in (1), and simply treat φ(x) as a black-box first-order oracle, then
classical complexity theory states that the information complexity for finding an ǫ-optimal solution
(whose objective value is within ǫ of the optimum) is O(1/ǫ2) [NY83]. Here information complexity
is the lower estimate for the number of oracle calls that is necessary for any first-order method
to obtain an ǫ-solution to any problem from the problem class. In this paper we will mainly use
iteration complexity to estimate the efficiency of a first-order method, which is an upper bound on
the number of iterations for the method to find an ǫ-optimal solution. For example, the subgra-
dient method has an iteration complexity O(1/ǫ2) for minimizing φ(x), which matches the lower
complexity bound [NY83, Nes04]. All methods we discuss in this paper implement a line search
procedure within each iteration, so there can be multiple oracle calls per iteration. However, the
average number of oracle calls per iteration is always bounded by a small constant.

Many applications that motivate the model in (1) have additional structure. The one that is
responsible for most recent developments is that Ψ(x) being simple [Nes07], meaning that for any
y ∈ domΨ, the following auxiliary optimization problem can be solved efficiently or in closed-form:

TL(y) = argmin
x

{
f(y) +∇f(y)T (x− y) + Lf

2
‖x− y‖22 +Ψ(x)

}
. (3)

This is the case, e.g., when Ψ(x) = τ‖x‖1 for any τ > 0, or Ψ(x) is the indicator function of a
closed convex set that admits an easy projection from any point in R

n. The so-called proximal
gradient (PG) method simply uses (3) as its update rule:

x(k+1) = TL(x
(k)), k = 0, 1, 2, . . . , (4)

where L is set to Lf or determined by a linear search procedure. The iteration complexity for the PG
method is O(Lf/ǫ), which is better than the lower bound when using a black-box model for φ. Of
course this is not a contradiction, since each iteration of the PG method relies on the entire structure
of Ψ, rather than a mere subgradient of it. In fact, a far better iteration complexity, O

(√
Lf/ǫ

)
,

can be obtained by accelerated proximal gradient (APG) methods [Nes07, BT09, Tse08], with the
same order of computational cost per iteration.

If the function φ is also strongly convex, i.e., either f or Ψ or both of them are strongly convex,
then the PG method and variants of APG methods can have geometric convergence. In this paper,

2

we focus on the case when f is strongly convex, i.e., there exists a constant µf > 0 (called the
convexity parameter) such that

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µf
2
‖x− y‖22, ∀x, y ∈ domΨ. (5)

Throughout this paper, we use κf = Lf/µf to denote the condition number of the function f . In
this case, the PG method has iteration complexity O(κf log(1/ǫ)), and APG methods can achieve
O(
√
κf log(1/ǫ)) [Nes04, Nes07]. However, in order to obtain the improved complexity, the APG

methods need to use the convexity parameter µf , or a lower bound of it, explicitly in their updates.
In many applications, an effective lower bound of µf can be hard to estimate.

Our first contribution in this paper is a new variant of APG method for solving problem (1)
when f is strongly convex. It incorporates an efficient line-search procedure, and achieves the
optimal iteration complexity O(

√
κf log(1/ǫ)). In case the strong convexity parameter is unknown,

we develop an adaptive scheme that can automatically estimate it on the fly. This method achieves
the iteration complexity O

(√
κf log κf · log(κf/ǫ)

)
, where the extra log κf factors are due to the

adaptive scheme for estimating µf . This adaptive scheme is similar to the one proposed by Nesterov
for his accelerated dual gradient (ADG) method [Nes07], which has the same iteration complexity.
The ADG method works directly with a model where the strong convexity lies in Ψ instead of f .
Therefore, in order to use it under our assumption (that f is strongly convex), one needs to relocate
a strong convexity term from f to Ψ whenever the adaptive scheme changes its estimation of µf .
Our method demonstrates that the same adaption idea can be applied successfully without resorting
to the relocation of strongly convex terms. Moreover, our method do not need the extra line-search
that is required at each iteration of the adaptive ADG method [Nes07, Section 5.3].

Even in the case of µf = 0, additional structure of the problem may still allow the development
of first-order methods with geometric convergence (same as linear convergence in this paper). This
is the case for the sparse least-squares problem we discuss next.

1.2 Homotopy continuation for sparse optimization

An important special case of (1) is the ℓ1-regularized least-squares (ℓ1-LS) problem:

minimize
x

1

2
‖Ax− b‖22 + λ‖x‖1, (6)

where A ∈ R
m×n and b ∈ R

m are the problem data, and λ > 0 is a regularization parameter. Here
‖x‖1 =

∑
i |xi| is the ℓ1 norm of x. In terms of the model in (1), we have

f(x) = (1/2)‖Ax− b‖22, Ψ(x) = λ‖x‖1.

Since the ℓ1 term promotes sparse solutions, we also refer (6) as the sparse least-squares problem.
The ℓ1-LS problem has important applications in machine learning, signal processing, and

statistics; see, e.g., [Tib96, CDS98, BDE09]. It received revived interests in recent years due to
the emergence of compressed sensing theory, which builds upon the fundamental idea that a finite-
dimensional signal having a sparse or compressible representation can be recovered from a small
set of linear, nonadaptive measurements [CRT06, CT06, Don06]. We are especially interested in
solving the ℓ1-LS problem in the context of high-dimensional sparse recovery. More specifically, we
focus on the case when m < n (i.e., the linear system Ax = b is underdetermined) and the solution
x⋆(λ) is sparse (which requires the parameter λ to be sufficiently large).

3

The function f(x) = (1/2)‖Ax− b‖22 has a constant Hessian ∇2f(x) = ATA, and we have

Lf = ρmax(A
TA),

µf = ρmin(A
TA),

where ρmax(·) and ρmin(·) denote the largest and smallest eigenvalues, respectively, of a symmetric
matrix. Under the assumption m < n, the matrix ATA is singular, hence µf = 0 (i.e., f is not
strongly convex). Therefore, we only expect sublinear convergence rates (at least globally) when
using first-order optimization methods. For example, we have the iteration complexity O(Lf/ǫ)
when using the PG method, and O(

√
Lf/ǫ) for the APG methods.

Nevertheless, even in the case of m < n, when the solution x⋆(λ) is sparse, the PG method
often exhibits fast convergence when it gets close to the optimal solution. Indeed, local linear
convergence can be established for the PG method provided that the active submatrix (columns of A
corresponding to the nonzero entries of the sparse iterates) is well conditioned [LT92, HYZ08, BL08].
To explain this more formally, we define the restricted eigenvalues of A at the sparsity level s as

ρ+(A, s) = sup

{
xTATAx

xTx
: x 6= 0, ‖x‖0 ≤ s

}
,

ρ−(A, s) = inf

{
xTATAx

xTx
: x 6= 0, ‖x‖0 ≤ s

}
,

(7)

where s is a positive integer and ‖x‖0 denotes the number of nonzero entries of a vector x ∈ R
n.

From the above definitions, we have

µf ≤ ρ−(A, s) ≤ ρ+(A, s) ≤ Lf , ∀ s > 0.

As discussed before, we have µf = 0 for m < n. But it is still possible that ρ−(A, s) > 0
holds for some s < m. In this case, we say that the matrix A satisfies the restricted eigenvalue
condition at the sparsity level s. Let supp(x) = {j : xj 6= 0}, and assume that x, y ∈ R

n satisfy
|supp(x) ∪ supp(y)| ≤ s. Then it can be shown [XZ12, Lemma 3] that

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ ρ−(A, s)

2
‖x− y‖22.

The above inequality gives the notion of restricted strong convexity (cf. strong convexity defined
in (5)). Intuitively, if the iterates x(k) of the PG method (4) become sparse and their supports
do not fluctuate much from each other, then restricted strong convexity leads to (local) linear
convergence. This is exactly what happens when the PG method speeds up while getting close to
the optimal solution.

Moreover, such a local linear convergence can be exploited by a homotopy continuation strategy
to obtain much faster global convergence [HYZ08, WNF09, XZ12]. The basic idea is to solve the
ℓ1-LS problem (6) with a large value of λ first, and then gradually decreases the value of λ until the
target regularization is reached. For each value of λ, we employ the PG method to solve (6) up to an
adequate precision, and then use the resulting approximate solution to warm start the PG method
for the next value of λ. The hope is to engage each stage within their local linear convergence
zone only. It is shown in [XZ12] that under suitable assumptions for sparse recovery (mainly the
restricted eigenvalue condition), an appropriate homotopy strategy can ensure all iterates of the

4

PG method be sparse, hence linear convergence at each stage can be established. As a result, the
overall iteration complexity of such a proximal-gradient homotopy (PGH) method is Õ

(
κs log(1/ǫ)

)

where κs denotes the restricted condition number at some sparsity level s > 0, i.e.,

κs , κ(A, s) =
ρ+(A, s)

ρ−(A, s)
, (8)

and the notation Õ(·) hides some additional log(κs) factors. We note that in order to accommodate
the fluctuations of ‖x(k)‖0 generated by the PG method, the sparsity level s in the above complexity
bound needs to be much larger than ‖x⋆(λ)‖0.

Our second contribution in this paper is to show that, by using the adaptive APG method
developed in this paper in a homotopy continuation scheme, we can further improve the iteration
complexity for solving the ℓ1-LS problem to Õ

(√
κs′ log(1/ǫ)

)
, where the sparsity level s′ is slightly

larger than the one for the PGH method. We note that this result is not an trivial extension from
the convergence results for the PGH method in [XZ12]. In particular, the adaptive APG method
does not have the property of monotone decreasing, which was important for the analysis of the
PGH method. In order to overcome this difficulty, we had to show a “non-blowout” property of
our adaptive APG method, which is interesting in its own right.

1.3 Outline of the paper

In Section 2, we define the notations and review some preliminaries used in this paper. In Section 3,
we present an accelerated proximal gradient method (scAPG) for minimizing strongly convex func-
tions with a known convexity parameter, and prove that its iteration complexity is O(

√
κf log(1/ǫ)).

In Section 4, we incorporate an estimation scheme for the convexity parameter into scAPG, to de-
velop an adaptive APG (AdapAPG) method that works with an unknown convexity parameter. We
prove that this algorithm has an iteration complexity O(

√
κf log(κf) log(κf/ǫ)). Then a homotopy

continuation version of the AdapAPG method is proposed in Section 5 for sparse optimization, and
we give its complexity analysis for solving the ℓ1-LS problems under a restricted eigenvalue condi-
tion. Numerical experiments and conclusions are provided in Section 6 and Section 7 respectively.

2 Preliminaries and notations

In this section, we first defined the notion of optimality residue for minimizing composite objective
functions, then review the definition and properties of composite gradient mapping, as well as a
proximal-gradient method with line search developed in [Nes07].

Consider the optimization problem (1) where the function f is convex and differentiable, and Ψ
is closed and convex on R

n. The optimality condition of (1) states that x⋆ is a solution if and only
if there exists ξ ∈ ∂Ψ(x⋆) such that

∇f(x⋆) + ξ = 0

(see, e.g., [Roc70, Section 27]). Therefore, a good measure of accuracy for any x as an approximate
solution is the quantity

ω(x) , min
ξ∈∂Ψ(x)

‖∇f(x) + ξ‖∞. (9)

We call ω(x) the optimality residue of x. We will use it in the stopping criterion of the proximal
gradient methods discussed in this paper.

5

2.1 Composite gradient mapping

Composite gradient mapping was introduced by Nesterov in [Nes07]. For any fixed point y and a
given constant L > 0, we define a local model of φ(x) around y using a quadratic approximation
of f but keeping Ψ intact:

ψL(y;x) = f(y) +∇f(y)T (x− y) + L

2
‖x− y‖22 +Ψ(x).

Let
TL(y) = argmin

x
ψL(y;x). (10)

Then the composite gradient mapping of f at y is defined as

gL(y) = L(y − TL(y)).

In the case Ψ(x) = 0, it is easy to verify that gL(y) = ∇f(y) for any L > 0, and 1/L can be
considered as the step-size from y to TL(y) along the direction −gL(y).

The first-order optimality condition of (10) states that there exists ξL(y) ∈ ∂Ψ(TL(y)) such that

∇f(y) + L(TL(y)− y) + ξL(y) = 0.

In the rest of this paper, we denote

φ′(TL(y)) = ∇f(TL(y)) + ξL(y) = L
(
y − TL(y)

)
+∇f(TL(y))−∇f(y).

Apparently, φ′(TL(y)) is a subgradient of φ at TL(y).
Throughout this paper, we assume that f has Lipschitz continuous gradient, i.e., it satisfies (2).

A direct consequence is the following inequality (see, e.g., [Nes04, Theorem 2.1.5]):

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ Lf

2
‖x− y‖22, ∀x, y ∈ R

n. (11)

Therefore, whenever L ≥ Lf , we have for any y,

φ(TL(y)) ≤ ψL(y;TL(y)). (12)

However, the condition L ≥ Lf is not necessary for the above inequality to hold for any particular y.
In fact, the line search procedures discussed in this paper try to find an L that is as small as possible
to satisfy (12), which corresponds to a larger step size 1/L in the gradient direction.

Following [Nes07], we also define a local Lipschitz parameter

SL(y) =
‖∇f(TL(y))−∇f(y)‖2

‖TL(y)− y‖2
.

We will need the following three properties of composite gradient mapping shown in [Nes07]:

Lemma 1. (Part of [Nes07, Theorem 2]) For any y ∈ domΨ and any L > 0,

ψL(y;TL(y)) ≤ φ(y)−
1

2L
‖gL(y)‖22.

6

Lemma 2. (Part of [Nes07, Theorem 1]) For any x, y ∈ domΨ and any L > 0, we have

〈
φ′(TL(y)), x− TL(y)

〉
≥ −

(
1 +

1

L
SL(y)

)
· ‖gL(y)‖2 · ‖TL(y)− x‖2.

Lemma 3. ([Nes07, Lemma 2]) Suppose φ is strongly convex with convexity parameter µ > 0, and
let x⋆ be the unique minimizer of φ. Then for any y ∈ domΨ and any L > 0, we have

‖TL(y)− x⋆‖2 ≤
1

µ

(
1 +

1

L
SL(y)

)
‖gL(y)‖2.

The next lemma shows that we can measure how close TL(y) is from satisfying the optimality
condition by using the norm of the composite gradient mapping at y.

Lemma 4. ([XZ12, Lemma 2]) If f has Lipschitz continuous gradients with Lipschitz constant Lf ,
then

ω(TL(y)) ≤
(
1 +

SL(y)

L

)
‖gL(y)‖2 ≤

(
1 +

Lf

L

)
‖gL(y)‖2.

We will also need the following result in the complexity analysis of our algorithms:

Lemma 5. Suppose µ ≤ µf and the inequality (12) holds for y. Then, for any x ∈ R
n, we have

φ(x) ≥ φ(TL(y)) + 〈gL(y), x− y〉+
1

2L
‖gL(y)‖2 +

µ

2
‖x− y‖2. (13)

We omit the proof of this lemma since it is almost identical to that of [Nes04, Theorem 2.2.7],
in which Ψ is restricted to be the indicator function of a closed convex set. A variant of this lemma
corresponding to µ = 0 appeared in [BT09, Lemma 2.3]

2.2 Proximal gradient method with line search

With the machinery of composite gradient mapping, Nesterov developed several variants of proximal
gradient methods in [Nes07]. Here we describe the simple primal-gradient method in Algorithms 1
and 2, which correspond to (3.1) and (3.2) in [Nes07], respectively. To use this algorithm, we need
to first choose an initial optimistic estimate Lmin for the Lipschitz constant Lf :

0 < Lmin ≤ Lf ,

and two adjustment parameters γdec ≥ 1 and γinc > 1. We note that Algorithm 2 does not need
to calculate g(k) and Sk, so the last two steps in Algorithm 1 can be skipped to save computation.
However, they will be necessary as part of the adaptive algorithms we develop later in Section 4.

Each iteration of the proximal gradient method generates the next iterate in the form of

x(k+1) = TMk
(x(k)),

where Mk is chosen by the line search procedure in Algorithm (1). The line search procedure starts
with an estimated Lipschitz constant Lk, and increases its value by the factor γinc until the stopping
criteria is satisfied. The stopping criteria for line search ensures

φ(x(k+1)) ≤ ψMk

(
x(k), x(k+1)

)
= ψMk

(
x(k), TMk

(x(k))
)

≤ φ(x(k))− 1

2Mk

∥∥gMk
(x(k))

∥∥2
2
, (14)

7

Algorithm 1: {x(k+1),Mk, g
(k), Sk} ← LineSearch(x(k), Lk)

parameter: γinc > 1
L← Lk/γinc
repeat

L← Lγinc
x(k+1) ← TL(x

(k))

until φ(x(k+1)) ≤ ψL(x
(k);x(k+1))

Mk ← L

g(k) ←Mk(y
(k) − x(k+1))

Sk ← SL(y
(k))

Algorithm 2: {x̂, M̂} ← ProxGrad(x(0), L0, ǫ)

parameters: Lmin > 0, γdec ≥ 1
repeat for k = 0, 1, 2, . . .

{x(k+1),Mk} ← LineSearch(x(k), Lk)
Lk+1 ← max{Lmin,Mk/γdec}

until ω(x(k+1)) ≤ ǫ
x̂← x(k+1)

M̂ ←Mk

where the last inequality follows from Lemma 1. Therefore, we have the objective value φλ(x
(k))

decrease monotonically with k, unless the gradient mapping gMk
(x(k)) = 0. In the latter case,

according to Lemma 4, x(k+1) is an optimal solution. A key feature of this algorithm is the adaptive
line search: it always tries to use a smaller Lipschitz constant at the beginning of each iteration by
setting Lk+1 to be min{Lmin,Mk/γdec}, which corresponds to a larger step size.

The only difference between Algorithm 2 and Nesterov’s gradient method [Nes07, (3.2)] is that
Algorithm 2 has an explicit stopping criterion. This stopping criterion is based on the optimality
residue ω(x(k+1)) being small. For the ℓ1-LS problem, it can be computed with additional O(n) flops
given the gradient ∇f(x). For other problems, if the optimality residue w(·) cannot be computed
efficiently, then Lemma 4 suggests that the norm of the gradient mapping

∥∥gMk
(x(k))

∥∥
2
can be a

good replacement to serve as the optimality measure in the stopping criterion.
Nesterov established the following iteration complexities of Algorithm 2 for finding an ǫ-optimal

solution of the problem (1):

• If φ is convex but not strongly convex, then the convergence is sublinear, with an iteration
complexity O(1/ǫ) [Nes07, Theorem 4];

• If φ is strongly convex, then the convergence is geometric, with an iteration complexity
O(κf log(1/ǫ)) [Nes07, Theorem 5].

A nice property of this algorithm is that we do not need to know a priori if the objective function
is strongly convex or not. It will automatically exploit the strong convexity whenever it holds. The
algorithm is the same for both cases.

8

Algorithm 3: {x(k+1),Mk, αk, g
(k), Sk} ← AccelLineSearch(x(k), x(k−1), Lk, µ, αk−1)

parameter: γinc > 1
L← Lk/γinc
repeat

L← Lγinc

αk ←
√

µ
L

y(k) ← x(k) +
αk(1−αk−1)
αk−1(1+αk)

(x(k) − x(k−1))

x(k+1) ← TL(y
(k))

until φ(x(k+1)) ≤ ψL(y
(k);x(k+1))

Mk ← L

g(k) ←Mk(y
(k) − x(k+1))

Sk ← SL(y
(k))

Algorithm 4: {x̂, M̂} ← scAPG(x(0), L0, µ, ǫ̂)

parameters: Lmin ≥ µ > 0, γdec ≥ 1

x(−1) ← x(0)

α−1 = 1
repeat for k = 0, 1, 2, . . .

{x(k+1),Mk, αk} ← AccelLineSearch(x(k), x(k−1), Lk, µ, αk−1)
Lk+1 ← max{Lmin,Mk/γdec}

until ω(x(k+1)) ≤ ǫ̂
x̂← x(k+1)

M̂ ←Mk

3 An APG method for minimizing strongly convex functions

In this section, we assume that the function f is strongly convex. We present an accelerated
proximal gradient (APG) method with adaptive line search for solving the composite minimization
problem (1); see Algorithm 3 and Algorithm 4. We name this method scAPG, where “sc” stands
for “strongly convex.” This method requires an input parameter µ > 0, which is an estimate of
the true convexity parameter µf . The line search procedure is very similar to the one used in
Algorithms 1 and 2. In particular, we need to give an initial lower estimate Lmin for the Lipschitz
constant Lf and two adjustment parameters γdec ≥ 1 and γinc > 1. Each iteration of the scAPG
method generates the following three sequences

αk =

√
µ

Mk
,

y(k) = x(k) +
αk(1− αk−1)

αk−1(1 + αk)
(x(k) − x(k−1)), (15)

x(k+1) = TMk
(y(k)).

9

We note that the scAPG method does not need to calculate g(k) and Sk, so the last two steps in
Algorithm 3 can be skipped to save computation (they will become necessary in Section 4).

This method can be considered as an extension of Nesterov’s constant step scheme [Nes04,
(2.2.11)], integrated with a line-search procedure. In fact, if αk = αk−1 =

√
µf/Lf , then the

update for y(k) in (15) becomes

y(k) = x(k) +

√
Lf −√µf√
Lf +

√
µf

(x(k) − x(k−1)),

which is the same as in Algorithm (2.2.11) in [Nes04]. Note that, one can not directly apply
Algorithm 4 to problems without strongly convexity by simply setting µ = 0.

The sequence Mk is chosen by the line search procedure in Algorithm 3, which starts with
an estimated Lipschitz constant Lk, and increases its value by the factor γinc until the stopping
criteria is satisfied. Since f has Lipschitz constant Lf , the inequality (11) implies that the line
search procedure is guaranteed to terminate if L ≥ Lf . Therefore, we have

Lmin ≤ Lk ≤Mk < γincLf . (16)

Although there is no explicit bound on the number of repetitions in the line search procedure, it
can be shown that the total number of line searches cannot be too big. More specifically, let Nk be
the total number of operations x+ ← TL(y) performed after k iterations in Algorithm 4. Then we
have

Nk ≤
(
1 +

ln γdec
ln γinc

)
(k + 1) +

1

ln γinc
max

{
ln

γincLf

γdecLmin
, 0

}
.

The proof of the above bound follows the same arguments in [Nes07, Lemma 3]. For example, if
we choose γinc = γdec = 2, then we always have Lk ≤ Lf and

Nk ≤ 2(k + 1) + log2
Lf

Lmin
. (17)

Thus, the performance of the scAPG method is well characterized by its iteration complexity (which
bounds the number of iterations k).

The following theorem states that if µ is a nontrivial lower bound on the convexity parameter µf ,
then the scAPG converges geometrically and it has an iteration complexity O(

√
κf log(1/ǫ)).

Theorem 1. Suppose x⋆ is the optimal solution of (1) and 0 < µ ≤ µf . Then Algorithm 4
guarantees that

φ(x(k))− φ(x⋆) ≤ τk

[
φ(x(0))− φ(x⋆) + µ

2
‖x(0) − x⋆‖22

]
, (18)

µ

2
‖y(k) − x⋆‖22 ≤ τk

[
φ(x(0))− φ(x⋆) + µ

2
‖x(0) − x⋆‖22

]
, (19)

where

τk =

{
1 k = 0,∏k−1

i=0 (1− αi) k ≥ 1.
(20)

Moreover,

τk ≤
(
1−

√
µ

Lfγinc

)k

. (21)

In addition to the geometric convergence of φ(x(k)), this theorem states that the auxiliary
sequence y(k) also converges to the unique optimizer x⋆ with a geometric rate.

10

3.1 Proof of Theorem 1

The proof of Theorem 1 is based on the notion of estimate sequence developed by Nesterov [Nes04].
We first give its definition and a few lemmas that are necessary for our proof.

Definition 1. [Nes04, Definition 2.2.1] A pair of sequences {Vk(x)}k≥0 and {τk}k≥0, τk ≥ 0, is
called an estimate sequence of the function φ(x) if

τk → 0

and for any x ∈ R
n and all k ≥ 0, we have

Vk(x) ≤ (1− τk)φ(x) + τkV0(x). (22)

Lemma 6. [Nes04, Lemma 2.2.1] Suppose x⋆ is an optimal solution to (1). Let the pair {Vk(x)}k≥0

and {τk}k≥0 be an estimate sequence of φ(x). If we have some sequence {xk}k≥0 satisfying

φ(x(k)) ≤ V ⋆
k := min

x∈Rn
Vk(x), (23)

then
φ(x(k))− φ(x⋆) ≤ τk [V0(x⋆)− φ(x⋆)] . (24)

Lemma 7. Assume that f(x) has Lipschitz continuous gradient and is strongly convex with con-
vexity parameter µf > 0. Moreover, assume 0 < µ ≤ µf and

1. {y(k)}k≥0 is an arbitrary sequence in R
n,

2. {Mk}k≥0 is a sequence such that φ
(
TMk

(y(k))
)
≤ ψMk

(
y(k);TMk

(y(k))
)
,

3. {αk}k≥0 is a sequence that satisfies αk ∈ (0, 1) and
∑∞

k=0 αk =∞.

Define the sequence {Vk(x)}k≥0 by letting V0(x) be an arbitrary function on R
n and for k ≥ 0,

Vk+1(x) = (1− αk)Vk(x) (25)

+ αk

[
φ
(
TMk

(y(k))
)
+
〈
gMk

(y(k)), x− y(k)
〉
+

1

2Mk

∥∥gMk
(y(k))

∥∥2
2
+
µ

2
‖x− y(k)‖22

]
,

and define the sequence {τk}k≥0 by setting τ0 = 1 and

τk+1 = τk(1− αk), k ≥ 0. (26)

Then the pair {Vk(x)}k≥0 and {τk}k≥0 is an estimate sequence of φ(x).

Proof. First we show that the inequality (22) holds for all k ≥ 0. It holds for k = 0 since τ0 = 1.
Suppose it holds for some k ≥ 0. Then the assumption on {Mk}k≥0 and Lemma 5 imply

Vk+1(x) ≤ (1− αk)Vk(x) + αkφ(x)

= (1− (1− αk)τk)φ(x) + (1− αk)(Vk(x)− (1− τk)φ(x))
≤ (1− (1− αk)τk)φ(x) + (1− αk)τkV0(x)

= (1− τk+1)φ(x) + τk+1V0(x).

In addition, we note that the sequence {τk}k≥0 defined by (26) is the same as the one given in (20),
and the assumptions αk ∈ (0, 1) and

∑∞
k=0 αk = ∞ ensures τk → 0. Therefore, by Definition 1,

{Vk(x)}k≥0 and {τk}k≥0 is an estimate sequence of φ(x).

11

Lemma 8. Let V0(x) = φ(x(0))+ µ
2‖x−x(0)‖22 where x(0) is an arbitrary point in R

n. If we choose

αk =
√

µ
Mk

for k ≥ 0, then the sequence {Vk(x)}k≥0 defined by (25) can be written as

Vk(x) = V ⋆
k +

µ

2
‖x− v(k)‖22, (27)

where the sequences {v(k)} and {V ⋆
k } are defined as v(0) = x(0), V ⋆

0 = φ(x(0)), and for k ≥ 0,

v(k+1) = (1− αk)v
(k) + αky

(k) − 1

αkMk
gMk

(y(k)), (28)

V ⋆
k+1 = (1− αk)V

⋆
k + αkφ

(
TMk

(y(k))
)
− 1− αk

2Mk

∥∥gMk
(y(k))

∥∥2
2

(29)

+αk(1− αk)
(µ
2
‖y(k) − v(k)‖22 +

〈
gMk

(y(k)), v(k) − y(k)
〉)

.

Proof. Follow similar algebraic derivations as in [Nes04, Lemma 2.2.3], omitted here.

In order to prove Theorem 1, we first notice that the three sequences generated by the scAPG
method (Algorithms 3 and 4), {y(k)}, {Mk} and {αk}, satisfy the assumptions in Lemma 7. More
specifically, Lemma 7 does not have any restriction on {y(k)}, the condition on {Mk} is exactly the
stopping criterion in Algorithm 3, and also

αk =

√
µ

Mk
≥
√

µ

γincLf
=⇒ αk ∈ (0, 1),

∞∑

k=0

αk =∞.

Therefore, we can use them to construct an estimate sequence as in (25) and (26). Next we need
to show that the choice of x(k+1) = TMk

(y(k)) guarantees the condition (23), so that we can invoke
Lemma 6 to prove the convergence rate.

To proceed, we split the update of y(k) in (15) into the following two steps:

v(k) = x(k) +
1− αk−1

αk−1
(x(k) − x(k−1)), (30)

y(k) =
αkv

(k) + x(k)

αk + 1
. (31)

It is straightforward to check that substituting the expression of v(k) in (30) into (31) yields (15).
Also it is no coincidence that we used the same notation v(k) as the minimizer of Vk(x): together
with (31), the update of v(k) in (28) is equivalent to (30). To see this, we first check that with the
choice of α−1 = 1 and x(−1) = x(0) in Algorithm 4, it holds that y(0) = v(0) = x(0). Then, with the
choice of x(k+1) = TMk

(y(k)) for k ≥ 0, the expression of v(k+1) in (28) becomes

v(k+1) = (1− αk)v
(k) + αky

(k) − 1

αkMk
gMk

(y(k))

= (1− αk)v
(k) + αky

(k) − 1

αkMk
Mk(y

(k) − x(k+1))

= (1− αk)v
(k) +

(
α2
k − 1

αk

)
y(k) +

1

αk
x(k+1).

12

Now replacing y(k) in the above expression with the right-hand side of (31) yields

v(k+1) = (1− αk)v
(k) +

(
α2
k − 1

αk

)
αkv

(k) + x(k)

αk + 1
+

1

αk
x(k+1)

= x(k+1) +
1− αk

αk
(x(k+1) − x(k)),

which is the same as (30). Therefore, the sequence yk generated in Algorithm 3 is a convex
combination of the current iterate x(k) and v(k), which is the minimizer of the function Vk(x),

Finally, we are ready to prove that (23) holds for all k ≥ 0. It holds for k = 0 simply by the
definition of V ⋆

0 . Given that it holds for some k, i.e., V ⋆
k ≥ φ(x(k)), the expression of V ⋆

k+1 in (29)
implies

V ⋆
k+1 ≥ (1− αk)φ(x

(k)) + αkφ(x
(k+1))− 1− αk

2Mk
‖gMk

(y(k))‖22

+αk(1− αk)
〈
gMk

(y(k)), v(k) − y(k)
〉
. (32)

According to Lemma 5, we have

φ(x(k)) ≥ φ(x(k+1)) +
〈
gMk

(y(k)), x(k) − y(k)
〉
+

1

2Mk
‖gMk

(y(k))‖22 +
µ

2
‖x(k) − y(k)‖22

≥ φ(x(k+1)) +
〈
gMk

(y(k)), x(k) − y(k)
〉
+

1

2Mk
‖gMk

(y(k))‖22.

Applying this to φ(x(k)) in (32) yields

V ⋆
k+1 ≥ φ(x(k+1)) + (1− αk)

〈
gMk

(y(k)), αk(v
(k) − y(k)) + x(k) − y(k)

〉

= φ(x(k+1)) + (1− αk)
〈
gMk

(y(k)),
(
αkv

(k) + x(k)
)
− (αk + 1)y(k)

〉

= φ(x(k+1)),

where the last equality is due to (31). We have shown that (23) holds for all k ≥ 0. Therefore, the
first result (18) of Theorem 1 follows from Lemma 6 and the definition of V0(x).

It remains to prove (19). Using strong convexity of φ and (18), we have

µ

2
‖x(k) − x⋆‖22 ≤ φ(x(k))− φ(x⋆) ≤ τk

[
φ(x(0))− φ(x⋆) + µ

2
‖x(0) − x⋆‖22

]
= τk (V0(x

⋆)− φ(x⋆)) .

According to (27),
µ

2
‖v(k) − x⋆‖22 = Vk(x

⋆)− V ⋆
k .

Since the relationship φ(x(k)) ≤ V ⋆
k implies φ(x⋆) ≤ V ⋆

k , we have

µ

2
‖v(k) − x⋆‖22 ≤ Vk(x

⋆)− φ(x⋆)
≤ (1− τk)φ(x⋆) + τkV0(x

⋆)− φ(x⋆)
= τk (V0(x

⋆)− φ(x⋆)) ,

13

where in the second inequality we used the fact that {Vk(x)} and {τk} is an estimate sequence of
φ(x). Finally, by convexity of the function µ

2‖ · −x⋆‖22 and (31),

µ

2
‖y(k) − x⋆‖22 ≤ αk

αk + 1
· µ
2
‖v(k) − x⋆‖22 +

1

αk + 1
· µ
2
‖x(k) − x⋆‖22

≤ αk

αk + 1
τk (V0(x

⋆)− φ(x⋆)) + 1

αk + 1
τk (V0(x

⋆)− φ(x⋆))

= τk (V0(x
⋆)− φ(x⋆))

= τk

[
φ(x(0))− φ(x⋆) + µ

2
‖x(0) − x⋆‖22

]
.

This finishes the proof of Theorem 1.

3.2 The non-blowout property

The convergence results in Theorem 1 requires µ ≤ µf . As we discussed in the introduction, such a
lower bound on µf may be hard to obtain in practice. So we will develop an adaptive method that
can automatically estimate µf in Section 4. Our estimation scheme involves repetitively calling the
scAPG method with some µ without knowing if it satisfies µ ≤ µf . Here we show that this will
not cause instability or blowout of the algorithm. More precisely, we show that φ(x(k)) ≤ φ(x(0))
for all k ≥ 1 as long as µ ≤ Lmin, which can be easily enforced in the algorithm.

Lemma 9. Suppose 0 < µ ≤ Lmin. Then Algorithm 4 guarantees that

φ(x(k+1)) ≤ φ(x(k)) + Mk−1

2

∥∥x(k) − x(k−1)
∥∥2
2
− Mk

2

∥∥x(k+1) − x(k)
∥∥2
2
. (33)

Proof. According to the optimality of x(k+1) = TMk
(y(k)) in minimizing the function ψ(y(k), ·),

there exists a ξ ∈ ∂Ψ(x(k+1)) such that

∇f(y(k)) + ξ +Mk(x
(k+1) − y(k)) = 0. (34)

Let βk =
αk(1−αk−1)
αk−1(1+αk)

. Using the assumed property of f(x), we have

φ(x(k+1)) ≤ f(y(k)) + 〈∇f(y(k)), x(k+1) − y(k)〉+ Mk

2
‖x(k+1) − y(k)‖22 +Ψ(x(k+1))

= f(y(k)) + 〈∇f(y(k)), x(k+1) − x(k)〉

+〈∇f(y(k)), x(k) − y(k)〉+ Mk

2
‖x(k+1) − y(k)‖22 +Ψ(x(k+1))

= f(y(k))− 〈ξ +Mk(x
(k+1) − y(k)), x(k+1) − x(k)〉

+〈∇f(y(k)), x(k) − y(k)〉+ Mk

2
‖x(k+1) − y(k)‖22 +Ψ(x(k+1))

= f(y(k)) + 〈∇f(y(k)), x(k) − y(k)〉+Ψ(x(k+1)) + 〈ξ, x(k) − x(k+1)〉

+
Mk

2
‖x(k+1) − y(k)‖22 −Mk〈x(k+1) − y(k), x(k+1) − x(k)〉

≤ f(x(k))− µf
2
‖x(k) − y(k)‖22 +Ψ(x(k))

+
Mk

2
‖x(k+1) − y(k)‖22 −Mk〈x(k+1) − y(k), x(k+1) − x(k)〉.

14

Here, the first inequality is due to the stopping condition for searching Mk in algorithm 4. The
first and third equalities are just reorganizing terms while the second one is due to (34). The last
inequality are guaranteed by the strong convexity of f(x) and the convexity of Ψ(x). Given that
y(k) = x(k) + βk(x

(k) − x(k−1)), the inequality above implies

φ(x(k+1)) ≤ φ(x(k))− µfβ
2
k

2
‖x(k) − x(k−1)‖22 +

Mk

2
‖x(k+1) − x(k) − βk(x(k) − x(k−1))‖22

−Mk〈x(k+1) − x(k) − βk(x(k) − x(k−1)), x(k+1) − x(k)〉

= φ(x(k)) +
(Mk − µf)β2k

2
‖x(k) − x(k−1)‖22 −

Mk

2
‖x(k+1) − x(k)‖22.

Using the fact α2
kMk = µ, we can show that

(Mk − µf)β2k = (Mk − µf)
(1− αk−1)

2α2
k

(1 + αk)2α
2
k−1

= (Mk − µf)
(1− αk−1)

2Mk−1

(1 + αk)2Mk

=

(
1− µf

Mk

)
(1− αk−1)

2

(1 + αk)2
Mk−1 ≤ Mk−1,

which implies our conclusion.

Lemma 10. Suppose 0 < µ ≤ Lmin. Then Algorithm 4 guarantees that

φ(x(k+1)) ≤ φ(x(0))− Mk

2

∥∥x(k+1) − x(k)
∥∥2
2
. (35)

Proof. Applying inequality (33) recursively, we obtain

φ(x(k+1)) ≤ φ(x(0)) +
M−1

2
‖x(0) − x(−1)‖22 −

Mk

2
‖x(k+1) − x(k)‖22

= φλ(x
(0))− Mk

2
‖x(k+1) − x(k)‖22.

Here the last equality holds because x(0) = x(−1).

The non-blowout property is also critical in our analysis of the homotopy method for solving
the ℓ1-LS problem (Section 5). In particular, it helps to show the sparsity of x(k) once x(0) is sparse.

4 An Adaptive APG method with restart

When applied to strongly convex minimization problems, Nesterov’s method in [Nes04, Algo-
rithm (2.2.6)] need to use Lf and µf as input parameters. Thanks to the line-search technique,
Algorithm 4 does not need to know Lf explicitly. However, it still need to know the convexity
parameter µf or a lower bound of it in order to guarantee the geometric convergence rate given in
Theorem 1.

Compared to searching for Lf , how to estimate µf on-the-fly is much more sophisticated. Nes-
terov [Nes07] suggested a restarting scheme to adjust the estimate of µf when it is unknown. This
scheme does not require any lower bound of µf , and can be shown to have geometric convergence
(up to a logarithmic factor). In this section, we adapt this restarting technique to Algorithm 4 and

15

obtain an adaptive APG method. This method has the same convergence guarantees as Nesterov’s
scheme. However, there are two important differences, which we will elaborate on at the end of
this section.

We first describe the basic idea of the restart scheme. If we know φ⋆ (the minimum value of φ)
and an upper bound of ‖x(0) − x⋆‖2, then we can check numerically at each iteration to see if the
inequality (18) holds. If this is not the case, then we must have µ > µf , and therefore need to
reduce µ and restart the algorithm. However, it is rarely the case that φ⋆ is known. Nevertheless,
we can show that if µ ≤ µf , then the norm of the gradient mapping gMk

(y(k)) is also reducing at a
geometric rate. Unlike the optimality gap φ(x(k))− φ⋆ (which we cannot compute in general), we
can compute ‖gMk

(y(k)‖2 at each iteration and check explicitly if its expected reduction is achieved.
If this is not the case, then we need to reduce µ and restart the algorithm.

The following lemma concerns the geometric decay of the norm of the gradient mapping.

Lemma 11. Suppose 0 < µ ≤ µf and the initial point x(0) of Algorithm 4 is obtained by calling
Algorithm 1, i.e.,

{x(0),M−1, g
(−1), S−1} ← LineSearch (xini, Lini)

with an arbitrary xini ∈ R
n and Lini ≥ Lmin. Then, for any k ≥ 0 in Algorithm 4, we have

∥∥gMk
(y(k))

∥∥
2
≤ 2
√
2τk

Mk

µ

(
1 +

S−1

M−1

)∥∥g(−1)
∥∥
2
. (36)

Proof. By definition of the gradient mapping,

∥∥gMk
(y(k))

∥∥
2
=
∥∥Mk

(
y(k) − x(k+1)

)∥∥
2
≤Mk

(∥∥y(k) − x⋆
∥∥
2
+
∥∥x(k+1) − x⋆

∥∥
2

)
,

where x⋆ is the unique minimizer of φ. By strong convexity of φ, we have

µ

2

∥∥x(k+1) − x⋆
∥∥
2
≤ φ(x(k+1))− φ(x⋆).

Then using Theorem 1, we obtain

‖gMk
(y(k))‖2 ≤ Mk

(√
2τk +

√
2τk+1

)√ 1

µ

(
φ(x(0))− φ(x⋆) + µ

2
‖x(0) − x⋆‖22

)

≤ 2Mk

√
2τk

√
1

µ

(
φ(x(0))− φ(x⋆) + µ

2
‖x(0) − x⋆‖22

)
. (37)

On the other hand, also by strong convexity of φ, we have

φ(x(0))− φ(x⋆) + µ

2

∥∥x⋆ − x(0)
∥∥2
2
≤ −

〈
φ′(x(0)), x⋆ − x(0)

〉
,

where φ′(x(0)) is a subgradient of φ at x(0). Since x(0) = TM−1
(xini), S−1 = SM−1

(xini) and

g(−1) = gM−1
(xini), according to Lemma 2, we have

〈
φ′(x(0)), x⋆ − x(0)

〉
≥ −

(
1 +

S−1

M−1

)∥∥g(−1)
∥∥
2
·
∥∥x(0) − x⋆

∥∥
2
.

Therefore,

φ(x(0))− φ(x⋆) + µ

2

∥∥x(0) − x⋆
∥∥2
2
≤
(
1 +

S−1

M−1

)∥∥g(−1)
∥∥
2
·
∥∥x(0) − x⋆

∥∥
2
.

16

Algorithm 5: {x̂, M̂ , µ̂} ← AdapAPG (xini, Lini, µ0, ǫ̂)

parameters: Lmin ≥ µ0, γdec ≥ 1, γsc > 1, θsc ∈ (0, 1)

{x(0),M−1, g
(−1), S−1} ← LineSearch(xini, Lini)

x(−1) ← x(0), L−1 ←M−1, µ← µ0
α−1 ← 1, τ0 ← 1
k ← 0
repeat

{x(k+1),Mk, αk, g
(k), Sk} ← AccelLineSearch(x(k), x(k−1), Lk, µ, αk−1)

τk+1 ← τk(1− αk)

if condition A holds, then // restart from new x(0) with same µ

x(0) ← x(k+1), x(−1) ← x(k+1), L−1 =Mk

g(−1) ← g(k), M−1 ←Mk, S−1 ← Sk
k ← 0,

else if condition B holds, then // restart from old x(0) with reduced µ
µ← µ/γsc
k ← 0

else // continue iteration without restart

Lk+1 ← max{Lmin,Mk/γdec}
k ← k + 1

end

until ω(x(k+1)) ≤ ǫ̂
x̂← x(k+1), M̂ ←Mk, µ̂← µ

Moreover, by Lemma 3,
∥∥x(0) − x⋆

∥∥
2
≤ 1

µ

(
1 +

S−1

M−1

)
‖g(−1)‖2.

The above two inequalities imply

φ(x(0))− φ(x⋆) + µ

2

∥∥x(0) − x⋆
∥∥2
2
≤ 1

µ

(
1 +

S−1

M−1

)2 ∥∥g(−1)
∥∥2
2
.

Combining this with the inequality (37) gives the desired result.

Now we are ready to explain the adaptive APG method presented in Algorithm 5. Similar to
the restart method of Nesterov [Nes07, Section 5.3], we evaluate the quality of µ as an estimate of
the convexity parameter by checking if the norm of the gradient mapping is reduced sufficiently. Let
θsc ∈ (0, 1) be a desired shrinking factor. we check the following two conditions at each iteration k:

• A:
∥∥gMk

(y(k))
∥∥
2
≤ θsc

∥∥g(−1)
∥∥
2
.

• B: 2
√
2τk

Mk

µ

(
1 + S−1

M−1

)
≤ θsc.

If A is satisfied first, then we restart the iterations with x(k+1) as the new starting point, set
k = 0, and update the three quantities g(−1), S−1 and M−1 accordingly (again use α−1 = 1 and

17

τ0 = 1). If A is not satisfied but B is satisfied first, it means the µ is larger than µf . In fact, if
µ ≤ µf , according to Lemma 11, we must have

∥∥gMk
(y(k))

∥∥
2
≤ 2
√
2τk

Mk

µ

(
1 +

S−1

M−1

)∥∥g(−1)
∥∥
2
≤ θsc

∥∥g(−1)
∥∥
2
,

which implies A. Since A is not satisfied, this contradiction indicates that µ > µf , and we have
to reduce µ, say by the factor γsc > 1. In this case, we restart Algorithm 4 at the previous x(0)

and keep g(−1), S−1 and M−1 unchanged. Note that, as k increases, at least one of A and B will
eventually be satisfied because τk converges to zero and Mk ≤ γincLf . Based on this observation,
we can analysis the convergence rate of Algorithm 5.

Theorem 2. Assume µ0 > µf > 0. Let gini denotes the first g(−1) computed by Algorithm 5, and
NA and NB the number of times that conditions A and B are satisfied, respectively. Then

NA ≤
⌈
log1/θsc

((
1 +

Lf

Lmin

) ‖gini‖2
ǫ̂

)⌉
,

NB ≤
⌈
logγsc

(
µ0
µf

)⌉
,

and the total number of iterations of Algorithm 5 is at most

(NA +NB)

√
Lfγincγsc

µf
ln

(
8

(
Lfγincγsc
µfθsc

)2(
1 +

Lf

Lmin

)2
)
. (38)

Proof. By Lemma 4 and the facts that Mk ≥ Lmin and SMk
(y(k)) ≤ Lf , we have

ω(x(k+1)) ≤
(
1 +

Lf

Lmin

)∥∥gMk
(y(k))

∥∥
2
.

According to the stopping criterion ω(x(k+1)) ≤ ǫ̂, the algorithm stops after the condition A is
satisfied NA times if

(
1 +

Lf

Lmin

)∥∥gMk
(y(k))

∥∥
2
≤
(
1 +

Lf

Lmin

)
θNA
sc ‖gini‖2 ≤ ǫ̂.

Therefore, NA is at most
⌈
log1/θsc

((
1 +

Lf

Lmin

)
‖gini‖2

ǫ̂

)⌉
.

Note that condition B can be satisfied only when µ > µf . Once µ = µ0/γ
NB
sc ≤ µf , it will no

longer be satisfied. Therefore, NB is at most
⌈
logγsc

(
µ0

µf

)⌉
and we always have µ ≥ µf/γsc.

Next we bound the number of iterations before either condition A or B must be satisfied. It
suffices to find the bound for condition B. For this purpose, we first upper bound the squared
left-hand side of condition B:

8τk

(
Mk

µ

)2(
1 +

S−1

M−1

)2

≤ 8

(
1−

√
µ

Lfγinc

)k (Lfγinc
µ

)2(
1 +

Lf

Lmin

)2

≤ 8

(
1−

√
µf/γsc
Lfγinc

)k (
Lfγinc
µf/γsc

)2(
1 +

Lf

Lmin

)2

.

18

Setting the above upper bound be less than θ2sc, we find that either condition A or B must be
satisfied after the following number of iterations:

ln

(
8

(
Lfγincγsc
µfθsc

)2(
1 +

Lf

Lmin

)2
)/

ln

(
1
/(

1−
√

µf
Lfγincγsc

))

≤
√
Lfγincγsc

µf
ln

(
8

(
Lfγincγsc
µfθsc

)2(
1 +

Lf

Lmin

)2
)
.

Hence, the total number iterations of Algorithm 5 is bounded by the above upper bound multiplied
by (NA +NB).

If µ0 ≤ µf , then Condition B is never satisfied, i.e., NB = 0. In this case, the total number of
iterations of Algorithm 5 is bounded by

⌈
log1/θsc

((
1 +

Lf

Lmin

) ‖gini‖2
ǫ̂

)⌉√
Lfγinc
µ0

ln

(
8

(
Lfγinc
µ0θsc

)2(
1 +

Lf

Lmin

)2
)
,

where we have replaced µf/γsc in (38) with µ0, both of which are lower bound on µf .
The total number of iterations given in Theorem 2 is asymptotically

O
(
κ
1/2
f log(κf) log

(κf
ǫ̂

))
+O

(
κ
1/2
f log(κf)

)
,

where κf = Lf/µf . This is the same complexity as for the restart scheme proposed by Nesterov for
his accelerated dual gradient (ADG) method [Nes07, Section 5.3]. Despite using a similar restart
scheme and having the same complexity bound, here we elaborate on some important differences
between our method from Nesterov’s.

• Nesterov’s ADG method exploits strong convexity in Ψ instead of f . In order to use it under
our assumption (that f is strongly convex), one needs to relocate a strong convexity term
from f to Ψ, and this relocated term needs to be adjusted whenever the estimate µ is reduced.

• The restart scheme suggested in [Nes07, Section 5.3] uses an extra line-search (Algorithm 1)
at each iteration, solely for the purpose of computing the gradient mapping at x(k). Our
method directly use the gradient mapping of at y(k), which does not require the extra line-
search, therefore the computational cost per iteration is lower. This saving was made possible
by our convergence analysis in Theorem 1, which shows that the auxiliary sequence y(k) also
converges geometrically to the optimal solution x⋆.

5 Homotopy continuation for sparse optimization

In this section, we focus on the ℓ1-regularized least-squares (ℓ1-LS) problem (6), which is a special
case of (1) with

f(x) =
1

2
‖Ax− b‖22, Ψ = λ‖x‖1,

where A ∈ R
m×n and b ∈ R

m are problem data, and λ is a pre-specified regularization parameter.
To emphasize its dependency on λ, we define

φλ(x) ,
1

2
‖Ax− b‖22 + λ‖x‖1.

19

Correspondingly, some of the notations we introduced in the previous sections can be further
parametrized by λ. More specifically,

ψλ,L(y;x) = f(y) +∇f(y)T (x− y) + L

2
‖x− y‖22 + λ‖x‖1

Tλ,L(y) = argmin
x

ψλ,L(y;x)

gλ,L(y) = L
(
y − Tλ,L(y)

)

ωλ(x) = min
ξ∈∂‖x‖1

‖∇f(x) + λξ‖∞

Sλ,L(y) =
‖∇f(Tλ,L(y))−∇f(y)‖2

‖Tλ,L(y)− y‖2
.

Similarly, we use AdapAPG(xini, Lini, µ0, ǫ̂, λ) to represent applying Algorithm (5) to (6) whose reg-
ularization parameter is λ. Given the gradient ∇f(x), the optimality residue ωλ(x) can be easily
computed with O(n) flops. For the ℓ1-LS problem, the proximal gradient step, Tλ,L(x), has the
closed-form solution given as

Tλ,L(x) = shrink

(
x− 1

L
∇f(x), λ

L

)
, (39)

where shrink : Rn×R
+ → R

n is the well-known shrinkage or soft-thresholding operator, defined as

(shrink(x, α))i = sgn(xi)max {|xi| − α, 0} , i = 1, . . . , n. (40)

We are mainly interested in solving the ℓ1-LS problem in the context of high-dimensional sparse
optimization. In particular, we focus on the case when m < n and the solution x⋆(λ) is sparse
(which requires the parameter λ to be sufficiently large). As discussed in the introduction, in such
a context, the function f(x) = (1/2)‖Ax − b‖22 is not strongly convex. Therefore, we only expect
a sublinear convergence rate (at least globally) when using first-order optimization methods. For
example, we have the iteration complexity O(Lf/ǫ) when using the PG method, and O(

√
Lf/ǫ)

for the APG methods.
Nevertheless, as explained in Section 1.2, we can use a homotopy continuation strategy to obtain

much faster convergence. The key idea is to solve the ℓ1-LS problem with a large regularization
parameter λ0 first, and then gradually decreases the value of λ until the target regularization is
reached. In [XZ12], the PG method (Algorithm 2) is employed to solve the ℓ1-LS problem for a
fixed λ up to an adequate precision, then the solution is used to warm start the next stage. It
is shown in [XZ12] that under a restricted eigenvalue condition on A, such a homotopy scheme
guarantees that all iterates along the solution path are sufficiently sparse, which implies restricted
strong convexity. As a result, a geometric rate of convergence can be established for each homotopy
stage, and the overall complexity of the method is Õ(κs log(1/ǫ)) for an appropriate sparsity level s,
where κs is a restricted condition number defined in (8), and the notation Õ(·) hides additional
log(κs) factors.

In this section, we show that, by combining the AdapAPG method (Algorithm 5) with the
same homotopy continuation scheme, the iteration complexity for solving the ℓ1-LS problem can be
improved to Õ

(√
κs′ log(1/ǫ)

)
, with a slightly larger sparsity level s′. The APG homotopy method

is presented in Algorithm 6. To avoid confusion over the notations, we use λtgt to denote the target
regularization parameter. The method starts with

λ0 = ‖AT b‖∞,

20

Algorithm 6: x̂(tgt) ← APGHomotopy(A, b, λtgt, ǫ, L0, µ̂0)

input: A ∈ R
m×n, b ∈ R

n, λtgt > 0, ǫ > 0, L0 ≥ µ̂0 > 0
parameters: η ∈ (0, 1), δ ∈ (0, 1)

initialize: λ0 ← ‖AT b‖∞, x̂(0) ← 0, M̂0 ← L0

N ← ⌊ln(λ0/λtgt) / ln(1/η)⌋
for K = 0, 1, 2, . . . , N − 1 do

λK+1 ← ηλK
ǫ̂K+1 ← δλK+1

{x̂(K+1), M̂K+1, µ̂K+1} ← AdapAPG
(
x̂(K), M̂K , µ̂K , ǫ̂K+1, λK+1

)

end

{x̂(tgt), M̂tgt} ← AdapAPG
(
x̂(N), M̂N , µ̂N , ǫ, λtgt

)

return x̂(tgt)

since this is the smallest value for λ such that the ℓ1-LS problem has the trivial solution 0 (by
examining the optimality condition). Our method has two parameters η ∈ (0, 1) and δ ∈ (0, 1).
They control the algorithm as follows:

• The sequence of values for the regularization parameter is determined as λk = ηkλ0 for
k = 1, 2, . . ., until the target value λtgt is reached.

• For each λk except λtgt, we solve problem (6) with a proportional precision δλk. For the last
stage with λtgt, we solve to the absolute precision ǫ.

Our convergence analysis of the APG homotopy method is based on the following assumption,
which involves the restricted eigenvalues defined in (7).

Assumption 1. Suppose b = Ax̄ + z. Let S̄ = supp(x̄) and s̄ = |S̄|. There exist γ > 0 and
δ′ ∈ (0, 0.2] such that γ > (1 + δ′)/(1− δ′) and

λtgt ≥ max

{
2,

γ + 1

(1− δ′)γ − (1 + δ′)

}
4 ‖AT z‖∞. (41)

Moreover, there exists an integer s̃ such that ρ−(A, s̄+ 3s̃) > 0 and

s̃ >
24
(
γincρ+(A, s̄+ 3s̃) + 3ρ+(A, s̃)

)

ρ−(A, s̄+ s̃)
(1 + γ)s̄. (42)

We also assume that Lmin ≤ γincρ+(A, s̄+ 3s̃).

As we will see later, the quantity δ′ in the above assumption is related to the parameter δ in
Algorithm 6, and γ defines a conic condition on x− x̄, i.e.,

‖(x− x̄)S̄c‖1 ≤ γ‖(x− x̄)S̄‖1,
which holds whenever ωλ(x) ≤ δ′λ. According to [ZH08], the above assumption implies that the
solution x⋆(λ) is sparse whenever λ ≥ λtgt; more specifically, ‖x⋆(λ)S̄c‖0 ≤ s̃ (here S̄c denotes
the complement of the support set S̄). We will show that by choosing the parameters η and δ in
Algorithm 6 appropriately, these conditions also imply that all iterates along the solution path are
sparse. We note that Assumption 1 is very similar to Assumption 1 in [XZ12], and the interpreta-
tions and remarks made there also apply here. We repeats some important points here:

21

• The existence of s̃ satisfying the conditions like (42) is necessary and standard in sparse
recovery analysis. This is closely related to the restricted isometry property (RIP) of [CT05]
which assumes that there exist some s > 0, and ν ∈ (0, 1) such that κ(A, s) < (1+ν)/(1−ν).
See [XZ12, Section 3] for an example of sufficient RIP conditions.

• Our RIP-like condition (42) can be much stronger than the corresponding conditions estab-
lished in the sparse recovery literature (see, e.g., [LM11] and references therein), which are
only concerned about the recovery property of the optimal solution x⋆. In contrast, our con-
dition needs to guarantee sparsity for all iterates along the solution path, thus is “dynamic”
in nature. In particular, in addition to the matrix A, our RIP-like condition (42) also depends
on algorithmic parameters γinc, η and δ (Theorem 4 will relate η to δ and δ′). For example,
if we allow δ′ ∈ (0, 1), then we need to increase the constant in (42) from 24 to 48 for the
convergence results in this section to hold.

• If Lmin > γincρ+(A, s̄ + 3s̃), then we may simply replace γincρ+(A, s̄ + 3s̃) by Lmin in the
assumption, and all theorem statements hold with γincρ+(A, s̄ + 3s̃) replaced by Lmin. Nev-
ertheless in practice, it is natural to simply pick

Lmin = ρ+(A, 1) = max
i∈{1,...,n}

‖Ai‖22,

where Ai is the i-th column of A. It automatically satisfies the condition Lmin ≤ ρ+(A, s̄+3s̃).

Our first result below concerns the local geometric convergence of Algorithm 5 when applied to
solve the ℓ1-LS problem. Recall that we have µf = 0 under the assumption m < n, therefore global
geometric convergence starting from an arbitrary point cannot be established. Nevertheless, if the
starting point x(0) is sparse and the optimality condition is satisfied with adequate precision, then
all iterates along the solution path are sparse. This implies that restricted strong convexity holds
and Algorithm 5 actually has geometric convergence.

Theorem 3. Suppose Assumption 1 holds. If the initial point xini in Algorithm 5 satisfies

∥∥xiniS̄c

∥∥
0
≤ s̃, ωλ(x

ini) ≤ δ′λ, (43)

then for all k ≥ 0, we have
∥∥x(k)

S̄c

∥∥
0
≤ s̃. Moreover, all the three conclusions of Theorem 2 holds by

replacing Lf and µf with ρ+(A, s̄+ 3s̃) and ρ−(A, s̄+ 3s̃), respectively.

Our next result gives the overall iteration complexity of the APG homotopy method in Algo-
rithm 6. To simplify presentation, we let s′ = s̄+ 3s̃, and use the following notations:

ρ+(s
′) = ρ+(A, s̄+ 3s̃),

ρ−(s
′) = ρ−(A, s̄+ 3s̃),

κs′ = κ(A, s̄+ 3s̃) =
ρ+(A, s̄+ 3s̃)

ρ−(A, s̄+ 3s̃)
.

Roughly speaking, if the parameters δ and η are chosen appropriately, then the total number of
proximal-gradient steps for finding an ǫ-optimal solution is Õ(

√
κs′ ln(1/ǫ)).

22

Theorem 4. Suppose Assumption 1 holds for some δ′, γ and s̃, and the parameters δ and η in
Algorithm 6 are chosen such that

1 + δ

1 + δ′
≤ η < 1.

Let N =
⌊
ln (λ0/λtgt) / ln η

−1
⌋
as in the algorithm. Then:

1. The condition (43) holds for each call of Algorithm 5. For K = 0, . . . , N − 1, the number of
proximal-gradient steps in each call of Algorithm 5 is no more than

(
log 1

θsc

(
C

δ

)
+D

)√
κs′γincγsc ln

(
8

(
κs′γincγsc

θsc

)2(
1 +

ρ+(s
′)

Lmin

)2
)
,

where

C =

(
1 +

ρ+(s
′)

Lmin

)√
8γincκs′(1 + γ)s̄, D =

⌈
logγsc

(
µ̂0

ρ−(s′)

)⌉
+ 1.

Note that this bound is independent of λK .

2. For K = 0, . . . , N − 1, the outer-loop iterates x̂(K) satisfies

φλtgt
(x̂(K))− φ⋆λtgt

≤ η2(K+1) 4.5(1 + γ)λ20s̄

ρ−(A, s̄+ s̃)
, (44)

and the following bound on sparse recovery performance holds

‖x̂(K) − x̄‖2 ≤ ηK+1 2λ0
√
s̄

ρ−(A, s̄+ s̃)
.

3. When Algorithm 6 terminates, the total number of proximal-gradient steps is Õ
(√
κs′ ln(1/ǫ)

)
,

where the notation Õ(·) hides additional ln(κs′) factors. Moreover, the output x̂(tgt) satisfies

φλtgt
(x̂(tgt))− φ⋆λtgt

≤ 4(1 + γ)λtgts̄

ρ−(A, s̄+ s̃)
ǫ.

We note that even if we solve each homotopy stage to the same high precision as the final stage,
i.e., setting ǫ̂K+1 = min(ǫ, δλK+1), the global convergence rate is still near geometric, and the total
number of proximal-gradient steps is no more than Õ

(√
κs′ (ln(1/ǫ))

2
)
.

The rest of this section is devoted to the proofs of the above convergence results. In Section 5.1
we recall and adapt several lemmas from [XZ12] that are necessary for us to show that all the
iterates along the solution path of the homotopy method is sparse. Then Sections 5.2 and 5.3
contain the proofs for Theorems 3 and 4, respectively.

5.1 Sparsity along the solution path

First, we list some useful inequalities that are direct consequences of (41) and δ′ ∈ (0, 0.2]:

(1− δ′)λ− 4‖AT z‖∞ > 0 (45)

(1 + δ′)λ+ ‖AT z‖∞ ≤ 1.4λ (46)

λ+ ‖AT z‖∞ ≤ (1.4− δ′)λ (47)

(1 + δ′)λ+ ‖AT z‖∞
(1− δ′)λ− ‖AT z‖∞

≤ γ. (48)

23

The following result means that if x is sparse, and it satisfies an approximate optimality condi-
tion for minimizing φλ, then φλ(x) is not much larger than φλ(x̄).

Lemma 12 (Lemma 4 in [XZ12]). Suppose Assumption 1 holds for some x̄, δ′, γ and s̃, and
λ ≥ λtgt. If x is sparse, i.e., ‖xS̄c‖0 ≤ s̃, and it satisfies the approximate optimality condition

min
ξ∈∂‖x‖1

∥∥AT (Ax− b) + λξ
∥∥
∞
≤ δ′λ, (49)

then we have
‖(x− x̄)S̄c‖1 ≤ γ‖(x− x̄)S̄‖1 (50)

and

‖x− x̄‖2 ≤
1.4λ

√
s̄

ρ−(A, s̄+ s̃)
(51)

and

φλ(x) ≤ φλ(x̄) +
1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
. (52)

The next lemma means that if x is sparse, and φλ(x) is not much larger than φλ(x̄), then both
‖x− x̄‖2 and ‖x− x̄‖1 are small.

Lemma 13 (Lemma 5 in [XZ12]). Suppose Assumption 1 holds for some x̄, δ′, γ and s̃, and
λ ≥ λtgt. Consider x such that

‖xS̄c‖0 ≤ s̃, φλ(x) ≤ φλ(x̄) +
1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
,

then

max

{
1

2.8λ
‖A(x− x̄)‖22, ‖x− x̄‖1

}
≤ 1.4 (1 + γ)λs̄

ρ−(A, s̄+ s̃)
.

The next lemma implies that if both x(k) and x(k−1) are sparse and their objective values are
not much larger than φλ(x̄), then the next iterate x(k+1) generated by the accelerated line search
procedure (Algorithm 3) is also sparse. Its proof uses similar arguments as in [XZ12, Lemma 6].

Lemma 14. Suppose Assumption 1 holds for some x̄, δ′, γ and s̃, and λ ≥ λtgt. Suppose x and x′

satisfies

‖xS̄c‖0 ≤ s̃, φλ(x) ≤ φλ(x̄) + 2δ′(1+γ)λ2s̄
ρ−(A,s̄+s̃) , (53)

‖x′S̄c‖0 ≤ s̃, φλ(x
′) ≤ φλ(x̄) + 2δ′(1+γ)λ2s̄

ρ−(A,s̄+s̃) ,

and y = x+ β(x− x′) with 0 ≤ β ≤ 1. Then for any L < γincρ+(A, s̄+ 3s̃), we have

∥∥(Tλ,L(y)
)
S̄c

∥∥
0
< s̃.

Proof. Recall that Tλ,L can be computed by the soft-thresholding operator as in (39). That is,

(TL(y))i = sgn(ỹi)max

{
|ỹi| −

λ

L
, 0

}
, i = 1, . . . , n,

24

where

ỹ = y − 1

L
AT (Ay − b) = y − 1

L
ATA(y − x̄) + 1

L
AT z.

In order to upper bound the number of nonzero elements in (TL(y))S̄c , we split the truncation
threshold λ/L on elements of ỹS̄c into three parts:

• 0.175λ/L on elements of yS̄c ,

• 0.125λ/L on elements of (1/L)AT z, and

• 0.7λ/L on elements of (1/L)ATA(y − x̄).

Since by assumption ‖AT z‖∞ ≤ λ/8, we have
∣∣{j : ((1/L)AT z)j > 0.125λ/L}

∣∣ = 0. Therefore,

∥∥(Tλ,L(y)
)
S̄c

∥∥
0
≤
∣∣{j ∈ S̄c : |yj | > 0.175λ/L

}∣∣+
∣∣{j :

∣∣(ATA(y − x̄)
)
j

∣∣ ≥ 0.7λ
}∣∣.

Note that

∣∣{j ∈ S̄c : |yj | ≥ 0.175λ/L}
∣∣ =

∣∣{j ∈ S̄c : |(y − x̄)j | ≥ 0.175λ/L}
∣∣

≤
∣∣{j : |(y − x̄)j | ≥ 0.175λ/L}

∣∣
≤ L(0.175λ)−1‖y − x̄‖1
≤ L(0.175λ)−1((1 + β)‖x− x̄‖1 + β‖x′ − x̄‖1)

≤ 1.4L(1 + 2β)(1 + γ)λs̄

0.175λρ−(A, s̄+ s̃)
(54)

≤ 24L(1 + γ)s̄

ρ−(A, s̄+ s̃)
, (55)

where the second-to-the-last inequality follows from Lemma 13, and the last one used β ∈ [0, 1].
For the last part, consider S with maximum size s = |S| ≤ s̃ such that

S ⊂ {j : |(ATA(y − x̄))j | ≥ 0.7λ}.

Then there exists u such that ‖u‖∞ = 1 and ‖u‖0 = s, and 0.7 sλ ≤ uTATA(y − x̄). Moreover,

0.7 sλ ≤ uTATA(y − x̄) ≤ ‖Au‖2‖A(y − x̄)‖2 ≤
√
ρ+(A, s)

√
s(1 + 2β)

√
2 · 1.42 (1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
,

where the last inequality again follows from Lemma 13. Taking squares of both sides of the above
inequality gives

s ≤ 8 ρ+(A, s)(1 + γ)s̄(1 + 2β)2

ρ−(A, s̄+ s̃)
≤ 72 ρ+(A, s̃)(1 + γ)s̄

ρ−(A, s̄+ s̃)
< s̃,

where the last inequality is due to (42). Since s = |S| achieves the maximum possible value such
that s ≤ s̃ for any subset S of {j : |(ATA(y − x̄))j | ≥ 0.7λ}, and the above inequality shows that
s < s̃, we must have

S = {j : |(ATA(y − x̄))j | ≥ 0.7λ},

25

and thus

s =
∣∣{j : |(ATA(y − x̄))j | ≥ 0.7λ}

∣∣ ≤
⌊
72 ρ+(A, s̃)(1 + γ)s̄

ρ−(A, s̄+ s̃)

⌋
.

Finally, combining the above bound with the bound in (55) gives

∥∥(Tλ,L(x)
)
S̄c

∥∥
0
≤ 24 (L+ 3ρ+(A, s̃))

ρ−(A, s̄+ s̃)
(1 + γ)s̄.

Under the assumption L < γincρ+(A, s̄+ 3s̃) and (42), the right-hand side of the above inequality
is less than s̃. This proves the desired result.

5.2 Proof of Theorem 3

According to (14), the PG method keeps the value of objective function decreasing monotonically.
This is the key property for the PGH method in [XZ12] to enforce all the iterates along the solution
path to be sufficiently sparse. Unfortunately, the scAPG and AdapAPG methods do not have such
a monotone decreasing property. As an alternative, we proved that they have a non-blowout
property (Lemma 10); that is, the objective value at any intermediate step will not exceed the
initial objective value. This is the key in showing that all the iterates along the solution path are
sufficiently sparse for the AdapAPG method, provided that the initial point is sparse and not far
from optimality.

Lemma 15. Suppose Assumption 1 holds for some x̄, δ′, γ and s̃. In addition, assume λ ≥ λtgt
and µ ≤ Lmin. If the initial point xini in Algorithm 5 satisfies

∥∥xiniS̄c

∥∥
0
≤ s̃, ωλ(x

ini) ≤ δ′λ,

then for all k ≥ 0, we have ∥∥x(k)
S̄c

∥∥
0
≤ s̃,

∥∥y(k)
S̄c

∥∥
0
≤ 2s̃.

Proof. According to Lemma 12, the assumptions on xini implies

φλ(x
ini) ≤ φλ(x̄) +

1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
.

Because x(0) = Tλ,M (xini), we have φλ(x
(0)) ≤ φλ(xini) so that

φλ(x
(0)) ≤ φλ(x̄) +

1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
.

Although Algorithm 5 is not monotone decreasing, the non-blowout property in Lemma 10 guar-
antees that, for all k ≥ 0,

φλ(x
(k+1)) ≤ φλ(x̄) +

1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
.

Because
∥∥xini

S̄c

∥∥
0
≤ s̃, we have

∥∥x(−1)

S̄c

∥∥
0
=
∥∥x(0)

S̄c

∥∥
0
≤ s̃ according to Lemma 14. Suppose

∥∥x(k)
S̄c

∥∥
0
≤ s̃

and
∥∥x(k−1)

S̄c

∥∥
0
≤ s̃. Since y(k+1) = x(k)+βk(x

(k)−x(k−1)) and x(k+1) = TMk
(y(k)), Lemma 14 again

implies
∥∥x(k+1)

S̄c

∥∥
0
≤ s̃. By induction, we have

∥∥x(k)
S̄c

∥∥
0
≤ s̃ holds for all k, which further implies

∥∥y(k)
S̄c

∥∥
0
≤ 2s̃ for all k.

26

According to Lemma 12, under the condition (43), Algorithm 5 essentially operates only on
vectors with at most either s̃ or 2s̃ nonzero components. Therefore, we are solving the ℓ1-LS
problem restricted in a sparse subspace, where the restricted smoothness and restricted strong
convexity are available, that is,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ ρ−(A, s̄+ 3s̃)

2
‖x− y‖22,

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ ρ+(A, s̄+ 3s̃)

2
‖x− y‖22.

Here, the effective sparse level is s′ = s̄ + 3s̃ because when the above two inequalities are used in
Section 3 and Section 4, they are always applied to x and y with

∥∥xS̄c

∥∥
0
≤ s̃ and

∥∥yS̄c

∥∥
0
≤ 2s̃.

To show Theorem 3, we just need to repeat the proof of Theorem 2 by replacing Lf and µf with
ρ+(A, s̄+ 3s̃) and ρ−(A, s̄+ 3s̃), respectively.

5.3 Proof of Theorem 4

In Algorithm 6, x̂(K) denotes an approximate solution for minimizing the function φλK
. A key idea

of the APG homotopy method is to use x̂(K) as the starting point in the AdapAPG method for
minimizing the next function φλK+1

. The following lemma shows that if we choose the parame-

ters δ and η appropriately, then x̂(K) satisfies the approximate optimality condition for λK+1 that
guarantees local geometric convergence.

Lemma 16 (Lemma 7 in [XZ12]). Suppose x̂(K) satisfies the approximate optimality condition

ωλK
(x̂(K)) ≤ δλK

for some δ < δ′. Let λK+1 = ηλK for some η that satisfies

1 + δ

1 + δ′
≤ η < 1. (56)

Then we have
ωλK+1

(x̂(K)) ≤ δ′λK+1.

Lemma 17 (Lemma 8 in [XZ12]). Suppose Assumption 1 holds for some x̄, δ′, γ and s̃, and
λ ≥ λtgt. If x satisfies

ωλ(x) ≤ δ′λ,
then for all λ′ ∈ [λtgt, λ], we have

φλ′(x)− φλ′(x⋆(λ′)) ≤ 2(1 + γ)(λ+ λ′)(ωλ(x) + λ− λ′)s̄
ρ−(A, s̄+ s̃)

.

Now we are ready to give an estimate of the overall complexity of the APG homotopy method
(Algorithm 6). First, we need to bound the number of iterations within each call of Algo-
rithm 5. According to Theorem 3 and Theorem 2, the total number of iterations in each call
of AdapAPG

(
x̂(K), M̂K , µ̂K , ǫ̂K+1, λK+1

)
is no more than

(NA +NB)
√
κs′γincγsc ln

(
8

(
κs′γincγsc

θsc

)2(
1 +

ρ+(s
′)

Lmin

)2
)
, (57)

27

where NA is the number of times that condition A is satisfied first, which is bounded as

NA ≤
⌈
log 1

θsc

((
1 +

ρ+(s
′)

Lmin

) ‖gλK+1,M (x̂(K))‖2
ǫ̂

)⌉

with M generated from {x(0),M, g(−1), S−1} ← LineSearch(x̂(K), M̂ (K)), and NB is the number
of times that condition B is satisfied first, which is bounded as

NB ≤
⌈
logγsc

(
µ̂K

ρ−(s′)

)⌉
≤
⌈
logγsc

(
µ̂0

ρ−(s′)

)⌉
.

The bound on NA depends on ‖gλK+1,M (x̂(K))‖2, which we can further bound using Lemma 1
to obtain

∥∥gλK+1,M (x̂(K))
∥∥2
2
≤ 2M

(
φλK+1

(x̂(K))− φ⋆λK+1

)

≤ 2γincρ+(s
′)
(
φλK+1

(x̂(K))− φ⋆λK+1

)
,

where φ⋆λK+1
= minx φλK+1

(x). We still need to bound the gap φλK+1
(x̂(K)) − φ⋆λK+1

. Since

Lemma 16 implies that ωλK+1
(x̂(K)) ≤ δ′λK+1, we can obtain directly from Lemma 17 the following

inequality by setting λ′ = λ = λK+1 and x = x̂(K):

φλK+1
(x̂(K))− φ⋆λK+1

≤
4(1 + γ)λ2K+1s̄

ρ−(A, s̄+ s̃)
≤

4(1 + γ)λ2K+1s̄

ρ−(s′)
.

Therefore, the bound on NA can be relaxed as

NA ≤
⌈
log 1

θsc

((
1 +

ρ+(s
′)

Lmin

) ‖gλK+1,M (x̂(K))‖2
δλK+1

)⌉

≤



log 1

θsc



(
1 +

ρ+(s
′)

Lmin

)
√
2γincρ+(s′)

(
φλK+1

(x̂(K))− φ⋆λK+1

)

δλK+1






≤



log 1

θsc



(
1 +

ρ+(s
′)

Lmin

)
√
8γincρ+(s′)(1 + γ)λ2K+1s̄

δλK+1

√
ρ−(s′)






=

⌈
log 1

θsc

((
1 +

ρ+(s
′)

Lmin

) √
8γincκs′(1 + γ)s̄

δ

)⌉
.

Combining the above bounds on NA and NB with (57) yields Part 1 of Theorem 4. We note that
this bound is independent of λK+1.

In the homotopy method (Algorithm 6), after K outer iterations for K ≤ N − 1, we have from
Lemma 16 that ωλK+1

(x̂(K)) ≤ δ′λK+1. The sparse recovery performance bound

‖x̂(K) − x̄‖2 ≤ 2ηK+1λ0
√
s̄/ρ−(A, s̄+ s̃)

28

follows directly from Lemma 12 and λK+1 = ηK+1λ0. Moreover, from Lemma 17 with λ′ = λtgt,
λ = λK+1, and x = x̂(K), we obtain

φλtgt
(x̂(K))− φ⋆λtgt

≤
4.5(1 + γ)λ2K+1s̄

ρ−(A, s̄+ s̃)
= η2(K+1) 4.5(1 + γ)λ20s̄

ρ−(A, s̄+ s̃)
.

This proves Part 2 of Theorem 4.
In Algorithm 6, the number of homotopy stages, excluding the last one for λtgt, is

N =

⌊
ln(λ0/λtgt)

ln(1/η)

⌋
.

The last iteration for λtgt uses an absolute precision ǫ instead of the relative precision δλtgt. There-
fore, the overall complexity is bounded by

(

ln(λ0/λtgt)

ln(1/η)

(

log 1

θsc

(

C

δ

)

+D

)

+ logγsc
max

(

1,
λtgtC

ǫ

)

+D

)

√

κs′γincγsc ln

(

8

(

κs′γincγsc
θsc

)2 (

1 +
ρ+(s

′)

Lmin

)2
)

,

which is Õ
(√
κs′ ln(1/ǫ)

)
. Finally, when Algorithm 6 terminates, we have ωλtgt

(x̂(tgt)) ≤ ǫ. There-
fore we can apply Lemma 17 with λ = λ′ = λtgt and x = x̂(tgt) to obtain the last desired bound in
Part 3 of Theorem 4.

6 Numerical experiments

In this section, we present preliminary numerical experiments to support our theoretical analy-
sis. Here our focus is on illustrating the convergence properties of different algorithms on a few
representative examples, in order to visualize and better understand the essential message of the
developed theory.

In addition to the PG method (Algorithm 2) and FISTA [BT09], we also compare with a
simple restart scheme for dealing with unknown convexity parameters suggested by O’Donoghue
and Candès [OC12]. In the context of minimizing the composite objective in (1), they suggested
to restart FISTA whenever it exhibits nonmonotone behaviors (i.e., when the objective value in-
creases). More specifically, the following two schemes were suggested in [OC12]:

• Function scheme: restart FISTA whenever φ(x(k)) > φ(x(k−1)).

• Gradient scheme: restart FISTA whenever gLf
(y(k−1))T (x(k) − x(k−1)) > 0 or equivalently

(y(k−1) − x(k))T (x(k) − x(k−1)) > 0. (58)

Note that FISTA can be considered as a variant of Nesterov’s method [Nes04] that always use µ = 0.
The analysis in [OC12] reveals that when such a method is applied to minimize strongly convex
quadratic functions, it exhibits oscillatory (nonmonotone) regimes, and the period of the dominant
mode is proportional to

√
Lf/µf . Then following the arguments in [Nes07], it can be shown that

restarting FISTA with such a period will leads to the optimal complexity of O
(√

Lf/µf ln(1/ǫ)
)
.

However, their analysis does not hold in general for non-quadratic functions.
The empirical study in [OC12] show that these two simple restart schemes perform similarly well.

But the gradient scheme has the advantages of being more numerically stable near the optimum

29

0 100 200 300 400 500

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

PG
FISTA
FISTA+RS
AdapAPG (µ0 = 200)
AdapAPG (µ0 = 0.2)

k

φ
(x

(k
))
−
φ
⋆

(a) Objective gap vs. number of iterations.

0 50 100 150 200
10

−1

10
0

10
1

10
2

10
3

10
4

Mk (µ0 = 200)
µ (µ0 = 200)
Mk (µ0 = 0.2)
µ (µ0 = 0.2)

k
(b) AdapAPG: automatic tuning of Mk and µ.

Figure 1: Minimizing a random instance of the log-sum-exp function.

and not requiring extra computation. So in our experiments we only show comparisons against the
gradient scheme, which we refer to as FISTA+RS (meaning FISTA with ReStart).

For our AdapAPG method (Algorithm 5) and APG homotopy method (Algorithm 6), we use
the following values of the parameters unless otherwise stated:

parameters γinc γdec θsc γsc η δ

values 2 2 0.1 10 0.8 0.2

We also take advantage of the non-blowout property shown in Section 3.2, and always restart with
the most recent iterate even if condition B is satisfied first in Algorithm 5.

6.1 Experiments on the AdapAPG method

We consider the problem of minimizing the log-sum-exp function, i.e.,

minimize
x∈Rn

f(x) , ρ log

(
m∑

i=1

exp

(
1

ρ
(aTi x− bi)

))

where all ai ∈ R
n and bi ∈ R, for i = 1, . . . ,m. This corresponds to problem (1) with Ψ(x) = 0. In

our experiments we took n = 200 and m = 10000, and generated the ai’s and bi’s randomly with
independent, standard normal distribution. Note that this is not really a strongly convex function,
since it grows linearly asymptotically. However it is smooth and the region around the optimum
may be well approximated by a strongly convex quadratic function. The parameter ρ controls the
smoothness of f and is set to ρ = 0.1.

Figure 1 shows the convergence characteristics of fifth different methods on a random instance,
and the AdapAPG method was initialized with two different values of µ0. All methods are equipped
with a line search procedure on the Lipschitz constant with the initial value L0 = 10000. We see
that the PG method converged with a slow linear rate. FISTA was much faster than PG in the
beginning but slowed down eventually due to its lack of capability of exploiting strong convexity;

30

0 100 200 300 400 500

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

PG
FISTA
FISTA+RS
AdapAPG (µ0 = 200)
AdapAPG (µ0 = 0.2)

k

φ
(x

(k
))
−
φ
⋆

(a) Objective gap vs. number of iterations.

0 50 100 150 200
10

−1

10
0

10
1

10
2

10
3

10
4

Mk (µ0 = 200)
µ (µ0 = 200)
Mk (µ0 = 0.2)
µ (µ0 = 0.2)

k
(b) AdapAPG: automatic tuning of Mk and µ.

Figure 2: Minimizing another random instance of the log-sum-exp function.

it also demonstrated nonmotone ripples or bumps in the objective value. FISTA+RS converged
fast with a linear rate. For the first run of the AdapAPG method, we intentionally chose a large
initial value µ0 = 200 to test its automatic tuning capability. In fact this initial value is even larger
than the restricted Lipschitz constant Mk in later iterations found by the line search procedure;
see Figure 1(b). For the second run, we set µ0 to the final estimate of µ by the first run.

In Figure 1(a), each marker on the curves indicates a restart of the corresponding algorithm.
We see that FISTA+RS had three restarts, which was activated by the condition (58). Out of
the seven restarts of the AdapAPG method with µ0 = 200, four of them was due to condition A,
and three of them was due to condition B (see Algorithm 5). Correspondingly, Figure 1(b) shows
that the estimate of the convexity parameter µ was reduced three times, each by a factor of 10, and
the final estimate was 0.2. After the last reduction of µ (around k = 120), AdapAPG converged
fast with a linear rate that is similar to FISTA+RS. For the second run of the AdapAPG method,
we used the initial estimate µ0 = 0.2 directly. As a consequence, all of the five restarts in this
case was due to condition A, and the value of µ stayed at the constant 0.2. Without the need for
tuning µ, the second run of the AdapAPG converged as fast as FISTA+RS.

From the above comparison, it looks that FISTA+RS is the best method for this particular
problem instance, since it demonstrated the fastest convergence without explicit tuning of the con-
vexity parameter. AdapAPG may achieve the same convergence speed, but needs to be initialized
with a good estimate of µ to avoid the extra effort involved in tuning it. In general, the procedure
of tuning µ costs extra number of iterations, but with a quite modest degradation of performance.
For example, Figure 1 showed that AdapAPG with µ0 = 200 needed an extra 50% iterations while
reducing µ by three orders of magnitude.

However, the performance of FISTA+RS vary substantially even on the same class of log-sum-
exp functions. Figure 2 illustrates the situation with another random instance in this problem
class, in which we simply changed the random seed for generating the problem with the same size.
For this instance, the non-monotone behaviour of FISTA appeared quite late, so the first restart
of FISTA+RS occurred after k = 170. By that time both runs of the AdapAPG method had

31

already finished with high precision (even for the first run which needed to reduce µ three times
by a total factor of 1000). Therefore, the AdapAPG method often has a more robust performance
guarantee, which is backed by our convergence analysis for general convex functions. In contrast,
the FISTA+RS scheme is motivated by the analysis on the quadratic functions, and its behavior
on non-quadratics can be hard to predict.

6.2 Experiments on homotopy continuation

We demonstrate the effectiveness of combining the AdapAPG method with homotopy continuation
on the ℓ1-LS problem (6). To make the comparison clear, we generate an ill-conditioned random
matrix A following the experimental setup in [ANW12]:

• Generate a random matrix B ∈ R
m×n with Bij following i.i.d. standard normal distribution.

• Choose ω ∈ [0, 1), and for i = 1, . . . ,m, generate each row Ai,: as follows:

Ai,1 = Bi,1/
√

1− ω2

Ai,j+1 = ωAi,j +Bi,j , j = 2, . . . , n

It can be shown that the eigenvalues of E[ATA], the covariance matrix of the row vectors, lie

within the interval
[

1
(1+ω)2

, 2
(1−ω)2(1+ω)

]
. If ω = 0, then A = B and the covariance matrix is well

conditioned. As ω → 1, the covariance matrix becomes progressively more ill-conditioned. In the
following experiments, the matrix A is generated with m = 1000, n = 5000, and ω = 0.9.

Figure 3 shows the computational results of the four different methods: PG, FISTA, FISTA+RS,
AdapAPG, and their homotopy continuation variants (denoted by “+H”). As we mentioned before,
the homotopy continuation parameters are set to η = 0.8 and δ = 0.2. For each method, we initialize
the Lipschitz constant by

L0 = max
j∈{1,...,n}

‖A:,j‖22.

For the AdapAPG method, we initialize the estimate of convexity parameter with two different
values, µ0 = L0/10 and µ0 = L0/100, and denote their results by AdapAPG1 and AdapAPG2,
respectively.

In Figure 3(a), we observe that PG, FISTA+RS and the two runs of AdapAPG all go through
a slow plateau before reaching fast local linear convergence. (PG enters the fast convergence zone
well after 6000 iterations, which is outside of the plot range here.) FISTA without restart does
not exploit the strong convexity and is the slowest asymptotically. Their homotopy continuation
variants shown in the right plot are much faster. Each vertical jump on the curves indicates a
change in the value of λ in the homotopy continuation scheme. In particular, it is clear that all
except FISTA enter the final homotopy stage with fast linear convergence. In the final stage, the
PGH method has a rather flat slope due to ill-conditioning of the A matrix; in contrast, FISTA+RS
and AdapAPG2 have much steeper slopes due to their accelerated schemes. AdapAPG1 started
with a modest slope, and then detected that the µ value was too big and reduced it by a factor
of 10, which resulted in the same fast convergence rate as AdapAPG1 after that.

As we analyzed in Section 5, in addition to the acceleration scheme used, the differences in the
convergence rates of these methods can be explained by whether or not they exploit the restricted
strong convexity. Figure 3(b) shows the sparsity of each iterates along the solution paths of these

32

0 500 1000 1500 2000 2500 3000

10
−9

10
−6

10
−3

10
0

10
3

10
6

PG
FISTA
FISTA+RS
AdapAPG1
AdapAPG2

k

φ
(x

(k
))
−
φ
⋆

0 300 600 900 1200 1500 1800

10
−9

10
−6

10
−3

10
0

10
3

10
6

PG+H
FISTA+H
FISTA+RS+H
AdapAPG1+H
AdapAPG2+H

k

φ
(x

(k
))
−
φ
⋆

(a) Objective gap vs. number of iterations, without homotopy (left) and with homotopy (right).

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

PG
FISTA
FISTA+RS
AdapAPG1
AdapAPG2

‖x
(k
) ‖

0

k
0 300 600 900 1200 1500 1800

0

1000

2000

3000

4000

5000

PG+H
FISTA+H
FISTA+RS+H
AdapAPG1+H
AdapAPG2+H

‖x
(k
) ‖

0

k
(b) Number of nonzero elements, without homotopy (left) and with homotopy (right).

0 500 1000 1500 2000 2500 3000

10
1

10
2

10
3

10
4

10
5

AdapAPG1 Mk

AdapAPG1 µ
AdapAPG2 Mk

AdapAPG2 µ

k
0 300 600 900 1200 1500 1800

10
1

10
2

10
3

10
4

10
5

AdapAPG1+H Mk

AdapAPG1+H µ
AdapAPG2+H Mk

AdapAPG2+H µ

k
(c) Automatic tuning of Mk and µ, without homotopy (left) and with homotopy (right)

Figure 3: Solving an ill-conditioned ℓ1-LS problem. AdapAPG1 starts with µ0 = L0/10, and
AdapAPG2 starts with µ0 = L0/100.

33

methods. We observe that FISTA+RS and the two runs of AdapAPG entered fast local convergence
precisely when their iterates became sufficiently sparse, i.e., when ‖x(k)‖0 became close to that of
the final solution. In contrast, the homotopy variants of these algorithms kept all iterates sparse
by using the warm start from previous stages. Therefore, restricted strong convexity hold along
the solution path and fast linear convergence was maintained at each stage.

Figure 3(c) shows the automatic tuning of the local Lipschitz constant Mk and the restricted
convexity parameter µ. We see that the homotopy methods (right plot) have relatively smaller Mk

and larger µ than the ones without using homotopy continuation (right plot), which means much
better conditioning along the iterates. In particular, the homotopy AdapAPG method used fewer
number of reductions of µ, for both initializations µ0 = L0/10 and µ0 = L0/100.

Overall, we observe that for the sparse least-squares problem, the homotopy continuation scheme
is very effective in speeding up different methods. Even with the overhead of estimating and
tuning µ, the AdapAPG+H method is close in efficiency compared with the FISTA+RS+H method.
If µ is initialized with the right value, then AdapAPG+H gives the best performance. From the
right plot in Figure 3(a), we see that FISTA+RS+H and the two runs of AdapAPG+H have
roughly the same linear rate of convergence in the final stage. However, AdapAPG2+H used much
less number of iterations before reaching the final stage, which again indicates the importance of
exploiting the right amount of restricted strong convexity.

7 Conclusion and discussions

We first proposed an accelerated proximal gradient (APG) method for minimizing composite ob-
jective functions where the smooth part is also strongly convex. Our method employs a line-search
routine in each iteration to search for the local Lipschitz constant, which corresponds to a larger
step size and faster convergence in practice. When the strong convexity parameter of the problem
is unknown, we developed an adaptive APG method which incorporates a restart scheme for es-
timating and tuning the convexity parameter. We show that this restart scheme only affects the
complexity of the algorithm with an additional logarithmic factor. This scheme is inspired by a
similar one proposed by Nesterov [Nes07], and they share the same complexity estimate. However,
our method avoids the extra line search required by Nesterov’s scheme, thus is computationally
more efficient.

Then we focused on the special case of solving the ℓ1-regularized least-squares (ℓ1-LS) problem
in the high-dimensional setting. In such a context, the smooth part of the objective (least-squares)
is not strongly convex over the entire domain. Nevertheless, we exploit its restricted strong convex-
ity over sparse vectors using the adaptive APG method combined with a homotopy continuation
scheme. Under a suitable restricted eigenvalue condition, this homotopy method generates a path
of solutions within a sparse subspace, and a global geometric rate of convergence can be established.
Compared to previous analysis of the homotopy proximal gradient method [XZ12], the complexity
of our accelerated algorithm has a weaker dependence on the restricted condition number of the
least-squares problem. Our theoretical analysis are supported with preliminary numerical experi-
ments.

Similar to the discussions in [XZ12], the conditions that guarantee the geometric convergence
of the APG homotopy method (Assumption 1) are rather strong, especially when compared with
recovery conditions established in the compressed sensing literature (e.g., [LM11] and references
therein). This can be expected, since our analysis is based on keeping all the intermediate iterates

34

sparse, rather than only for the optimal solution. In fact, our conditions depend on not only the
measurement matrix A, but also the algorithmic parameters (η and δ) that control how fast the
regularization parameter is reduced and how accurate each stage needs to be solved. Nevertheless,
our numerical experiences indicate that the performance of the APG homotopy method is not very
sensitive to the algorithmic parameters, and geometric convergence may happen even in cases where
our assumption does not hold. This suggests that it is possible to develop less restrictive conditions
to guarantee a fast global convergence rate.

Acknowledgments

We thank Professor Tong Zhang for helpful discussions on the APG homotopy method.

References

[ANW12] A. Agarwal, S. N. Negahban, and M. J. Wainwright. Fast global convergence of gradient
methods for high-dimensional statistical recovery. The Annals of Statistics, 40(5):2452–
2482, 2012.

[BDE09] A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions of systems of
equations to sparse modeling of signals and images. SIAM Review, 51(1):34–81, 2009.

[BL08] K. Bredies and D. A. Lorenz. Linear convergence of iterative soft-thresholding. Journal
of Fourier Analysis and Applications, 14:813–837, 2008.

[BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-threshold algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[CDS98] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM Journal on Scientific Computing, 20(1):33–61, 1998.

[CRT06] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on
Information Theory, 52(2):489–509, February 2006.

[CT05] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on
Information Theory, 51(12):4203–4215, December 2005.

[CT06] E. J. Candès and T. Tao. Near-optimal signal recovery from random projections: univer-
sal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406–5425,
December 2006.

[Don06] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, April 2006.

[HYZ08] E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for ℓ1-minimization:
Methodology and convergence. SIAM Journal on Optimization, 19(3):1107–1130, 2008.

[LM11] S. Li and Q. Mo. New bounds on the restricted isometry constant δ2k. Applied and
Computational Harmonic Analysis, 31(3):460–468, 2011.

35

[LT92] Z.-Q. Luo and P. Tseng. On the linear convergence of descent methods for convex
essentially smooth minimization. SIAM Journal on Control and Optimization, 30(2):408–
425, 1992.

[Nes04] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer,
Boston, 2004.

[Nes05] Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming,
103(1):127–152, 2005.

[Nes07] Y. Nesterov. Gradient methods for minimizing composite objective function. CORE
discussion paper 2007/76, Center for Operations Research and Econometrics, Catholic
University of Louvain, Belgium, September 2007.

[Nes08] Y. Nesterov. How to advance in Structural Convex Optimization. OPTIMA: Mathemat-
ical Programming Society Newsletter, 78:2–5, November 2008.

[NN94] Y. Nesterov and A. Nemirovski. Interior-Point Polynomial Algorithms in Convex Pro-
gramming. SIAM Studies in Applied Mathematics. SIAM, 1994.

[NY83] A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in Optimiza-
tion. J. Wiley & Sons, New York, 1983.

[OC12] B. O’Donoghue and E. J. Candès. Adaptive restart for accelerated gradient schemes.
Manuscript, April 2012. To appear in Foundations of Computational Mathematics.

[Roc70] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[Tib96] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 58:267–288, 1996.

[Tse08] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization.
Manuscript, 2008.

[WNF09] S. J. Wright, R. D. Nowad, and M. A. T. Figueiredo. Sparse reconstruction by separable
approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, July 2009.

[Wri12] S. J. Wright. Accelerated block-coordinate relaxation for regularized optimization. SIAM
Journal on Optimization, 22(1):159–186, 2012.

[XZ12] L. Xiao and T. Zhang. A proximal-gradient homotopy method for the sparse least-
squares problem. Technical Report MSR-TR-2012-36, Microsoft Research, March 2012.
To appear in SIAM Journal on Optimization.

[ZH08] C.-H. Zhang and J. Huang. The sparsity and bias of the lasso selection in high–
dimensional linear regression. Annals of Statistics, 36:1567–1594, 2008.

36

