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Abstract. This paper is a continuation of our previous paper [3] were we presented
generalizations of the Dennis-Moré theorem to characterize g-superliner convergences
of quasi-Newton methods for solving equations and variational inequalities in Banach
spaces. Here we prove Dennis-Moré type theorems for inexact quasi-Newton methods
applied to variational inequalities in finite dimensions. We first consider variational
inequalities for functions that are merely Lipschitz continuous. Then we present a
parallel result for semismooth functions. An erratum to a theorem in our previous
paper is also given.
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The celebrated Dennis-Moré theorem [1] characterizes the g-superlinear convergence of
quasi-Newton methods of the form

(1) f(xk) + Bk(xk-i-l - .Tk) = Oa k= 07 17 ceey Zo givenv

for finding a zero of a smooth function f : R® — R", where By is a sequence of matrices
constructed in certain way. Throughout, for a sequence {x;} denote s, = xpy1 — zx and
erx = xp — T. Recall that x;, — & g-superlinearly when
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The following statement of the Dennis-Moré theorem is slightly different, though equiv-
alent, to that originally given in [1].

Theorem 1 (Dennis-Moré [1]). Suppose that f : R" — R™ is strictly differentiable at z, a
zero of f, and the Jacobian mapping V f(z) is nonsingular. Let {By} be a sequence of n x n
matrices, let Ey, = B, — V f(Z), and let the sequence {zy} be generated by (1) and converge
to . Then x, — T g-superlinearly if and only if
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In a path-breaking paper Dembo, Eisenstat and Steihaug [2] introduced an inexact version
of the Newton method of the following form: given a sequence of positive scalars 7, and a
starting point xg, the (k + 1)st iterate is chosen to satisfy the condition

(3) 1 f(@x) + Vf(zr)(@re — z)|| < mell f (@)

In particular, the following result was proved in [2, Theorem 3.4, Corollary 3.5]:

Theorem 2 (Dembo, Eisenstat and Steihaug [2]). Suppose that f is continuously differ-
entiable in a neighborhood of &, a zero of f, and the Jacobian V f(x) is nonsingular. Let
e — 0. Consider a sequence {xy} generated by (3) which is convergent to . Then xy — T
superlinearly.

Basic information about the inexact method (3) is given in the book of Kelley [7, Chap-
ter 6], where convergence and numerical implementations are discussed. An extension of the
work of Dembo et al. [2] for generalized equations is presented in [4].

In a previous paper [3] we presented generalizations of the Dennis-Moré theorem for
exact quasi-Newton methods applied to nonsmooth and generalized equations in Banach
spaces. In this paper we focus on inexact quasi-Newton methods for variational inequalities
in finite dimensions. We present first a theorem which generalizes both theorems 1 and
2 above for functions f which are merely Lipschitz continuous. This result is obtained as
a particular case of a more general Dennis-Moré type theorem characterizing g-superliner
convergence of inexact quasi-Newton methods applied to variational inequalities involving
Lipschitz continuous functions. A related, but different theorem is established for variational
inequalities involving semismooth functions. Throughout, R™ is the n-dimensional Euclidean
space equipped with the usual norm ||-||, /B is the unit ball, and d(z, C') denotes the distance
from a point x to a set C.

In preparation to stating our first result, recall that the Clarke generalized Jacobian
Of(z) of a function f : R™ — R™ at any = around which f is Lipschitz continuous, is the
convex hull of the set consisting of all matrices A € R™*" for which there is a sequence of
points zp — x such that f is differentiable at z; and V f(zx) — A. The set 0f(x) is a
nonempty, convex and compact subset of R™*". Furthermore, the mapping x — 0f(z) has
closed graph and is upper semicontinuous at x, meaning that for every ¢ > 0 there exists
0 > 0 such that

Af(2') C 0f (z) + eBpxn  for all 2’ € Bs(z).

Also recall Clarke’s mean value theorem, according to which for any 2/, 2” in an open ball

around z,

f@") — f(2") = Az’ — ") for some A € co U of (tz" + (1 —t)z").

tel0,1]

A key role in our analysis is played by the following Folk Theorem which can be traced
back to [6] if not earlier; we state it as a proposition and supply with a proof for completeness.
Proposition 3. Let f: R"™ — R™ be Lipschitz continuous around . Then for every ¢ > 0
there exists 0 > 0 such that for every x,z' € IBs(Z) there exists A € 0f(Z) with the property

1f(z) = f(«) = Alz = 2)[| < eflz — 2]



Proof. Let € > 0. From the upper semicontinuity of df there exists 6 > 0 such that
Of(x) C 0f(T) +eBpx, forall z € Bs(T).
Thus, for any z, 2’ € Bs(Z),
Of (tx + (1 —t)2’) C If(Z) + e Brxn.
The set on the right side of this inclusion is convex and does not depend on ¢, hence
co U Of (tx + (1 — t)2') C If (%) + e Bxn.
te(0,1]

But then, from Clarke’s mean value theorem, there exists A € O0f(z) with the desired
property. O

We will use the following immediate corollary of Proposition 3.

Corollary 4. Let f: R™ — R™ be Lipschitz continuous around & and consider a sequence
xy — Z. Then there exists a sequence of matrices Ay € 0f(z) such that

(4) lim 1 (@ri1) — fxr) — Arsell

k=00 l|skl

0.

We consider first the following inexact quasi-Newton method:

(5) 1f (k) + Br(rgr) — )| < nell f (i),

where {By} is a sequence of n x n matrices and 7 is a sequence of positive numbers. Our
first result generalizes both theorems 1 and 2.

Theorem 5. Consider a function f : R"™ — R™ with a zero r which is Lipschitz continuous
in a neighborhood U of & and there exists k > 0 such that

(6) |z — || < k|| f(z)]| for all z € U.

Let { By} be a sequence of n xn matrices and let np, — 0. Consider a sequence {zy} generated
by (5) which is convergent to &, and an associated sequence of matrices Ay € 0f(z) satisfying
(4) whose existence is claimed in Corollary 4. Let Ey, = By—Ay. Then x, — T q-superlinearly

if and only if

E
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We will obtain Theorem 5 as a particular case of a more general result concerning the
variational inequality

(7) f(z) + Ne(z) 20,

where f : R” — R™ and N¢ is the normal cone mapping to a convex polyhedral set C' C R”,
defined as

Ne(z) = {y | (y,v—2x) <0 forall veC} for zeC,
A 0 otherwise.



Let Il be the Euclidean projector on C'. Recall that solving the variational inequality (7)
is equivalent to solving the equation

(8) pe) =0 where o(z) =Ilo(z - f(z)) — .

We consider the following inexact quasi-Newton method for solving (7):

9) d(0, f(xx) + Brsk + No(wr1)) < mello(re)l],

where ¢ is defined in (8). When C' = R" then the iteration (9) reduces to (5). Denote by K
the critical cone to C' at = for —f(z), that is K = {w € T(z) | w L f(Z)}, where Te(z) is
the tangent cone to the set C at .

In further lines we employ the concept of strong subregularity. A generally set-valued
mapping H : R" = R™ is said to be strongly subreqular at T for § when y € H(Z) and there
is a constant k > 0 together with a neighborhood U of z such that

(10) |z — z|| < kd(y, H(x)) for all z € U.

In particular, when the mapping H is a function f, condition (10) becomes (6). Strong
subregularity of a mapping H at Z for 7 implies that T is an isolated point in H~'(%);
moreover, it is equivalent to the so-called isolated calmness property of the inverse mapping
H~!'. The property of strong subregularity obeys the general paradigm of the inverse function
theorem: of a stronly subregular mapping H is perturbed by adding a function f with a
sufficiently small Lipschitz constant, then the sum H + f remains strongly subregular. In
particular, if a function f is strictly differentiable at Z then for any set-valued mapping F
the mapping f + F' is strongly subregular at z for ¥ if and only if the linearized mapping
x— f(Z)+Vf(z)(r—2)+ F(x) is strongly subregular at  for . Another basic fact is that
any mapping H : R = R™, whose graph is the union of finitely many convex polyhedral sets,
is strongly subregular at z for j if and only if Z is an isolated point in H~!(j). Combining
these two properties we obtain that the mapping f + N¢, where f is strictly differentiable
at ¥ and C is a convex polyhedral, is strongly subregular at & for 0 if and only if z is an
isolated solution of the linearization x — f(z) + V f(Z)(x — Z) + No(z). The latter in turn
is equivalent to the condition (V f(Z)+ Nx)~1(0) = {0} where K is the critical cone to C' at
z for — f(z). All this can be found in the book [5] together with a broad discussion of other
regularity properties in variational analysis.
The theorem proved next extends Theorem 5 for the method (9).

Theorem 6. Let T be a solution of the variational inequality (7) and let f be Lipschitz
continuous in a neighborhood of . Let {By} be a sequence of n x n matrices and let
e — 0. Consider a sequence {xy} generated by (9) which is convergent to z. Let {Ay} be
an associated sequence of matrices Ay, € 0f(Z) satisfying (4) whose existence is claimed in
Corollary 4, and let Ey, = By, — Ay. If v, — T g-superlinearly then

(11) lim d(0, Exsk + Nk(eg+1))

=0.
k00 l|skl

Conversely, if the mapping f + N¢ is strongly subregular at © for 0 and

1Ersill _
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then x,, — Z g-superlinearly.

Proof. Let x; — Z g-superlinearly and let € > 0. In [1, Lemma 2.1] it is shown that

(13) Il —1 as k— oo
[lex]
Then, for large k we get
(14) lerll <ellsell  and lex]] < 2]l

From iteration (9) we obtain that for each k there exists y; such that

(15) yr € f(zx) + Brsk + No(Tg+41)
and
(16) Nyl < mwllo(e)]].

Adding and subtracting to the left side of (15) we have

[(@) = f(Z) = f(xrs1) + [(@rg1) — f(2r) — Apsi + yr € Egsi + Neo(T + ejq1).
Reduction Lemma 2E.4 in [5] implies that
(17) f(@) = f(@rgr) + f(xrg1) — [(2r) — Arsk + yr € Eisi + Ni(€rq1).

Note that ¢(Z) = 0 and ¢ is Lipschitz continuous around z, hence there exists ¢ > 0 such
that, from (16),

(18) 1]l < nelle(@i)ll = nelle(er) — p(@)]| < nelllexll

Using (14), for sufficiently large k,

(19) [ynll < 2mf]| s

Let [ be the Lipschitz constant of f near z; then

(20) 1F(Z) = Fl@r) || < Ulewa |l < leflskl]-

From (4), for large k,

(21) 1f (1) = fzr) — Apsill < ellsill-
Using (19), (20) and (21), we obtain
1/ (%) = f(@er1) + f(@re) — flan) — Arsi + Yl
< el + 17(@) = f@rp) |+ 1f (2rra) = ) — Apsi
< 20l skll + lellsell + llsxll-

Taking into account (17), this yields

d(0, Exsi + Nic(exy1)) < 2mlllsell + (1 4 Dellsl]

5



Since n;, — 0 is € can be arbitrarily small, we obtain (11).

Now, suppose that the mapping f + N¢ is strongly subregular at the solution Z for 0 and
consider a sequence x; — T generated by (9) for a sequence of matrices {By}. Let {Ax} be
a sequence of matrices A, € 0f(Z) satisfying (4) and suppose that (12) is satisfied. From
the strong subregularity, there exists a constant x > 0 such that, for large k,

(22) ler+1l] < Kd(0, f(zrs1) + Ne(Tri1))-
As in the beginning of the proof, there exists y; satisfying (15) and (16); then
yr — f(xr) — Asi — s + [(2r41) € f2r41) + No(Tp).

Hence, from (22),

(23) lex+1ll < wllye — f(ar) — Apsk — Epse + f(rg1) ||
< kllyell + sl f(2rea) = f(on) — Agsill + &l Ersil]-

Let € € (0,1/(2k)). From the assumption (12), for large k,
(24) [ Ersell < ellskll
Using (18), (21) and (24) in (23), we obtain
lerr1ll < mlnellexl| + 2rellsi|l < wlnillex]] + 2ke|lexsal] + 2ke] ek
Hence, if e, # 0 for all large k, we have

||l ekl < Kl + 2ke
el — 1-—2ke

Since np — 0 is € can be arbitrarily small we obtain g-superlinear convergence of z; to T
and the proof is complete. O

When C' = R™ we have that Ng(z) = {0} for any x and the Theorem 5 follows from
Theorem 6. When f is strictly differentiable at ¥ we obtain as a corollary the following
Dennis-Moré type theorem for inexact quasi-Newton methods applied to a smooth variational
inequality.

Corollary 7. Let T be a solution of the variational inequality (7) and let f be strictly
differentiable at & with Jacobian V f(z). Let {By} be a sequence of n x n matrices and let
ne — 0. Consider a sequence {xy} generated by (9) which is convergent to z. If x — T
g-superlinearly, then (11) is satisfied with Ej, = B, — V f(Z).

Conversely, if (V f(z)+ Nxk)~1(0) = {0} and condition (12) holds with Ey, = B, —V f(Z),
then x,, — Z g-superlinearly.

For C' = R"™ and ), is the zero sequence, Corollary 7 becomes Theorem 1.

We will now show if the function f is not only Lipschitz continuous around Z but also
semismooth at T, then the particular generalized Jacobian A, € Jf(Z) which satisfies (4) and
appears in (11) can be replaced by any Ay which belongs to either 0f(z) or df(zy) for all k.
On the other hand, under strong subregularity of f + N¢, if (12) holds with Ejy = By — A
for every Ay € Of(x)) then we have g-superlinear convergence. Clearly, if (12) holds with

6



Er = By — Ay, for any choce of Ay € 9f(z), Theorem 6 yields g-superlinear convergence.
Recall that a function f : R” — R™ is semismooth at & when it is Lipschitz continuous
around Z, directionally differentiable in any direction, and for every € > 0 there exists ¢ such
that for every x € Bs(z) and for every A € 0f(z) one has

1 (x) = f(2) = Alz = 2)|| < |z — z|.

Our next result is a Dennis-Moré theorem for semismooth functions.

Theorem 8. Let T be a solution of the variational inequality (7) and let f be semismooth
at . Let {By} be a sequence of n x n matrices and let n;, — 0. Consider a sequence
xy generated by (9) which is g-superlinearly convergent to Z. Then, for every sequence of
matrices { Ay} such that either A, € 0f(xy) for all k or Ay € 0f(z) for all k, condition (11)
holds with Ek = Bk — Ak

Conversely, let the mapping f 4+ N¢ is strongly subregular at x for 0 and consider a
sequence {xy} generated by (9) which is convergent to z. If condition (12) holds with
Ex = By — Ay, for every sequence of matrices { A} such that Ay € Of(xy) for all k, then
T — T q-superlinearly.

Proof. Let x; — Z g-superlinearly and let ¢ > 0. Consider first a sequence { A} of matrices
Ay, € Of (xy) for all k. Repeat the proof of Theorem 6 until (17) where we write instead

(25) [(Z) = f(or) — Arse + yr € Eixsip + Ng(€rg1).

Since the generalized Jacobian 0f is upper semi-continuous and compact-valued, there exists
a constant A such that

(26) |Agl| <A for all k.

The semismoothness of f yields

(27) 1F(Z) = flax) — Arerl| < ellexll

Then, from (19), (26) and (27) we obtain

1£(@) — f(xx) — Axsi + yrll
< el + 11f (@e) — f(2) — Awewll + | Axllllersa
< 2nil| sl + ellex]] + Allexl]
< 2nil|sll + (A + 2)e]|sk|-

The inclusion (25) then implies
d(0, Exsi + Nic(er)) < 2nell[si]l + (A + 2)e][se -

Since n — 0 is € can be arbitrarily small, we obtain (11).
Consider next a sequence { Ay} with Ay, € df () for all k. From the upper semicontinuity
of f, for all k sufficiently large there exists Ay € 0f(x) such that

(28) “Ak — AkH < €.



Adding and subtracting Ay, in (25) we write

(29) f(Z) = fzg) — Apsp — (Ax — Ag)sk + yx € Exsi + Ni(€gy1).-
Repeating the argument used in the preceding case, we get
1f(z) = f(xr) — Arsi — (Ar — Ak) sk + yrll

< lyill + £ (xr) = £(Z) — Arerll + [[ Ak — Axll[[skll + | A&l [[exs]
< 2nill|skll + (A + 3)ellskll.

This again gives us (11).

Now, suppose that the mapping f + N¢ is strongly subregular at the solution z for 0
with constant x and the sequence zy, is generated by (9) and convergent to Z. Let (12) hold
for every sequence {Ax} with Ay € 0f(x). As in the proof of Theorem 6, there exists y;
satisfying (15) and (16) such that

(30) Ye — f(o) — Brse + f(wr41) € f(@r41) + No(@hi).

Let ¢ € (0,1/(3x)) and let A;, € df(Z) be a sequence of matrices satisfying (4) with this e for
all k sufficiently large. Then, from the upper semicontinuity of 0f there exists Ay € Of (xy)
such that, for large k,

(31) [ Ak — Ayl <e.

By assumption, (12) holds with Ej = By — Aj. Then, for all k£ large enough we have

(32) [ Ersell < ellsll

and, from (4),

(33) | = flan) = Apsp + f(@ren)l| < ellswll

The strong subregularity of f 4+ N¢ yields the inequality (22) for large k. Rewriting (30) as
e — Brese — (Ax — Ap)sp — f(zr) — Apsk + f(zri1) € f(zrea) + No(@ei).

and using (16), (22), (31), (32) and (33) we obtain

1

EHekHH il + | Bsell + 1| Ax — Apllllsill + || = flzx) — Awsi + f (@) |

<
< mlllerll 4 ellskll +ellsell + ellskl|
< melllex|l + 3ellerta || + 3e|ex]]-

Hence, if e, # 0 for all k,

l|lexa]] < knil + 3ke
llex|] — 1—3ke
Since 7, — 0 and € can be arbitrarily small, we obtain g-superlinear convergence. O

Condition (12) obviously implies (11) since the normal cone always contains the origin.
It is an open question how far conditions (11) and (12) are from each other.
As a corollary we obtain the following Dennis-Moré theorem for semismooth equations.

8



Corollary 9 (semismooth Dennis-Moré). Suppose that f is semismooth at &, a zero of f and
satisfies (6), that is, f is strongly subregular at z. Let {By} be a sequence of matrices and
consider a sequence {x} generated by (1) and converget to T. Then x;, — T g-superlinearly
if and only if for every sequence { Ay} of matrices such that either Ay € Of(xy) for all k or
Ay € 0f(z) for all k one has

lim [(Be — Ar)sill _ 0.
k=00 II'sk|l

From Theorem 8 we also obtain the following result.

Corollary 10. Consider the variational inequality (7) with a solution T at which the func-
tion f is semismooth and the mapping f + N¢ is strongly subregular at x for 0. Consider
a sequence {x} generated by the inexact semismooth Newton method (9) with B, = Ay
for any matrix Ay € Of(xx), k= 0,1,2,... If {x}} is convergent to T, then it is convergent
g-superlinearly.

When C' = R”, then the strong subregularity assumption reduces to condition (6) which,
combined with the semismoothness actually implies that the generalized Jacobian 0f(Z)
contains nonsingular matrices only. Then we recover the standard setting for proving con-
vergence of semismooth Newton methods broadly exhibited in the books [8], [9] and [11].

At the end of the paper we present an erratum to our previous paper [3] where we
considered solving equations involving functions acting between Banach spaces X and Y
that have the following property around a point z € int dom f: there exist a neighborhood
U of z and a set-valued mapping A : U = L(X,Y), the space of linear and bounded
mappings from X to Y, such that

sup [1f(2) = () — Az~ 7)]| = ol — 7)) as = 7.
AeA(x)
This class of functions was apparently introduced by B. Kummer who called them Newton
mappings, a name which later propagated in the literature as Newton differential func-
tions. Xu [12] defined this class as functions having a point-based set-valued approximation,
while in his recent book Penot [10] used the name slantly differentiable functions. In [3]
the author named this kind of differentiability after Kummer, with the intention to give
credit to the individual who introduced it. As it turns out, however, every function is
Kummer/Newton/point-based/slant differentiable. This simple fact is explicitely shown in
the recent book of Penot [10, Lemma 2.64], but pehaps well known much earlier since a
finite-dimensional version of it was given in [12] and credited there to a referee of that paper.

In author’s previous paper we presented a Dennis-Moré theorem, [3, Theorem 2], for
equations involving the class of nonsmooth functions in Banach spaces described above.
Unfortunately, there is a gap in the proof of this theorem and it an open problem whether
its statement is correct. Below we prove a corrected version of this result involving an
additional assumption.

Theorem 11. ([3, Theorem 2| corrected) Let X and Y be Banach spaces. Consider a
function f : X — Y with a zero T. Let for some starting point zq the sequence {x;} be
generated by the method (1) and convergent to T for a sequence { By} of linear and bounded
mappings B, : X — Y. Let {A;} be a bounded sequence of mappings A, € L(X,Y) with
the property that for every e > 0 there exists k such that

(34) 1 f(zr) — f() — Ap(xr, — 7)|| < €llwp — 7| forall k> k.

9



Let Ey, = By — Ay. Then the following implications hold:
(i) If x), — T g-superlinearly then

1Ersill _

(35) lim

k—o0 HSkH

(ii) Conversely, if f satisfies condition (6), that is, f is strongly subregular at =, and the
sequence { Ay} is chosen such that

| (A1 — Ar)ers| —0

(36) lim

k=00 llex||
then condition (35) implies that x, — & g-superlinearly.

Proof. Let x;, — T g-superlinearly and choose ¢ > 0. From the boundedness of the sequence
{A}, say by a constant L, and condition (14), we have

|Agers1|| < 2eL]|sx| for all k sufficiently large.
From (34),
| f(zx) — Arer]| < ellex|| < 2¢||sk|| for all k sufficiently large.
Using these estimates in the equality
(37) Ersi + Agepyr + f(zr) — Ager, =0

we obtain
| sl < 2e(L+¢e+1)| sl

for all &k sufficiently large. This yields (35).
Conversely, let f be strongly subregular at  with a constant x and let (36) hold. Choose
e € (0,1/(2k)). Then, for sufficiently large k,

(38) | Ersill < ellsk-
and
(39) [(Aks1 — Ar)errall < ellexl.

Taking into account the strong subregularity of f and (34), we have

(40) [ Arsersll = [[f@er)ll = [1f (@rs1 — fF(Z) — Apsrerea| = (1/6 = €)|[extall.

On the other hand, since Eysp + Axeri1f(zx) — Arer, = 0, using (34), (38) and (39), we
obtain

(A1 — Ar)ersall + | Arersal

ellexsill + [ Exsell + | f (z) — f(2) — Arex|

ellexsall + ellsill + ellexl|

2eleall + 2eflex]l.

||Ak+16k+1 ||

VAN VAN VAR VAN

Combining (40) with the last inequality, we get

2e
1 —2ke
Since ¢ is arbitrarily small, this yields g-superliner convergence. O

lenall < el

It an open question to identify specific quasi-Newton methods for which the conditions
for g-superliner convergence displayed in the theorems above are satisfied.

10
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