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Abstract: Kusuoka representations provide an important and useful characterization of law invariant coherent

risk measures in atomless probability spaces. However, the applicability of these results is limited by the fact

that such representations do not always exist in probability spaces with atoms, such as finite probability spaces.

We introduce the class of functionally coherent risk measures, which allow us to use Kusuoka representations in

any probability space. We show that this class contains every law invariant risk measure that can be coherently

extended to a family containing all finite discrete distributions. Thus, it is possible to preserve the desirable

properties of law invariant coherent risk measures on atomless spaces without sacrificing generality. We also

specialize our results to risk measures on finite probability spaces, and prove a denseness result about the family

of risk measures with finite Kusuoka representations.
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1. Introduction Risk measures are functionals that represent the risk associated with a random

variable by a scalar value. Desirable properties of risk measures, such as coherence, comonotone additivity,

and law invariance have been axiomatized starting with the work of Artzner et al. (1999).

The seminal paper by Kusuoka (2001), in conjunction with the additional technical details provided

in Jouini et al. (2006), establishes two important representation theorems for risk measures on bounded

variables in atomless probability spaces. One theorem states that the class of law invariant coherent and

comonotone additive risk measures coincides with the class of spectral risk measures, and thus can be

represented as a mixture of conditional value-at-risk (CVaR) measures. The other theorem states that all

law invariant coherent risk measures can be represented as the infimum of a family of spectral measures.

These results were later extended to Lp spaces of random variables on atomless spaces for any p ∈ [1,∞],

see e.g. Pflug and Römisch (2007) and Shapiro et al. (2009).

Despite the significant recent interest in these representations (see, e.g., Dentcheva et al., 2010;

Pichler and Shapiro, 2012; Shapiro, 2013), to the best of our knowledge only one study (Leitner, 2005)

focuses on characterizations for general (i.e., not necessarily atomless) probability spaces. The chief dif-

ficulty in extending Kusuoka’s theorems lies in the fact that in the presence of atoms there exist certain

“pathological” law invariant coherent risk measures for which representations of the desired form are not

possible. To exclude these ill-behaved risk measures, in this paper we introduce the class of functionally

coherent risk measures, and show that this class always coincides with the class of risk measures which

admit Kusuoka representations. We also provide an analogous result that shows the equivalence between

the class of functionally coherent and comonotone additive risk measures, and the class of spectral risk
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measures. In addition, we show that the assumption of functional coherence is not overly restrictive,

as every law invariant coherent risk measure that can be evaluated on all finite discrete distributions is

functionally coherent. A distinguishing feature of our approach is to view law invariant risk measures

as mappings from the space of cumulative distribution functions (a similar approach is briefly used in

Pichler and Shapiro, 2012).

Finite probability spaces are often important in practical contexts, in particular when using a scenario-

based approach. For such spaces we prove that the mixtures of CVaR measures in Kusuoka representations

can be replaced by finite convex combinations. In the equal probability case these combinations take

a special form, where the number of terms is bounded from above by the size of the sample space.

We also examine the class of risk measures where the infimum in the Kusuoka representation can be

replaced by a finite minimum, and show that, over bounded families of random variables, they are dense

among functionally coherent risk measures. These finitely representable risk measures are computationally

tractable, which makes them highly useful in applications. For instance, Noyan and Rudolf (2013) develop

a finite convergent solution method for optimization problems with constraints that are based on such

risk measures.

The rest of the paper is structured as follows. In Section 2 we establish necessary notation and

recall some basic definitions. In Section 3 we review existing Kusuoka representations for various classes

of coherent risk measures, and provide a result for the case of finite probability spaces where every

elementary event has the same probability. We introduce the class of functionally coherent risk measures

in Section 4, show that they have Kusuoka representations, and then specialize these results for finite

probability spaces. In Section 5 we describe a general framework for coherently extending mappings

on families of distribution functions, then use this framework to argue the generality of the class of

functionally coherent risk measures. Section 6 contains our concluding remarks.

2. Notation and basic concepts Let us begin by establishing some notation. Throughout this

paper, let S = (ΩS ,AS ,ΠS) denote a standard atomless probability space (for instance, the interval

[0, 1] equipped with the Borel sigma algebra and the Lebesgue measure). Let us denote the set of all

cumulative distribution functions (CDFs) by

F =

{

F : R→ [0, 1]

∣

∣

∣

∣

lim
v→−∞

F (v) = 0, lim
v→∞

F (v) = 1, F is right-continuous and non-decreasing

}

.

Note that, as standard uniform random variables exist on any atomless space (see, e.g.,

Föllmer and Schied, 2004), using probability integral transforms we obtain F = {FV |V : Ω →

R is measurable}. Let us denote the set of p-integrable random variables on S for some p ∈ [1,∞]

by Lp(S), and the corresponding set of CDFs by Fp = {FV |V ∈ Lp(S)}. Note that Fp does not depend

on the choice of S.

We say that random variables V1, V2 are equal in distribution if we have FV1
= FV2

, and denote this

fact by V1 ∼ V2. The relation V1 ≤ V2 denotes inequality everywhere, i.e., that V1(ω) ≤ V2(ω) holds for



Noyan and Rudolf: Kusuoka Representations
c©May 3, 2013 3

all ω ∈ Ω.

The extended real line is denoted by R = R ∪ {−∞,+∞}. For a value x ∈ R we denote the Dirac

delta measure concentrated on x by δx.

Before proceeding to give our basic definitions, we need to make a note of some conventions used

throughout this paper. We consider larger values of random variables to be preferable, while higher

values of risk measures indicate less risky random outcomes. In this context, risk measures are often

referred to as acceptability functionals. In the literature the opposite conventions are also widespread,

especially when dealing with loss functions. When citing such sources, the definitions and formulas are

altered to reflect this difference.

Let us now recall some well-known definitions, starting with two important risk measures that serve

as the basis of the representations we consider in the following sections.

• Let V be a random variable with a CDF denoted by FV . The value-at-risk (VaR) at confidence

level α ∈ (0, 1] is defined as

VaRα(V ) = inf{η : FV (η) ≥ α}. (1)

• The conditional value-at-risk at confidence level α is given by

CVaRα(V ) =
1

α

∫ α

0

VaRγ(V ) dγ. (2)

CVaR is also known in the literature as average value-at-risk and tail value-at-risk.

• We formally define VaR0(V ) = CVaR0(V ) = ess inf(V ).

VaRα(V ) is also known as the α-quantile of the random variable V . Accordingly, the first quantile

function F−1
V : (0, 1] → R of V is defined as F−1

V (α) = VaRα(V ). We recall the following well-known

facts:

• The mapping FV 7→ F−1
V is order reversing, i.e., the relation FV1

≤ FV2
implies F−1

V1
≥ F−1

V2
.

• Probability integral transform: For any random variable V and standard uniform random variable

U we have V ∼ F−1
V (U).

The generalized Lorenz curve GV : (0, 1] → R of a random variable V is defined as GV (α) =

αCVaRα(V ). Note that according to (2) the generalized Lorenz curve is continuous, since it is the

integral of the first quantile function. The next lemma will be critical in establishing certain finiteness

results.

Lemma 2.1 Given a probability space (Ω,A,Π), let K = {Π(S) : S ∈ A, Π(S) > 0} denote the set of

all non-zero probabilities of events, and consider an interval I ⊂ [0, 1] such that (int I) ∩ K = ∅, where

int I denotes the interior of I.

(i) The quantile function F−1
V is constant on the interval I.
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(ii) The generalized Lorenz curve GV is affine on the interval I. Furthermore, if the left endpoint of

I is 0, then GV is linear on I.

Proof. Consider a value α ∈ I. As the level sets of the random variable V are measurable, both of

the values

α− = Π(V < VaRα(V )) and α+ = Π(V ≤ VaRα(V ))

are in ∈ K ∪ {0}. By the definition of VaR we have α− ≤ α ≤ α+, implying I ⊂ [α−, α+]. Since

VaRγ(V ) = VaRα(V ) holds for any γ ∈ (α−, α+], part (i) immediately follows. Part (ii) is now a direct

consequence of (2). �

3. Coherent risk measures and Kusuoka representations In this section we first define some

important classes of risk measures, and then discuss representations of such measures based on the seminal

results of Kusuoka (2001).

For p ∈ [1,∞], let Lp = Lp(Ω,A,Π) denote the family of p-integrable random variables on some

probability space (Ω,A,Π). We note that for finite probability spaces Lp coincides with the set V =

V(Ω,A,Π) of all random variables. Following the influential work of Artzner et al. (1999), we say that a

mapping ρ : Lp → R is a coherent risk measure if it has the following properties (for all V, V1, V2 ∈ Lp):

• Normalized : ρ(0) = 0.

• Monotone: V1 ≤ V2 ⇒ ρ(V1) ≤ ρ(V2).

• Superadditive: ρ(V1 + V2) ≥ ρ(V1) + ρ(V2).

• Positive homogeneous : ρ(λV ) = λρ(V ) for all λ > 0.

• Translation invariant : ρ(V + λ) = ρ(V ) + λ.

A pair V1, V2 of random variables is said to be comonotone, if the following condition holds.

(V1(ω1)− V1(ω2)) (V2(ω1)− V2(ω2)) ≥ 0 Π(dω1)⊗Π(dω2)-almost surely. (3)

It is easy to verify that if V1 and V2 are comonote then they are quantile additive (see, e.g., McNeil et al.,

2005):

F
(−1)
V1

(α) + F
(−1)
V2

(α) = F
(−1)
V1+V2

(α) for all α ∈ (0, 1]. (4)

If the probability space is atomless, (3) holds if and only if there exists a standard uniform random variable

U such that we have (V1, V2) ∼
(

F
(−1)
V1

(U), F
(−1)
V2

(U)
)

. We say that a risk measure ρ is comonotone

additive if it has the following property.

• comonotone additive: V1, V2 comonotone ⇒ ρ(V1 + V2) = ρ(V1) + ρ(V2).

Let us denote the family of CDFs for p-integrable random variables by Fp = Fp(Ω,A,Π) =

{FV : V ∈ Lp(Ω,A,Π)}, and again note that for a finite probability spaceFp(Ω,A,Π) coincides with the

family F(Ω,A,Π) of the CDFs of all random variables on (Ω,A,Π). We say that a mapping ρ : Lp → R
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is law invariant if the value ρ(V ) depends only on the distribution of the random variable V , i.e., if there

exists a mapping ϕρ : Fp → R such that ρ(V ) = ϕρ(FV ) holds for all V ∈ Lp. Note that in this case ϕρ

is uniquely determined by ρ.

It is well known (Pflug, 2000) that CVaR is a law invariant coherent risk measure. In the next

subsection we present several results indicating that CVaR can be viewed as a basic building block of

other law invariant coherent risk measures.

3.1 Kusuoka representations In this section we provide an overview of existing results in the

literature that establish the existence of Kusuoka representations for coherent risk measures under various

conditions. We begin with Kusuoka’s original theorem; the result for L∞ is due to Kusuoka (2001) and

Jouini et al. (2006), while the proof for other Lp-spaces can be found in Pflug and Römisch (2007) and

Shapiro et al. (2009).

Theorem 3.1 Consider the atomless space S and a value p ∈ [1,∞].

(i) A mapping ρ : Lp(S) → R is a law invariant coherent risk measure if and only if there exists a

family M ⊂ P([0, 1]) of probability measures on the interval [0, 1] such that

ρ(V ) = inf
µ∈M

∫

[0,1]

CVaRα(V )µ(dα) for all V ∈ Lp. (5)

(ii) A mapping ρ : Lp(S) → R is a law invariant coherent and comonotone additive risk measure if

and only if there exists a probability measure µ ∈ P([0, 1]) on the interval [0, 1] such that

ρ(V ) =

∫

[0,1]

CVaRα(V )µ(dα) for all V ∈ Lp. (6)

Mappings with a representation of the form (6) are also known as spectral risk measures, and can be

expressed as

ρ(V ) =

∫

[0,1]

F
(−1)
V (α) ν(dα) for all V ∈ Lp,

where the measure ν ∈ P([0, 1]) is defined as

ν(A) = λδ0(A) + (1− λ)

∫

A

φ(α) dα (7)

for some λ ∈ [0, 1] and some non-increasing function φ : [0, 1] → R+ satisfying ‖φ‖1 = 1. We mention

that in finite probability spaces we have F
(−1)
V

∣

∣

∣

[0,ǫ]
≡ F

(−1)
V (ǫ) for ǫ = min {Π(ω) |ω ∈ Ω, Π(ω) > 0} > 0.

Accordingly, in this case we can assume without loss of generality that λ = 0 in the formula (7). We remark

that the representation (6) is sometimes called a Choquet representation (Pflug and Römisch, 2007), while

risk measures with such representations are also known as distortion risk measures (Bertsimas and Brown,

2009).

Theorem 3.1 provides representations in atomless spaces. For general probability spaces Leitner (2005)

shows that Kusuoka representations of the form (5) exist for coherent risk measures with the Fatou
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property that are consistent with second-order stochastic dominance. We mention that the consistency

condition implies law invariance, but the reverse implication does not hold in general (for instance, the

law invariant coherent risk measure ρ̂ in Example 4.1 is not consistent with second-order dominance).

The proof of Theorem 3.1 can naturally be adapted to finite probability spaces with equally likely

elementary events. This was pointed out (without a formal proof) for representations of the form (5)

in Pichler and Shapiro (2012), while Bertsimas and Brown (2009) uses a different approach to prove the

existence of representations of the form (6). For the sake of completeness we state these results in the next

subsection, and fill a small gap in the literature by providing a proof for the first type of representation.

3.2 Finite spaces with equal probabilities Let us establish some preliminaries, starting with

the well-known risk envelope representation for coherent risk measures. The proof of the next theorem is

due to Artzner et al. (1999); we mention that analogous results exist for more general probability spaces

(see, e.g., Pflug and Römisch, 2007).

Theorem 3.2 Let (Ω, 2Ω ,Π) be a finite probability space. For every coherent risk measure ρ :

V(Ω, 2Ω,Π) → R there exists a risk envelope Q ⊂ {Q ∈ V : Q ≥ 0, E(Q) = 1} such that

ρ(V ) = inf
Q∈Q

E(QV ) holds for all V ∈ V . (8)

The next lemma is an easy consequence of the Hardy-Littlewood-Polya inequality. We remark that

this lemma can be utilized to obtain an analogous statement for atomless spaces (Kusuoka, 2001;

Shapiro et al., 2009), which provides a key step in the proof of Kusuoka’s theorem.

Lemma 3.1 Consider two random variables Q, V on a finite probability space (Ω, 2Ω,Π), where Ω =

{ω1, . . . , ωn} and Π({ωi}) =
1
n
. Let q1 ≤ · · · ≤ qn be an ordering of the realizations Q(ω1), . . . , Q(ωn),

and similarly let v1 ≤ · · · ≤ vn be an ordering of V (ω1), . . . , V (ωn). Then, we have

inf
V̂ ∼V,V̂ ∈V

E(QV̂ ) =
1

n

n
∑

i=1

qn−i+1vi. (9)

We are now ready to state the main result of this subsection. Our proof of the first part of the following

theorem closely follows the one for the atomless case (Shapiro et al., 2009, Theorem 6.24). The second

part is due to Bertsimas and Brown (2009). Alternatively, it is possible to prove part (ii) from part (i)

by again adapting the proof for the atomless case (Kusuoka, 2001, Theorem 7).

Theorem 3.3 Consider a finite probability space (Ω, 2Ω,Π), where Ω = {ω1, . . . , ωn} and Π({ωi}) =
1
n
.

(i) A mapping ρ : V → R is a law invariant coherent risk measure if and only if it has a Kusuoka

representation of the form

ρ(V ) = inf
µ∈M

n
∑

i=1

µiCVaR i
n
(V ), V ∈ V , (10)

for some family of vectors M ⊂ {µ ∈ [0, 1]n : ‖µ‖1 = 1}.
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(ii) A mapping ρ : V → R is a law invariant coherent and comonotone additive risk measure if and

only if it has a Kusuoka representation of the form

ρ(V ) =

n
∑

i=1

µi CVaR i
n
(V ), V ∈ V ,

for some vector µ ∈ [0, 1]n which satisfies ‖µ‖1 = 1.

Proof. To show the non-trivial direction in part (i), we first note that according to Theorem 3.2

the risk measure ρ has a risk envelope representation of the form (8). Since ρ is law invariant, for any

random variable V we then have

ρ(V ) = inf
V̂ ∼V,V̂ ∈V

ρ(V̂ ) = inf
V̂∼V,V̂ ∈V

inf
Q∈Q

E(QV̂ ).

Changing the order of the infimums and substituting (9) we obtain

ρ(V ) = inf
Q∈Q

inf
V̂∼V,V̂ ∈V

E(QV̂ ) = inf
Q∈Q

1

n

n
∑

i=1

qn−i+1vi, (11)

where v1 ≤ · · · ≤ vn is an ordering of the realizations V (ω1), . . . , V (ωn), while for a random variable

Q ∈ Q we let q1 ≤ · · · ≤ qn denote an ordering of Q(ω1), . . . , Q(ωn). Introducing the non-negative

parameters ∆1 = q1 and ∆j = qj − qj−1 for j = 2, . . . , n, we have the following chain of equalities:

1

n

n
∑

i=1

qn−i+1vi =
1

n

n
∑

i=1

n−i+1
∑

j=1

∆jvi =
1

n

n
∑

j=1

n−j+1
∑

i=1

∆jvi

=
1

n

n
∑

j=1

∆j

n−j+1
∑

i=1

VaR i
n
(V ) (12)

=

n
∑

j=1

∆j(n− j + 1)

n
CVaRn−j+1

n
(V ). (13)

Here equality (12) reflects the fact that VaR i
n
(V ) = vi for i = 1, . . . , n. To verify (13), first note that

by definition we have VaRα(V ) = VaR i
n
(V ) for all α ∈

(

i−1
n

, i
n

]

. Taking into account (2), we see

that CVaR k
n
(V ) = 1

k

∑k
i=1 VaR i

n
(V ) holds (for a more detailed explanation see, e.g., Rockafellar, 2007;

Noyan and Rudolf, 2013), which implies (13). Now let us introduce the notation µ
Q
j =

∆j(n−j+1)
n

, and

observe that
n
∑

j=1

µ
Q
j =

n
∑

j=1

∆j(n− j + 1)

n
=

n
∑

i=1

qi

n
= E(Q) = 1.

Then, the desired representation (10) holds with the choice of M = {(µQ
1 , . . . , µ

Q
n ) : Q ∈ Q}. �

We remark that, in connection with the aforementioned work of Leitner (2005), part (i) of the above

theorem implies that in the equal probability case all law invariant coherent risk measures are consistent

with second-order stochastic dominance.

4. Functionally coherent risk measures The results presented in the previous section guarantee

the existence of Kusuoka representations under a variety of circumstances. However, such representa-

tions do not always exist in probability spaces that have atoms, as the next example (originally due to

Pflug and Römisch, 2007) shows.
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Example 4.1 Let Ω = {ω1, ω2} with 1
2 < Π(ω1) < 1. It is easy to verify that the risk measure ρ̂

defined by ρ̂(V ) = V (ω1) is coherent (and even comonotone additive). In addition, the equality ρ̂(V ) =

sup
{

v : FV (v) <
1
2

}

shows that ρ̂ is law invariant. However, ρ̂ has no Kusuoka representation of the

form (5). We provide a simple proof of this claim, as an alternative to the one given in Pflug and Römisch

(2007).

Proof. We first note that CVaRα(V ) ≤ CVaR1(V ) = E(V ) holds for any random variable V and

confidence level α ∈ [0, 1]. It follows that we have ρ(V ) ≤ E(V ) for any risk measure ρ with a Kusuoka

representation of form (5). On the other hand, for the random variable V given by V (ω1) = 1, V (ω2) = 0

we have the inequality ρ̂(V ) = V (ω1) = 1 > Π(ω1) = E(V ), which implies our claim. �

Let us recall that for a law invariant risk measure ρ : Lp → R there exists a corresponding mapping

ϕρ : Fp → R which satisfies ρ(V ) = ϕρ(FV ) for all V ∈ Lp. The risk measure ρ̂ in the above example is

“pathological” in the sense that its corresponding mapping ϕρ̂ cannot be coherently extended to CDFs

from other probability spaces. We now formalize this intuitive notion.

Definition 4.1 Given a not necessarily atomless probability space (Ω,A,Π) and a value p ∈ [1,∞], a

law invariant mapping ρ : Lp(Ω,A,Π) → R is called a functionally coherent risk measure if there exists

a law invariant coherent risk measure ρ̄ : Lp(S) → R such that ϕρ is a restriction of ϕρ̄, i.e., we have

ϕρ = ϕρ̄

∣

∣

Fp(Ω,A,Π)
.

If there exists some ρ̄ : Lp(S) → R that, in addition to the above properties, is also comonotone

additive, then we say that ρ is a functionally coherent and comonotone additive risk measure.

We mention that the above notion is essentially equivalent to the concept of regular coherent risk measures

discussed in Pichler and Shapiro (2012). It is easy to see that in atomless probability spaces this class

coincides with the class of law invariant coherent risk measures. However, this is not always the case in

general probability spaces. The next proposition shows that functionally coherent risk measures allow us

to use Kusuoka representations even in probability spaces that are not atomless.

Proposition 4.1 Consider a (not necessarily atomless) probability space (Ω,A,Π), and a value p ∈

[1,∞].

(i) A mapping ρ : Lp → R is a functionally coherent risk measure if and only if it has a Kusuoka

representation of the form (5) for some family M ⊂ P([0, 1]).

(ii) A mapping ρ : Lp → R is a functionally coherent and comonotone additive risk measure if and

only if it has a Kusuoka representation of the form (6) for some measure µ ∈ P([0, 1]).

(iii) The equivalences established in parts (i) and (ii) still hold if we restrict ourselves to measures

supported on the topological closure K̄ = cl {Π(S) : S ∈ A, Π(S) > 0} of the set K introduced

in Lemma 2.1.
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Proof. If ρ is functionally coherent, then there exists a law invariant coherent risk measure ρ̄

on an atomless space such that ϕρ = ϕρ̄

∣

∣

Fp(Ω,A,Π)
holds. By Theorem 3.1 the risk measure ρ̄ has a

Kusuoka representation of the form (5), which trivially also provides a representation for ρ. On the other

hand, if ρ has a Kusuoka representation, then the same representation defines a law invariant mapping

ρ̄ : Lp(Ω̄, Ā, Π̄) → R on any atomless probability space (Ω̄, Ā, Π̄). By Theorem 3.1 the mapping ρ̄ is a

coherent risk measure, which proves part (i). The proof of part (ii) is essentially identical.

It is sufficient to prove part (iii) for representations of the form (6). For a confidence level α ∈ [0, 1]

let us define α− = sup {γ ∈ K ∪ {0} : γ ≤ α} ∈ K̄ ∪ {0} and α+ = inf{γ ∈ K : γ ≥ α} ∈ K̄.

According to Lemma 2.1, the mapping γ 7→ γ CVaRγ is affine on the interval [α−, α+], therefore CVaRα

can be expressed as a convex combination λ−
α CVaRα

−

+λ+
α CVaRα+

for some coefficients λ−
α and λ+

α . In

addition, if α− = 0, then the mapping γ 7→ γ CVaRγ is linear on [0, α+], therefore we can set λ−
α = 0,

λ+
α = 1.

Let us define the probability measure µ̄ on the set K̄ by

µ̄(A) =

∫

{α∈(0,1] : α
−
∈A}

λ−
α µ(dα) +

∫

{α∈(0,1] : α+∈A}

λ+
α µ(dα).

It is easy to verify that
∫ 1

0
CVaRα(V )µ(dα) =

∫

K̄
CVaRα(V ) µ̄(dα) holds for all V ∈ Lp(Ω,A,Π), which

proves our claim. �

Note that, unlike in the atomless case, for probability spaces with atoms the supporting set K̄ in the

above proposition can be a proper subset of the interval [0, 1]. In particular, this is the case for finite

probability spaces, which yields some useful consequences.

Corollary 4.1 Consider a functionally coherent and comonotone additive risk measure ρ on some finite

probability space (Ω, 2Ω,Π), and let n = |Ω|.

(i) The risk measure ρ can be written as a convex combination of finitely many CVaR measures, i.e.,

it has a representation

ρ(V ) =

M
∑

i=1

µi CVaRαi
(V ) for all V ∈ V , (14)

for some α1, . . . , αM ∈ (0, 1] and µ1, . . . , µM ∈ R+ satisfying
∑M

i=1 µi = 1.

(ii) If every elementary event is equally likely, then ρ can be expressed in the form

ρ(V ) =

n
∑

i=1

µiCVaR i
n
(V ) for all V ∈ V , (15)

for some µ1, . . . , µn ∈ R+ satisfying
∑n

i=1 µi = 1.

Proof. We trivially have |K| < 2n < ∞, which also implies K̄ = K. Furthermore, in the equal

probability case K =
{

1
n
, . . . , n

n

}

holds. �
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Remark 4.1 Shapiro (2013) shows that Kusuoka representations of type (6) are unique in atomless

spaces, while in finite probability spaces a single risk measure can have infinitely many different repre-

sentations. Similar results for minimal representations of type (5) can be found in Pichler and Shapiro

(2012).

We mention that risk measures of the form (14) are also known as mixed CVaR (Rockafellar, 2007).

Combining Corollary 4.1 and Proposition 4.1, we see that functionally coherent risk measures on finite

probability spaces have Kusuoka representations of the form

ρ(V ) = inf
µ∈M

M
∑

i=1

µiCVaRαi
(V ) for all V ∈ V , (16)

for some integer M , confidence levels α1, . . . , αM ∈ (0, 1], and a family of vectors M in the unit simplex

SM =
{

µ ∈ [0, 1]M : ‖µ‖1 = 1
}

. If a risk measure has a representation where the set M is finite, then

we say that it is a finitely representable coherent risk measure. The next result shows that, over bounded

families of random variables, these risk measures are dense among functionally coherent risk measures.

Proposition 4.2 Consider a family V̄ of random variables on a finite probability space, and assume

that V̄ is bounded in the L1-norm. Then, for any functionally coherent risk measure ρ and ǫ > 0 there

exists a finitely representable coherent risk measure ρ̄ such that |ρ(V )− ρ̄(V )| < ǫ holds for all V ∈ V̄.

Proof. The risk measure ρ has a Kusuoka representation of the form (16). Let us now select an

integer k > 1
ǫ
M sup

{

‖V ‖1 : V ∈ V̄
}

, and consider the finite set

S
(k)
M =

{

µ ∈

{

0

k
,
1

k
, . . . ,

k

k

}M

:

M
∑

i=1

µi = 1

}

⊂ SM .

For every vector µ ∈ SM there exists a controlled rounding µ̄ ∈ S
(k)
M such that |µi − µ̄i| <

1
k
holds for all

i = 1, . . . ,M (see, e.g., Bacharach, 1966). Then, using the fact that |CVaRα(V )| ≤ ‖V ‖1 holds for all

V ∈ V , α ∈ (0, 1], we have

∣

∣

∣

∣

∣

M
∑

i=1

µi CVaRαi
(V )−

M
∑

i=1

µ̄iCVaRαi
(V )

∣

∣

∣

∣

∣

≤ M
1

k
sup

{

‖V ‖1 : V ∈ V̄
}

< ǫ for every µ ∈ SM , V ∈ V̄.

(17)

Let us introduce the finite set M̄ = {µ̄ : µ ∈ M} ⊂ S
(k)
M and the finitely representable coherent risk

measure

ρ̄(V ) = inf
µ∈M̄

M
∑

i=1

µi CVaRαi
(V ) = inf

µ∈M

M
∑

i=1

µ̄i CVaRαi
(V ), V ∈ V .

Then, recalling (16) and (17), we have

|ρ(V )− ρ̄(V )| =

∣

∣

∣

∣

∣

inf
µ∈M

M
∑

i=1

µi CVaRαi
(V )− inf

µ∈M

M
∑

i=1

µ̄iCVaRαi
(V )

∣

∣

∣

∣

∣

< ǫ for every V ∈ V̄,

which proves our claim. �
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5. Coherent extensions In the previous section we utilized the notion that a law invariant risk

measure corresponds to an operator that acts on a family of CDFs. We now examine what it means

for such operators to be coherent, and obtain sufficient conditions under which they can be extended in

a coherent fashion to a wider family of CDFs. The latter question is of particular importance because

Theorem 3.1 implies that Kusuoka representations are available for coherent operators defined on the

family Fp for any p ∈ [1,∞].

Consider a family F ⊂ F of CDFs, and a mapping ϕ : F → R. We say that ϕ is a coherent mapping

if the following conditions hold for any random variables V , V1, V2 on S.

• Normalized : F0 ∈ F =⇒ ϕ(F0) = 0.

• Monotone: FV1
, FV2

∈ F , FV1
≥ FV2

=⇒ ϕ(FV1
) ≤ ϕ(FV2

).

• Superadditive: FV1
, FV2

, FV1+V2
∈ F =⇒ ϕ(FV1+V2

) ≥ ϕ(FV1
) + ϕ(FV2

).

• Positive homogeneous : α > 0, FV , FαV ∈ F =⇒ ϕ(FαV ) = αϕ(FV ).

• Translation invariant : λ ∈ R, FV , FV +λ ∈ F =⇒ ϕ(FV +λ) = ϕ(FV ) + λ.

If, in addition to the above properties, the condition

• Comonotone additive: V1, V2 comonotone, FV1
, FV2

, FV1+V2
∈ F =⇒ ϕ(FV1+V2

) = ϕ(FV1
) +

ϕ(FV2
)

also holds, then ϕ is a coherent and comonotone additive mapping.

Definition 5.1 We say that a family F ⊂ F is closed if for any random variables V , V1, V2 on S we

have the following.

• F0 ∈ F .

• FV ∈ F =⇒ FαV ∈ F for all α ∈ R+.

• FV ∈ F =⇒ Fλ+V ∈ F for all λ ∈ R.

• FV1
, FV2

∈ F =⇒ FV1+V2
∈ F .

Given a value p ∈ [1,∞] we call a family F ⊂ F p-dense if for any F ∈ Fp there exists a sequence

{Fn}n∈N ⊂ F such that lim
n→∞

‖F−1 − F−1
n ‖p = 0.

Let us now introduce some important closed families of CDFs.

Example 5.1 For a random variable V on S let F−1
V ([0, 1]) =

{

F−1
V (u)

∣

∣u ∈ [0, 1]
}

denote the range of

the quantile function F−1
V . For p ∈ [1,∞] let F

p
D =

{

FV : V ∈ Lp(S), F−1
V ([0, 1]) is countable

}

denote the family of CDFs of p-integrable discrete distributions, and let FFD =
{

FV : V ∈ L1(S),
∣

∣F−1
V ([0, 1])

∣

∣ < ∞
}

denote the family of CDFs of finite discrete distributions.

The families F
p
D and FFD are closed and p-dense for any p ∈ [1,∞].
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Proof. It is easy to verify that the families in question are closed. Since FFD is a subset of Fp
D,

it suffices to show that the former family is p-dense. To this end, let us consider an arbitrary CDF

FV ∈ Fp for some V ∈ Lp(S), and define the discretized random variables Vn = ⌈nV ⌉
n

. As the inequality

|V − Vn| <
1
n
holds everywhere, we have

∥

∥F−1
V − F−1

Vn

∥

∥

p
= ‖V − Vn‖p ≤ 1

n
for every n ∈ N. �

Theorem 5.1 Consider a value p ∈ [1,∞], a closed family F ⊂ Fp, and a mapping ϕ : F → R.

(i) The mapping ϕ is coherent if and only if ϕ = ϕρ

∣

∣

F
holds for some risk measure ρ : Lp(S) → R

which has a Kusuoka representation of the form (5).

(ii) If the family F is p-dense, then ϕ is a coherent and comonotone additive mapping if and only if

ϕ = ϕρ

∣

∣

F
holds for some risk measure ρ : Lp(S) → R which has a Kusuoka representation of the

form (6).

Proof. According to Theorem 3.1, to prove part (i) it is sufficient to show that there exists a law

invariant coherent risk measure ρ on the atomless space S such that ϕρ is an extension of ϕ.

For the family Z = {Z ∈ Lp(S) |FZ ∈ F} of random variables we have F = {FZ |Z ∈ Z}. Let us now

define the law invariant mapping ρ : Lp(S) → R by

ρ(V ) = sup {ϕ(FZ) | Z ∈ Z, FZ ≥ FV } for all V ∈ Lp(S). (18)

We first show that ϕρ : Fp → R, defined by

ϕρ(FV ) = ρ(V ) for all V ∈ Lp,

is an extension of ϕ, i.e., that ϕ = ϕρ

∣

∣

F
holds. If we consider an arbitrary function FV ∈ F for some

V ∈ Z, we immediately have ϕρ(FV ) = ρ(V ) = sup {ϕ(FZ) |Z ∈ Z, FZ ≥ FV } ≥ ϕ(FV ). On the other

hand, due to the monotone property of ϕ, the inequality ϕ(FZ) ≤ ϕ(FV ) holds for any Z ∈ Z, FZ ≥ FV

featured in the above supremum, implying ϕρ(FV ) ≤ ϕ(FV ).

We next prove that ρ is a coherent risk measure. It is easy to verify that ρ is normalized, positive

homogeneous, and translation invariant. For example, the translation invariance of ρ follows from the

next simple chain of equalities.

ρ(V + λ) = sup {ϕ(FZ ) | Z ∈ Z, FZ ≥ FV +λ} (19)

= sup
{

ϕ(FZ̄+λ)
∣

∣ Z̄ ∈ Z, FZ̄+λ ≥ FV +λ

}

(20)

= sup
{

ϕ(FZ̄ ) + λ
∣

∣ Z̄ ∈ Z, FZ̄+λ ≥ FV +λ

}

(21)

= sup
{

ϕ(FZ̄ )
∣

∣ Z̄ ∈ Z, FZ̄ ≥ FV

}

+ λ (22)

= ρ(V ) + λ. (23)

Here equalities (19) and (23) are provided by the definition of ρ. Equality (20) reflects the fact that, as

F is a closed family, for Z = Z̄+λ the conditions Z ∈ Z and Z̄ ∈ Z are equivalent. Equality (21) follows



Noyan and Rudolf: Kusuoka Representations
c©May 3, 2013 13

from the translation invariance of ϕ, while the trivial equivalence FZ̄+λ ≥ FV +λ ⇔ FZ̄ ≥ FV implies

(22). To show that ρ is monotone it is sufficient to observe that if V1 ≤ V2 holds for random variables

V1, V2 ∈ Lp, then the supremum that defines ρ(V1) in (18) is taken over a subset of the set featured in

the supremum that defines ρ(V2). It remains to show that ρ is superadditive. Let us consider two random

variables V1, V2 ∈ Lp. According to Sklar’s Theorem on copulas (see, e.g., Nelsen, 1999), there exist

standard uniform random variables U1 and U2 on S for which
(

F−1
V1

(U1), F
−1
V2

(U2)
)

has the same joint

distribution as (V1, V2). Introducing the notation Z̄1 = F−1
Z1

(U1), Z̄2 = F−1
Z2

(U2), we have the following

chain of implications:

Z1, Z2 ∈ Z, FZ1
≥ FV1

, FZ2
≥ FV2

(24)

=⇒ Z1, Z2 ∈ Z, F−1
Z1

(U1) ≤ F−1
V1

(U1), F−1
Z2

(U2) ≤ F−1
V2

(U2) (25)

=⇒ Z̄1, Z̄2 ∈ Z, Z̄1 ≤ F−1
V1

(U1), Z̄2 ≤ F−1
V2

(U2) (26)

=⇒ Z̄1 + Z̄2 ∈ Z, Z̄1 + Z̄2 ≤ F−1
V1

(U1) + F−1
V2

(U2) (27)

=⇒ Z̄1 + Z̄2 ∈ Z, FZ̄1+Z̄2
≥ FV1+V2

. (28)

Here (25) follows from the order-reversing property of the mapping F 7→ F−1. The definitions of Z1,

Z2 and Z, together with the relations Z1 ∼ Z̄1, Z2 ∼ Z̄2 immediately yield (26). To verify (27),

we note that Z is closed under addition because F is a closed family. Finally, (28) holds because
(

F−1
V1

(U1), F
−1
V2

(U2)
)

∼ (V1, V2) implies F−1
V1

(U1) + F−1
V2

(U2) ∼ V1 + V2. The superadditivity of ρ, and

thus part (i), now follows from the next chain of inequalities.

ρ(V1 + V2) = sup {ϕ(FZ) | Z ∈ Z, FZ ≥ FV1+V2
} (29)

≥ sup
{

ϕ(FZ̄1+Z̄2
)
∣

∣ Z1, Z2 ∈ Z, FZ1
≥ FV1

, FZ2
≥ FV2

}

(30)

≥ sup
{

ϕ(FZ̄1
) + ϕ(FZ̄2

)
∣

∣ Z1, Z2 ∈ Z, FZ1
≥ FV1

, FZ2
≥ FV2

}

(31)

= sup {ϕ(FZ1
) | Z1 ∈ Z, FZ1

≥ FV1
}+ sup {ϕ(FZ2

) | Z2 ∈ Z, FZ2
≥ FV2

} (32)

= ρ(V1) + ρ(V2) (33)

Here (29) and (33) are again provided by the definition of ρ. The inequality (30) follows from the

implication (24)-(28), while (31) is a consequence of the superadditivity of ϕ. Finally, the relations

Z1 ∼ Z̄1, Z2 ∼ Z̄2 imply (32).

To prove the non-trivial implication in part (ii), assume that ϕ is a coherent and comonotone additive

mapping. Let us again define ρ as in (18), and note that according to part (i) it is a law invariant coherent

risk measure. It only remains to show that ρ is comonotone additive. Let us consider two comonotone

random variables V1, V2 ∈ Lp(S), and recall that there exists a standard uniform random variable U

such that (V1, V2) ∼
(

F
(−1)
V1

(U), F
(−1)
V2

(U)
)

holds. Since the family F is p-dense, there exist sequences

{Fi,n}n∈N ⊂ F such that we have lim
n→∞

‖F−1
Vi

− F−1
i,n ‖p = 0 for i ∈ {1, 2}. Introducing the notation

Zi,n = F−1
i,n (U), our statement follows from the next chain of equalities.

ρ(V1) + ρ(V2) = ρ(F
(−1)
V1

(U)) + ρ(F
(−1)
V2

(U)) (34)
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= lim
n→∞

ρ(Z1,n) + ρ(Z2,n) (35)

= lim
n→∞

ϕ(FZ1,n
) + ϕ(FZ2,n

) (36)

= lim
n→∞

ϕ(FZ1,n+Z2,n
) (37)

= lim
n→∞

ρ(Z1,n + Z2,n) (38)

= ρ(F
(−1)
V1

(U) + F
(−1)
V2

(U)) (39)

= ρ(F
(−1)
V1+V2

(U)) (40)

= ρ(V1 + V2) (41)

Equalities (34) and (41) hold due to the law invariance of ρ. We note that, as ρ is a coherent risk measure,

it is continuous in the Lp-norm (Ruszczyński and Shapiro, 2006). Then, if p ∈ [1,∞), for i ∈ {1, 2} we

have

lim
n→∞

‖F−1
Vi

(U)− Zi,n‖p = lim
n→∞

‖F−1
Vi

(U)− F−1
i,n (U)‖p = lim

n→∞

(
∫ 1

0

∣

∣F−1
Vi

(u)− F−1
i,n (u)

∣

∣

p
du

)

1
p

(42)

= lim
n→∞

‖F−1
Vi

− F−1
i,n ‖p = 0. (43)

Similarly, if p = ∞, we have

lim
n→∞

‖F−1
Vi

(U)− Zi,n‖∞ = lim
n→∞

‖F−1
Vi

− F−1
i,n ‖∞ = 0. (44)

Equality (35) immediately follows. By the definition of ρ we obtain (36) and (38), while (37) follows from

the comonotone additivity of ϕ. Similarly to (42)-(44), for any p ∈ [1,∞] we have

lim
n→∞

∥

∥F−1
V1

(U) + F−1
V1

(U)− (Z1,n + Z2,n)
∥

∥

p
= 0,

therefore equality (39) again follows from the fact that ρ is continuous in the p-norm. Finally, recalling

(4), the quantile additivity of comonotone random variables yields (40). �

Keeping in mind Example 5.1, the next result is an easy consequence of the above theorem.

Corollary 5.1 If a law invariant risk measure ρ can be coherently extended to a family containing

all finite discrete distributions, then ρ is functionally coherent. More precisely, consider a mapping

ρ : V(Ω, 2Ω,Π) → R on a finite probability space. If for some p ∈ [1,∞] there exists a coherent mapping

ϕ : FFD → R such that ϕ
∣

∣

F(Ω,2Ω,Π)
= ϕρ holds, then ρ is a functionally coherent risk measure. It follows

that ρ has a Kusuoka representation of the form (5). If, in addition, ϕ is also comonotone additive, then ρ

is a functionally coherent and comonotone additive risk measure, and thus has a Kusuoka representation

of the form (6).

6. Conclusion and future research We have seen that in atomless probability spaces, as well

as in finite spaces where each elementary event has the same probability, all law invariant coherent risk

measures have Kusuoka representations of the form (5). Similarly, in such spaces all law invariant coherent
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and comonotone additive risk measures have representations of the form (6). An interesting question for

future research is whether there exist other probability spaces with similar properties.

Another open problem is to find a method to determine whether a given law invariant coherent risk

measure on a non-atomless space has a Kusuoka representation. We note that the characterization by

Leitner (2005) provides a partial answer for risk measures with the Fatou property. Since law invariant

risk measures can be viewed as operators on CDFs, a natural generalization of the previous problem is to

characterize coherent mappings from arbitrary families of CDFs which admit Kusuoka representations.

The sufficient condition established in Theorem 5.1 can serve as a starting point in studying this problem.

Finally we mention that from a practical point of view random variables with finitely many realizations

are often of interest. We have shown that any law invariant coherent risk measure that is defined on all

such variables has a Kusuoka representation. Risk measures with finite representations are of particular

interest due to the fact that they are computationally tractable. According to our denseness results, the

class of finitely representable risk measures is sufficiently rich to allow an arbitrarily close approximation

of any risk measure that admits a Kusuoka representation.
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Dentcheva, D., Penev, S., and Ruszczyński, A. (2010). Kusuoka representation of higher order dual risk

measures. Annals of Operations Research, 181:325–335.
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