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Abstract

In this paper, we present new methods for black-box convex minimization. They do
not need to know in advance the actual level of smoothness of the objective function.
Their only essential input parameter is the required accuracy of the solution. At the same
time, for each particular problem class they automatically ensure the best possible rate of
convergence. We confirm our theoretical results by encouraging numerical experiments,
which demonstrate that the fast rate of convergence, typical for the smooth optimization
problems, sometimes can be achieved even on nonsmooth problem instances.
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1 Introduction

Motivation. In Convex Optimization, the majority of numerical schemes are developed
for particular problem classes. In the Black-Box framework, two main classes of convex
problems, the smooth problems, and nonsmooth ones are treated by completely different
techniques.

This separation looks very natural. Indeed, differentiable function allow constructing
monotone minimization sequences, for which the convergence results can be easily ob-
tained. Smooth function can be locally approximated by first- and second-order models,
which are very helpful in developing efficient minimization schemes.

The class of nonsmooth convex functions looks much more difficult. For them, there
is no hope to get a good local approximation model. It is very difficult to construct
relaxation sequences. Moreover, even if a descent direction is found, there is no guarantee
that we can advance along it by a sufficiently long step. Therefore, all methods for
nonsmooth convex optimization rely only on separation properties. Cutting planes provide
us with information about the half-spaces containing the optimal solution. Using this very
restricted knowledge, it is still possible to develop some optimization methods. But their
computational abilities are incomparably weaker than the abilities of smooth minimization
schemes.

Above observations are confirmed by theoretical results. It is well known that for
the class of smooth problems C1,1(Rn), composed by functions with Lipschitz-continuous
gradients, the optimal iteration complexity bound for finding ϵ-solution of corresponding
optimization problem by a first-order method is of the order O( 1

ϵ1/2
). For nonsmooth

problems from the class C1,0(Rn), where we can rely only on Lipschitz continuity of
function values, such a bound is established on the level of O( 1

ϵ2
) (see, e.g. [8]).

Such a big difference in the complexity bounds stimulated an interest to the interme-
diate classes of convex problems. One of the possibilities consists in considering functions
from the class C1,ν(Rn), ν ∈ [0, 1], which have Hölder continuous gradients:

∥∇f(x)−∇f(y)∥∗ ≤ Lν∥x− y∥ν , x, y ∈ Rn. (1.1)

General Complexity Theory [7] established for this class the following lower iteration
complexity bound:

O

((
LνR1+ν

ϵ

) 2
1+3ν

)
, (1.2)

where R is the distance from a starting point to the solution. The first optimal methods
for such problems were developed in [6]1. The main advantage of these schemes is an
automatic adjustment to the proper level of smoothness parameter ν. However, these
methods need to know another characteristics of the problem (estimate of Lipschitz con-
stant Lν , estimate of the distance to optimum), which are not readily available. Moreover,
it was necessary to decide in advance on the total number of steps of the method. This
requirement is not very practical. Indeed, in order to make such a decision, we need to
know the rate of convergence of the method. However, this is possible only if we know the
Hölder parameter. This hidden contradiction probably explains why these theoretically
attractive procedures were never seriously tested in computational practice.

1English translation of this paper was included in Section 2.3 in [3]
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In the last decade, we can see a restoration of interest to the gradient methods. New
problems setting in image processing, data mining, and statistics require computationally
cheap minimization procedures, which can quickly deliver an approximate solutions with
a moderate accuracy. This demand was satisfied by new families of problem-oriented
methods (e.g. [9], [10], [1]), which increase the rate of convergence of the gradient schemes
much above the limits of Black-Box Complexity Theory [7]. This can be done, of-course,
only by an appropriate use of problem structure, violating one of the main assumptions
of the Black-Box concept.

However, it appears that the Black-Box methods did not reach yet the limits of their
performance. The old idea of automatic adjustment to Hölder parameter was revived in
[4], where a new version of Level Method [5] was adapted to smooth problems, ensuring
the best possible complexity bounds for all values of the smoothness parameter. The only
drawback of this approach is related to a high iteration cost of the Level Method.

Minimization of functions with Hölder-continuous gradient was discussed in [2] in the
framework of inexact oracle. It was shown that the answer (f(x),∇f(x)) of an exact
oracle for a convex function satisfying Hölder condition (1.1) can be treated as “inexact”
information for some function from C1,1(Rn):

0 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ δ̃ + 1
2 L̃∥y − x∥2, x, y ∈ Rn, (1.3)

where L̃ and δ̃ are some ”inexactness” parameters. It was shown that these parameters
can be chosen as appropriate functions of ν. Therefore, functions from C1,ν(Rn) can be
minimized by an “inexact” version of Fast Gradient Methods for C1,1(Rn). The resulting
complexity bounds appear to be optimal (1.2). However, in order to apply this approach,
we need to employ a lot of additional information (the value of parameter ν, constant Lν ,
distance estimate R, and the total number of steps of the method).

In this paper, we construct new universal methods for minimizing functions with
Hölder-continuous gradient. They do not need à priori knowledge of the parameter ν,
and they have a cheap cost of one iteration.

In order to solve the problem
min
x∈Q

f(x) (1.4)

by universal methods, we suggest to use a Damped Relaxation Condition (DR)

f(x+) ≤ δ +min
y∈Q

[
f(x̄) + ⟨∇f(x̄), y − x̄⟩+ 1

2 L̂∥y − x̄∥2
]
, (1.5)

where the tolerance parameter δ > 0 depends only on the required accuracy ϵ > 0 of
the final approximate solution. Similar conditions were used in [6] and [2] with δ being
a function of smoothness parameter ν and total number of iterations. We show that all
necessary information on ν and Lν can be accumulated in the constant L̂, which can be
easily adapted by an appropriate “line-search” strategy. For different methods, the depen-
dence of δ in ϵ must be different. For the simplest Primal and Dual Gradient Methods,
it is enough to take δ = ϵ

2 . For the Fast Gradient Method [9], we use condition (1.5)
with much smaller value of δ, allowing to maintain a damped version of the estimating
sequence condition

Ak(f(xk)− ϵ
2) ≤ min

x∈Q
ϕk(x), (1.6)
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(see Section 4 for details).
All our methods are developed for composite minimization problems [10], which space

of variables is endowed with arbitrary norm. Hence, we apply machinery of Bregman
distances. Our methods adjust automatically to the actual level of smoothness of the
smooth part of the objective function. The only essential input parameter for these
schemes is the required accuracy ϵ > 0.

Contents. The paper is organized as follows. In Section 2 we introduce the problem
formulation and discuss the main properties of Bregman mapping as applied to functions
with Hölder continuous gradients. After that, we prove a convergence result for Universal
Primal Gradient Method and derive its complexity bound. We show that this method
needs in average at most two calls of oracle per iteration. Moreover, this method can be
equipped with a reliable stopping criterion.

In Section 3, we prove similar results for Universal Dual Gradient Method. This
method needs in average four calls of oracle per iteration. Both these methods are based
on DR-condition (1.5).

In Section 4, in order to derive Universal Fast Gradient Method, we introduce condition
(1.6). We show that this scheme is uniformly optimal for minimizing composite function,
which has Hölder-continuous gradients of its smooth part. This scheme has a reliable
stopping criterion. It needs in average four calls of oracle per iteration.

In Section 5, we present preliminary computational results. We consider three families
of random test problems. All of them are nonsmooth problems with Lipschitz-continuous
objective function. It is shown that quite often the Universal Fast Gradient Method is able
to accelerate and demonstrate the rate of convergence typical for smooth minimization
schemes. The choice of appropriate norms is always very important.

Notation. In what follows, we work in a finite-dimensional linear vector space E. Its
dual space, the space of all linear function on E, is denoted by E∗. For x ∈ E and s ∈ E∗,
we denote by ⟨s, x⟩ the value of linear function s at x. For the (primal) space E, we
introduce a norm ∥ · ∥. Then the dual norm is defined in the standard way:

∥s∥ def
= max

x∈E
{⟨s, x⟩ : ∥x∥ ≤ 1}.

Finally, for a convex function f : dom f → R with dom f ⊆ E we denote by ∇f(x) ∈ E∗

one of its subgradients.

2 Universal Primal Gradient Method

Consider the following minimization problem:

min
x∈Q

[
f̃(x)

def
= f(x) + Ψ(x)

]
, (2.1)

where Q is a simple closed convex set, Ψ is a simple closed convex function. Function
f is assumed to be subdifferentiable on Q. In order to characterize variability of its
(sub)gradients, we introduce the following values:

Mν ≡ Mν(f) = sup
x,y∈Q,
x̸=y

∥∇f(x)−∇f(y)∥∗
∥x−y∥ν , ν ≥ 0.

(2.2)
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This condition can be rewritten in the form

lnMν = sup
x,y∈Q,
x̸=y

[ ln ∥∇f(x)−∇f(y)∥∗ − ν ln ∥x− y∥ ] .

Thus, Mν is a log-convex function of ν. For certain ν ∈ [0, 1], the constant Mν can be
infinite. However, if M0 and M1 are finite, then

Mν ≤ M1−ν
0 Mν

1 , 0 ≤ ν ≤ 1. (2.3)

In any case, if Mν <∞, then

∥∇f(x)−∇f(y)∥∗ ≤ Mν∥x− y∥ν , x, y ∈ Q. (2.4)

This inequality ensures that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ Mν
1+ν ∥x− y∥1+ν , x, y ∈ Q. (2.5)

Our main assumption is as follows.

Assumption 1 M̂(f)
def
= inf

0≤ν≤1
Mν(f) < +∞.

For solving problem (2.1), we introduce a prox-function d(x). This is a differentiable
strongly convex function with convexity parameter equal to one:

d(y) ≥ d(x) + ⟨∇d(x), y − x⟩+ 1
2∥x− y∥2, x, y ∈ rintQ. (2.6)

We assume that d(x) attains its minimum on Q at some point x0, and d(x0) = 0. Thus,

d(x)
(2.6)

≥ 1
2∥x− x0∥2, x ∈ Q. (2.7)

This prox-function defines the Bregman distance ξ(x, y)
def
= d(y)−d(x)−⟨∇d(x), y−x⟩.

Clearly, ξ(x, x) ≡ 0, and

ξ(x, y)
(2.6)

≥ 1
2∥x− y∥2, x, y ∈ Q. (2.8)

Now for any x ∈ Q we can define the Bregman mapping

BM (x) = argmin
y∈Q

{
ψM (x, y)

def
= f(x) + ⟨∇f(x), y − x⟩+Mξ(x, y) + Ψ(y)

}
. (2.9)

We assume that this point is easily computable either in a closed form, or by some cheap
computational procedure. The first-order optimality condition for optimization problem
in (2.9) is as follows:

⟨∇f(x) +M(∇d(BM (x))−∇d(x)) +∇Ψ(BM (x)), y − BM (x)⟩ ≥ 0, y ∈ Q.
(2.10)

Denote ψ∗
M (x) = ψM (x,BM (x)).
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Lemma 1 Let function f satisfy condition (2.4). Then for any δ > 0 and

M ≥
[
1
δ

] 1−ν
1+ν M

2
1+ν
ν (2.11)

we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ 1
2M∥y − x∥2 + δ

2 , x, y ∈ Q. (2.12)

Therefore,

f̃(BM (x)) ≤ ψ∗
M (x) + δ

2 . (2.13)

Proof:
It is well known that for all nonnegative τ and s we have

1
pτ

p + 1
q s

q ≥ τs,

where p, q ≥ 1 and 1
p + 1

q = 1. Therefore, taking p = 2
1+ν , q =

2
1−ν , and τ = t1+ν , we get

t1+ν ≤ 1+ν
2s t

2 + 1−ν
2 s

1+ν
1−ν , s > 0, t ≥ 0.

Denote δ = 1−ν
1+νMνs

1+ν
1−ν . Then s =

[
1+ν
1−ν · δ

Mν

] 1−ν
1+ν . Therefore,

Mν
1+ν t

1+ν ≤ 1
2sMνt

2 + δ
2 = 1

2

[
1−ν
1+ν · 1

δ

] 1−ν
1+ν M

2
1+ν
ν t2 + δ

2

(2.11)

≤ 1
2Mt2 + δ

2 .
(2.14)

This inequality, together with (2.5), justifies (2.12). Further, denoting x+ = BM (x), we
obtain:

f(x+)
(2.5)

≤ f(x) + ⟨∇f(x), x+ − x⟩+ Mν
1+ν ∥x+ − x∥1+ν

(2.14)

≤ f(x) + ⟨∇f(x), x+ − x⟩+ M
2 ∥x+ − x∥2 + δ

2

(2.8)

≤ f(x) + ⟨∇f(x), x+ − x⟩+Mξ(x, x+) +
δ
2 .

Therefore, f̃(x+) = f(x+) + Ψ(x+) ≤ ψ∗
M (x) + δ

2 . 2

Note that the right-hand side of inequality (2.11) is continuous in ν. As ν → 1, it
becomes

M ≥M1. (2.15)

Let us look now at the simplest Universal Primal Gradient Method equipped with
a backtracking line search procedure with restore. Denote by x∗ the optimal solution
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to (2.1).

Universal Primal Gradient Method (PGM)

Initialization. Choose L0 > 0 and accuracy ϵ > 0.

For k ≥ 0 do:

1. Find the smallest ik ≥ 0 such that for x+k
def
= B2ikLk

(xk) we have

f(x+k ) ≤ f(xk) + ⟨∇f(xk), x+k − xk⟩+ 2ik−1Lk∥x+k − xk∥2 + 1
2ϵ.

2. Set xk+1 = B2ikLk
(xk), and Lk+1 = 2ik−1Lk.

(2.16)

Denote γ(M, ϵ)
def
=

[
1
ϵ

] 1−ν
1+ν M

2
1+ν , Sk =

k+1∑
i=1

1
Lk

, and f̃∗k = 1
Sk

k∑
i=0

1
Li+1

f̃(xi).

Theorem 1 Let f satisfies condition (2.4). Assume that L0 ≤ γ(Mν , ϵ). Then for all
k ≥ 0 we have Lk+1 ≤ γ(Mν , ϵ). Moreover, for all y ∈ Q

f̃∗k ≤ 1
Sk

k∑
i=0

1
Li+1

[f(xi) + ⟨∇f(xi), y − xi⟩] + Ψ(y) + ϵ
2 + 2

Sk
ξ(x0, y). (2.17)

Therefore, f̃∗k − f̃(x∗) ≤ ϵ
2 + 2γ(Mν ,ϵ)

k+1 ξ(x0, x
∗).

Proof:
In view of Lemma 1, the line-search procedure of Step 1 in method (2.16) is well defined,
and

2Lk+1 = 2ikLk ≤ 2γ(Mν , ϵ). (2.18)

Let us fix an arbitrary point y ∈ Q. Denote rk(y)
def
= ξ(xk, y). Then

rk+1(y) = d(y)− d(xk+1)− ⟨∇d(xk+1), y − xk+1⟩

(2.10)

≤ d(y)− d(xk+1)− ⟨∇d(xk), y − xk+1⟩+ 1
2Lk+1

⟨∇f(xk) +∇Ψ(xk+1), y − xk+1⟩.

Note that

d(y)− d(xk+1)− ⟨∇d(xk), y − xk+1⟩

(2.6)

≤ d(y)− d(xk)− ⟨∇d(xk), xk+1 − xk⟩ − 1
2∥xk+1 − xk∥2 − ⟨∇d(x), y − xk+1⟩

= rk(y)− 1
2∥xk+1 − xk∥2.
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Thus,

rk+1(y)− rk(y) ≤ 1
2Lk+1

⟨∇f(xk) +∇Ψ(xk+1), y − xk+1⟩ − 1
2∥xk+1 − xk∥2

= 1
2Lk+1

⟨∇Ψ(xk+1), y − xk+1⟩ − 1
2Lk+1

(
⟨∇f(xk), xk+1 − xk⟩+ Lk+1∥xk+1 − xk∥2

)
+ 1

2Lk+1
⟨∇f(xk), y − xk⟩

≤ 1
2Lk+1

(
Ψ(y)−Ψ(xk+1) + f(xk)− f(xk+1) +

1
2ϵ+ ⟨∇f(xk), y − xk⟩

)
.

Thus, we obtain the following inequality:

1
2Lk+1

f̃(xk+1) + rk+1(y) ≤ 1
2Lk+1

(
f(xk) + ⟨∇f(xk), y − xk⟩+Ψ(y) + ϵ

2

)
+ rk(y).

Summing up these inequalities, we obtain

f̃∗k ≤ 1
Sk

k∑
i=0

1
Li+1

[f(xi) + ⟨∇f(xi), y − xi] + Ψ(y) + ϵ
2 + 2

Sk
r0(y).

It remains to use inequality (2.18). 2

It is important that method (2.16) does not include ν as a parameter. Therefore, in
view of Theorem (1), in order to get ϵ-solution of problem (2.1) we need

4ξ(x0, x
∗) inf

0≤ν≤1

(
Mν
ϵ

) 2
1+ν (2.19)

iterations at most. In this estimate, among all classes of functions with Hölder continuous
gradient, we choose the class which better fits our particular objective function. Note
that the expression (2.19) is log-quasiconvex in ν. Hence, if M0 and M1 are finite, there
are good chances that the optimal ν belongs to the interval (0, 1).

Inequality (2.17) gives us a reliable stopping criterion for method (2.16). Indeed,
assume we have a bound for the size of optimal solution:

ξ(x0, x
∗) ≤ D. (2.20)

Denote ℓpk(y)
def
= 1

Sk

k∑
i=0

1
Li+1

[f(xi) + ⟨∇f(xi), y − xi⟩], and define

f̂k = min
y∈Q

{
ℓpk(y) + Ψ(y) : ξ(x0, y) ≤ D

}
.

Then

f̃∗k − f̃(x∗) ≤ f̃∗k − f̂k ≤ 2γ(Mν ,ϵ)
k+1 D. (2.21)

Note that f̂k can be computed. Thus, inequality (2.21) provides us with an implementable
stopping criterion f̃∗k − f̂k ≤ ϵ.

Finally, let us estimate N(k), the total number of computations of the function values
in method (2.16) after k iterations. Note that

Lk+1 = 1
22

ikLk.
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Therefore, ik − 1 = log2
Lk+1

Lk
. Hence, for any ν ∈ [0, 1], we have

N(k) =
k∑

j=0
(ij + 1) = 2(k + 1) + log2 Lk+1 − log2 L0

(2.18)

≤ 2(k + 1) + 1−ν
1+ν log2

1
ϵ +

2
1+ν log2Mν − log2 L0.

Finally, we come to the following upper bound:

N(k) ≤ 2(k + 1)− log2 L0 + inf
0≤ν≤1

[
1−ν
1+ν log2

1
ϵ +

2
1+ν log2Mν

]
. (2.22)

Thus in average, up to negligible logarithmic terms, method (2.16) requires two compu-
tations of function values per iteration.

The complexity estimates in (2.19) are optimal only for ν = 0. In Section 4 we show
that much better (and optimal) bounds can be achieved by a fast gradient scheme.

3 Universal Dual Gradient Method

Dual gradient method is based on updating a simple model for objective function of
problem (2.1). Its justification is based on the following simple result.

Lemma 2 Let ϕ : Q → R
∪
{+∞} be a convex function such that for some M ≥ 0 the

difference ϕ(x)−Md(x) is subdifferentiable on Q. Denote x̄ = argmin
x∈Q

ϕ(x). Then

ϕ(y) ≥ ϕ(x̄) +Mξ(x̄, y), y ∈ Q. (3.1)

Proof:
Denote F (y) = ϕ(y) − Md(y). Then ⟨∇F (x̄) + M∇d(x̄), y − x⟩ ≥ 0 for all y ∈ Q.
Therefore,

ϕ(y) = F (y) +Md(y) ≥ F (x̄) + ⟨∇F (x̄), y − x̄⟩+Md(y)

≥ F (x̄)−M⟨∇d(x̄), y − x̄⟩+Md(y) = ϕ(x̄) +Mξ(x̄, y). 2
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Universal Dual Gradient Method (DGM)

Initialization. Choose L0 > 0. Define ϕ0(x) = ξ(x0, x).

For k ≥ 0 do:

1. Find the smallest ik ≥ 0 such that for point

xk,ik = argmin
x∈Q

{
ϕk(x) +

1
2ikLk

[f(xk) + ⟨∇f(xk), x− xk⟩+Ψ(x)]
}

we have f̃
(
B2ikLk

(xk,ik)
)
≤ ψ∗

2ikLk
(xk,ik) +

ϵ
2 .

2. Set xk+1 = xk,ik , Lk+1 = 2ik−1Lk, and

ϕk+1(x) = ϕk(x) +
1

2Lk+1
[f(xk) + ⟨∇f(xk), x− xk⟩+Ψ(x)].

(3.2)

Assume that L0 ≤ γ(Mν , ϵ), and Mν < ∞. Note that the termination criterion of
Step 1 in method (3.2) is satisfied if 2ikLk ≥ γ(Mν , ϵ). Therefore, same as in the proof of
Theorem 1, we have

Lk ≤ γ(Mν , ϵ), k ≥ 1. (3.3)

Denote yk = B2ikLk
(xk,ik), Sk =

k∑
i=0

1
Li+1

, and ϕ∗k = argmin
y∈Q

ϕk(y). Let us prove by

induction that the relation

k∑
i=0

1
2Li+1

f̃(yi) ≤ ϕ∗k+1 + Sk · ϵ
4

(3.4)

is valid for all k ≥ 0. Indeed, for k = 0 we have

1
2L1

f̃(y0)− S0 · ϵ
4 = 1

2L1

[
f̃(y0)− ϵ

2

]
≤ 1

2i0L0
ψ∗
2i0L0

(y0)

= 1
2i0L0

[f(x0) + ⟨∇f(x0), y0 − x0⟩+Ψ(y0)] + ξ(x0, y0)

= ϕ1(y0) = min
x∈Q

ϕ1(x).

In view of Lemma 2, for any k ≥ 0 we have

ϕk(x) ≥ ϕk(xk) + ξ(xk, x), x ∈ Q.
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Assume that (3.4) is true for some k ≥ 0. Then,

min
x∈Q

ϕk+2(x)

≥ min
x∈Q

{
ϕk+1(x) +

1
2Lk+2

[f(xk+1) + ⟨∇f(xk+1), x− xk+1⟩+Ψ(x)]
}

≥ min
x∈Q

{
ϕk+1(xk+1) + ξ(xk+1, x) +

1
2Lk+2

[f(xk+1) + ⟨∇f(xk+1), x− xk+1⟩+Ψ(x)]
}

≥ ϕk+1(xk+1) +
1

2Lk+2

[
f̃(yk+1)− ϵ

2

] (3.4)

≥ −Sk+1 · ϵ
4 +

k+1∑
i=0

1
2Li+1

f̃(yi).

Thus, we have proved that (3.4) is valid for all k ≥ 0. Now we can prove the main

convergence result for Universal Dual Gradient Method. Denote f̃∗k = 1
Sk

k∑
i=0

1
Li+1

f̃(yi).

Theorem 2 Let f satisfies condition (2.4) with Mν < ∞, and L0 ≤ γ(Mν , ϵ). Then all
Lk generated by method (3.2) satisfy condition (3.3). Moreover, for all k ≥ 0 we have

f̃∗k − f̃(x∗) ≤ ϵ
2 + 2γ(Mν ,ϵ)

k+1 ξ(x0, x
∗). (3.5)

Proof:
Indeed, in view of inequality (3.4), we have

1
2Skf̃

∗
k =

k∑
i=0

1
2Li+1

f̃(yi) ≤ min
x∈Q

ϕk+1(x) + Sk · ϵ
4 ≤ 1

2Skf̃(x
∗) + ξ(x0, x

∗) + Sk · ϵ
4 .

It remains to use inequality (3.3). 2

Note that the worst-case complexity bound for the number of iterations of method (3.2)
coincides with the bound (2.19). However, the number of function evaluations at each
iteration of (3.2) is twice more than (2.22).

Same as method (2.16), Universal Dual Gradient Method can be equipped with a

stopping criterion. Denote ℓdk(y) =
k∑

i=0

1
Li+1

[f(xi) + ⟨∇f(xi), y − xi⟩]. Assume that

ξ(x0, x
∗) ≤ D and the constant D is known. Denote

f̂k = min
y∈Q

{
1
Sk
ℓdk(y) + Ψ(y) : ξ(x0, y) ≤ D

}
.

Note that
f̂k = min

x∈Q
max
β≥0

{
1
Sk
ℓdk(y) + Ψ(y) + β (ξ(x0, y)−D)

}
= max

β≥0
min
x∈Q

{
1
Sk
ℓdk(y) + Ψ(y) + β (ξ(x0, y)−D)

}
β=2/Sk

≥ 2
Sk
ϕ∗k+1 −

2
Sk
D.

Since f̃∗k
(3.4)

≤ 2
Sk
ϕ∗k+1 + ϵ

2 , we conclude that the stoping criterion f̃∗k − f̂k ≤ ϵ ensures

f̃∗k − f̃(x∗) ≤ ϵ as far as Sk ≥ 4
ϵD.
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4 Universal Fast Gradient Method

Finally, let us apply to problem (2.1) the following method.

Universal Fast Gradient Method (FGM)

Initialization. Choose L0 > 0. Define ϕ0(x) = ξ(x0, x), y0 = x0, A0 = 0.

For k ≥ 0 do:

1. Find vk = argmin
x∈Q

ϕk(x).

2. Find the smallest ik ≥ 0 such that coefficient ak+1,ik > 0, computed from

equation a2k+1,ik
= 1

2ikLk
(Ak + ak+1,ik) and used in the definitions

Ak+1,ik = Ak + ak+1,ik , τk,ik =
ak+1,ik
Ak+1,ik

, xk+1,ik = τk,ikvk + (1− τk,ik)yk,

x̂k+1,ik = argmin
y∈Q

{ξ(vk, y) + ak+1,ik [⟨∇f(xk+1,ik), y⟩+Ψ(y)]} ,

yk+1,ik = τk,ik x̂k+1,ik + (1− τk,ik)yk, ensures the following relation:

f(yk+1,ik) ≤ f(xk+1,ik) + ⟨∇f(xk+1,ik), yk+1,ik − xk+1,ik⟩

+2ik−1Lk∥yk+1,ik − xk+1,ik∥2 +
ϵ
2τk,ik .

3. Set xk+1 = xk+1,ik , yk+1 = yk+1,ik , ak+1 = ak+1,ik , τk = τk,ik .

Define Ak+1 = Ak + ak+1, Lk+1 = 2ik−1Lk, and

ϕk+1(x) = ϕk(x) + ak+1[f(xk+1) + ⟨∇f(xk+1), x− xk+1⟩+Ψ(x)].

(4.1)

Theorem 3 Let f satisfies condition (2.4) with certain Mν < +∞. Then all iterations
of method (4.1) are well defined. Moreover, for all k ≥ 0 we have

Ak

(
f̃(yk)− ϵ

2

)
≤ ϕ∗k

def
= min

x∈Q
ϕk(x), (4.2)

where Ak ≥
[

1
22+4νM2

ν
ϵ1−ν k1+3ν

] 1
1+ν . Consequently, for all k ≥ 1 we have

f̃(yk)− f̃(x∗) ≤
[

22+4νM2
ν

ϵ1−ν k1+3ν

] 1
1+ν

ξ(x0, x
∗) + ϵ

2 .
(4.3)
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Proof:
Let us prove first, that the ”line-search” process of Item 2 in (4.1) is finite. In view of
inequality (2.12), we need to show that

2ikLk ≥
[

1
ϵτk,ik

] 1−ν
1+ν

M
2

1+ν
ν

for ik large enough. Indeed, in view of the characteristic equation for ak+1,ik , we have

2ikLkτ
1−ν
1+ν

k,ik
=

Ak+1,ik

a2
k+1,ik

·
(

ak+1,ik
Ak+1,ik

) 1−ν
1+ν

=

(
1

τk,ik

) 2ν
1+ν

· 1
ak+1,ik

≥ 1
ak+1,ik

.

It remains to note that ak+1,ik → 0 as ik → ∞.
Let us prove relation (4.2). For k = 0 it is evident. Assume that it is valid for certain

k ≥ 0. Then for any y ∈ Q we have

ϕk(y)
(3.1)

≥ ϕ∗k + ξ(vk, y)
(4.2)

≥ Ak

(
f̃(yk)− ϵ

2

)
+ ξ(vk, yk)

≥ Ak

(
f(xk+1) + ⟨∇f(xk+1, yk − xk+1⟩+Ψ(yk)− ϵ

2

)
+ ξ(vk, y).

Therefore,

ϕk+1(y) ≥ ξ(vk, y) +Ak

(
f(xk+1) + ⟨∇f(xk+1, yk − xk+1⟩+Ψ(yk)− ϵ

2

)
+ak+1[f(xk+1) + ⟨∇f(xk+1), y − xk+1⟩+Ψ(y)]

= ξ(vk, y) +Ak

(
f(xk+1) + Ψ(yk)− ϵ

2

)
+ak+1[f(xk+1) + ⟨∇f(xk+1), y − vk⟩+Ψ(y)].

In view of definition of point x̂k+1, we have

ϕ∗k+1 ≥ ξ(vk, x̂k+1) +Ak

(
f(xk+1) + Ψ(yk)− ϵ

2

)
+ak+1[f(xk+1) + ⟨∇f(xk+1), x̂k+1 − vk⟩+Ψ(x̂k+1)]

(2.8)

≥ 1
2∥x̂k+1 − vk∥2 +Ak+1f(xk+1) +Ak+1Ψ(yk+1)− ϵ

2Ak

+ak+1⟨∇f(xk+1), x̂k+1 − vk⟩.

Since x̂k+1 − vk = 1
τk
(yk+1 − xk+1), we obtain

ϕ∗k+1 ≥ 1
2τ2

k
∥yk+1 − xk+1∥2 +Ak+1f(xk+1) +Ak+1Ψ(yk+1)− ϵ

2Ak

+Ak+1⟨∇f(xk+1), yk+1 − xk+1⟩

= Ak+1(f(xk+1) + ⟨∇f(xk+1), yk+1 − xk+1⟩

+2ik−1Lk∥yk+1 − xk+1∥2 +Ψ(yk+1))− ϵ
2Ak

≥ Ak+1(f(yk+1)− ϵ
2τk +Ψ(yk+1))− ϵ

2Ak = Ak+1

(
f̃(yk+1)− ϵ

2

)
.

12



Thus, inequality (4.2) is proved for all k ≥ 0. Since ϕk(y) ≤ Akf̃(y) + ξ(x0, y) for all
y ∈ Q, we obtain

f̃(yk)− f̃(x∗)
(4.2)

≤ ξ(x0,x∗)
Ak

+ ϵ
2 , k ≥ 1.

It remains to estimate the growth of coefficients Ak.
In view of Lemma 1, the number of internal steps ik in Item 2 of (4.1) satisfies inequality

2ikLk ≤ 2
[

1
ϵτk

] 1−ν
1+ν M

2
1+ν
ν .

Therefore,
a2k+1

Ak+1
= 1

2ikLk
≥ 1

2M
2

1+ν
ν

[ϵτk]
1−ν
1+ν , which is a2k+1 ≥ [ϵak+1]

1−ν
1+ν

2M
2

1+ν
ν

A
2ν
1+ν

k+1. Thus, we

come to the following estimate:

ak+1 ≥ ϵ
1−ν
1+3ν A

2ν
1+3ν
k+1

2
1+ν
1+3ν M

2
1+3ν
ν

. (4.4)

Denote Bk = Aγ
k , where γ = 1+ν

1+3ν ≥ 1
2 . Since Ak+1 ≥ Ak, we have

Bk+1 −Bk ≥ Ak+1−Ak

A1−γ
k+1

+A1−γ
k

≥ ak+1

2A1−γ
k+1

(4.4)

≥ ϵ
1−ν
1+3ν

2
2+4ν
1+3ν M

2
1+3ν
ν

.

Thus, we have proved that Ak ≥
[

k·ϵ
1−ν
1+3ν

2
2+4ν
1+3ν M

2
1+3ν
ν

] 1+3ν
1+ν

= k
1+3ν
1+ν ϵ

1−ν
1+ν

2
2+4ν
1+ν M

2
1+ν
ν

. 2

From the rate of convergence (4.3), we get the following upper bound for the number
of iterations, which are necessary for getting ϵ-solution of problem (2.1):

k ≤ inf
0≤ν≤1

[(
2
3+5ν

2 Mν
ϵ

) 2
1+3ν

ξ(x0, x
∗)

1+ν
1+3ν

]
. (4.5)

As compared with (2.19), the dependence of this bound in smoothness parameters is now
optimal.

Same as the gradient methods (2.16) and (3.2), Fast Gradient Method (4.1) can be
equipped with an implementable stopping criterion. Assume that ξ(x0, x

∗) ≤ D. Denote

ℓpdk (y) =
k∑

i=1
ai[f(xi) +∇f(xi), x − xi⟩], and f̂k = min

y∈Q
{ 1
Ak
ℓpdk (y) + Ψ(y) : ξ(x0, y) ≤ D}.

Note that f̃(yk)
(4.2)

≤ ϵ
2 +

1
Ak
ϕ∗k. Using the reasoning presented in the end of Section 3, we

obtain

f̂k = max
β≥0

min
y∈Q

{
1
Ak
ℓpdk (y) + Ψ(y) + β(ξ(x0, y)−D)

} β=1/Ak

≥ 1
Ak
ϕ∗k −

1
Ak
D.

Thus, we can use stopping criterion

f̃(yk)− f̂k ≤ ϵ
2 , (4.6)

13



which ensures f̃(yk)− f̃(x∗) ≤ ϵ as far as

Ak ≥ 2
ϵD. (4.7)

It remains to estimate from above the total number of calls of oracle of method (4.1),
which is sufficient to get an ϵ-solution of problem (2.1). Let us assume that this method
is equipped with the stopping criterion (4.6). Then we can be sure that

Ak ≤ 2
ϵD, k ≥ 0. (4.8)

Denote by N(k) the total number of calls of oracle after k iterations. At each iteration of
this method we call the oracle 2(ik+1) times (at point xk+1,ik and at the prediction point
yk+1,ik). Therefore, using the same reasoning as in the end of Section 2, we conclude that

N(k) = 4(k + 1) + 2 log2 Lk+1 − 2 log2 L0. (4.9)

Note that

Lk+1 = 1
22

i−kLk =
Ak+1

a2
k+1

(2.11)

≤
[

1
ϵτk

] 1−ν
1+ν M

2
1+ν
ν =

[
Ak+1

ϵak+1

] 1−ν
1+ν M

2
1+ν
ν (4.10)

Therefore
[

1
ak+1

] 1+3ν
1+ν ≤ A

−2ν
1+ν

k+1

[
1
ϵ

] 1−ν
1+ν M

2
1+ν
ν , and we conclude that

Lk+1 ≤ Ak+1

[
A

−2ν
1+ν

k+1

[
1
ϵ

] 1−ν
1+ν M

2
1+ν
ν

] 2(1+ν)
1+3ν

= A
1−ν
1+3ν

k+1

[
1
ϵ

] 2(1−ν)
1+3ν M

4
1+3ν
ν

(4.8)

≤ (2D)
1−ν
1+3ν

[
1
ϵ

] 3(1−ν)
1+3ν M

4
1+3ν
ν .

Substituting this estimate in the expression (4.9), we obtain that in average method (4.1)
has at most four calls of oracle per iteration.

5 Numerical experiments

In our numerical experiments we tried to check the actual level of adaptivity of the above
methods to the local topological structure of the objective function. For that, we have
chosen three families of nonsmooth minimization problems.

1. Matrix games. In this problem, given by an n×m payoff matrix A, we need to
find a saddle point of the following problem:

min
x∈∆n

max
y∈∆m

⟨x,Ay⟩ = min
x∈∆n

{
ψp(x)

def
= max

1≤j≤m
⟨x,Aej⟩

}

= max
y∈∆m

{
ψd(y)

def
= min

1≤i≤n
⟨ei, Ay⟩

}
,

(5.1)

where e(·) denote the basis vectors in the corresponding spaces, and ∆(·) denotes the
standard simplex. This problem can be posed as a minimization problem

min
x∈∆n,y∈∆m

{ψpd(x, y) = ψp(x)− ψd(y)} . (5.2)
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The optimal value of this problem is zero. For our experiments, we generated matrix A
randomly, with uniform distribution of its entries in the interval [−1, 1].

For feasible set of this problem, F = {z = (x, y) : x ∈ ∆n, y ∈ ∆m}, a natural
prox-function is the entropy:

η(z) =
n∑

i=1
z(i) ln z(i).

This function is strongly convex with respect to ℓ1-norm with the convexity parameter
one. Note that ℓ1-norm is very good for measuring simplexes. Consequently, we can
measure the subgradients of the objective function in (5.2) in ℓ∞-norm. In view of our
strategy for generating the matrix A, we get Lipschitz-continuous function ψpd with the
constant equal to one.

We will refer to the methods based on the entropy function as methods with the
Entropy Setup. If a method is using the standard Euclidean norm, we say that it is based
on the Euclidean setup.

In the table below, we give computational results for two universal methods, the Fast
Gradient Method (4.1), and the Primal Gradient Method (2.16), both with Entropy Setup.
In our problem instance, n = 896 and m = 128.

Eps FGMEntropy PGMEntropy

2−5

2−6

2−7

2−8

2−9

2−10

516 6.0 · 10−2 1.3 · 102

1127 2.9 · 10−2 2.6 · 102

1937 1.6 · 10−2 2.0 · 102

4684 7.9 · 10−3 2.0 · 103

8129 3.8 · 10−3 8.2 · 103

17556 2.1 · 10−3 4.1 · 103

722 8.2 · 10−2 8.0

2065 5.2 · 10−2 1.6 · 101

5675 3.4 · 10−2 3.2 · 101

15731 2.3 · 10−2 6.4 · 101

44829 1.5 · 10−2 1.3 · 102

122959 1.0 · 10−2 2.6 · 102

(5.3)

In the first column we indicate the required accuracy. For each method, there are three
subcolumns. First one indicates the number of iterations. Second one shows the upper
estimate for the achieved accuracy.2 The third column shows the current level of “Lipschitz
constant”, generated by the method. Note that per one iteration of FGM we need in
average to call the oracle four times. PGM needs in average only two calls.

It is clear, that both methods behave much better than the worst-case complexity
bounds. For FGM, decrease of required accuracy in two times results in a doubling of the
number of iterations. This dependence is typical for the complexity bounds of the type

2Since in this problem the optimal value is known, we use it in the stopping criterion.
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O(1ϵ ), and not to the theoretical bound O( 1
ϵ2
). For PGM, the average increase is higher

(approximately, in three times). But it is still much better than the theoretical bound.
From table (5.3) we can see that FGM generates much better model of the objective

function. Its accuracy is usually only twice bigger than the actual residual. The estimates
of PGM are much weaker. One of the possible reasons for this difference consists in much
more aggressive behavior of FGM in introducing new gradients in the model.

Finally, the third subcolumn shows that the actual level of the Lipschitz constants are
much lower than the theoretical prediction.

Let us look now how efficient FGM is in solving the same problem by the Euclidean
setup. These results are presented in the left part of table (5.4).

Eps FGMEuclid WDAEntropy

2−5

2−6

2−7

2−8

2−9

2−10

886 1.7 · 10−2 1.0 · 106

3249 9.0 · 10−2 8.4 · 106

11803 4.8 · 10−2 6.7 · 107

45417 2.5 · 10−2 5.4 · 108

178866 1.3 · 10−2 4.3 · 109

out of time

1569 4.4 · 10−2 1.0

6086 2.2 · 10−2 1.0

20655 1.1 · 10−2 1.0

78832 5.5 · 10−3 1.0

283352 2.7 · 10−3 1.0

out of time

(5.4)

They confirm that the right choice of prox-function is crucial for the efficient solution
of optimization problems. Behavior of FGM with Euclidean setup just corresponds to
the worst-case theoretical bound O( 1

ϵ2
) for Lipschitz-continuous functions (increase of the

number of iterations in four times after dividing accuracy by two).
In the right part of this table we present the results of the standard black-box subgra-

dient scheme as applied to the same problem. This is Weighted Dual Averaging (WDA)
[11] with Entropy Setup. For choosing its parameters correctly, we need to know only
an estimate for the diameter of the feasible set. Each iteration of this method needs one
call of oracle. For our problem, WDA works in an exact correspondence to its worst-case
complexity bound O( 1

ϵ2
). The second column of this part demonstrates that the lower

bound generated by this scheme is almost exact.
2. Continuous Steiner problem. In this problem we are given by centers ai ∈ Rn,

i = 1, . . . ,m. It is necessary to find the optimal location of the service center x, which
minimizes the total distance to all other centers. Thus, our problem is as follows:

min
x∈Q

f(x)
def
=

m∑
i=1

∥x− ai∥. (5.5)

where Q ⊆ Rn is a closed convex set. All norms in this problem are Euclidean.

16



Clearly, the level of smoothness of problem (5.5) is much higher than that of (5.2).
So, we can expect that it is easier for the universal schemes. Let us look at the results of
the experiments for random problem with n = 256, m = 512, and Q = Rn

+. We choose
m > n in order to increase the density of nonsmooth points. The centers were generated
randomly in the box 0 ≤ x(i) ≤ 1

n1/2 , i = 1, . . . , n (which has Euclidean diameter one). All
methods have origin as a starting point. The initial value of the objective is f0 = 295.226.
The optimal solution found by the schemes is f∗ = 147.336. The table below has the
same structure as (5.3).

Eps FGMEuclid PGMEuclid

2−5

2−6

2−7

2−8

2−9

2−10

2−11

2−12

2−13

205 3.1 · 10−2 2.6 · 102

307 1.5 · 10−2 5.1 · 102

277 6.8 · 10−3 2.6 · 102

611 3.9 · 10−3 5.1 · 102

827 1.9 · 10−3 5.1 · 102

1226 9.8 · 10−4 2.6 · 102

1655 4.8 · 10−4 2.6 · 102

2385 2.4 · 10−4 5.1 · 102

3388 1.2 · 10−4 5.1 · 102

9925 3.1 · 10−2 2.6 · 102

19895 1.5 · 10−2 5.1 · 102

39803 7.8 · 10−3 2.6 · 102

77138 3.9 · 10−3 5.1 · 102

155038 2.0 · 10−3 2.6 · 102

out of time

(5.6)

Note that the rate of convergence of FGM (4.1) is unexpectedly high. Increase of the
accuracy in four times results in doubling the number of iterations. From the complexity
point of view, this corresponds to the level O( 1

ϵ1/2
), which is typical for Fast Gradient

Methods of smooth minimization. The predicted accuracy by FGM is still very good, and
the level of Lipschitz constants is unexpectedly small. The results of PGM (2.16) are not
so impressive. It doubles the number of iterations after dividing accuracy by two, which
corresponds to O(1ϵ ) level of complexity. It seems that a weak point of this method is the
quality of termination criterion.

3. Universal methods and smoothing technique. Let us compare the practical
performance of method (4.1) as applied to the primal version of problem (5.1)

min
x∈∆n

ψp(x), (5.7)
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with its performance as applied to the smoothed version of this function

ψ̃p(x) = µ ln

(
m∑
j=1

e⟨x,Aej⟩/µ
)
.

The value of smoothing parameter µ > 0 for this function is chosen in accordance to the
theoretical recommendation (4.8) in [9]. For our experiments, we choose n = m = 512
and apply FGM with Entropy Setup.

Eps FGM for ψ̃p(x) FGM for ψp(x)

2−5

2−6

2−7

2−8

2−9

2−10

2−11

2−12

2−13

47 3.0 · 10−2 4.0 · 100

103 1.5 · 10−2 8.0 · 100

226 7.6 · 10−3 1.6 · 101

464 3.9 · 10−3 3.2 · 101

953 1.9 · 10−3 1.3 · 102

1881 9.7 · 10−4 1.3 · 102

3653 4.9 · 10−4 2.6 · 102

7077 2.4 · 10−4 2.0 · 103

13771 1.2 · 10−4 1.0 · 103

555 3.1 · 10−2 1.0 · 103

1956 1.5 · 10−2 1.6 · 104

8048 7.8 · 10−3 2.6 · 105

34355 3.9 · 10−3 1.0 · 106

135419 2.0 · 10−3 8.4 · 106

out of time

(5.8)

These results confirm that smoothing is still a very powerful technique, which computa-
tional efficiency is often much higher than that of the Black Box Methods.
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