
Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

1

SOLUTION OF NONLINEAR EQUATIONS VIA OPTIMIZATION

Isaac Siwale

Technical Report RD-15-2013

Apex Research Limited

London
England

e-mail: ike_siwale@hotmail.com

Abstract

This paper presents four optimization models for solving nonlinear equation systems. The models accommodate

both over-specified and under-specified systems. A variable endogenization technique that improves efficiency is

introduced, and a basic comparative study shows that the optimization methods presented are very effective.

Key Words: Optimization, Multiple Objective Programming, Nonlinear Equations, Game Theory, Compromise

Solution, Evolutionary Algorithms.

1 Introduction

The need to solve systems of nonlinear equations arises in a diverse set of applied science and engineering

fields: for example, the test suite by Averick, Carter, More & Xue [1] is on practical problems emanating

from fluid dynamics, medicine, elasticity, combustion, molecular conformation, chemical kinetics, lubrication

and superconductivity. But in the book Numerical Recipes in C: The Art of Scientific Computing, the authors

assert:

“We make an extreme, but wholly defensible, statement: There are no good general methods for solving systems

of more than one non-linear equation. Furthermore, it is not hard to see why (very likely) there never will

be any good, general methods.” [Paraphrased from 20, p.379; emphasis in original]

And this is not an isolated view—Dennis & Schnabel also express similar sentiments in their book [4, p.16].

But such “pessimism” is only defensible if one restricts one’s attention to traditional deterministic algorithms.

When other solution methodologies are taken into account, then the situation is not so bleak: algorithms that

combine the calculus of real intervals [17] and / or constraint satisfaction techniques with standard Newton-

type and homotopy algorithms have since been developed and shown to be robust; stochastic algorithms that

show a great deal of potential have also emerged; and last but not least, various formulations that alleviate the

difficulties associated with the nonlinear equation system problem have been proposed. In support, one may

cite Maranas & Floudas [15] who proposed a global optimization formulation solved by the branch-and-

bound technique that can find all the solutions of nonlinear equation systems; Van Hentenryck, McAllester &

Kapur [30] who present a branch-and-prune constraint satisfaction algorithm that behaves well on a variety of

benchmarks; Basirzadeh, Kamyad & Effati [2] who propose a technique called the ‘optimal time method’ that

employs measure theory in conjunction with optimal control theory; Grosan & Abraham [9] who present an

evolutionary multi-objective optimization approach—a technique which this paper elaborates upon and

hopefully clarifies; Nguyen Huu & Tran Van [18] who propose a probability-driven method; Ji, Wu, Li &

Feng [10] who apply interval calculus techniques to a homotopy based algorithm in the framework of semi-

algebraic systems; and Rahimian, Jalai, Seader & white [21] who propose a new homotopy method.

mailto:ike_siwale@hotmail.com

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

2

The purpose of this paper is to contribute other ideas for solving nonlinear equation systems. Occasionally,

the exposition mentions a solver called GENO which was used to generate the numerical results reported, but

whose description beyond this footnote
1
 is not necessary for the arguments presented herein and is therefore

excluded; otherwise, the paper is organised as follows: §2 reformulates an equation problem as a multi-

objective programming problem; §3 delineates the character of the solution to the model in §2, and introduces

the compromise solution concept; §4 re-formulates the model of §2 using distance metrics, and §5 presents a

uni-objective version of the same; §6 presents a totally different approach based on NCP-functions and a

saddle point theorem; numerical examples are in §7; §8 summarises and concludes the presentation; last but

not least, the legal framework governing this publication is set forth in §9.

2 Equation Systems: An Optimization Formulation

Nocedal & Wright [19] classify algorithms for solving nonlinear equation systems into three categories: (i)

Newton and quasi-Newton methods; (ii) merit function approaches; (iii) continuation / homotopy techniques.

But the same authors also point out that none of these methods are totally satisfactory in practice:

“Newton-based methods all suffer from one shortcoming: unless the Jacobian matrix is non-singular in the

region of interest—a condition that often cannot be guaranteed—they are in danger of converging to a local

minimum of the merit function [associated with the equation system] that is not a solution to the system;

continuation methods may fail to produce a solution even to a fairly simple system of nonlinear equations;

however, they are more robust than merit-function based methods but are also computationally more

expensive” [Paraphrased from 19, pp. 296-301]

Alternative solvers for nonlinear equation systems are therefore required, and to that end, it is shown below

that the very essence of constrained optimization affords one such method; the exposition is intentionally

formal with emphasis on the rationale underlying particular formulations—it employs the following notation:

Notation. A distinction is made between the criterion set and the criterion vector of a multi-objective

optimization problem—the former is simply a discrete collection of criterion functions; the latter is the

vector whose components are the elements of the criterion set. ‘Opt’ denotes an operator whose operand is

generally a discrete set of criterion functions, i.e. the criterion set; it is a command to ‘optimize the

operand’; it may be “distributed onto” the elements of the criterion set, or “factored out” from such a

collection; when the operand is a singleton, then ‘Opt’ means ‘minimize’ or ‘maximize’ depending on the

context. The associated term ‘arg opt’ means ‘the argument that optimizes the operand’; when the operand

is a singleton, it means ‘arg min’ or ‘arg max’ depending on the context.

Let x  Rn
 be a decision vector whose j-th component is in [Lj, Uj]; let C(x) : Rn

  Rm
 be a mapping whose

components are nonlinear functions ci(x) : Rn
  R, i  {1, 2, . . . , m}; let f0 be a numeric function that maps

Rn
 into R, and consider a generic mathematical program defined on the set X1  {x | C(x)  0}, viz.:

MP1:  n

10 |)(Opt R Xxx
x

f

Let P denote the proposition ‘The vector x*  X1 is a solution to MP1’; then formally, we have that:

 P  { {x* = arg opt f0(x)}

 {c1(x*)  0}  {c2(x*)  0}    {cm(x*)  0} } (1a)

1
 GENO is an acronym for General Evolutionary Numerical Optimizer. GENO is a real-coded evolutionary algorithm that can be used to solve

uni- or multi-objective optimization problems; the problems presented may be static or dynamic in character; they may be unconstrained or

constrained by functional equality or inequality constraints, coupled with set constraints on the variables; the variables themselves may

assume real or discrete values in any combination. For a more detailed description and performance evaluation of GENO, see [25].

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

3

The task of any solution algorithm is to generate a sequence { xk } that converges onto a candidate solution

point x* that is within the feasible region and optimizes the primary criterion f0. Note that each ‘feasibility

term’ in the conjunction on the right-hand side of (1a) may be re-stated as {ci(x*)  [0, )}, and the search

for a feasible x* may be viewed as a process that seeks to minimize the distance of each outcome ci(xk) from

the set [0, )—the said distance may be measured by the following metric:






 infeasible is if |,)(

 feasible is if ,0
)(

i

i
x x

x
x

c|
f , },,2,1{ mi  (1b)

It follows immediately that:

 P  { {x* = arg opt f0(x)}

 {x* = arg min f1(x)}    {x* = arg min fm(x)} } (1c)

Thus the program MP1 is equivalent to an unconstrained multi-objective program, viz.:

  n

10
|)(Opt RXxx

x

f   )(,),(),(),(Opt m210 xxxx
x

ffff  (1d)

Applying the ‘constraint conversion’ idea to the solution of equation systems is straight forward: it entails

viewing equations as set-membership, i.e. C(x)  {0}, and notionally embedding the same into a program of

the form MP1 whose primary criterion function f0 is a constant (which may therefore be omitted from the

optimization process). Note that the feasible set X1 includes the singleton {0}, and so the embedding is fully

justified. But although the method converts functional constraints into a criterion set, it is advantageous to

still retain the former in the multi-objective formulation because this has the added effect of reinforcing the

search for the solution—this is the approach adopted henceforth.

To illustrate, let C(x) : Rn
  Rm

 be a vector-valued mapping whose components are functions denoted by

ci(x) : Rn
  R, i  {1, 2, . . . , m}, at least one of which is nonlinear, and consider the generic uni-objective

constrained mathematical program defined on the feasible set X2  { x | C(x)  {0} }:

MP2:  n

20
|0)(Opt R Xxx

x

f

By the argument presented above, the program MP2 is equivalent to a multi-objective program, viz.:

  n

20
|0)(Opt R Xxx

x

f   }{)(|)(,),(),(),(Opt m321 0xCxxxx
x

ffff  (1e)

Since we are only concerned with infeasible decision vectors (because all the feasible ones are, by definition,

already solutions to C(x) = 0), we only need to consider the bottom branch of the distance functions in (1b),

and therefore one may re-state the criterion set on the right-hand side of (1e) as {|c1|, |c2|, . . . , |cm|}. Thus the

nonlinear vector equation C(x) = 0 may be solved using the following multi-objective optimization problem

in which the operator ‘Opt’, when “distributed” over the criterion set, denotes the command ‘minimize’:

MPem1:  |)(|,|,)(||,)(Opt
m21

xxx
x

ccc| 

 Subject to: ci(x) = 0; xj  [Lj, Uj], i  {1, 2, . . . , m}; j  {1, 2, . . . , n}

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

4

Remarks 1. The formulation allows the number of variables, i.e. the dimension of the decision vector x, to be

different from the total number of equations, all of which may be nonlinear; thus, just as the method in [15],

both over-specified and under-specified linear and nonlinear systems are accommodated. Although the

method converts the equations ci(x) into objectives, MPem1 still retains these as constraints for computational

expediency under GENO. This technique is certainly not new as suggested by [9]—earlier proponents include

Surry, Radcliffe & Boyd [28], Coello Coello [3], Siwale [23] and Klamroth & Jørgen [11]; in fact, one could

argue that it is merely a “reverse” of well known multi-objective scalarization methods; see review in [16].

3 Notes on MPem1

3.1 Preamble

Multi-objective problems such as MPem1 may be analysed in two related spaces: (i) the decision space is the

set of all possible values of the decision vector x; components of the n-vector x are typically constrained to

closed intervals on the real line, i.e. xi  [Li, Ui], and the decision space is the Cartesian product of such

intervals; it includes the feasible set—i.e., X2 in the case of MPem1—as a subset; (ii) the outcome or criterion

space is the set of all criterion vectors that correspond to the decision vectors; the structure of the outcome

space is determined by the nature of the criterion functions; a subset that is of particular interest is the

outcome set which we define as the collection of all vectors in criterion space that correspond to feasible

vectors in the decision space. Whereas uni-objective optimization is typically studied in the decision space,

multi-objective programming is mostly studied in outcome space. Different types of solution may be defined

and the various notions in this regard are discussed fully elsewhere [26]; this paper is only concerned with

one, namely the compromise solution—its definition and computation are presented in §3.4 below.

3.2 Characterizing the Solution in Outcome Space

In outcome space solutions are ordered by a dominance relation attributed to Vilfredo Pareto (1848-1923),

hence the descriptor ‘Pareto-optimality’. Briefly stated, a vector a is said to Pareto-dominate another vector b

in the ‘greater-than’ sense if the difference vector d = a – b only has non-negative elements, at least one of

which is strictly positive; the applicable difference vector for dominance in the ‘less-than’ sense is d = b – a.

The set of all non-dominated outcome vectors constitutes the ‘Pareto frontier’, and a point from this set may

be selected (by some criteria) as the final solution to the multi-objective problem. In the case of MPem1 the

Pareto-frontier may be ascertained as follows: assume each element |ci| of the criterion set {|c1|, |c2|, . . . , |cm|}

is finite for all decision vectors x and let Si denote its supremum; then the outcome set is given by:

  )S,0[||),,,(ii

m

m21  cccc RCB (2)

If C(x) = 0 has a solution, then there exists at least one x* which is such that i, |ci(x*)| = 0;
2
 in other words,

the outcome set B must have a vertex at the origin of Rm
. The Pareto frontier in this case is a singleton,

namely the point 0, this being the one and only point that is not dominated by any other in B. The system

C(x) = 0 has no solution if i  {1, 2, . . . , m}: x, ci(x)  (0, Si).

2 Assuming a prior definition of ‘zero’ in terms of the location of the most significant digit

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

5

3.3 Characterizing the Solution in Decision Space

Decision vectors that map onto the Pareto frontier are said to be ‘efficient’. In the case of MPem1, one may

describe its efficient set in decision space as follows: let i denote the set of roots (or zeros) of the i-th

equation ci(x) = 0, i.e. i = {x : ci(x) = 0}; and let  denote the collective set of zeros of the system C(x) = 0.

Usually, each i is a discrete set which may or may not be finite, and the solution set  is given by:

i

m

1i




 (3)

The equation C(x) = 0 will have no solution if at least one of the i sets is empty. But assuming a solution

exists, there is still no easy way knowing the cardinality of the solution set ; and unlike the corresponding set

in outcome space, it is not uncommon for the size of  to be greater than one, i.e. the multiple solutions case.

However, for well posed equation systems, the set  is usually countable and finite, and the goal of all

solution algorithms for C(x) = 0 is to generate a sequence {xk} that converges onto at least one element of .

3.4 The Compromise Solution and its Computation

The peculiar nature of the Pareto-set, i.e. a singleton, suggests that algorithms that rely solely on the Pareto-

dominance concept in computing the solution to MPem1 may be found wanting in this case because it is much

more difficult to converge to a specific single point as opposed to an extensive Pareto frontier.
3
 The Pareto-

dominance criterion is certainly necessary but it may not be sufficient to ensure efficient convergence towards

the Pareto set in this case. What is required—in addition to the dominance test—is a mechanism that, in

effect, actively “pulls” candidate solutions towards the ideal outcome. The compromise solution concept

embodies such a dual role and its proper implementation should achieve the desired end.

The compromise solution concept that was first introduced by Salukvadze [22] and later independently

presented by Yu [31] and Zeleny [32]. It is based on the common-sense notion that the best option is a

feasible point that yields criterion values that are closest to an ideal outcome—the ideal being that point at

which each criterion is optimized to the fullest extent possible, i.e. the global solution. The rationale for the

compromise solution is best explained in terms of the two-dimensional outcome space depicted in Figure 1

below in which f1(x) and f2(x) are finite-valued criterion functions of a decision vector x, and the collection of

all such feasible outcomes constitutes the outcome set . Associated with each outcome vector  are four

‘boundary’ outcome vectors 1, 2, 3 and 4; these are points where lines that are parallel to the axes f1 and

f2 intersect the boundary of the set , which shall hereafter be denoted by . The vertices of the smallest

rectangle enclosing  comprise the ‘utopia set’, and for any given vertex vector zn, each of its dimensions

represents the best possible outcome, i.e. the global solution, that could be attained by maximizing or

minimizing a particular criterion independently. However, only one vertex would be relevant in any given

scenario and such a vertex is called the ‘ideal point’. In Figure 1 below, z1 is the ideal point when both criteria

are required to be minimized; whereas z4 is for the case where criterion 1 is to be minimized, and criterion 2

maximized.

3 Apart from this paper, Nguyen Huu & Tran Van [18, p.13] also confirm this in relation to the solutions reported by Grosan & Abraham [9];

they rightly point out that, although the Grosan-Abraham method is Pareto-dominance based, their solutions are not Pareto-optimal.

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

6

1




3

f1

f2

2

4

z3

z2 z4

z1

Figure 1: Outcome Set of a bi-objective Optimization Problem

One may define the compromise solution in two stages as follows:

 DEFINITION 1 [The Ideal Point]: Let   Rn denote an outcome set; let Lj and Uj denote the lower and upper

bounds respectively for the criterion fj at  assuming all other outcomes remain constant; let zi, denote the ideal

point for the problem at hand, then the coordinates of zi are given by scalars zij defined as:

 

 













minimizing requirescriterion th theif

maximizing requirescriterion th theif

,)(Inf

,)(Sup

j

j

ij

j

j

L

U

z





 (4a)

REMARKS 2: Because ideal outcomes are normally not jointly attainable, a compromise is required.

 DEFINITION 2 [The Tchebycheff Compromise Solution]: Let the point zi be the ideal point a given multi-objective

optimization problem; then the compromise solution is a member of those feasible controls whose outcomes are

closest to the ideal outcome as measured by some distance metric in outcome space; thus, in terms of the

Tchebycheff metric (see equation 5c below), the compromise solution is a feasible decision vector x* whose

corresponding outcome vector * belongs to a set of outcomes    that is defined as follows:

  


 ||||minarg:)(
ii

zz  (4b)

REMARKS 3: The definition of (zi) entails two processes: (i) the obvious minimization process denoted by the

‘arg min’ operator; (ii) the less obvious search process that is supposed to delineate the boundary set . In the

GENO scheme, the latter is approximated by evolutionary mechanisms using the Pareto-dominance criterion, and

the former is a straight forward implementation of the Tchebycheff metric. The rationale underlying this solution

concept may be explained as follows: (a) there is no question that, if it were achievable, the ideal outcome vector

zi would constitute the optimal solution to the multi-objective optimization problem under study; (b) but since

this is usually not the case, one has to “compromise downwards” from the ideal outcome zi to a less-than-ideal

outcome ω* that corresponds to a feasible vector x* and obviously, the extent of the “downward compromise”,

i.e. the quantity of criterion value that must be given up along each dimension, has to be minimal, hence the

‘distance-minimizing’ operation in the definition of the solution set , and the stipulation that ω* 

3.5 Closing Remarks

Equation systems may be recast into multi-objective optimization problems. For such a recast, the ideal

outcome, the outcome set and the Pareto frontier all coalesce into one point—the origin of the outcome space.

The compromise solution concept is most appropriate in this case.

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

7

4 The Set-of-Metrics Method

The basic multi-objective optimization model MPem1 is sufficient in many cases, but of course when the

number of equations to be solved is large, then the speed of execution is inevitably degraded and convergence

to the solution is unlikely to occur within a reasonable time frame. In order to achieve faster and higher

quality performance, an alternative approach is required. To that end, it is well to remember that the criterion

vector J  (|c1|, |c2|, . . . , |cm|)
T
 resides in Rm

 — a real space in which the following metrics are well known:

 



n

1i

ii1
||)(yxd yx (5a)

 



n

1i

2

ii2
)()(yxd yx (5b)

  ||Max)(
ii

Ii
yxd 




yx (5c)

The functions in (5) are known as ‘Manhattan’, ‘Euclidean’ and ‘Tchebycheff’ metrics respectively, and it

can be shown that if a sequence is convergent under any one of d1, d2, or d, then it is convergent under the

other two metrics as well, and the limits under the three metrics are the same [29, p.27]. The solution of the

system C(x) = 0 in outcome space is at the origin of Rm
, and the goal of all algorithms is to generate a

sequence of criterion vectors {Jk} that converges onto 0. An obvious approach is to explicitly minimize some

measure of the proximity of the vector Jk to 0 using the functions in (5), and one may include more than one

metric in the proposed “proximity” objective function in order to exploit their different properties. Thus,

instead of optimizing the set {|c1|, |c2|, . . . , |cm|}, one solves—in the most general case—the problem:

MPem2:  ),(),,(),,(Opt
21

000
x

JJJ


ddd

 Subject to: ci(x) = 0; xj  [Lj, Uj], i  {1, 2, . . . , m}; j  {1, 2, . . . , n}

Remarks 4. The model MPem2 is only worth trying if the dimension m is significantly greater than 3, because

there would be no saving in execution time otherwise. For that reason, no results by the model are presented

and neither is model discussed any further in this paper, except to mention that it would be solved in exactly

the same manner as MPem1, i.e. via the compromise solution concept with the origin of R3
 as the ideal point.

5 The Composite Metric Method

Experiments with GENO suggest that good results may be obtained from a single-objective version of MPem2 in

which one optimizes a composite metric (denoted by dc) made up of a linear combination of two or more of

d1, d2, and d. This paper proposes a simple sum—thus, in the most general case, one solves:

MPed:  ),(),(),(),(Min
21c

0000
x

JJJJ


 dddd

 Subject to: ci(x) = 0; xj  [Lj, Uj], i  {1, 2, . . . , m}; j  {1, 2, . . . , n}

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

8

Remarks 5. Numerical tests show that the program MPed even with only one metric included — the preferred

option being d — is quite effective, at least on most problems in well known test suites for nonlinear

equation systems that one may be find in [30], [15] and [13]. The model MPed is closely related to those

suggested by others: Maranas & Floudas [15] derive their global optimization model starting with a version

of MPed with only d present; the probability-based method of Nguyen Huu & Tran Van [18] effectively

involves solving MPed but without the constraints ci(x) = 0 and with only d retained.

6 The NCP Method

Alternatively, one could “embed” the equation C(x) = 0 into a nonlinear complementarity problem and then

solve the latter by optimization; the exposition requires some preliminary definitions as in [7]:

DEFINITION 3. Given a set K  R
n
 and a mapping F : K  R

n
, the variational inequality problem—hereafter

denoted by VI(K, F)—is to find the n-vector x* in K such that:

VI(K, F):  F(x*), (y – x*)   0, y  K (6a)

When the set K is restricted to the non-negative orthant of R
n
, then VI(K, F) is equivalent to the nonlinear

complementarity problem—denoted by NCP(F)—which may be stated thus: find x* in K such that:

NCP(F): F(x*)  0; x*  0;  F(x*), x*  = 0 (6b)

Three index sets are of interest:   { i : xi > 0 };   { i : fi (x) > 0 };   { i : xi = fi (x) = 0 }; the solution

to NCP(F) is said to be non-degenerate if the third index set is empty.

NCP’s are normally solved “indirectly”, and a common approach is to introduce a bivariate function—

referred to as ‘the NCP-function’—that has a specific value when the relations that define an NCP are met.

Formally, an NCP-function is a mapping  : R2
  R for which the following statement holds:

 0,0,00),( abbaba (7)

NCP-functions are many and varied—a recent review these functions together with their properties may be

found in [27]. The most common NCP-function is one named after Andreas Fischer and W. Burmeister but

was actually constructed by the latter [6, p.271]; the Fischer-Burmeister NCP-function is defined on the non-

negative orthant of R2
 as follows:

)() ,(22 bababa  , with a  0 and b  0 (8)

The Fischer-Burmeister function is positive homogeneous, Lipschitz-continuous and non-positive on 2

R ; it

attains its maximum value of zero when at least one of its arguments is zero, which also means that ab = 0.

In their approach to solving NCP’s, Facchinei & Soares [5] introduce an auxiliary mapping that exploits the

defining property of NCP-functions as follows: let ‘vec{ei}’ denote a vector whose i-th element is ei, and let 

denote an NCP-function; define the mapping  : Rn
  Rn

 as follows:

 (x) = vec{ (xi, Fi(x)) } (9)

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

9

Consider the system of equations (x) = 0: by definition, each component of the vector in equation (9) is

exactly the left-hand part of the ‘NCP proposition’ in (7); and since the right-hand part of the said proposition

is exactly the same the scalar version of NCP(F), it follows that if x* is a solution to (x) = 0, it is also a

solution to NCP(F); and conversely, if x* is a solution to NCP(F), then it is also a solution to (x) = 0. This is

the basis of the solution method that is advocated below—the formulation is as follows. Let C(x) : Rn
  Rm

be a vector-valued mapping whose components are nonlinear functions ci(x) : Rn
  R, i  {1, 2, . . . , m}; let

  Rm
 be a positive vector and let  denote an NCP-function; define the function  : Rm

  Rm
 as follows:

 (, x) = vec{ (i, ci(x)) } (10a)

And finally, “embed” the equation system C(x) = 0 into a pseudo-NCP as follows:
4

NCP(C):   0; C(x)  0;  , C(x)  = 0 (10b)

Although equation (10b) is slightly different from the NCP definition given in (6b), it nonetheless also

implies the following proposition:

 (, x) = 0  {(  0)  (C(x)  0)  ( , C(x)  = 0)} (10c)

Thus, for any non-negative and non-zero vector *, the point x* is a non-degenerate solution of the equation

system (*, x) = 0 if and only if x* is also a solution to NCP(C). One may compute the solution vector x*

by solving the equation system on the left-hand, or by solving the conjunctive relation on the right-hand side

of (10c), perhaps as a constraint satisfaction problem; a common third alternative is to consider a suitably

defined merit function h : Rn
  R which provides a measure of the degree of coincidence between the

solution of NCP(C) and that of an auxiliary program ‘Min h(x)’, and apparently “ . . . it is not difficult to find

a merit function for an NCP problem, the challenging task is to find a merit function that exhibits properties

that are useful from a computational point of view” [5, p. 225].

However, the NCP method advocated in this paper is different; it is inspired by the fact that (10b) constitutes

part of the well known Karush-Kuhn-Tucker optimality conditions for a nonlinear mathematical program of

the form ‘Min {f(x) | C(x)  0}’; it essentially combines the second and third methods mentioned above by

minimizing the Lagrange function:

 Le (, x)  f (x) –  , C(x)  (11a)

Following Kuhn & Tucker [12], one may characterize the solution to the vector equation C(x) = 0 in terms of

the Lagrangian Le (, x) by notionally embedding it into a program of the form Min {f(x) | C(x)  0}, and

then posing the following saddle-value problem.

 LAGRANGIAN SADDLE-VALUE PROBLEM: Let x be a decision vector in R
n
; λ be a non-negative vector in R

m
; and

C(x) = 0 be a vector equation of interest. Assuming the auxiliary program Min {f(x) | C(x)  0} and the

existence of a saddle point, find the pair (*, x*) that results in a saddle value of the Lagrangian Le, viz:

 Le (, x*)  Le (*, x*)  Le (*, x) (11b)

4 The prefix ‘pseudo’ is used because in a “true NCP”, the vector  would also be the sole argument of the function C().

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

10

The following sufficiency theorem connects the saddle-value problem to the global minimizer of f(x)—a

function yet to be defined—and the solution of C(x) = 0:
5

 THEOREM: Consider the auxiliary program: Min {f(x) | C(x)  0}. For any fixed, non-negative and non-zero vector

*, if there exists a vector x* such that the pair (*, x*) solves the Lagrangian saddle value problem in (11b),

then x* is a global minimizer of f(x) and a solution to the vector equation C(x) = 0.

 PROOF: The left-hand inequality of the saddle value problem simplifies as follows:

 f(x*) –  C(x*), λ   f(x*) –  C(x*), λ*  (12a)

 –  C(x*), λ   –  C(x*), λ* (12b)

  C(x*), λ    C(x*), λ*  (12c)

For an arbitrary fixed vector λ*, the inequality in (12c) is true for all λ if and only if C(x*) = 0, i.e. when x* is a

solution to the equation C(x) = 0.6

Granted the fact that C(x*) = 0, then the right-hand inequality simplifies as follows:

 f(x*) –  C(x*), λ*   f(x) –  C(x), λ*  (13a)

 f(x*) – f(x)   C(x*), λ*  –  C(x), λ*  (13b)

 f(x*) – f(x)  –  C(x), λ*  (13c)

 f(x) – f(x*)   C(x), λ*  (13d)

For all feasible x, the condition C(x)  0 holds, in which case the inner product on the right-hand side of (13d) is

non-negative because both its operands are in the same orthant of Rm.7 This in turn implies that f(x*) lies to the

left of f(x) on the real line for all feasible x, i.e., x* is a global minimiser of f(x) 

First, note that the theorem above assumes existence of the saddle point (*, x*) but does not specify the form

of f, only that it has to be minimized. The latitude afforded by this may be exploited to ensure existence of the

saddle point (*, x*). To that end, an obvious approach is to introduce a “link function” that couples the

function f to the equation system C(x) = 0; and one may achieve such a linkage by defining f as a composite

metric dc(, 0) that is a linear sum of the distance functions in equation (4), viz.:

 f (x)  dc(, 0) = d1(, 0) + d2(, 0) + d(, 0) (14)

 where: (x, )  vec{ (i, ci(x)) };

  — is an NCP-function;

  — is an arbitrary non-negative and non-zero constant vector.

Secondly, note that one is also free to use any type of NCP-function in equation (14); but this paper assumes

(and GENO employs) the Fischer-Burmeister function that was presented earlier.

5 Similar sufficiency theorems but of a local nature and with different styles of proof may be found in [14, p.74] and [29, p. 74].

6 This result also follows directly from the orthogonality condition,  , C(x)  = 0, of the first-order optimality criteria.

7 A simple proof of this assertion is as follows: in expanded form, the inner product function is simply a sum of corresponding elements of its

vector operands, viz.:  ii
, baba . If a and b, are in the same orthant, then corresponding non-zero elements have the same sign and their

product is therefore non-negative; and the sum of non-negative products is obviously non-negative; if one of the vectors is in the orthant’s

interior and the other is non-zero, then by .the same argument, it should be apparent that the inner product is strictly positive.

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

11

Finally, note that * is an arbitrary fixed vector which is pre-set; in other words, the maximization process

implied by the left-hand inequality in (11b) is not necessary and so the determination of the saddle point is

solely down to the minimization process implied by the right-hand inequality. Thus, the equation C(x) = 0

may be solved via the following uni-objective optimization problem:

MPec:),(Min x
x


e

L

 Subject to: ci(x) = 0; xj  [Lj, Uj], i  {1, 2, . . . , m}; j  {1, 2, . . . , n}

Remarks 6. The definition of f in equation (14) is consistent with what constitutes a merit function for an NCP

as defined by Facchinei & Soares [5]; in fact their own merit function — the inner product ,  which is

now commonly known as ‘natural merit function of an NCP’ — is simply the square of the second term in

equation (14). The model MPec is reliable in the sense that once a minimizer x* of Le(*, x) is found, then we

can rest assured that it is also a global minimizer f and a solution to the system C(x) = 0;
8
 this is much unlike

other merit function methods where no such guarantee can be made.
9
 The challenge of course is to design

algorithms that are capable of finding global optima in general.

7 Numerical Examples

This section presents the results obtained by GENO for some practical nonlinear equation systems presented in

[1], [9], [10], [13], [15] and [30]. In order to limit the length of this paper, detailed numerical results are

presented for only two problems that are mathematical models of the steady-state of real chemical processes:

the first is an equation system describing the equilibrium products of a hydrocarbon combustion process; the

second is an equation system describing the production of synthesis gas in an adiabatic reactor; results for the

rest of the examples are reported only in comparative summary form in §7.3, but are available in full in [24].

7.1 Example 1: Hydrocarbon Combustion Process [13, 15]

 Given: R1 = 10; R2 = 0.193; R3 = 4.106 * 10-4; R4 = 5.451 * 10-4;

 R5 = 4.497 * 10-7; R6 = 3.407 * 10-5; R7 = 9.615 * 10-7

 Solve the System: 03 5121  xxxx (i)

 0RRR3RR2 426324

2

275125

2

32121  xxxxxxxxxxxx (ii)

 0RR8R22 324335

2

32

2

32  xxxxxxx (iii)

 0R42R 51

2

4426  xxxx (iv)

 0RRR1RRR)1(42632433

2

4

2

3225

2

32

2

2721  xxxxxxxxxxxxx (v)

 Subject to: xi  [0.00001, 100], i  {1, 2, . . . , 5}.

8 This statement should be obvious from the very definition of f (x) in (14), but a simple proof is as follows: for a given positive vector *, let

S be the set of all global minimizers of f (x); assume the vector equation C(x) = 0 has a solution u  S; then i, ci(u) = 0, and by definitions

(10a) and (7), it follows that (*, u) = 0; this of course implies that f(u) = 0 by definition (14); in other words, u is also a global minimizer

of f (x) which contradicts the assumption that u is not in S. Therefore we must have that u  S. Next, consider a typical element v  S and

assume C(v)  0; by (14), the statement f (v) = 0 implies (*, v) = 0, i.e. i, ci(v) = 0, which contradicts the assumption that C(v)  0. But
since v is arbitrary, one may assert that all elements of S are solutions to the vector equation C(x) = 0, and conversely, all solutions of the

said equation are elements of S.

9 Nocedal & Wright [19, p. 286] cite the single variable example f (x) = 0.5(Sin (5x) – x)2 which has seven local minima, but only three of
which are also solutions to the equation f (x) = 0; merit function methods that try to find the roots of f(x) = 0 by solving the auxiliary program

Min || f(x) ||2 may not yield the correct solution unless if the solution algorithm is started at a fortuitous point.

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

12

7.1.1 Variable Endogenization

A very useful technique that one may deploy on some problems prior to optimization is to “endogenize”

some decision variables. At the very least, endogenization reduces the dimension of the search space

which in turn often leads to a more efficient search. Though seemingly novel, the technique is in essence

akin to the Gaussian elimination method that has been known for centuries [8]. Its application is

described in more detail in [25]; here, it suffices to describe the algorithm in summary form as follows:

Step 1: Create a ‘connexion matrix’—previously known as ‘incidence matrix’— that indicates the presence or

absence of each variable per equation, viz.:

EQUATION NO x1 x2 x3 x4 x5

i   

ii     

iii   

iv   

v    

Step 2: Identify equations to eliminate by “endogenizing” variables based on whether the chosen equation is easy to

manipulate to make the chosen variable the subject of the equation. By this heuristic, one can see that equations (i),

(ii) and (iii) as prime targets for elimination using variables x1, x4 and x5 respectively.

Step 3: To ensure non-circular definitions, manipulate the connexion matrix into “row echelon” form (by swapping

rows and / or columns) such that the variables identified for “endogenization” are on the “sloping edge”, viz.:

EQUATION NO x2 x3 x5 x1 x4

iii   

i   

ii     

iv   

v    

Step 4: Using items comprising the “slopping edge” of the echelon, i.e., equation (iii), (i) and (ii) and variables x5, x1

and x4, define the endogenous equations, viz.:

 8]RRR22[32433

2

32

2

3251 xxxxxxxz  (15a)

]1[3 2512  xxxz (15b)

26324

2

2725

2

321215143 R]RR2R2R[xxxxxxxxxxxxz  (15c)

Step 5: For convenience, rename the variables as follows:

OLD NAME x5 x1 x4 x2 x3

Intermediate z1 z2 z3 - -

NEW NAME z1 z2 z3 x1 x2

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

13

Step 6: Restate the equation system using the “new” variables from Step 5, viz.:

 Given: R1 = 10; R2 = 0.193; R3 = 4.106 * 10-4; R4 = 5.451 * 10-4;

 R5 = 4.497 * 10-7; R6 = 3.407 * 10-5; R7 = 9.615 * 10-7

 8]RRR22[21423

2

22

2

211 xxxxxxz 

]1[3 112  xzz

16214

2

1715

2

21212113 R]RR3R2R[xxxxxxxzxzzz 

 Solve the System: 0R42R 11

2

3316  zzzx

 0RRR1RRR)1(31621423

2

3

2

2215

2

21

2

1712  zxxxxzxxxxxxz

 Subject to: xi  [0.00001, 100], i  {1, 2}; zi  [0.00001, 100], i  {1, 2, 3}.

7.1.2 Solution of Example 1 by Optimization Model MPem1

 Given: Ri, i = 1, 2, 3,  , 7 as defined above;

 8]RRR22[21423

2

22

2

211 xxxxxxz 

]1[3 112  xzz

16214

2

1715

2

21212113 R]RR3R2R[xxxxxxxzxzzz 

  |)(||,)(Opt 21 xx
x

cc|

 Subject to: 0R42R 11

2

33161  zzzxc

 0RRR1RRR)1(31621423

2

3

2

2215

2

21

2

17122  zxxxxzxxxxxxzc

 xi  [0.00001, 100], i  {1, 2}; zi  [0.00001, 100], i  {1, 2, 3}.

GENO Output

Generation Time c1 c2

 0 0.02 25.63170487 11.87161090

 10 10.13 0.00008544 0.99677931

 20 10.44 0.00094296 0.00004669

 30 10.42 0.00000019 0.00000003

 40 10.52 0.00000000 0.00000000

 50 10.58 0.00000000 0.00000000

 60 10.53 0.00000000 0.00000000

 70 10.61 0.00000000 0.00000000

 80 10.47 0.00000000 0.00000000

 90 10.41 0.00000000 0.00000000

 100 10.42 0.00000000 0.00000000

Optimal Decision Vector: x* = (34.165623853265423, 0.065451818001427)T

Optimal Endogenous Vector: z* = (0.036953303429454458, 0.0031525079933444459, 0.85939856226722866)T

Optimal Equation Vector: C(x*) = (0.00000000, 0.00000000)T

Average execution time per 10 generations: 10.45 seconds

Overall execution time on 100 generations: 104.52 seconds

Approximate time to first optimum:10 41.80 seconds

10 This is an approximate measure of ‘time performance’ that is computed as follows: the solution first emerges at generation 40 and so the

‘time-to-first-optimum’ is approximately: 40 generations @ 10.45seconds per decade = 41.80 seconds.

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

14

7.1.3 Solution of Example 1 by Optimization Model MPed

 Given: Ri, i = 1, 2, 3,  , 7 as defined above;

 8]RRR22[21423

2

22

2

211 xxxxxxz 

]1[3 112  xzz

16214

2

1715

2

21212113 R]RR3R2R[xxxxxxxzxzzz 

  ),(),(),(),(Min 21c 0000
x

JJJJ  dddd

 Subject to: 0R42R 11

2

33161  zzzxc

 0RRR1RRR)1(31621423

2

3

2

2215

2

21

2

17122  zxxxxzxxxxxxzc

 xi  [0.00001, 100], i  {1, 2}; zi  [0.00001, 100], i  {1, 2, 3}.

GENO Output

Generation Time dc

 0 0.00 241171.53574984

 10 4.88 2.98435237

 20 4.99 0.00090881

 30 4.96 0.00000100

 40 4.98 0.00000000

 50 4.93 0.00000000

 60 5.04 0.00000000

 70 5.10 0.00000000

 80 4.95 0.00000000

 90 4.98 0.00000000

 100 4.99 0.00000000

Optimal Decision Vector: x* = (34.165623853267761, 0.065451818001432)T

Optimal Endogenous Vector: z* = (0.036953303429462597, 0.0031525079933449312, 0.85939856226750488)T

Optimal Equation Vector: C(x*) = (0.00000000, 0.00000000)T

Average execution time per 10 generations: 4.98 seconds

Overall execution time on 100 generations: 49.80 seconds

Approximate time to first optimum: 19.92 seconds

General Remarks

Equation systems emanating from chemical engineering tend to be very complex, with several possible types of

multiplicity [21], and often rather sensitive in the sense that a unit change in (say) the 13th decimal place can

drastically alter the outcome vector in some cases, hence the reporting of all the significant figures in x* and z* as

generated by GENO. Also, recall that the final variable replacement table used at Step 5 of the ‘endogenization’

procedure is:

OLD NAME x5 x1 x4 x2 x3

Intermediate z1 z2 z3 - -

NEW NAME z1 z2 z3 x1 x2

And so, in terms of the original variables, the optimal solution in this case is:

x* = (0.0031525079933449312, 34.165623853267761, 0.065451818001432, 0.85939856226750488, 0.036953303429462597)T

As expected, MPed exhibits a significant improvement in time performance compared to model MPem1.

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

15

7.1.4 Solution of Example 1 by Optimization Model MPec

 Given: Ri, i = 1, 2, 3,  , 7 as defined above;

 8]RRR22[21423

2

22

2

211 xxxxxxz 

]1[3 112  xzz

16214

2

1715

2

21212113 R]RR2R2R[xxxxxxxzxzzz 

),(Min x
x

eL

 Subject to: 0R42R 11

2

33161  zzzxc

 0RRR1RRR)1(31621423

2

3

2

2215

2

21

2

17122  zxxxxzxxxxxxzc

 xi  [0.00001, 100], i  {1, 2}; zi  [0.00001, 100], i  {1, 2, 3}.

GENO Output

Generation Time Le

 0 0.00 99982.47570369

 10 4.10 -0.75803267

 20 4.21 -0.00055009

 30 4.29 -0.00000019

 40 4.34 0.00000000

 50 4.09 0.00000000

 60 4.06 0.00000000

 70 4.09 0.00000000

 80 4.07 0.00000000

 90 4.12 0.00000000

 100 4.10 0.00000000

Optimal Decision Vector: x* = (34.165623853276642, 0.065451818001449)T

Optimal Endogenous Vector: z* = (0.036953303429491303, 0.0031525079933465839, 0.85939856226751088)T

Optimal Equation Vector: C(x*) = (0.00000000, 0.00000000)T

Average execution time per 10 generations: 4.15 seconds

Overall execution time on 100 generations: 41.47 seconds

Approximate time to first optimum: 16.60 seconds

General Remarks

The quality of a solution vector x* may be measured by how close each component of the original equation

system is to zero when evaluated at x*; Table 1 compares the GENO solution against those reported by others

and, according to the ‘success’ criterion prescribed in §7.3, the GENO solution is best. The run-times for the EA-

GA and PDA are 32.71 and 30 seconds respectively; Maranas & Floudas [15] report a time of 31.7 seconds

Table 1: A Comparative evaluation of “solutions” to Example 1 computed by various methods

METHOD EA-GA [9] PDA [18] Maranas & Floudas [15] Kumar [13] GENO

f 1(x*) -0.1525772444 0.0036961619 -0.00000008 -0.00000236 0.00000000

f 2(x*) -0.3712483541 -0.0036961549 0.00115049 -0.00000479 0.00099950

f 3(x*) -0.0265535274 0.0036932686 -0.00000017 -0.00000031 0.00000000

f 4(x*) -0.2784694038 0.0034008286 -0.00000014 0.00000193 0.00000000

f 5(x*) -0.1168649340 -0.0007101592 -0.00000036 -0.00000275 0.00000000

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

16

7.2 Example 2: Production of Synthesis Gas in an Adiabatic Reactor [10, 13]

Solve the System: 02 6737271  xxxx2xxx (i)

 022 757473  xxxxxx (ii)

 0177 521  xx7x (iii)

 0154321  xxxxx (iv)

 0178370400 531  xxxx 3

4
 (v)

 06058.2 4231  xxxx (vi)

 013492106908427189277821313900928837 67574737271  xxxxxxxxxxx (vii)

Subject to: xi  [0, 1], i  {1, 2, . . . , 5}; xi  [0, 5], i  {6, 7}.

7.2.1 Preliminaries

Equations (iii) and (iv) together imply the following: (7x1 + 7x2 + 7x5 – 1 = 0)  (7x3 + 7x4 – 6 = 0); and

upon eliminating x6 from (vii) using (i), one obtains the ‘reduced’ system shown below. The ‘variable

endogenization’ technique of §7.1.1 was then applied on the ‘reduced’ system—the connexion matrix in

“row echelon” form and the variable replacement table employed are as shown below.

Solve the System: 022 757473  xxxxxx (i)

 0177 521  xx7x (ii)

 067 43  x7x (iii)

 0178370400 531  xxxx 3

4
 (iv)

 06058.2 4231  xxxx (v)

 0134928427189278355814969934182 7574737271  xxxxxxxxxx (vi)

Subject to: xi  [0, 1], i  {1, 2, . . . , 5}; xi  [0, 5], i  {7}.

Table 2a: Connexion Matrix in “Row Echelon” Form

EQUATION NO x1 x4 x5 x3 x2 x7

iii  

ii   

i    

iv    

v    

vi      

Table 2b: The Variable Replacement Table

OLD NAME x1 x2 x3 x4 x5 x6 x7

Intermediate - z2 z1 - - - z3

NEW NAME x1 z2 z1 x2 x3 - z3

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

17

7.2.2 Solution of Example 2 by Optimization Model MPem1

 Given: 7]76[21 xz 

 7]771[312 xxz 

]2[2 3213 xxzz 

  |)(|,|)(||,)(Opt 321 xxx
x

ccc|

 Subject to: 0178370400 31

3

211  xzxxc

 06058.2 22112  zxzxc

0134928427189278355814969934182 33323132313  zxzxzzzzzxc

 xi  [0, 1], i  {1, 2, 3};

 zi  [0, 1], i  {1, 2}; zi  [0, 5], i  {3}.

GENO Output

Generation Time c1 c2 c3

 0 0.00 158.42312143 0.01463718 31079.73906151

 10 21.47 0.92121999 0.23190617 0.06239608

 20 21.72 0.00008641 0.00002630 0.00008820

 30 21.70 0.00000009 0.00000011 0.00000013

 40 21.81 0.00000000 0.00000000 0.00000000

 50 21.98 0.00000000 0.00000000 0.00000000

 60 22.14 0.00000000 0.00000000 0.00000000

 70 22.04 0.00000000 0.00000000 0.00000000

 80 21.67 0.00000000 0.00000000 0.00000000

 90 21.64 0.00000000 0.00000000 0.00000000

 100 21.68 0.00000000 0.00000000 0.00000000

Optimal Decision Vector: x* = (0.13110066819117702, 0.702222716807774040, 00065714291008900)T

Optimal Endogenous Vector: z* = (0.15492014033508308, 0.011099331755876839, 2.3297610327952265)T

Optimal Equation Vector: C(x*) = (0.00000000, 0.00000000, 0.00000000)T

Average execution time per 10 generations: 21.78 seconds

Overall execution time on 100 generations: 217.84 seconds

Approximate time to first optimum: 87.12 seconds

General Remarks

As mentioned previously, chemical engineering equations systems tend to be very sensitive—a unit change in (say)

the 13th decimal place can drastically alter the outcome vector, hence the reporting of all significant figures in x*

and z* as generated by GENO. The variable replacement table used at Step 5 of the ‘endogenization’ procedure is:

OLD NAME x1 x2 x3 x4 x5 x6 x7

Intermediate - z2 z1 - - - z3

NEW NAME x1 z2 z1 x2 x3 - z3

And so, in terms of the original variables, the optimal solution in this case is:

x* = (0.13110066819117702, 0.011099331755876839, 0.15492014033508308, 0.70222271680777404, 000657142910089,

 0.359038857751804, 2.3297610327952265)T

The optimal value for x6 was calculated using the first equation of the original system; this procedure also applies

to the solutions computed by MPem1 and MPec.

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

18

7.2.3 Solution of Example 2 by Optimization Model MPed

 Given: 7]76[21 xz 

 7]771[312 xxz 

]2[2 3213 xxzz 

  ),(),(),(),(Min 21c 0000
x

JJJJ  dddd

 Subject to: 0178370400 31

3

211  xzxxc

 06058.2 22112  zxzxc

0134928427189278355814969934182 33323132313  zxzxzzzzzxc

 xi  [0, 1], i  {1, 2, 3};

 zi  [0, 1], i  {1, 2}; zi  [0, 5], i  {3}.

GENO Output

Generation Time dc

 0 0.00 97665.55674122

 10 2.71 4.03461584

 20 2.81 0.77659804

 30 2.82 0.67591134

 40 2.86 0.64418526

 50 2.94 0.45134032

 60 3.03 0.06183755

 70 2.87 0.00483354

 80 2.89 0.00483354

 90 2.89 0.00073943

 100 2.92 0.00000000

 110 2.82 0.00000000

 120 2.79 0.00000000

 130 2.79 0.00000000

 140 3.00 0.00000000

 150 2.87 0.00000000

 160 2.95 0.00000000

 170 2.92 0.00000000

 180 2.93 0.00000000

 190 2.89 0.00000000

 200 2.89 0.00000000

Optimal Decision Vector: x* = (0.13110066817468302, 0.702222716826246040, 0.0006571429101580)T

Optimal Endogenous Vector: z* = (0.15492014031661114, 0.011099331772301836, 2.3297610327948517)T

Optimal Equation Vector: C(x*) = (0.00000000, 0.00000000, 0.00000000)T

Average execution time per 10 generations: 2.88seconds

Overall execution time on 200 generations: 57.57 seconds

Approximate time to first optimum: 28.80 seconds

General Remarks

Although the algorithm was run for a longer period, MPed exhibits a significant improvement in time performance

as compared to model MPem1.

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

19

7.2.4 Solution of Example 2 by Optimization Model MPec

 Given: 7]76[21 xz 

 7]771[312 xxz 

]2[2 3213 xxzz 

),(Min x
x

eL

 Subject to: 0178370400 31

3

211  xzxxc

 06058.2 22112  zxzxc

0134928427189278355814969934182 33323132313  zxzxzzzzzxc

 xi  [0, 1], i  {1, 2, 3};

 zi  [0, 1], i  {1, 2}; zi  [0, 5], i  {3}.

GENO Output

Generation Time Le

 0 0.00 -38180.11259736

 10 2.95 0.61306758

 20 2.96 0.00773979

 30 2.95 0.00000194

 40 2.98 0.00000000

 50 2.96 0.00000000

 60 2.95 0.00000000

 70 2.96 0.00000000

 80 2.96 0.00000000

 90 2.96 0.00000000

 100 3.01 0.00000000

Optimal Decision Vector: x* = (0.131100668191177020, 0.702222716807774040, 0.00065714291008900)T

Optimal Endogenous Vector: z* = (0.154920140335083080, 0.011099331755876839, 2.32976103279522650)T

Optimal Equation Vector: C(x*) = (0.00000000, 0.00000000, 0.00000000)T

Average execution time per 10 generations: 2.97 seconds

Overall execution time on 100 generations: 29.66 seconds

Approximate time to first optimum: 11.88 seconds

General Remarks

A comparison in quality of the GENO solutions versus those reported by others is as shown below.

Table 3: A Comparative evaluation of “solutions” to Example 2 computed by various methods

METHOD f 1(x*) f 2(x*) f 3(x*) f 4(x*) f 5(x*) f 6(x*) f 7(x*)

Kumar [13] 7.76193E-06 -5.56232E-06 1.350672100 -0.00000270 0.000151201 4.23952E-08 0.073289564

Ji, et al. [10] 0.000000000 -7.10543E-15 1.350678638 0.00000000 3.81561E-12 -8.69096E-16 -1.70985E-10

GENO (MPem1) 0.000000000 -5.99520E-15 0.000000000 0.00000000 -1.74083E-13 -3.56459E-12 7.82165E-11

GENO (MPed) 0.000000000 -6.43929E-15 0.000000000 0.00000000 -1.86873E-12 -2.02937E-12 8.91305E-11

GENO (MPec) 0.000000000 -7.99361E-15 0.000000000 0.00000000 -7.49623E-13 9.19816E-13 1.01863E-10

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

20

7.3 Quality of Final Solution Comparison

The comparative analysis summarised by Table 4c is deliberately basic because a fuller study (whose protocol,

in my opinion, ought to include the pre-optimization processing involved), is a major undertaking in itself.

Thus, the only concern here is whether a method successfully converges onto at least one solution of the

vector equation C(x) = 0. The quality of a candidate solution vector x* may be measured by how close each

component of the original equation system is to zero when evaluated at x*. Following Van Hentenryck, et al.

[30], a candidate solution vector x* was considered a ‘successful solution’ in this study if, under the mapping

C(), all elements of the criterion set {|c1|, |c2|, . . . , |cm|} were within the interval [0, 10
–8

), i.e. when all

components of the original vector equation are correct to the eighth decimal place.

The entries in Table 4c are two different measures of the quality of a solution x* computed by a method on a

given problem: (i) the integer in the top row indicates how many of the components ci are outside the solution

set [0, 10
–8

); (ii) the real number in the bottom row is the actual value of the “offending” component that is

furthest from the solution interval. Thus a method that ‘successfully’ finds the solution to a particular problem

would have entries of ‘0’ and ‘0.00000000’ in the top and bottom rows against that problem; a method that

fails by three components and with the worst of the “non-solutions” being -0.00045678 would have upper and

lower entries of ‘3’ and ‘0.00045678’ respectively.

Brief descriptions of the methods considered as well as their sources are presented in Table 4a, and sources for

the nonlinear vector equations involved are listed in Table 4b; a full set of results as computed by models

MPem1, MPed and MPec for each of the problems in Table 4b (and more) may be found in [24].

Table 4a: Primary and Secondary Sources for the Solution Techniques Compared

Algorithm # Brief Description of Method and Source Algorithm # Brief Description of Method and Source

1 Newton’s Method; see e.g., [19] 6 The Probability-driven Method in [18]

2 The Secant Method; see e.g., [19] 7 The Branch-and-Prune Method in [30]

3 Broyden’s Method; see e.g., [19] 8 The Branch-and-Bound Method in [15]

4 The Optimal Time Method in [2] 9 The Branch-and-Bound Method in [13]

5 The Evolutionary Method in [9] 10 The Evolutionary Method GENO [25]

Table 4b: Some Secondary Sources for the Example Problems Utilised in the Evaluation

Problem # Sources Problem # Sources

1 Example 6.2 in [2], or Example 1 in [9] 7 Benchmark i4 in §6.3 of [30]

2 Example 6.1 in [2], or Example 2 in [9] 8 See §6.8 of [30], or Problem 2 in [18]

3 Example 5 in [15], or Example 7 in [13] 9 See §6.4 of [30], or Problem 4 in [18]

4 Example 3 in [15], or Example 5 in [13] 10 See §6.6 of [30], or Problem 5 in [18]

5 Example 4 in [15] 11 See §6.5 of [30], or Problem 6 in [18]

6 Example 1 in [15], or Example 2 in [13]

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

21

Table 4c: Quality of Final Solution Evaluation of Various Algorithms 11

 Size Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5 Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9 GENO12

Problem 1 2
2

0.01496990

2

0.01496990

2

0.01496990

2

0.00738999

2

0.00126399

2

0.00000089

0

0.00000000

Problem 2 2
2

0.01922290

2

0.00276000

0

0.00000000

0

0.00000000

Problem 3 5
0

0.00000000

0

0.00000000

0

0.00000000

Problem 4 2
0

0.00000000

0

0.00000000

0

0.00000000

Problem 5 2
0

0.00000000

0

0.00000000

0

0.00000000

Problem 6 2
2

0.00229879

2

0.00000011

0

0.00000000

Problem 7 10
10

0.34472004

9

0.00000043

0

0.00000000

0

0.00000000

Problem 8 6
6

0.31396361

0

0.00000000

0

0.00000000

0

0.00000000

Problem 9 8
8

0.85265427

8

0.00000055

0

0.00000000

0

0.00000000

Problem 10 10
9

0.14824170

4

0.00000025

0

0.00000000

0

0.00000000

Problem 11 20
20

0.63991490

0

0.00000000

0

0.00000000

0

0.00000000

11 The authors of Algorithm 8 and Algorithm 9 report their results in the decision space only; however, except Problem 6, their solution vectors x* coincide with those computed by GENO up to at least the eighth decimal

place, and so one may safely assume their solutions in outcome space also meet the ‘success’ criteria prescribed in §7.3 above. But strictly speaking, the entries for Algorithm 7 should be regarded as tentative because the

authors do not actually report the optimal decision vector but only that it is within intervals of width 10-8 or less; however, the intervals could be centred on the wrong value.

12 Typical values for GENO’s evolutionary parameters were as follows: probabilities for crossover operators – 0.55; mutation probability – 0.05; for Problems 1 - 6, the size of the mating population was 20; for Problems
7- 11, the mating population was either 20 or 30; the ‘endogenization’ technique (supra, pp. 12-13) was used on Problems 7, 9, 10 and 11.

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

22

8 Summary and Conclusions

It has been shown that one can always embed equation systems into a multi-objective optimization problem

in which the criteria are the moduli of the functions ci comprising the equation system, and the objective is to

minimize the size of each |ci|; the formulation labelled MPem1 accommodates both over-specified and under-

specified equation systems.

The multi-objective formulation naturally suggests use of the Pareto-dominance notion in the quest for a

solution. But, assuming the equation system is soluble, a decision-space/criterion-space examination of its

solution shows it to be atypical of multi-objective problems: in criterion space the solution (known as the

Pareto-set) is a singleton that also happens to be the ideal point; and in the decision space, the solution may be

a singleton, a countable but finite set, or even an infinite set. The peculiar nature of the Pareto-set suggests

that algorithms that rely solely on the Pareto-dominance notion may be found wanting in this case; though

necessary, the Pareto-dominance condition may not be sufficient to ensure efficient convergence towards the

Pareto set; what is required in addition is a mechanism that effectively “pulls” candidate solutions towards the

ideal point, and the compromise solution concept embodies these twin mechanisms.

The basic multi-objective model is usually adequate on “small” equation systems (m  5) but struggles to

converge to the solution on larger systems. But the criterion vector J  (|c1|, |c2|, . . . , |cm|)
T
 is in Rm

 — a

space endowed with well known metrics based on the ‘Euclidean’, ‘Tchebycheff’ and ‘Maximum’ norms.

And so, instead of the program ‘Opt { |c1|, |c2|, . . . , |cm| }’, faster and higher quality performance may be

achieved by minimizing the distance from the ideal point of the vector J as measured by the said metrics.

Accordingly, two optimization models (labelled MPem2 and MPed) have been presented as alternatives to the

basic model MPem1; these are also be solved via the compromise solution concept.

A radically different approach called the NCP method has been proffered. This initially embeds the vector

equation C(x) = 0 into a nonlinear complementarity problem, and then into an auxiliary minimization

problem of the form Min {f(x) | C(x)  0}. A sufficiency theorem shows that the solution to C(x) = 0 may be

characterized in terms of the saddle value of the Lagrangian Le (, x)  f (x) – , C(x), and it may be

computed by simply minimizing Le with respect to x and with  fixed as an arbitrary positive vector. Out of

the four models presented for solving the vector equation C(x) = 0, numerical results indicate this approach

(labelled MPec) as being the most efficient method overall.

Although MPem1, MPed and MPec produce only one solution, a comparative study summarised in Table 4c shows

that, when judged purely on the quality of the said solution, the models’ performances are very competitive—

they match the branch-and-prune method [30] on Problems 7 - 11, but out-perform all other methods on all the

examples problems presented. And in all cases, the endogenization technique proves to be useful—at the very

least, it reduces the size of the search space which in turn often results in a more efficient solution process.

Although the comparative analysis presented in §7.3 is admittedly limited, one may still reasonably conclude

that GENO partially disproves the hypothesis by Press, et al. [20, p.379] quoted at the beginning of this paper.

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

23

9 Legalities

I. Licence and Trademarks

Except for the trademark items mentioned below, this work is licensed under the Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit this page;13 to override

specific prohibitions of the governing licence,14 submit a formal request to the author at: ike_siwale@hotmail.com

GENOTM is a trademark of Apex Research Ltd

Copyright © 1997-2016

All Rights Reserved Worldwide

GAUSSTM is a trademark of Aptech Systems Inc.

Copyright © 1983-2016

All Rights Reserved Worldwide

II. Disclaimer

This document contains proprietary material created by Apex Research Ltd which is subject to further verification

and change without notice; however, Apex Research Ltd is under no obligation to provide an updated version.

Furthermore, Apex Research Ltd does not make any expressed or implied warranty— including the warranties of

merchantability and fitness for a particular purpose—as to the accuracy or completeness of the methods described

herein; accordingly, Apex Research Ltd accepts no liability for any damages that may occur from use.

13 Full URL: http://creativecommons.org/licenses/by-nc-sa/4.0/

14 Full URL: http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
mailto:ike_siwale@hotmail.com
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

24

References

1. Averick, B. M., Carter, R. G., More, J. J., Xue, G-L.: The MINPACK-2 test problem collection. Technical Report

ANL / MCS-TM-150. Argonne National Laboratory, Argonne (1992).

2. Basirzadeh, H., Kamyad A. V., Effati, S.: An approach for solving a system of nonlinear equations in minimum time.

Indian J. Pure Appl. Math., 34, 947-961 (2003).

3. Coello Coello, C. A.: Treating constraints as objectives for single-objective evolutionary optimization. Eng. Optim.,

32, 275-308 (2000).

4. Dennis, J. E., Schnabel, R. B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations.

Prentice-Hall, Englewood Cliffs (1983).

5. Facchenei, F., Soares, J.: A new merit function for nonlinear complementary problems and a related algorithm. SIAM

J. Optim., 7, 225-247 (1997).

6. Fischer, A.: A special Newton-type optimization method. Optimization, 24, 269-284 (1992).

7. Fukushima, M.: Merit functions for variational inequality and complementarity problems. In: Di Pillo, G., Giannessi,

F. (eds.), Nonlinear Optimization and Applications, pp.155-170. Plenum, New York (1996).

8. Grcar, J. F.: How ordinary elimination became Gaussian elimination. Historia Math., 38, 163-218 (2011).

9. Grosan, C., Abraham, A.: A new approach for solving nonlinear equations systems. IEEE Trans. Syst, Man, Cybern.

A, Syst., Humans, 38, 698-714 (2008).

10. Ji, Z., Wu, W., Li, Y., Feng, Y.: Numerical method for real root isolation of semi-algebraic system and its

applications. To appear in J. Comput. Appl. Math. (2013).

11. Klamroth, K., Jørgen, T.: Constrained optimization using multiple objective programming. J. Global Optim., 37, 325-

355 (2007).

12. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.), Proceedings of the Second Berkeley

Symposium on Mathematical Statistics and Probability, pp. 481–492. University of California Press, Berkeley

(1951).

13. Kumar, V.: A Non-smooth exclusion test for finding all the solutions of nonlinear equations. Unpublished M.Sc.

Dissertation, MIT, Cambridge, Massachusetts (2007).

14. Mangasarian, O. L.: Nonlinear Programming. SIAM, Philadelphia (1994).

15. Maranas, C. D., Floudas, C. A.: Finding all solutions of nonlinearly constrained systems of equations. J. Global

Optim., 7, 143-182 (1995).

16. Marler, R. T., Arora, J. S.: Survey of multi-objective optimization methods in engineering. Struct. Multidiscip.

Optim., 26, 369-395 (2004).

17. Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009).

18. Nguyen Huu, T., Tran Van, H.: A new probabilistic algorithm for solving nonlinear equations systems. Journal of

Science, Special issue: Natural Sciences and Technology, 30, 1-17. Ho Chi Minh City: University of Education

(2011).

Solution of Nonlinear Equations via Optimization [rev. 9]
Technical Report RD-15-2013

Copyright  1997 – 2016: Apex Research Ltd

25

19. Nocedal, J., Wright, S. J.: Numerical Optimization. Springer, New York (2006).

20. Press, W. H., Teukolsky, S. A., Vetterling W. T., Flannery, B. P.: Numerical Recipes in C: The Art of Scientific

Computing (2nd ed.), Cambridge University Press, Cambridge (1992).

21. Rahimian, S. K., Jalai, F., Seader, J. D., White, R. E.: A new homotopy for seeking all real roots of a nonlinear

equation. Computers and Chemical Engineering, 35, 403-411 (2011).

22. Salukvadze, M. E.: Optimization of vector functionals. Part I: Programming of optimal trajectories (in Russian).

Avtomatika i Telemekhanika, 8, 5-15 (1971).

23. Siwale, I.: GENOTM 1.0: Supplement to User’s Manual Part I: Static and Dynamic Programs. Tech. Rep. RD-4-2005,

Apex Research Ltd, London (2005). [Online] Available at: http://www.researchgate.net

24. Siwale, I.: GENOTM 2.0: Supplement to User’s Manual Part II: Nonlinear Equation Systems. Tech. Rep. RD-19-2013,

Apex Research Ltd, London (2013). [Online] Available at: http://www.researchgate.net

25. Siwale, I.: GENOTM 2.0: The GAUSS User’s Manual. Tech. Rep. RD-13-2013, Apex Research Ltd, London (2013).

Available with a trial version of GENO—contact Aptech Systems Inc.

26. Siwale, I.: Practical multi-objective programming. Tech. Rep. RD-14-2013, Apex Research Ltd, London (2013).

[Online] Available at: http://www.researchgate.net

27. Sun, D., Qi, L.: On NCP functions. Comput. Optim. Appl., 13, 201-220 (1999).

28. Surry, P. D., Radcliffe, N. J., Boyd, I. D.: A multi-objective approach to constrained optimisation of gas supply

networks: The COMOGA method. In: Evolutionary Computing, pp. 166-180. Springer Berlin Heidelberg (1995)

29. Takayama, A.: Mathematical Economics. Cambridge University Press, Cambridge (1985).

30. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach.

SIAM J. Numer. Anal., 34, 797-827, (1997).

31. Yu, P. L.: A class of solutions for group decision problems. Management Sci., 19, 936-946 (1973).

32. Zeleny, M.: Compromise programming. In: Cochrane, J. L., Zeleny, M. (eds.), Multiple Criteria Decision Making,

pp. 262-301. University of South Carolina Press, Columbia (1973).

http://www.researchgate.net/
http://www.researchgate.net/
http://www.aptech.com/contact-us/
http://www.researchgate.net/

