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Abstract In this paper we analyze several new methods for solving noncon-
vex optimization problems with the objective function formed as a sum of
two terms: one is nonconvex and smooth, and another is convex but simple
and its structure is known. Further, we consider both cases: unconstrained
and linearly constrained nonconvex problems. For optimization problems of
the above structure, we propose random coordinate descent algorithms and
analyze their convergence properties. For the general case, when the objective
function is nonconvex and composite we prove asymptotic convergence for the
sequences generated by our algorithms to stationary points and sublinear rate
of convergence in expectation for some optimality measure. Additionally, if the
objective function satisfies an error bound condition we derive a local linear
rate of convergence for the expected values of the objective function. We also
present extensive numerical experiments for evaluating the performance of our
algorithms in comparison with state-of-the-art methods.

1 Introduction

Coordinate descent methods are among the first algorithms used for solving
general minimization problems and one of the most successful in the large-
scale optimization field [4]. Roughly speaking, coordinate descent methods
are based on the strategy of updating one (block) coordinate of the vector
of variables per iteration using some index selection procedure (e.g. cyclic,
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greedy, random). This often reduces drastically the iteration complexity and
memory requirements, making these methods simple and scalable. There exist
numerous papers dealing with the convergence analysis of this type of methods
[1,3,13,23,30], which confirm the difficulties encountered in proving the con-
vergence for nonconvex and nonsmooth objective functions. For instance, re-
garding coordinate minimization of nonconvex functions, Powell [23] provided
some examples of differentiable functions whose properties lead the algorithm
to a closed loop. Also, proving convergence of coordinate descent for mini-
mization of nondifferentiable objective functions is challenging [1]. However,
for nonconvex and nonsmooth objective functions with certain structure (e.g.
composite objective functions) there are available convergence results for co-
ordinate descent methods based on greedy index selection [3,13,30]. Recently,
Nesterov [18] derived complexity results for random coordinate gradient de-
scent methods for solving smooth and convex minimization problems. In [24]
the authors generalized Nesterov’ results to convex problems with compos-
ite objective functions. Extensive complexity analysis of coordinate gradient
descent methods for solving linearly constrained optimization problems with
convex (composite) objective function can be found in [3,16,17].

In this paper we also consider large-scale nonconvex optimization problems
with the objective function formed as a sum of two terms: one is nonconvex,
smooth and given by a black-box oracle, and another is convex but simple
and its structure is known. Further, we analyze unconstrained but also singly
linearly constrained nonconvex problems. We also suppose that the dimension
of the problem is so large that traditional optimization methods cannot be
directly employed since basic operations, such as the updating of the gradi-
ent, are too computationally expensive. These type of problems arise in many
fields such as data analysis (speech denoising, classification, text mining) [5,
7], systems and control theory (optimal control, stability of positive bilinear
and linear switched systems, simultaneous stabilization of linear systems, pole
assignment by static output feedback) [2,9–11,15,21,28], machine learning [7,
31], traffic equilibrium and network flow problems [8], truss topology design
[12]. The goal of this paper is to analyze several new random coordinate gradi-
ent descent methods suited for large-scale nonconvex problems with composite
objective function. Up to our knowledge, there is no convergence analysis of
random coordinate descent algorithms for solving nonconvex nonsmooth opti-
mization problems. For the coordinate descent algorithm designed to minimize
unconstrained composite nonconvex objective functions we prove asymptotic
convergence of the generated sequence to stationary points and sublinear rate
of convergence in expectation for some optimality measure. Additionally, if
the objective function satisfies an error bound condition, a local linear rate
of convergence for expected values of the objective function is obtained. We
also provide convergence analysis for a coordinate descent method designed for
solving singly linearly constrained nonconvex problems and obtain similar re-
sults as in the unconstrained case. Note that our analysis is very different from
the convex case [16–18,24] and is based on the notion of optimality measure
and a supermartingale convergence theorem. On the other hand, compared to
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other coordinate descent methods for nonconvex problems our algorithms offer
some important advantages, e.g. due to the randomization our algorithms are
simpler, are adequate for modern computational architectures and they lead
to more robust output. We also present the results of preliminary computa-
tional experiments, which confirm the superiority of our methods compared
with other algorithms for large-scale nonconvex optimization.

Contribution. The contribution of the paper can be summarized as follows:

(a) For unconstrained problems we propose an 1-coordinate descent method
(1-CD), that involves at each iteration the solution an optimization sub-
problem only with respect to one (block) variable while keeping all others
fixed. We show that usually this solution can be computed in closed form.

(b) For linearly constrained case we propose a 2-coordinate descent method (2-
CD), that involves at each iteration the solution of a subproblem depending
on two (block) variables while keeping all other variables fixed. We show
that in most of the cases this solution can be found in linear time.

(c) For each of the algorithms we introduce some optimality measure and de-
vise a convergence analysis using this framework. In particular, for both
algorithms, (1-CD) and (2-CD), we establish asymptotic convergence of the
generated sequences to stationary points and sublinear rate of convergence
for the expected values of the corresponding optimality measures.

(d) If the objective function satisfies an error bound condition a local linear
rate of convergence for expected values of the objective function is proved.

Content. The structure of the paper is as follows. In Section 2 we introduce
an 1-random coordinate descent algorithm for unconstrained minimization of
nonconvex composite functions. Further we analyze the convergence proper-
ties of the algorithm under standard assumptions and under the error bound
assumption we obtain linear convergence rate for the expected values of objec-
tive function. In Section 3 we derive a 2-coordinate descent method for solving
singly linearly constrained nonconvex problems and analyze its convergence.
In Section 4 we report numerical results on large-scale eigenvalue complemen-
tarity problems, which is an important application in control theory.

Notation. We consider the space Rn composed by column vectors. For x, y ∈
Rn we denote the scalar product by ⟨x, y⟩ = xT y and ∥x∥ = (xTx)1/2. We
use the same notation ⟨·, ·⟩ and ∥·∥ for scalar products and norms in spaces
of different dimensions. For some norm ∥·∥α in Rn, its dual norm is defined
by ∥y∥∗α = max∥x∥α=1⟨y, x⟩. We consider the following decomposition of the

variable dimension: n =
∑N

i=1 ni. Also, we denote a block decomposition of
n × n identity matrix by In = [U1 . . . UN ], where Ui ∈ Rn×ni . For brevity we
use the following notation: for all x ∈ Rn and i, j = 1, . . . , N , we denote:

xi = UT
i x ∈ Rni , ∇if(x) = UT

i ∇f(x) ∈ Rni

xij =
[
xTi xTj

]T ∈ Rni+nj , ∇ijf(x) =
[
∇if(x)

T ∇jf(x)
T
]T ∈ Rni+nj .



4 A. Patrascu, I. Necoara

2 Unconstrained minimization of composite objective functions

In this section we analyze a variant of random block coordinate gradient de-
scent method, which we call 1-coordinate descent method (1-CD), for solving
large-scale unconstrained nonconvex problems with composite objective func-
tion. The method involves at each iteration the solution of an optimization
subproblem only with respect to one (block) variable while keeping all other
variables fixed. After discussing several necessary mathematical preliminaries,
we introduce an optimality measure, which will be the basis for the construc-
tion and analysis of Algorithm (1-CD). We establish asymptotic convergence
of the sequence generated by Algorithm (1-CD) to a stationary point and then
we show sublinear rate of convergence in expectation for the corresponding op-
timality measure. For some well-known particular cases of nonconvex objective
functions arising frequently in applications, the complexity per iteration of our
Algorithm (1-CD) is of order O(ni).

2.1 Problem formulation

The problem of interest in this section is the unconstrained nonconvex mini-
mization problem with composite objective function:

F ∗ = min
x∈Rn

F (x) (:= f(x) + h(x)) , (1)

where the function f is smooth and h is a convex, separable, nonsmooth func-
tion. Since h is nonsmooth, then for any x ∈ dom(h) we denote by ∂h(x) the
subdifferential (set of subgradients) of h at x. The smooth and nonsmooth
components in the objective function of (1) satisfy the following assumptions:

Assumption 1 (i) The function f has block coordinate Lipschitz continuous
gradient, i.e. there are constants Li > 0 such that:

∥∇if(x+ Uisi)−∇if(x)∥ ≤ Li∥si∥ ∀si ∈ Rni , x ∈ Rn, i = 1, . . . , N.

(ii) The function h is proper, convex, continuous and block separable:

h(x) =
N∑
i=1

hi(xi) ∀x ∈ Rn,

where the functions hi : Rni → R are convex for all i = 1, . . . , N .

These assumptions are typical for the coordinate descent framework as the
reader can find similar variants in [16,18,24,30]. An immediate consequence
of Assumption 1 (i) is the following well-known inequality [20]:

|f(x+ Uisi)− f(x)− ⟨∇if(x), si⟩| ≤
Li

2
∥si∥2 ∀si ∈ Rni , x ∈ Rn. (2)
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Based on this quadratic approximation of function f we get the inequality:

F (x+Uisi) ≤ f(x)+⟨∇if(x), si⟩+
Li

2
∥si∥2+h(x+Uisi) ∀si ∈ Rni , x ∈ Rn.

(3)
Given local Lipschitz constants Li > 0 for i = 1, . . . , N , we define the vector
L = [L1 . . . LN ]T ∈ RN , the diagonal matrix DL = diag(L1In1 , . . . , LNInN

) ∈
Rn×n and the following pair of dual norms:

∥x∥L =

(
N∑
i=1

Li∥xi∥2
)1/2

∀x ∈ Rn, ∥y∥∗L =

(
N∑
i=1

L−1
i ∥yi∥2

)1/2

∀y ∈ Rn.

Using Assumption 1, we can state the first order necessary optimality con-
ditions for the nonconvex optimization problem (1): if x∗ ∈ Rn is a local
minimum for (1), then the following relation holds

0 ∈ ∇f(x∗) + ∂h(x∗).

Any vector x∗ satisfying this relation is called a stationary point for nonconvex
problem (1).

2.2 An 1-random coordinate descent algorithm

We analyze a variant of random coordinate descent method suitable for solving
large-scale nonconvex problems in the form (1). Let i ∈ {1, . . . , N} be a random
variable and pik = Pr(i = ik) be its probability distribution. Given a point
x, one block is chosen randomly with respect to the probability distribution
pi and the quadratic model (3) derived from the composite objective function
is minimized with respect to this block of coordinates (see also [18,24]). Our
method has the following iteration: given an initial point x0, then for all k ≥ 0

Algorithm (1-CD)

1. Choose randomly a block of coordinates ik with probability pik

2. Set xk+1 = xk + Uikdik ,

where the direction dik is chosen as follows:

dik = arg min
sik∈Rnik

f(xk) + ⟨∇ikf(x
k), sik⟩+

Lik

2
∥sik∥2 + h(xk + Uiksik). (4)

Note that the direction dik is a minimizer of the quadratic approximation
model given in (3). Further, from Assumption 1 (ii) we see that h(xk +
Uiksik) = hik(x

k
ik

+ sik) +
∑

i ̸=ik
hi(x

k
i ) and thus for computing dik we only

need to know the function hik(·). An important property of our algorithm
is that for certain particular cases of function h, the iteration complexity of
Algorithm (1-CD) is very low. In particular, for certain simple functions h,
very often met in many applications from signal processing, machine learning,
optimal control, the direction dik can be computed in closed form, e.g.:
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(I) For some l, u ∈ Rn, with l ≤ u, we consider the box indicator function

h(x) =

{
0 if l ≤ x ≤ u

∞ otherwise.
(5)

In this case the direction dik has the explicit expression:

dik =

[
xkik − 1

Lik

∇ikf(x
k)

]
[lik , uik

]

∀ik = 1, . . . , N,

where [x][l, u] is the orthogonal projection of vector x on box set [l, u].
(II) Given a nonnegative scalar β ∈ R+, we consider the ℓ1-regularization func-

tion defined by the 1-norm

h(x) = β∥x∥1. (6)

In this case, considering n = N , the direction dik has the explicit expres-
sion:

dik = sgn(tik) ·max

{
|tik | −

β

Lik

, 0

}
− xik ∀ik = 1, . . . , n,

where tik = xik − 1
Lik

∇ikf(x
k).

In these examples the arithmetic complexity of computing the next iterate
xk+1, once ∇ikf(x

k) is known, is of order O(nik). The reader can find other
favorable examples of nonsmooth functions h which preserve the low iteration
complexity of Algorithm (1-CD) (see also [24,30] for other examples). Note
that other (coordinate descent) methods designed for solving nonconvex prob-
lems have complexity per iteration at least of order O(n) [30]. But Algorithm
(1-CD) offers also other important advantages, e.g. due to the randomization
the algorithm leads to more robust output and is adequate for modern com-
putational architectures (e.g distributed and parallel architectures) [15,25].

We assume that the sequence of random variables i0, . . . , ik are i.i.d. In the
sequel, we use the notation ξk for the entire history of random index selection

ξk = {i0, . . . , ik} .

and notation

ϕk = E
[
F (xk)

]
for the expectation taken w.r.t. ξk−1. Given s, x ∈ Rn, we introduce the fol-
lowing function and the associated map (operator):

ψL(s;x) = f(x) + ⟨∇f(x), s⟩+ 1

2
∥s∥2L + h(x+ s),

dL(x) = arg min
s∈Rn

f(x) + ⟨∇f(x), s⟩+ 1

2
∥s∥2L + h(x+ s). (7)
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Based on this map, we now introduce an optimality measure which will be the
basis for the analysis of Algorithm (1-CD):

M1(x, L) = ∥DL · dL(x)∥∗L.

The map M1(x, L) is an optimality measure for optimization problem (1) in
the sense that it is positive for all nonstationary points and zero for stationary
points (see Lemma 1 below):

Lemma 1 For any given vector L̃ ∈ RN with positive entries, a vector x∗ ∈
Rn is a stationary point for problem (1) if and only if the value M1(x

∗, L̃) = 0.

Proof : Based on the optimality conditions of subproblem (7), it can be easily
shown that if M1(x

∗, L̃) = 0, then x∗ is a stationary point for the original
problem (1). We prove the converse implication by contradiction. Assume that
x∗ is a stationary point for (1) and M1(x

∗, L̃) > 0. It follows that dL̃(x
∗)

is a nonzero solution of subproblem (7). Then, there exist the subgradients
g(x∗) ∈ ∂h(x∗) and g(x∗+dL̃(x

∗)) ∈ ∂h(x∗+dL̃(x
∗)) such that the optimality

conditions for optimization problems (1) and (7) can be written as:{
∇f(x∗) + g(x∗) = 0

∇f(x∗) +DL̃dL̃(x
∗) + g(x∗ + dL̃(x

∗)) = 0.

Taking the difference of the two relations above and considering the inner
product with dL̃(x

∗) ̸= 0 on both sides of the equation, we get:

∥dL̃(x
∗)∥2

L̃
+ ⟨g(x∗ + dL̃(x

∗))− g(x∗), dL̃(x
∗)⟩ = 0.

From convexity of the function h we see that both terms in the above sum
are nonnegative and thus dL̃(x

∗) = 0, which contradicts our hypothesis. In

conclusion M1(x
∗, L̃) = 0. ⊓⊔

Note that ψL(s;x) is an 1-strongly convex function in the variable s w.r.t.
norm ∥·∥L and thus dL(x) is unique and the following inequality holds:

ψL(s;x) ≥ ψL(dL(x);x) +
1

2
∥dL(x)− s∥2L ∀x, s ∈ Rn. (8)

2.3 Convergence of Algorithm (1-CD)

In this section, we analyze the convergence properties of Algorithm (1-CD).
Firstly, we prove the asymptotic convergence of the sequence generated by Al-
gorithm (1-CD) to stationary points. For proving the asymptotic convergence
we use the following supermartingale convergence result due to Robbins and
Siegmund (see [22, Lemma 11 on page 50]):



8 A. Patrascu, I. Necoara

Lemma 2 Let vk, uk and αk be three sequences of nonnegative random vari-
ables such that

E[vk+1|Fk] ≤ (1 + αk)vk − uk ∀k ≥ 0 a.s. and
∞∑
k=0

αk <∞ a.s.,

where Fk denotes the collections v0, . . . , vk, u0, . . . , uk, α0, . . . , αk. Then, we
have limk→∞ vk = v for a random variable v ≥ 0 a.s. and

∑∞
k=0 uk <∞ a.s.

In the next lemma we prove that Algorithm (1-CD) is a descent method, i.e.
the objective function is nonincreasing along the iterations:

Lemma 3 Let xk be the sequence generated by Algorithm (1-CD) under As-
sumption 1. Then, the following relation holds:

F (xk+1) ≤ F (xk)− Lik

2
∥dik∥2 ∀k ≥ 0. (9)

Proof : From the optimality conditions of subproblem (4) we have that there
exists a subgradient g(xkik + dik) ∈ ∂hik(x

k
ik
+ dik) such that:

∇ikf(x
k) + Likdik + g(xkik + dik) = 0.

On the other hand, since the function hik is convex, according to Assumption
1 (ii), the following inequality holds:

hik(x
k
ik
+ dik)− hik(x

k
ik
) ≤ ⟨g(xkik + dik), dik⟩

Applying the previous two inequalities in (3) and using the separability of
the function h, according to Assumption 1 (ii), we have:

F (xk+1) ≤ F (xk) + ⟨∇ikf(x
k), dik⟩+

Lik

2
∥dik∥2 + hik(x

k
ik
+ dik)− hik(x

k
ik
)

≤ F (xk) + ⟨∇ikf(x
k), dik⟩+

Lik

2
∥dik∥2 + ⟨g(xkik + dik), dik⟩

≤ F (xk)− Lik

2
∥dik∥2.

⊓⊔

Using Lemma 3, we state the following result regarding the asymptotic
convergence of Algorithm (1-CD).

Theorem 1 If Assumption 1 holds for the composite objective function F of
problem (1) and the sequence xk is generated by Algorithm (1-CD) using the
uniform distribution, then the following statements are valid:

(i) The sequence of random variables M1(x
k, L) converges to 0 a.s. and the

sequence F (xk) converges to a random variable F̄ a.s.
(ii) Any accumulation point of the sequence xk is a stationary point for opti-

mization problem (1).
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Proof (i) From Lemma 3 we get:

F (xk+1)− F ∗ ≤ F (xk)− F ∗ − Lik

2
∥dik∥2 ∀k ≥ 0.

We now take the expectation conditioned on ξk−1 and note that ik is inde-
pendent on the past ξk−1, while xk is fully determined by ξk−1 and thus:

E
[
F (xk+1)− F ∗| ξk−1

]
≤ F (xk)− F ∗ − 1

2
E
[
Lik · ∥dik∥2| ξk−1

]
≤ F (xk)− F ∗ − 1

2N
∥dL(xk)∥2L.

Using the supermartingale convergence theorem given in Lemma 2 in the pre-
vious inequality, we can ensure that

lim
k→∞

F (xk)− F ∗ = θ a.s.

for a random variable θ ≥ 0 and thus F̄ = θ + F ∗. Further, due to almost
sure convergence of sequence F (xk), it can be easily seen that lim

k→∞
F (xk) −

F (xk+1) = 0 a.s. From xk+1 − xk = Uikdik and Lemma 3 we have:

Lik

2
∥dik∥2 =

Lik

2
∥xk+1 − xk∥2 ≤ F (xk)− F (xk+1) ∀k ≥ 0,

which implies that

lim
k→∞

∥xk+1 − xk∥ = 0 and lim
k→∞

∥dik∥ = 0 a.s.

As ∥dik∥ → 0 a.s., we can conclude that the random variable E[∥dik∥|ξk−1] →
0 a.s. or equivalently M1(x

k, L) → 0 a.s.
(ii) For brevity we assume that the entire sequence xk generated by Algo-

rithm (1-CD) is convergent. Let x̄ be the limit point of the sequence xk. From
the first part of the theorem we have proved that the sequence of random
variables dL(x

k) converges to 0 a.s. Using the definition of dL(x
k) we have:

f(xk) + ⟨∇f(xk), dL(xk)⟩+
1

2
∥dL(xk)∥2L + h(xk + dL(x

k))

≤ f(xk) + ⟨∇f(xk), s⟩+ 1

2
∥s∥2L + h(xk + s) ∀s ∈ Rn,

and taking the limit k → ∞ and using Assumption 1 (ii) we get:

F (x̄) ≤ f(x̄) + ⟨∇f(x̄), s⟩+ 1

2
∥s∥2L + h(x̄+ s) ∀s ∈ Rn.

This shows that dL(x̄) = 0 is the minimum in subproblem (7) for x = x̄ and
thus M1(x̄, L) = 0. From Lemma 1 we conclude that x̄ is a stationary point
for optimization problem (1). ⊓⊔

The next theorem proves the convergence rate of the optimality measure
M1(x

k, L) towards 0 in expectation.
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Theorem 2 Let F satisfy Assumption 1. Then, the Algorithm (1-CD) based
on the uniform distribution generates a sequence xk satisfying the following
convergence rate for the expected values of the optimality measure:

min
0≤l≤k

E
[(
M1(x

l, L)
)2] ≤ 2N

(
F (x0)− F ∗)
k + 1

∀k ≥ 0.

Proof : For simplicity of the exposition we use the following notation: given
the current iterate x, denote x+ = x + Uidi the next iterate, where direction
di is given by (4) for some random chosen index i w.r.t. uniform distribution.
For brevity, we also adapt the notation of expectation upon the entire history,
i.e. (ϕ, ϕ+, ξ) instead of (ϕk, ϕk+1, ξk−1). From Assumption 1 and inequality
(3) we have:

F (x+) ≤ f(x) + ⟨∇if(x), di⟩+
Li

2
∥di∥2 + hi(xi + di) +

∑
j ̸=i

hj(xj)

Now we take the expectation conditioned on ξ:

E[F (x+)| ξ] ≤E
[
f(x)+⟨∇if(x), di⟩+

Li

2
∥di∥2 + hi(xi + di)+

∑
j ̸=i

hj(xj)| ξ
]

≤ f(x) +
1

N

[
⟨∇f(x), dL(x)⟩+

1

2
∥dL(x)∥2L + h(x+ dL(x)) + (N − 1)h(x)

]
.

After arranging the above expression we get:

E[F (x+)| ξ] ≤
(
1− 1

N

)
F (x) +

1

N
ψL(dL(x);x). (10)

Now, taking the expectation in (10) w.r.t. ξ we obtain:

ϕ+ ≤
(
1− 1

N

)
ϕ+ E

[
1

N
ψL(dL(x);x)

]
, (11)

and then using the 1−strong convexity property of ψL we get:

ϕ− ϕ+ ≥ ϕ−
(
1− 1

N

)
ϕ− 1

N
E [ψL(dL(x);x)]

=
1

N
(E [ψL(0;x)]− E[ψL(dL(x);x)])

≥ 1

2N
E
[
∥dL(x)∥2L

]
=

1

2N
E
[
(M1(x, L))

2
]
. (12)

Now coming back to the notation dependent on k and summing w.r.t. the
entire history we have:

1

2N

k∑
l=0

E
[
(M1(x

l, L))2
]
≤ ϕ0 − F ∗,

which leads to the statement of the theorem. ⊓⊔
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It is important to note that the convergence rate for the Algorithm (1-CD)
given in Theorem 2 is typical for the class of first order methods designed
for solving nonconvex and nonsmotth optimization problems (see e.g. [19] for
more details). Note also that our convergence results are different from the
convex case [18,24], since here we introduce another optimality measure and
we use supermartingale convergence theorem in the analysis.

Furthermore, when the objective function F is smooth and nonconvex, i.e.
h = 0, the first order necessary conditions of optimality become ∇f(x∗) = 0.
Also, note that in this case, the optimality measure M1(x, L) is given by:
M1(x, L) = ∥∇f(x)∥∗L. An immediate consequence of Theorem 2 in this case
is the following result:

Corrollary 1 Let h = 0 and f satisfy Assumption 1 (i). Then, in this case
the Algorithm (1-CD) based on the uniform distribution generates a sequence
xk satisfying the following convergence rate for the expected values of the norm
of the gradients:

min
0≤l≤k

E
[(
∥∇f(xl)∥∗L

)2] ≤ 2N
(
F (x0)− F ∗)
k + 1

∀k ≥ 0.

2.4 Linear convergence rate of Algorithm (1-CD) for objective functions with
error bound

In this subsection an improved rate of convergence is shown for Algorithm
(1-CD) under an additional error bound assumption. In what follows, X∗

denotes the set of stationary points of optimization problem (1), dist(x, S) =
min
y∈S

∥y − x∥ and the vector 1 = [1 . . . 1]T ∈ RN .

Assumption 2 A local error bound holds for the objective function of opti-
mization problem (1), i.e. for any η ≥ F ∗ = min

x∈Rn
F (x) there exist τ > 0 and

ϵ > 0 such that
dist(x,X∗) ≤ τM1(x,1) ∀x ∈ V,

where V = {x ∈ Rn : F (x) ≤ η, M1(x,1) ≤ ϵ}. Moreover, there exists ρ > 0
such that ∥x∗ − y∗∥ ≥ ρ whenever x∗, y∗ ∈ X∗ with f(x∗) ̸= f(y∗).

For example, Assumption 2 holds for composite objective functions satisfying
the following properties (see [29,30] for more examples):
(i) f is quadratic function (even nonconvex) and h is polyhedral
(ii) f is strongly convex, has Lipschitz continuous gradient and h is polyhedral.
Note that the box indicator function (5) and ℓ1-regularization function (6) are
polyhedral functions. Note also that for strongly convex functions, Assumption
2 is globally satisfied.
In this section, we also assume that function f has global Lipschitz continuous
gradient, i.e. there exists a global Lipschitz constant Lf > 0 such that:

∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥ ∀x, y ∈ Rn.
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It is well known that this property leads to the following inequality [20]:

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ Lf

2
∥x− y∥2 ∀x, y ∈ Rn. (13)

For a given convex function h : Rn → R we also define the proximal map
proxh(x) : Rn → Rn as proxh(x) = arg min

y∈Rn

1
2∥y − x∥2 + h(y). In order to

analyze the convergence properties of Algorithm (1-CD) for minimizing com-
posite objective function which satisfies Assumption 2, we require the following
auxiliary result:

Lemma 4 Let h : Rn → R be a convex function. Then, the map ω : R+ → R+

defined by

ω(α) =
∥proxαh(x+ αd)− x∥

α
,

is nonincreasing w.r.t. α for any x, d ∈ Rn.

Proof Note that this lemma is a generalization of [6, Lemma 2.2] from the pro-
jection operator to the “prox” operator case. The proof of this generalization
is given in Appendix. ⊓⊔

Using separability of h according to Assumption 1 (ii), it is easy to see that
the map dL(x) satisfies:

x+ dL(x) = arg min
y∈Rn

1

2
∥y − x+D−1

L ∇f(x)∥2 +
N∑
i=1

1

Li
hi(yi),

and in a more compact notation we have:

(dL(x))i = prox 1
Li

hi
(xi − 1/Li∇if(x))− xi ∀i = 1, . . . , N.

Using this expression in Lemma 4, we conclude that:

∥(d1(x))i∥ ≤ max{1, Li} · ∥(dL(x))i∥ ∀i = 1, . . . , N (14)

and moreover,

M1(x,1) ≤ max
1≤i≤N

{1, 1/
√
Li} ·M1(x, L). (15)

Further, we denote τL = max1≤i≤N{1, 1/
√
Li}. The following theorem shows

that Algorithm (1-CD) for minimizing composite functions with error bound
(Assumption 2) has linear convergence rate for the expected values of the
objective function:

Theorem 3 Under Assumptions 1 and 2, let xk be the sequence generated
by Algorithm (1-CD) with uniform probabilities. Then, we have the following
linear convergence rate for the expected values of the objective function:

ϕk − F̄ ≤
(
1− 1

N [ττL(Lf + L̄) + 1]

)k (
F (x0)− F̄

)
for any k sufficiently large, where L̄ = max1≤j≤N Lj and F̄ = F (x∗) for some
stationary point x∗ of (1).
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Proof : As in the previous section, for a simple exposition we drop k from our
derivations: e.g. the current point is denoted x, and x+ = x + Uidi, where
direction di is given by Algorithm (1-CD) for some random selection of index
i. Similarly, we use (ϕ, ϕ+, ξ) instead of (ϕk, ϕk+1, ξk−1). From the Lipschitz
continuity relation (13) we have:

f(x) + ⟨∇f(x), y − x⟩ ≤ f(y) +
Lf

2
∥x− y∥2 ∀x, y ∈ Rn.

Adding the term 1
2∥x−y∥

2
L+h(y)+(N −1)F (x) in both sides of the previous

inequality and then minimizing w.r.t. s = y − x we get:

min
s∈Rn

f(x) + ⟨∇f(x), s⟩+ 1

2
∥s∥2L + h(x+ s) + (N − 1)F (x)

≤ min
s∈Rn

F (x+ s) +
Lf

2
∥s∥2 + 1

2
∥s∥2L + (N − 1)F (x).

Based on the definition of ψL we have:

ψL(dL(x);x) + (N − 1)F (x) ≤ min
s∈Rn

F (x+ s) +
Lf + L̄

2
∥s∥2 + (N − 1)F (x)

≤ F (x∗) +
Lf + L̄

2
∥x− x∗∥2 + (N − 1)F (x),

for any x∗ stationary point, i.e. x∗ ∈ X∗. Taking expectation w.r.t. ξ and
dividing by N , results in:

1

N
E[ψL(dL(x);x)]+

(
1− 1

N

)
ϕ ≤ 1

N

(
F (x∗)+

Lf + L̄

2
E[∥x−x∗∥2]+(N−1)ϕ

)
.

Now, we come back to the notation dependent on k. Since the sequence F (xk) is
nonincreasing (according to Lemma 3), then F (xk) ≤ F (x0) for all k. Further,
M1(x,1) converges to 0 a.s. according to Theorem 1 and inequality (15). Then,
from Assumption 2 it follows that there exist τ > 0 and k̄ such that

∥xk − x̄k∥ ≤ τM1(x,1) ∀k ≥ k̄,

where x̄k ∈ X∗ satisfies ∥xk−x̄k∥ = dist(xk, X∗). It also follows that ∥xk−x̄k∥
converges to 0 a.s. and then using the second part of Assumption 2 we can
conclude that eventually the sequence x̄k settles down at some isocost surface
of F (see also [30]), i.e. there exists some k̂ ≥ k̄ and a scalar F̄ such that

F (x̄k) = F̄ ∀k ≥ k̂.

Using (11), assuming k ≥ k̂ and taking into account that x̄k ∈ X∗, i.e. x̄k is a
stationary point, we have:

ϕk+1 ≤ 1

N

(
F̄ + τ

Lf + L̄

2
E[∥d1(xk)∥2] + (N − 1)ϕk

)
.
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Further, by combining (12) and (15) we get:

ϕk+1 ≤ 1

N

(
F̄ +NττL(Lf + L̄)(ϕk − ϕk+1) + (N − 1)ϕk

)
,

Multiplying with N we get:

ϕk+1 − F̄ ≤
(
NττL(Lf + L̄) +N − 1

) (
ϕk − F̄ + F̄ − ϕk+1

)
.

Finally, we get the linear convergence of the sequence ϕk:

ϕk+1 − F̄ ≤
(
1− 1

NττL(Lf + L̄) +N

)(
ϕk − F̄

)
.

⊓⊔

In [30], Tseng obtained a similar result for a block coordinate descent method
with greedy (Gauss-Southwell) index selection. However, due to randomiza-
tion, our Algorithm (1-CD) has a much lower complexity per iteration than
the complexity per iteration of Tseng’ coordinate descent algorithm.

3 Constrained minimization of composite objective functions

In this section we present a variant of random block coordinate gradient de-
scent method for solving large-scale nonconvex optimization problems with
composite objective function and a single linear equality constraint:

F ∗ = min
x∈Rn

F (x) (:= f(x) + h(x)) (16)

s.t.: aTx = b,

where a ∈ Rn is a nonzero vector and functions f and h satisfy similar con-
ditions as in Assumption 1. In particular, the smooth and nonsmooth part of
the objective function in (16) satisfy:

Assumption 3 (i) The function f has 2-block coordinate Lipschitz continu-
ous gradient, i.e. there are constants Lij > 0 such that:

∥∇ijf(x+ Uisi + Ujsj)−∇ijf(x)∥ ≤ Lij∥sij∥

for all sij = [sTi sTj ]
T ∈ Rni+nj , x ∈ Rn and i, j = 1, . . . , N .

(ii) The function h is proper, convex, continuous and coordinatewise separable:

h(x) =

n∑
i=1

hi(xi) ∀x ∈ Rn,

where the functions hi : R → R are convex for all i = 1, . . . , n.
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Note that these assumptions are frequently used in the area of coordinate
descent methods for convex minimization, e.g. [3,16,17,30]. Based on this as-
sumption the first order necessary optimality conditions become: if x∗ is a
local minimum of (16), then there exists a scalar λ∗ such that:

0 ∈ ∇f(x∗) + ∂h(x∗) + λ∗a and aTx∗ = b.

Any vector x∗ satisfying this relation is called a stationary point for non-
convex problem (16). For a simpler exposition in the following sections we

use a context-dependent notation as follows: let x =
∑N

i=1 Uixi ∈ Rn and
xij = [xTi xTj ]

T ∈ Rni+nj , then by addition with a vector in the extended
space y ∈ Rn, i.e., y + xij , we understand y + Uixi + Ujxj . Also, by the
inner product ⟨y, xij⟩ we understand ⟨y, xij⟩ = ⟨yi, xi⟩ + ⟨yj , xj⟩. Based on
Assumption 3 (i) the following inequality holds [16]:

|f(x+sij)−f(x)+ ⟨∇ijf(x), sij⟩| ≤
Lij

2
∥sij∥2 ∀x ∈ Rn, sij ∈ Rni+nj (17)

and then we can bound the function F with the following quadratic expression:

F (x+sij) ≤ f(x)+⟨∇ijf(x), sij⟩+
Lij

2
∥sij∥2+h(x+sij) ∀sij ∈ Rni+nj , x ∈ Rn.

(18)

Given local Lipschitz constants Lij > 0 for i ̸= j ∈ {1, . . . , N}, we define

the vector T ∈ RN with the components Ti =
1
N

N∑
j=1

Lij , the diagonal matrix

DT = diag(T1In1 , . . . , TNInN
) ∈ Rn×n and the following pair of dual norms:

∥x∥T =

(
N∑
i=1

Ti∥xi∥2
)1/2

∀x ∈ Rn, ∥y∥∗T =

(
N∑
i=1

T−1
i ∥yi∥2

)1/2

∀y ∈ Rn.

3.1 A 2-random coordinate descent algorithm

Let (i, j) be a two dimensional random variable, where i, j ∈ {1, . . . , N} with
i ̸= j and pikjk = Pr((i, j) = (ik, jk)) be its probability distribution. Given a
feasible x, two blocks are chosen randomly with respect to a given probability
distribution pij and the quadratic model (18) is minimized with respect to
these coordinates. Our method has the following iteration: given a feasible
initial point x0, that is aTx0 = b, then for all k ≥ 0

Algorithm (2-CD)

1. Choose randomly 2 block coordinates (ik, jk) with probability pikjk

2. Set xk+1 = xk + Uikdik + Ujkdjk ,
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where directions dikjk = [dTik d
T
jk
]T are minimizing quadratic model (18):

dikjk = arg min
sikjk

f(xk) + ⟨∇ikjkf(x
k), sikjk⟩+

Likjk

2
∥sikjk∥2 + h(xk + sikjk)

s.t.: aTiksik + aTjksjk = 0. (19)

The reader should note that for problems with simple separable functions h
(e.g. box indicator function (5), ℓ1-regularization function (6)) the arithmetic
complexity of computing the direction dij is O(ni + nj) (see [16,30] for a de-
tailed discussion). Moreover, in the scalar case, i.e. when N = n, the search
direction dij can be computed in closed form, provided that h is simple (e.g.
box indicator function or ℓ1-regularization function) [16]. Note that other (co-
ordinate descent) methods designed for solving nonconvex problems subject
to a single linear equality constraint have complexity per iteration at least of
order O(n) [3,13,30,28]. We can consider more than one equality constraint in
the optimization model (16). However, in this case the analysis of Algorithm
(2-CD) is involved and the complexity per iteration is much higher (see [16,
30] for a detailed discussion).

We assume that for every pair (i, j) we have pij = pji and pii = 0, resulting

in N(N−1)
2 different pairs (i, j). We define the subspace S = {s ∈ Rn : aT s =

0} and the local subspace w.r.t. the pair (i, j) as Sij = {x ∈ S : xl =
0 ∀l ̸= i, j}. Also, we denote ξk = {(i0, j0), . . . , (ik, jk)} and ϕk = E

[
F (xk)

]
for the expectation taken w.r.t. ξk−1. Given a constant α > 0 and a vector
with positive entries L ∈ RN , the following property is valid for ψL:

ψαL(s;x) = f(x) + ⟨∇f(x), s⟩+ α

2
∥s∥2L + h(x+ s). (20)

Since in this section we deal with linearly constrained problems, we need to
adapt the definition for the map dL(x) introduced in Section 2. Thus, for any
vector with positive entries L ∈ RN and x ∈ Rn, we define the following map:

dL(x) = argmin
s∈S

f(x) + ⟨∇f(x), s⟩+ 1

2
∥s∥2L + h(x+ s). (21)

In order to analyze the convergence of Algorithm (2-CD), we introduce an
optimality measure:

M2(x, T ) = ∥DT · dNT (x)∥∗T .

Lemma 5 For any given vector T̃ with positive entries, a vector x∗ ∈ Rn is
a stationary point for problem (16) if and only if the quantity M2(x

∗, T̃ ) = 0.

Proof : Based on the optimality conditions of subproblem (21), it can be easily
shown that if M2(x

∗, T̃ ) = 0, then x∗ is a stationary point for the original
problem (16). We prove the converse implication by contradiction. Assume
that x∗ is a stationary point for (16) and M2(x

∗, T̃ ) > 0. It follows that
dNT̃ (x

∗) is a nonzero solution of subproblem (21) for x = x∗. Then, there
exist the subgradients g(x∗) ∈ ∂h(x∗) and g(x∗+dNT̃ (x

∗)) ∈ ∂h(x∗+dNT̃ (x
∗))
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and two scalars γ, λ ∈ R such that the optimality conditions for optimization
problems (16) and (21) can be written as:{

∇f(x∗) + g(x∗) + λa = 0

∇f(x∗) +DNT̃ dNT̃ (x
∗) + g(x∗ + dNT̃ (x

∗)) + γa = 0.

Taking the difference of the two relations above and considering the inner
product with dNT̃ (x

∗) ̸= 0 on both sides of the equation, we get:

∥dNT̃ (x
∗)∥2

T̃
+

1

N
⟨g(x∗ + dNT̃ (x

∗))− g(x∗), dNT̃ (x
∗)⟩ = 0,

where we used that aT dNT̃ (x
∗) = 0. From convexity of the function h we see

that both terms in the above sum are nonnegative and thus dNT̃ (x
∗) = 0,

which contradicts our hypothesis. In conclusion results M2(x
∗, T̃ ) = 0. ⊓⊔

3.2 Convergence of Algorithm (2-CD)

In order to provide the convergence results of Algorithm (2-CD), we have to
introduce some definitions and auxiliary results. We denote by supp(x) the set
of indexes corresponding to the nonzero coordinates in the vector x ∈ Rn.

Definition 1 Let d, d′ ∈ Rn, then the vector d′ is conformal to d if: supp(d′) ⊆
supp(d) and d′jdj ≥ 0 for all j = 1, . . . , n.

We introduce the notion of elementary vectors for the linear subspace S =
Null(aT ).

Definition 2 An elementary vector d of S is a vector d ∈ S for which there
is no nonzero d′ ∈ S conformal to d and supp(d′) ̸= supp(d).

We now present some results for elementary vectors and conformal real-
ization, whose proofs can be found in [26,27,30]. A particular case of Exercise
10.6 in [27] and an interesting result in [26] provide us the following lemma:

Lemma 6 [26,27] Given d ∈ S, if d is an elementary vector, then |supp(d)| ≤
2. Otherwise, d has a conformal realization d = d1+ · · ·+ ds, where s ≥ 2 and
dt ∈ S are elementary vectors conformal to d for all t = 1, . . . , s.

An important property of convex and separable functions is given by the fol-
lowing lemma:

Lemma 7 [30] Let h be componentwise separable and convex. For any x, x+
d ∈ domh, let d be expressed as d = d1 + · · · + ds for some s ≥ 2 and some
nonzero dt ∈ Rn conformal to d for all t = 1, . . . , s. Then,

h(x+ d)− h(x) ≥
s∑

t=1

(
h(x+ dt)− h(x)

)
.

where dt ∈ S are elementary vectors conformal to d for all t = 1, . . . , s.
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Lemma 8 If Assumption 3 holds and sequence xk is generated by Algorithm
(2-CD) using the uniform distribution, then the following inequality is valid:

E[ψLikjk
1(dikjk ;x

k)|ξk−1]

≤
(
1− 2

N(N − 1)

)
F (xk) +

2

N(N − 1)
ψNT (dNT (x

k);xk) ∀k ≥ 0.

Proof : As in the previous sections, for a simple exposition we drop k from
our derivations: e.g. the current point is denoted x, next iterate x+ = x +
Uidi+Ujdj , where direction dij is given by Algorithm (2-CD) for some random
selection of pair (i, j) and ξ instead of ξk−1. From the relation (20) and the
property of minimizer dij we have:

ψLij1(dij ;x) ≤ ψLij1(sij ;x) ∀sij ∈ Sij .

Taking expectation in both sides w.r.t. random variable (i, j) conditioned on
ξ and recalling that pij =

2
N(N−1) , we get:

E[ψLij1(dij ;x)| ξ]

≤ f(x) +
2

N(N − 1)

[∑
i,j

⟨∇ijf(x), sij⟩
∑
i,j

Lij

2
∥sij∥2 +

∑
i,j

h(x+ sij)
]

= f(x) +
2

N(N − 1)

[∑
i,j

⟨∇ijf(x), sij⟩+
∑
i,j

1

2
∥
√
Lijsij∥2 +

∑
i,j

h(x+ sij)
]
,

for all sij ∈ Sij . We can apply Lemma 7 for coordinatewise separable functions
∥·∥2 and h(·) and we obtain:

E[ψLij1(dij ;x)| ξ] ≤f(x) +
2

N(N − 1)

[
⟨∇f(x),

∑
i,j

sij⟩+
1

2
∥
∑
i,j

√
Lijsij∥2

+ h(x+
∑
i,j

sij) +

(
N(N − 1)

2
−1

)
h(x)

]

for all sij ∈ Sij . From Lemma 6 it follows that any s ∈ S has a conformal
realization defined by s =

∑
t s

t, where the vectors st ∈ S are elementary
vectors conformal to s. Therefore, observing that every elementary vector st

has at most two nonzero blocks, then any vector s ∈ S can be generated by
s =

∑
i,j sij , where sij ∈ S are conformal to s and have at most two nonzero

blocks, i.e. sij ∈ Sij for some pair (i, j). Due to conformal property of the
vectors sij , the expression ∥

∑
i,j

√
Lijsij∥2 is nondecreasing in the weights

Lij and taking in account that Lij ≤ min{NTi, NTj}, the previous inequality



Random coordinate descent algorithms for nonconvex optimization 19

leads to:

E[ψLij1(dij ;x)| ξ]

≤ f(x) +
2

N(N − 1)

[
⟨∇f(x),

∑
i,j

sij⟩+
1

2
∥
∑
i,j

D
1/2
NT sij∥

2 + h(x+
∑
i,j

sij)

+

(
N(N − 1)

2
− 1

)
h(x)

]
=f(x)+

2

N(N−1)

[
⟨∇f(x), s⟩+1

2
∥
√
ND

1/2
T s∥2+h(x+s)+

(N(N−1)

2
−1
)
h(x)

]
for all s ∈ S. As the last inequality holds for any vector s ∈ S, it also holds
for the particular vector dNT (x) ∈ S:

E[ψLij1(dij ;x)|ξ] ≤
(
1− 2

N(N − 1)

)
F (x) +

2

N(N − 1)

[
f(x)+

⟨∇f(x), dNT (x)⟩+
N

2
∥dNT (x)∥2T +h(x+dNT (x))

]
=

(
1− 2

N(N − 1)

)
F (x) +

2

N(N − 1)
ψNT (dNT (x);x).

⊓⊔

The main convergence properties of Algorithm (2-CD) are given in the follow-
ing theorem:

Theorem 4 If Assumption 3 holds for the composite objective function F of
problem (16) and the sequence xk is generated by Algorithm (2-CD) using the
uniform distribution, then the following statements are valid:

(i) The sequence of random variables M2(x
k, T ) converges to 0 a.s. and the

sequence F (xk) converges to a random variable F̄ a.s.
(ii) Any accumulation point of the sequence xk is a stationary point for opti-

mization problem (16).

Proof : (i) Using a similar reasoning as in Lemma 3 but for the inequality (18)
we can show the following decrease in the objective function for Algorithm
(2-CD) (i.e. Algorithm (2-CD) is also a descent method):

F (xk+1) ≤ F (xk)− Likjk

2
∥dikjk∥2 ∀k ≥ 0. (22)

Further, subtracting F ∗ from both sides, applying expectation conditioned on
ξk−1 and then using supermartingale convergence theorem given in Lemma
2 we obtain that F (xk) converges to a random variable F̄ a.s. for k → ∞.
Due to almost sure convergence of sequence F (xk), it can be easily seen that
lim
k→∞

F (xk)− F (xk+1) = 0 a.s. Moreover, from (22) we have:

Likjk

2
∥dikjk∥2 =

Likjk

2
∥xk+1 − xk∥2 ≤ F (xk)− F (xk+1) ∀k ≥ 0,
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which implies that

lim
k→∞

dikjk = 0 and lim
k→∞

∥xk+1 − xk∥ = 0 a.s.

As in the previous section, for a simple exposition we drop k from our deriva-
tions: e.g. the current point is denoted x, next iterate x+ = x + Uidi + Ujdj ,
where direction dij is given by Algorithm (2-CD) for some random selection of
pair (i, j) and ξ stands for ξk−1. From Lemma 8, we obtain a sequence which
bounds from below ψNT (dNT (x);x) as follows:

N(N − 1)

2
E[ψLij1(dij ;x)| ξ] +

(
1− N(N − 1)

2

)
F (x) ≤ ψNT (dNT (x);x).

On the other hand, from Lemma 6 it follows that any s ∈ S has a conformal
realization defined by s =

∑
i,j sij , where sij ∈ S are conformal to s and

have at most two nonzero blocks, i.e. sij ∈ Sij for some pair (i, j). Using now
Jensen inequality we derive another sequence which bounds ψNT (dNT (x);x)
from above:

ψNT (dNT (x);x)) = min
s∈S

f(x) + ⟨∇f(x), s⟩+ 1

2
∥s∥2NT + h(x+ s)

= min
sij∈Sij

[
f(x) + ⟨∇f(x),

∑
i,j

sij⟩+
1

2
∥
∑
i,j

sij∥2NT + h(x+
∑
i,j

sij)
]

= min
s̃ij∈Sij

f(x) +
1

N(N − 1)
⟨∇f(x),

∑
i,j

s̃ij⟩+
1

2
∥ 1

N(N − 1)

∑
i,j

s̃ij∥2NT

+ h

x+
1

N(N − 1)

∑
i,j

s̃ij


≤ min

s̃ij∈Sij

f(x) +
1

N(N − 1)

∑
i,j

⟨∇f(x), s̃ij⟩+
1

2N(N − 1)

∑
i,j

∥s̃ij∥2NT

+
1

N(N − 1)

∑
i,j

h (x+ s̃ij) = E[ψNT (dij ;x)|ξ],

where we used the notation s̃ij = N(N−1)sij . If we come back to the notation
dependent on k, then using Assumption 3 (ii) and the fact that dikjk → 0 a.s.
we obtain that E[ψNT (dikjk ;x

k)|ξk−1] converges to F̄ a.s. for k → ∞. We
conclude that both sequences, lower and upper bounds of ψNT (dNT (x

k);xk)
from above, converge to F̄ a.s., hence ψNT (dNT (x

k);xk) converges to F̄ a.s.
for k → ∞. A trivial case of strong convexity relation (8) leads to:

ψNT (0;x
k) ≥ ψNT (dNT (x

k);xk) +
N

2
∥dNT (x

k)∥2T .

Note that ψNT (0;x
k) = F (xk) and since both sequences ψNT (0;x

k) and
ψNT (dNT (x

k);xk) converge to F̄ a.s. for k → ∞, from the above strong con-
vexity relation it follows that the sequenceM2(x

k;T ) = ∥dNT (x
k)∥T converges

to 0 a.s. for k → ∞.
(ii) The proof follows the same ideas as in the proof of Theorem 1 (ii). ⊓⊔
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We now present the convergence rate for Algorithm (2-CD).

Theorem 5 Let F satisfy Assumption 3. Then, the Algorithm (2-CD) based
on the uniform distribution generates a sequence xk satisfying the following
convergence rate for the expected values of the optimality measure:

min
0≤l≤k

E
[(
M2(x

l, T )
)2] ≤ N

(
F (x0)− F ∗)
k + 1

∀k ≥ 0.

Proof : Given the current feasible point x, denote x+ = x + Uidi + Ujdj as
the next iterate, where direction (di, dj) is given by Algorithm (2-CD) for
some random chosen pair (i, j) and we use the notation (ϕ, ϕ+, ξ) instead of
(ϕk, ϕk+1, ξk−1). Based on Lipschitz inequality (18) we derive:

F (x+) ≤ f(x) + ⟨∇ijf(x), dij⟩+
Lij

2
∥dij∥2 + h(x+ dij).

Taking expectation conditioned on ξ in both sides and using Lemma 8 we get:

E[F (x+)|ξ] ≤
(
1− 2

N(N − 1)

)
F (x) +

2

N(N − 1)
ψNT (dNT (x);x).

Taking now expectation w.r.t. ξ, we can derive:

ϕ− ϕ+

≥ E[ψNT (0;x)]−
(
1− 2

N(N−1)

)
E[ψNT (0;x)]−

2

N(N−1)
E[ψNT (dNT (x);x)]

=
2

N(N − 1)
(E[ψNT (0;x)]− E[ψNT (dNT (x);x)])

≥ 1

N − 1
E
[
∥dNT (x)∥2T

]
≥ 1

N
E
[
(M2(x, T ))

2
]
,

where we used the strong convexity property of function ψNT (s;x). Now, con-
sidering iteration k and summing up with respect to entire history we get:

1

N

k∑
l=0

E
[(
M2(x

l, T )
)2] ≤ F (x0)− F ∗.

This inequality leads us to the above result. ⊓⊔

3.3 Constrained minimization of smooth objective functions

We now study the convergence of Algorithm (2-CD) on the particular case of
optimization model (16) with h = 0. For this particular case a feasible point
x∗ is a stationary point for (16) if there exists λ∗ ∈ R such that:

∇f(x∗) + λ∗a = 0 and aTx∗ = b. (23)
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For any feasible point x, note that exists λ ∈ R such that:

∇f(x) = ∇f(x)⊥ − λa,

where∇f(x)⊥ is the projection of the gradient vector∇f(x) onto the subspace
S orthogonal to the vector a. Since ∇f(x)⊥ = ∇f(x) + λa, we defined a
particular optimality measure:

M3(x,1) = ∥∇f(x)⊥∥.

In this case the iteration of Algorithm (2-CD) is a projection onto a hyperplane
so that the direction dikjk can be computed in closed form. We denote by
Qij ∈ Rn×n the symmetric matrix with all blocks zeros except:

Qii
ij = Ini −

aia
T
i

aTi ai
, Qij

ij = −
aia

T
j

aTijaij
, Qjj

ij = Inj −
aja

T
j

aTijaij
.

It is straightforward to see that Qij is positive semidefinite (notation Qij ≽ 0)
and Qija = 0 for all pairs (i, j) with i ̸= j. Given a probability distribution
pij , let us define the matrix:

Q =
∑
i,j

pij
Lij

Qij ,

that is also symmetric and positive semidefinite, since Lij , pij > 0 for all (i, j).
Furthermore, since we consider all possible pairs (i, j), with i ̸= j ∈ {1, . . . , N},
it can be shown that the matrix Q has an eigenvalue ν1(Q) = 0 (which is a
simple eigenvalue) with the associated eigenvector a. It follows that ν2(Q)
(the second smallest eigenvalue of Q) is positive. Since h = 0, we have F = f .
Using the same reasoning as in the previous sections we can easily show that
the sequence f(xk) satisfies the following decrease:

f(xk+1) ≤ f(xk)− 1

2Lij
∇f(xk)TQij∇f(xk) ∀k ≥ 0. (24)

We now give the convergence rate of Algorithm (2-CD) for this particular case:

Theorem 6 Let h = 0 and f satisfy Assumption 3 (i). Then, Algorithm (2-
CD) based on a general probability distribution pij generates a sequence xk

satisfying the following convergence rate for the expected values of the norm
of the projected gradients onto subspace S:

min
0≤l≤k

E
[(
M3(x

l,1)
)2] ≤ 2(F (x0)− F ∗)

ν2(Q)(k + 1)
.

Proof As in the previous section, for a simple exposition we drop k from our
derivations: e.g. the current point is denoted x, and x+ = x+Uidi+Ujdj , where
direction dij is given by Algorithm (2-CD) for some random selection of pair
(i, j). Since h = 0, we have F = f . From (24) we have the following decrease:
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f(x+) ≤ f(x)− 1
2Lij

∇f(x)TQij∇f(x). Taking now expectation conditioned in

ξ in this inequality we have:

E[f(x+)| ξ] ≤ f(x)− 1

2
∇f(x)TQ∇f(x).

From the above decomposition of the gradient ∇f(x) = ∇f(x)⊥ −λa and the
observation that Qa = 0, we conclude that the previous inequality does not
change if we replace ∇f(x) with ∇f(x)⊥:

E[f(x+)|ξ] ≤ f(x)− 1

2
∇f(x)T⊥Q∇f(x)⊥.

Note that ∇f(x)⊥ is included in the orthogonal complement of the span of
vector a, so that the above inequality can be relaxed to:

E[f(x+)| ξ] ≤ f(x)− 1

2
ν2(Q)∥∇f(x)⊥∥2 = f(x)− ν2(Q)

2
(M3(x,1))

2
. (25)

Coming back to the notation dependent on k and taking expectation in both
sides of inequality (25) w.r.t. ξk−1, we have:

ϕk − ϕk+1 ≥ ν2(Q)

2
E
[(
M3(x

k,1)
)2]

.

Summing w.r.t. the entire history, we obtain the above result. ⊓⊔

Note that our convergence proofs given in this section (Theorems 4, 5 and
6) are different from the convex case [16,17], since here we introduce another
optimality measure and we use supermartingale convergence theorem in the
analysis. It is important to see that the convergence rates for the Algorithm (2-
CD) given in Theorems 5 and 6 are typical for the class of first order methods
designed for solving nonconvex and nonsmotth optimization problems, e.g. in
[3,19] similar results are obtained for other gradient based methods designed
to solve nonconvex problems.

4 Numerical Experiments

In this section we analyze the practical performance of the random coordi-
nate descent methods derived in this paper and compare our algorithms with
some recently developed state-of-the-art algorithms from the literature. Coor-
dinate descent methods are one of the most efficient classes of algorithms for
large-scale optimization problems. Therefore, we present extensive numerical
simulation for large-scale nonconvex problems with dimension ranging from
n = 103 to n = 107. For numerical experiments, we implemented all the algo-
rithms in C code and we performed our tests on a PC with Intel Xeon E5410
CPU and 8 Gb RAM memory.
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For tests we choose as application the eigenvalue complementarity problem.
It is well-known that many applications from mathematics, physics and engi-
neering requires the efficient computation of eigenstructure of some symmet-
ric matrix. A brief list of these applications includes optimal control, stability
analysis of dynamic systems, structural dynamics, electrical networks, quan-
tum chemistry, chemical reactions and economics (see [10,14,21,28] and the
reference therein for more details). The eigenvalues of a symmetric matrix A
have an elementary definition as the roots of the characteristic polynomial
det(A − λI). In realistic applications the eigenvalues can have an important
role, for example to describe expected long-time behavior of a dynamical sys-
tem, or to be only intermediate values of a computational method. For many
applications the optimization approach for eigenvalues computation is better
than the algebraic one. Although, the eigenvalues computation can be for-
mulated as a convex problem, the corresponding feasible set is complex so
that the projection on this set is numerically very expensive, at least of order
O(n2). Therefore, classical methods for convex optimization are not adequate
for large-scale eigenvalue problems. To obtain a lower iteration complexity as
O(n) or even O(p), where p≪ n, an appropriate way to approach these prob-
lems is through nonconvex formulation and using coordinate descent methods.
A classical optimization problem formulation involves the Rayleigh quotient
as the objective function of some nonconvex optimization problem [14]. The
eigenvalue complementarity problem (EiCP) is an extension of the classical
eigenvalue problem, which can be stated as: given matrices A and B, find
ν ∈ R and x ̸= 0 such that{

w = (νB −A)x,

w ≥ 0, x ≥ 0, wTx = 0.

If matrices A and B are symmetric, then we have symmetric (EiCP). It has
been shown in [28] that symmetric (EiCP) is equivalent with finding a sta-
tionary point of a generalized Rayleigh quotient on the simplex:

min
x∈Rn

xTAx

xTBx

s.t.: 1Tx = 1, x ≥ 0,

where we recall that 1 = [1 . . . 1]T ∈ Rn. A widely used alternative formulation
of (EiCP) problem is the nonconvex logarithmic formulation (see [11,28]):

max
x∈Rn

f(x)

(
= ln

xTAx

xTBx

)
(26)

s.t.: 1Tx = 1, x ≥ 0.

Note that optimization problem (26) is a particular case of (16), where h is the
indicator function of the nonnegative orthant. In order to have a well-defined
objective function for the logarithmic case, in the most of the aforementioned
papers the authors assumed positive definiteness of matrices A = [aij ] and
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B = [bij ]. In this paper, in order to have a more practical application with a
highly nonconvex objective function [10], we consider the class of nonnegative
matrices, i.e. A,B ≥ 0, with positive diagonal elements, i.e. aii > 0 and
bii > 0 for all i = 1, · · · , n. For this class of matrices the problem (26) is
also well-defined on the simplex. Based on Perron-Frobenius theorem, we have
that for matrices A that are also irreducible and B = In the corresponding
stationary point of the (EiCP) problem (26) is the global minimum of this
problem or equivalently is the Perron vector, so that any accumulation point
of the sequence generated by our Algorithm (2-CD) is also a global minimizer.
In order to apply our Algorithm (2-CD) on the logarithmic formulation of the
(EiCP) problem (26), we have to compute an approximation of the Lipschitz
constants Lij . For brevity, we introduce the notation ∆n = {x ∈ Rn : 1Tx =
1, x ≥ 0} for the standard simplex and the function gA(x) = lnxTAx. For a
given matrix A, we denote by Aij ∈ R(ni+nj)×(ni+nj) the 2 × 2 block matrix
of A by taking the pair (i, j) of block rows of matrix A and then the pair (i, j)
of block columns of A.

Lemma 9 Given a nonnegative matrix A ∈ Rn×n such that aii ̸= 0 for all i =
1, · · · , n, then the function gA(x) = lnxTAx has 2 block coordinate Lipschitz
gradient on the standard simplex, i.e.:

∥∇ijgA(x+ sij)−∇ijgA(x)∥ ≤ LA
ij∥sij∥, ∀x, x+ sij ∈ ∆n,

where an upper bound on Lipschitz constant LA
ij is given by

LA
ij ≤

2N

min
1≤i≤N

aii
∥Aij∥.

Proof : The Hessian of the function gA(x) is given by

∇2gA(x) =
2A

xTAx
− 4(Ax)(Ax)T

(xTAx)2
.

Note that ∇2
ijgA(x) =

2Aij

xTAx
− 4(Ax)ij(Ax)Tij

(xTAx)2
. With the same arguments as in

[28] we have that: ∥∇2
ijgA(x)∥ ≤ ∥ 2Aij

xTAx
∥. From the mean value theorem we

obtain:

∇ijgA(x+ sij) = ∇ijgA(x) +

∫ 1

0

∇2
ijgA(x+ τsij) sij dτ,

for any x, x+ sij ∈ ∆n. Taking norm in both sides of the equality results in:

∥∇ijgA(x+ sij)−∇ijgA(x)∥ = ∥
(∫ 1

0

∇2
ijgA(x+ τsij) dτ

)
sij∥

≤
∫ 1

0

∥∇2
ijgA(x+ τsij)∥ dτ ∥sij∥ ≤ ∥ 2Aij

xTAx
∥ ∥sij∥ ∀x, x+ sij ∈ ∆n.
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Note that min
x∈∆n

xTAx > 0 since we have:

min
x∈∆n

xTAx ≥ min
x∈∆n

(
min

1≤i≤n
aii

)
∥x∥2 =

1

N
min

1≤i≤n
aii.

and the above result can be easily derived. ⊓⊔

Based on the previous notation, the objective function of the logarithmic for-
mulation (26) is given by:

max
x∈∆n

f(x) (= gA(x)− gB(x)) or min
x∈∆n

f̄(x) (= gB(x)− gA(x)).

Therefore, the local Lipschitz constants Lij of function f are estimated very
easily and numerically cheap as:

Lij ≤ LA
ij + LB

ij =
2N

min
1≤i≤n

aii
∥Aij∥+

2N

min
1≤i≤n

bii
∥Bij∥ ∀i ̸= j.

In [28] the authors show that a variant of difference of convex functions (DC)
algorithm is very efficient for solving the logarithmic formulation (26). We
present extensive numerical experiments for evaluating the performance of our
Algorithm (2-CD) in comparison with the Algorithm (DC). For completeness,
we also present the Algorithm (DC) for logarithmic formulation of (EiCP) in
the minimization form from [28]: given x0 ∈ Rn, for k ≥ 0 do

Algorithm (DC) [28]

1. Set yk =

(
µIn +

2A

⟨xk, Axk⟩
− 2B

⟨xk, Bxk⟩

)
xk,

2. Solve the QP : xk+1 = arg min
x∈Rn

{µ
2
∥x∥2 − ⟨x, yk⟩ : 1Tx = 1, x ≥ 0

}
,

where µ is a parameter chosen in a preliminary stage of the algorithm such
that the function x 7→ 1

2µ∥x∥
2+ln(xTAx) is convex. In both algorithms we use

the following stopping criterion: |f(xk)−f(xk+1)| ≤ ϵ, where ϵ is some chosen
accuracy. Note that Algorithm (DC) is based on full gradient information and
in the application (EiCP) the most computations consists of matrix vector
multiplication and a projection onto simplex. When at least one matrix A and
B is dense, the computation of the sequence yk is involved, typically O(n2)
operations. However, when these matrices are sparse the computation can be
reduced to O(pn) operations, where p is the average number of nonzeros in
each row of the matrix A and B. Further, there are efficient algorithms for
computing the projection onto simplex, e.g. block pivotal principal pivoting
algorithm described in [11], whose arithmetic complexity is of order O(n). As
it appears in practice, the value of parameter µ is crucial in the rate of con-
vergence of Algorithm (DC). The authors in [28] provide an approximation
of µ that can be computed easily when the matrix A from (26) is positive
definite. However, for general copositive matrices (as the case of nonnegative



Random coordinate descent algorithms for nonconvex optimization 27

irreducible matrices considered in this paper) one requires the solution of cer-
tain NP-hard problem to obtain a good approximation of parameter µ. On the
other hand, for our Algorithm (2-CD) the computation of the Lipschitz con-
stants Lij is very simple and numerically cheap (see previous lemma). Further,
for the scalar case (i.e. n = N) the complexity per iteration of our method
applied to (EiCP) problem is O(p) in the sparse case.

Table 1 Performance of Algorithms (2-CD) and (DC) on randomly generated (EiCP) sparse
problems with p = 10 and random starting point x0 for different problem dimensions n.

n
(DC) (2-CD)

µ CPU (sec) iter F ∗ CPU (sec) full-iter F ∗

5 · 103
0.01n 0.0001 1 1.32

0.09 56 105.20
n 0.001 2 82.28

2n 0.02 18 105.21

50n 0.25 492 105.21

2 · 104
0.01n 0.01 1 1.56

0.39 50 73.74
n 0.01 2 59.99

1.43n 0.59 230 73.75

50n 0.85 324 73.75

5 · 104
0.01n 0.01 1 1.41

1.75 53 83.54
n 0.02 2 67.03

1.43n 1.53 163 83.55

50n 2.88 324 83.57

7.5 · 104
0.01n 0.01 1 2.40

3.60 61 126.04
n 0.03 2 101.76

1.45n 6.99 480 126.05

50n 4.72 324 126.05

105

0.01n 0.02 1 0.83

4.79 53 52.21
n 0.05 2 41.87

1.43n 6.48 319 52.22

50n 6.57 323 52.22

5 ·105
0.01n 0.21 1 2.51

49.84 59 136.37
n 0.42 2 109.92

1.43n 94.34 475 136.38

50n 66.61 324 136.38

7.5 ·105
0.01n 0.44 1 3.11

37.59 38 177.52
n 0.81 2 143.31

1.43n 72.80 181 177.52

50n 135.35 323 177.54

106

0.01n 0.67 1 3.60

49.67 42 230.09
n 1.30 2 184.40

1.43n 196.38 293 230.09

50n 208.39 323 230.11

107

0.01n 4.69 1 10.83

758.1 41 272.37
n 22.31 2 218.88

1.45n 2947.93 325 272.37

50n 2929.74 323 272.38
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In Table 1 we compare the two algorithms: (2-CRD) and (DC). We gener-
ated random sparse symmetric nonnegative and irreducible matrices of dimen-
sion ranging from n = 103 to n = 107 using the uniform distribution. Each
row of the matrices has only p = 10 nonzero entries. In both algorithms we
start from random initial points. In the table we present for each algorithm
the final objective function value (F ∗), the number of iterations (iter) and the
necessary CPU time (in seconds) for our computer to execute all the itera-
tions. As Algorithm (DC) uses the whole gradient information to obtain the
next iterate, we also report for Algorithm (2-CD) the equivalent number of
full-iterations which means the total number of iterations divided by n/2 (i.e.
the number of iterations groups x0, xn/2, ..., xkn/2). Since computing µ is very
difficult for this type of matrices, we try to tune µ in Algorithm (DC). We
have tried four values for µ ranging from 0.01n to 50n. We have noticed that
if µ is not carefully tuned Algorithm (DC) cannot find the optimal value f∗

in a reasonable time. Then, after extensive simulations we find an appropriate
value for µ such that Algorithm (DC) produces an accurate approximation of
the optimal value. From the table we see that our Algorithm (2-CD) provides
better performance in terms of objective function values and CPU time (in
seconds) than Algorithm (DC). We also observe that our algorithm is not sen-
sitive w.r.t. the Lipschitz constants Lij and also w.r.t. the initial point, while
Algorithm (DC) is very sensitive to the choice of µ and the initial point.

Fig. 1 Performance in terms of function values of Algorithms (2-CD) and (DC) on a ran-
domly generated (EiCP) problem with n = 5 · 105: left µ = 1.42 · n and right µ = 50 · n.
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Further, in Fig. 1 we plot the evolution of the objective function w.r.t. time
for Algorithms (2-CD) and (DC), in logarithmic scale, on a random (EiCP)
problem with dimension n = 5 · 105 (Algorithm (DC) with parameter left:
µ = 1.42 ·n; right: µ = 50 ·n). For a good choice of µ we see that in the initial
phase of Algorithm (DC) the reduction in the objective function is very fast,
but while approaching the optimum it slows down. On the other hand, due to
the sparsity and randomization our proposed algorithm is faster in numerical
implementation than the (DC) scheme and leads to a more robust output.

In Fig. 2 we plot the evolution of CPU time, in logarithmic scale, required
for solving the problem w.r.t. the average number of nonzeros entries p in each
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Fig. 2 CPU time performance of Algorithms (2-CD) and (DC) for different values of the
sparsity p of the matrix on a randomly generated (EiCP) problem of dimension n = 2 · 104.
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row of the matrix A. We see that for very sparse matrices (i.e. for matrices with
relatively small number of nonzeros per row p ≪ n), our Algorithm (2-CD)
performs faster in terms of CPU time than (DC) method. The main reason is
that our method has a simple implementation, does not require the use of other
algorithms at each iteration and the arithmetic complexity of an iteration is
of order O(p). On the other hand, Algorithm (DC) is using the block pivotal
principal pivoting algorithm described in [11] at each iteration for projection
on simplex and the arithmetic complexity of an iteration is of order O(pn).

We conclude from the theoretical rate of convergence and the previous
numerical results that Algorithms (1-CD) and (2-CD) are easier to be imple-
mented and analyzed due to the randomization and the typically very simple
iteration. Furthermore, on certain classes of problems with sparsity structure,
that appear frequently in many large-scale real applications, the practical com-
plexity of our methods is better than that of some well-known methods from
the literature. All these arguments make our algorithms to be competitive in
the large-scale nonconvex optimization framework. Moreover, our methods are
suited for recently developed computational architectures (e.g., distributed or
parallel architectures [15,25]).
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5 Appendix

Proof of Lemma 4: We derive our proof based on the following remark (see
also [6]), for given u, v ∈ Rn if ⟨v, u− v⟩ > 0, then

∥u∥
∥v∥

≤ ⟨u, u− v⟩
⟨v, u− v⟩

. (27)

Let α > β > 0. Taking u = proxαh(x+ αd)− x and v = proxβh(x+ βd)− x,
we show first that inequality ⟨v, u− v⟩ > 0 holds. Given a real constant c > 0,
from the optimality conditions corresponding to proximal operator we have:

x− proxch(x) ∈ ∂ch(proxch(x)).

Therefore, from the convexity of h we can derive that:

ch(z) ≥ ch(proxch(y)) + ⟨y − proxch(y), z − proxch(y)⟩ ∀y, z ∈ Rn.

Taking c = α, z = proxβh(x+ βd) and y = x+ αd we have:

⟨u, u− v⟩ ≤ α
(
⟨d, u− v⟩+ h(proxβh(x+ βd))− h(proxαh(x+ αd))

)
. (28)

Also, if c = β, z = proxαh(x+ αd) and y = x+ βd, then we have:

⟨v, u− v⟩ ≥ β (⟨d, u− v⟩+ h(proxh(x+ βd))− h(proxh(x+ αd))) . (29)

Summing these two inequalities and taking in account that α > β we get:

⟨d, u− v⟩+ h(proxh(x+ βd))− h(proxh(x+ αd)) > 0.

Therefore, replacing this expression into inequality (28) leads to ⟨v, u−v⟩ > 0.
Finally, from (27),(28) and (29) we get the inequality:

∥u∥
∥v∥

≤ α⟨d, u− v⟩
β⟨d, u− v⟩

,

and then the statement of Lemma 4 can be easily derived. ⊓⊔


