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Abstract

An example is presented where Newton’s method for unconstrained minimization is applied to
find an ǫ-approximate first-order critical point of a smooth function and takes a multiple of ǫ

−2

iterations and function evaluations to terminate, which is as many as the steepest-descent method
in its worst-case. The novel feature of the proposed example is that the objective function has a
globally Lipschitz-continuous Hessian, while a previous example published by the same authors only
ensured this critical property along the path of iterates, which is impossible to verify a priori.

1 Introduction

Evaluation complexity of nonlinear optimization leads to many surprises, one of the most notable ones
being that, in the worst case, steepest-descent and Newton’s method are equally slow for unconstrained
optimization, thereby suggesting that the use of second-order information as implemented in the standard
Newton’s method is useless in the worst-case scenario. This counter-intuitive conclusion was presented
in Cartis, Gould and Toint (2010), where an example of slow convergence of Newton’s method was
presented. This example shows that Newton’s method, when applied on a sufficiently smooth objective
function f(x), may generate a sequence of iterates such that

‖∇xf(xk)‖ ≥
(

1

k + 1

)
1

2
+η

,

where xk is the k-th iterate and η is an arbitrarily small positive number. This implies that the considered
iteration will not terminate with

‖∇xf(xk)‖ ≤ ǫ

and ǫ ∈ (0, 1) for k < ǫ−2+τ , where τ = η/(1 + 2η). This shows that the evaluation complexity of
Newton’s method for smooth unconstrained optimization is essentially O(ǫ−2), as is known to be the
case for steepest descent (see Nesterov, 2004, pages 26-29). This example satisfies the assumption that
the second derivatives of f(x) are Lipschitz continuous along the path of iterates, that is, more specifically,
that

‖∇xxf(xk + t(xk+1 − xk)) −∇xxf(xk)‖ ≤ LH‖xk+1 − xk‖
for all t ∈ (0, 1) and some LH ≥ 0 independent of k. The gradient of this example is globally Lipschitz
continuous.

While being formally adequate (and verified by the example if Cartis et al., 2010), this assumption
has two significant drawbacks. The first is that it cannot be verified a priori, before the minimization
algorithm is applied to the problem at hand. The second is that it has to be made for an infinite sequence
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of iterates, at least if a result is sought which is valid for all ǫ ∈ (0, 1). It is therefore desirable to verify
if the stronger but simpler assumption that f(x) admits globally Lipschitz continuous second derivatives
still allows the construction of an example with O(ǫ−2) evaluation complexity. It is the purpose of the
present note to discuss such an example.

2 The example

Consider the unconstrained nonlinear minimization problem given by

min
x∈IRn

f(x)

where f is a twice continuously differentiable function from IRn into IR, which we assume is bounded
below. The standard Newton’ method for solving this problem is outlined as Algorithm 2.1, where we
use the notation

gk
def
= ∇xf(xk) and Hk

def
= ∇xxf(xk).

Algorithm 2.1: Newton’s method for unconstrained minimization

Step 0: Initialization. A starting point x0 ∈ IRn is given. Compute f(x0) and g0. Set k = 0.

Step 1: Check for termination. If ‖gk‖ ≤ ǫ, terminate with xk as approximate first-order crit-
ical point.

Step 2: Step computation. Compute Hk and the step sk as the solution of the linear system

Hksk = −gk (2.1)

Step 3: Accept the next iterate. Set xk+1 = xk + sk, increment k by one and go to Step 1.

Of course, the method as described in this outline makes strong (favourable) assumptions: it assumes
that the matrix Hk is positive definite for each k and also that f(xk + sk) sufficiently reduces f(xk)
for being accepted without any specific globalization procedure, such as linesearch, trust-region or filter.
However, since our example will ensure both these properties, the above description is sufficient for our
purpose.

2.1 A putative iteration

Our example is two-dimensional. We therefore aim at building a function f(x, y) from IR2 into IR such
that, for any ǫ ∈ (0, 1), Newton’s method essentially takes ǫ−2 iterations to find an approximate first-order
critical point (xǫ, yǫ) such that

‖∇(x,y)f(xǫ, yǫ)‖ ≤ ǫ (2.2)

when started with (x0, y0) = (0, 0).
Consider τ ∈ (0, 1) and an hypothetical sequence of iterates {(xk, yk)}∞k=0 such that gk, Hk and

fk = f(xk, yk) are defined by the relations

gk = −







(

1
k + 1

)
1

2
+η

(

1
k + 1

)2






Hk =

(

1 0

0
(

1
k + 1

)2

)

, (2.3)
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for k ≥ 0 and

f0 = ζ(1 + 2η) +
π2

6
, fk = fk−1 −

1

2

[

(

1

k + 1

)1+2η

+

(

1

k + 1

)2
]

for k ≥ 1, (2.4)

where

η = η(τ)
def
=

τ

4 − 2τ
=

1

2 − τ
− 1

2
.

If this sequence of iterates can be generated by Newton’s method starting from the origin and applied
on a twice-continuously differentiable function with globally Lipschitz continuous Hessian, then one may
check that

‖gk‖ >

∣

∣

∣

∣

∂f

∂x
(xk, yk)

∣

∣

∣

∣

=

(

1

k + 1

)
1

2−τ

> ǫ for k ≤ ǫ−2+τ ,

and also that

‖gk‖ ≤
(

1

k + 1

)
1

2−τ

+

(

1

k + 1

)2

≤ 2

(

1

k + 1

)
1

2−τ

≤ ǫ for k ≤ 4ǫ−2+τ .

As a consequence, the algorithm will stop for k in a fixed multiple of ǫ−2 iterations.

2.2 A well-defined Newton scheme

The first step in our construction is to note that, since we consider Newton’s method, the step sk at
iteration k is defined by the relation (2.1), which, together with (2.3), yields that

sk =

(

sk,x

sk,y

)

=





(

1
k + 1

)
1

2
+η

1



 , (2.5)

and therefore that

x0 =

(

0
0

)

, xk =







k−1
∑

j=0

(

1

j + 1

)
1

2
+η

k






. (2.6)

The predicted value of the quadratic model at iteration k

qk(xk + sx, yk + sy)
def
= fk + 〈gk, s〉 + 1

2
〈s,Hks〉 (2.7)

at (xk+1, yk+1) = (xk + sk,x, yk + sk,y) is therefore given by

qk(xk+1, yk+1) = fk + 〈gk, sk〉 + 1

2
〈sk,Hksk〉 = fk − 1

2

[

(

1

k + 1

)1+2η

+

(

1

k + 1

)2
]

= fk+1, (2.8)

where the last equality results from (2.4). Thus the value of the k-th local quadratic at the trial point
exactly corresponds to that planned for the objective function itself at the next iterate of our putative
sequence. As a consequence, the sequence defined by (2.6) can be obtained from a well-defined Newton
iteration where the local quadratic is minimized at every iteration yielding sufficient decrease, provided
we can find a sufficiently smooth function f interpolating (2.3) at the points (2.6). Also note that the
sequence {fk}∞k=0 is bounded below by zero due to the definition of the Riemann zeta function, which is
finite since 1 + 2η > 1. Figure 2.1 illustrates the sequence of quadratic models and the path of iterates
for increasing k.
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Figure 2.1: Contour line of qk(x, y) = fk (full lines), the disks around the iterates of radius 1

4
(shaded)

and 3

4
(dotted), and the path of iterates for k = 0, . . . 10.

2.3 Building the objective function

The next step in our example construction is thus to build a smooth function with bounded second and
third derivatives (which implies that its gradient and Hessian are Lipschitz continuous) interpolating
(2.3) at (2.6). The idea is to exploit the large components of the step along the second dimension (see
(2.5)) to define f(x, y) to be identical to qk(x, y) in a domain around (xk, yk). More specifically, define,
for k ≥ 1,

δ(α)
def
=







1 if 0 ≤ α ≤ 1

4
,

16α3
[

−5 + 15α − 12α2
]

if 1

4
≤ α ≤ 3

4
,

0 if α ≥ 3

4
.

(2.9)
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This piecewise polynomial is defined(1) to be identically equal to 1 near the origin, and to smoothly
decrease to zero (with bounded first, second and third derivatives) between 1

4
and 3

4
. Using this function,

we may then define, for each k ≥ 0, a local support function

sk(x, y)
def
= δ

(∥

∥

∥

∥

x − xk

y − yk

∥

∥

∥

∥

)

.

which is identically equal to 1 in a (spherical) neighbourhood of (xk, yk) and decreases smoothly (with
bounded first, second and third derivatives) to zero for all points whose distance to (xk, yk) exceeds 3

4
.

The shapes of a support function at (1, 1) is shown in Figure 2.2.

Figure 2.2: The shape of the support function centered at (1, 1)

We are now in position to define the ’useful part’ of objective function as

fSN1(x, y) =
∞
∑

k=0

sk(x, y)qk(x, y) (2.10)

for all (x, y) in IR2. Note that the infinite sum in (2.10) is obviously convergent everywhere as it involves
at most two nonzero terms for each (x, y), because the distance between successive iterates exceeds 1.
This function would already serve our purpose, as it obviously interpolates (2.3)-(2.4), is bounded below
and has bounded first, second and third derivatives since the large values of qk(x, y) that occur in their
expressions always occur far from (xk, yk) and are thus annihilated by the support function.

However, for the sake of illustration, we modify fSN1(x, y) to build

fSN (x, y) = fSN1(x, y) +

[

1 −
∞
∑

k=0

sk(x, y)

]

fBCK(x, y), (2.11)

where the background function fBCK(x, y) only depends on y (i.e., ∇xfBCK(x, y) = 0 for all x) and
ensures that fBCK(x, yk) = fk for all x such that |x − xk| ≥ 3

4
. Its value is computed, for y ≥ 0, by

successive Hermite interpolation of the conditions (2.4) and

∇yfBCK(x, y) =

(

1

k + 1

)
1

2
+η

, ∇yyfBCK(x, y) = 0,

at yk = 0, 1, . . .. The shape of the resulting function as a function of y and of its third derivative are
shown in Figures 2.3 and 2.4, respectively. It may clearly be extended to the complete real axis without
altering its smoothness properties.

(1)Using Hermite interpolation, with boundary conditions

δ( 1

4
) = 1, δ′( 1

4
) = 0, δ′′( 1

4
) = 0, δ( 3

4
) = 0, δ′( 3

4
) = 0, δ′′( 3

4
) = 0.
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Figure 2.3: The shape of fBCK(x, y) as a function of y (k = 0, . . . , 10)
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Figure 2.4: The shape of the third derivative of fBCK(x, y) as a function of y (k = 0, . . . , 10)

The modification (2.11) has the effect of ’filling the lansdscape’ around the path of iterates, consider-
ably diminishing the variations of the function in the domain of interest. The countour lines of fSN (x, y)
as given by (2.11) are shown in Figure 2.5 on the following page, together with the iteration path. A
perspective view is provided in Figure 2.6 on page 8.

3 Conclusions and perspectives

We have produced a two dimensional example where the standard Newton’s method is well-defined and
converge slowly, in the sense that an ǫ-approximate first-order critical point is not found in less than
ǫ−2 iterations, an evaluation complexity identical to that of the steepest-descent method. The objective
function in this example has globally Lipschitz-continuous second derivatives, showing that this slowly
convergent behaviour may still be observed under stronger but simpler assumptions than those used in
Cartis et al. (2010). It is interesting to note that this example also applies if a trust-region globalization
is used in conjunction with Newton’s method, since, because of (2.8), all iterates are very successful and
the iteration sequence is thus identical to that analyzed here whenever the initial trust-region radius ∆0

is chosen larger than ‖s0‖ =
√

2.
We also observe that the construction used above can be extended to produce examples with smooth

functions interpolating general iteration conditions (such as (2.3)-(2.4)) provided the successive iterates
remain uniformly bounded away from each other. Producing such a sequence of iterates from an original



Cartis, Gould, Toint: Slow convergence of Newton’s method (draft) 7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Figure 2.5: Contour lines of fSN (x, y) and the path of iterates for k = 0, . . . 10.

slowly-converging one-dimensional sequence whose iterates asymptotically coalesce can be achieved, as
is the case here, by extending the dimensionality of the example.
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Figure 2.6: A view of fSN (x, y)


