
NONSMOOTH OPTIMIZATION
USING UNCONTROLLED INEXACT INFORMATION

JÉRÔME MALICK∗, WELINGTON OLIVEIRA†, AND SOFIA ZAOURAR‡

Abstract. We consider convex nonsmooth optimization problems whose objective function is known through a
(fine) oracle together with some additional (cheap but poor) information – formalized as a second coarse oracle wih
uncontrolled inexactness. It is the case when the objective function is itself the output of an optimization solver, using
a branch-and-bound procedure, or decomposing the problem into parallel subproblems. Minimizing such objective
function can be done by any bundle algorithm using only the (fine) oracle. In this paper, we propose a general scheme
to incorporate the available coarse information into bundle-type methods in view of generating better iterates and
then accelerating the algorithms. We study two pratical versions of the scheme: a (simple) inexact Kelley method,
and a (sophisticated) level bundle method. We prove that these methods are convergent, and we present numerical
illustrations showing they speed up resolution.

Key words. Nonsmooth optimization, bundle methods, inexact oracle, Lagrangian relaxation, Benders decom-
position, convergence analysis

AMS subject classifications. 65K05, 49J52, 49M27, 90C15, 90C25, 90C27

1. Introduction: context, problematic and generic scheme.

1.1. Nonsmooth minimization with an (inexact) oracle. We consider nonsmooth op-
timization problems of the form

f∗ := inf
x∈X

f (x) , (1.1)

with a convex function f : Rn → R; and a polyedral set X ⊂ Rn, and we assume that the
infimum is finite (f∗ >−∞). Typically, nonsmoothness of f comes after a maximizaton, i.e.
when f itself is the result of an inner optimization subproblem

f (x) = sup
u∈U

h(u,x) (1.2)

where the functions h(u, ·) are convex for each u lying in a set U . Such nonsmooth objective
functions appear for example in Lagrangian relaxation (see e.g. [Lem01]), in stochastic opti-
mization with recourse (see e.g. [SDR09]), or in Benders decomposition (see e.g. [Geo72]).

For a fixed accuracy η ≥ 0, a so-called η-oracle of f provides, for a point x ∈ X as an
input, an approximate value of the function and an approximate subgradient{

fx ∈ R such that f (x)−η ≤ fx ≤ f (x),

gx ∈ Rn such that fx +g>x (·− x)≤ f (·).
(1.3)

Note that gx is an η-subgradient: combining the two inequalities of (1.3) gives f (x)−η +
g>x (·− x)≤ f (·), that is, gx ∈ ∂η f (x).

If the oracle error is null (η = 0), the oracle returns the exact value fx = f (x) and a
subgradient gx ∈ ∂ f (x). For some problems, as in large-scale stochastic optimization or in
combinatiorial optimization, computing exact information on f is expensive, or even out-of-
reach, whereas computing some inexact information (η > 0) is still possible. For example,

∗CNRS, Lab. J. Kuntzmann, Grenoble, France (jerome.malick@inria.fr)
†IMPA, Rio de Janeiro, Brazil (wlo@impa.br)
‡INRIA, UJF, Grenoble, France (sofia.zaourar@inria.fr)

1

2 J. MALICK, W. OLIVEIRA and S. ZAOURAR

when f is given by (1.2), any ū ∈U gives an inexact value and an approximate subgradient
of f at a given x ∈ X . Indeed, convexity of h(u, ·) yields

h(ū,x)+g>(z− x)≤ h(ū,z)≤ f (z), for any g ∈ ∂xh(ū,x).

So we have inexact information on f by taking

fx = h(ū,x) and gx = g ∈ ∂xh(ū,x). (1.4)

In this case, an η-oracle is an optimization method maximizing h(·,x) over U up to the
tolerance η , that is, computing ū ∈U that satisfies

f (x)−η ≤ h(ū,x)≤ f (x), (1.5)

so that (1.4) gives the η-information (1.3).
Among the nonsmooth optimization methods to solve problems (1.1) with f known by

an oracle (1.3), are the bundle-type methods: the Kelley method [Kel60, HUL93], proximal
bundle methods [HUL93], level bundle methods [LNN95], and generalized bundle methods
[Fra02]. Initially devellopped for exact oracle (η = 0), these methods have been extended
to handle inexact oracles (η > 0) and to solve (1.1) up to an accuracy of η . Complete con-
vergence analysis of these methods exists; roughly speaking we can show that, under some
assumptions, the iterates xk are an η-minimizing sequence

f∗ ≤ liminf f (xk)≤ f∗+η . (1.6)

We refer to [Hin01] and [Sol03] for first articles, [ZPR00] for an inexact version of the Kelley
method, [Fáb00] for an inexact level method, [Kiw06] and [OSL13] for an inexact proximal
bundle method, and [OS13] for an inexact level method with vanishing errors.

1.2. Inexact oracle... and more. For some optimization problems as above with a
convex function f and an η-oracle, there is in fact additional uncontrolled information, which
is already available or cheap to get.

A typical example is in combinatorial optimization when f has the form (1.2), with a
discrete set U and with a Lagrangian functions h (see e.g. [Lem01]). In this case, exact or
approximate resolution shemes can create “good” feasible points ū ∈ U , that give, in turn,
information on f by (1.4) – but with uncontrolled accuracy, so that this information cannot
be used for an oracle with fixed accuracy η . For instance, suppose that (1.2) is solved by a
branch-and-bound algorithm; then several feasible solutions are generated during the explo-
ration the branch-and-bound tree, but only the final one, the optimal solution, is used by the
oracle to generate (1.3). The (uncontrolled) information (1.4) produced by the intermediate
feasible solutions is not used, whereas it is available for free and possibly fine (since nearly
optimal solutions are usually obtained soon in the branch-and-bound process).

Another example is in stochastic optimization, for two-stage stochastic linear problems
for instance (see e.g. [SDR09]). In this case, the function has a form (1.2) with separable
terms corresponding to a linear term plus linear maximization subproblems

f (x) = c>x+
N

∑
i=1

pi fi(x) with fi(x) = sup
W>u≤q

(hi−T x)>u, (1.7)

for given N, pi, hi, T , W and q (we will come back in more details in Section 4). For stochastic
problems with such objectives, computing exact information on f requires to solve the N
linear optimization subproblems, which can be costly when N is large. Solving only a fraction

Nonsmooth optimization using uncontrolled inexact information 3

of these subproblems (say N/5) still gives inexact information of f . Indeed if we compute
ūi an optimal solution giving fi(x), then we can also use it to under-approximate other terms
f j(x) (since the feasible sets are the same, we have (h j−T x)>ūi ≤ f j(x)). Thus, for a given
fraction of solved problems, we have inexact information but with a unknown accuracy.

In this paper, we formalize the situation where we can compute fine (inexact or not) in-
formation together with some coarse (inexact) information by assuming we have two oracles

an expensive, fine oracle with accuracy bounded by η ≥ 0
a cheap, coarse oracle with uncontrolled accuracy (1.8)

We explore how to use these two oracles to accelerate the minimization of f by (convergent)
bundle methods.

1.3. About using fine and coarse bundle information together. Assume that we are
at iteration k of a bundle-like method solving (1.1). We have a sequence of points {xi} ⊂ X
for which we have the linearizations

f̄i(·) := fxi +g>xi
(·− xi)

(
≤ f (·)

)
(1.9)

given by the information (fxi ,gxi) computed by one of the two oracles (1.8). Let us denote
by Jfk , respectively Jck , the indexes i for which the fine oracle, respectively the coarse one, has
been called. Bundle methods (see e.g. [HUL93, LNN95]) have in common the use of the
so-called cutting-plane model of f using linearizations at previous iterates

f̌k(·) := max
i∈Jfk ∪Jck

f̄i(·) (≤ f (·)). (1.10)

This model is used to compute the next iterate xk+1 by solving a problem of the type

min
x∈X

f̌k(x)+
1

2tk
‖x− x̂k‖2 or min

x∈X : f̌k(x)≤ f lev
k

1
2
‖x− x̂k‖2 (1.11)

for a current “stability center” x̂k, and a “prox-parameter” tk or a “level parameter” f lev
k ,

following the usual terminology of bundle methods [HUL93].
The model (1.10) using all the information (max on both Jfk and Jck) is obviously always

above the model of f that would restrict to the fine one (max on Jfk only). It is thus clear that
using both fine and coarse information give a more precise model, so would possibly lead to
computation of better iterates. Admittedly, in practice using the complete model (1.10) rather
than ignoring coarse information makes quadratic programming problems (1.11) larger and
then more difficult to solve. This is partly compensated by the ever-growing performance of
(specific or even general-purpose) linear-quadratic programming solvers. Anyway, this draw-
back does not really hold in the case of expensive oracles – which is the situation we consider
in this paper. Thus, there is a clear practical interest to consider as much information as pos-
sible when solving (1.1) with bundle methods: richer information can accelerate numerical
methods at a neglectable cost, so that the overall computing time is lower than using only the
fine information. This will be illustrated on examples coming from stochastic optimization in
the numerical experiments of Section 4.

There is nevertheless a theoretical argument against using the coarse information in the
model. Up to our understanding, the convergence results of bundle methods do not extend in
a straightforward way for handling general models (1.10). Proofs of convergence use indeed
that iterates are computed using a cutting-plane model with “controlled” linearizations, pro-
duced by an oracle with bounded η , or vanishing η→ 0 (see e.g. [Fáb00], [Kiw06], [OSL13],

4 J. MALICK, W. OLIVEIRA and S. ZAOURAR

[OS13]). In other words, it is not possible to consider Jck 6= /0 within known techniques to get
directly convergence results as (1.6); controlled inexactness is an important requirement for
existing inexact bundle methods.

The goal of this paper is to make the natural interest of accelerating bundle methods by
using as much information as possible meet with convergence guarantees.

1.4. A generic scheme – and two instances – using uncontrolled bundle information.
We sketch a basic generic bundle-type scheme using both fine and coarse information. It cor-
responds to what would do a practitioner using an algorithm and willing to incorporate more
information available or cheap to compute. Many algorithms could be formulated within this
abstract scheme; we will precisely study a simple one (Algorithm 1 in Section 2) and an ad-
vanced one (Algorithm 2 in Section 3 allowing a limited memory and converging without any
assumptions).

After a Step 0 to initialize the parameters and variables, the general scheme consists in a
loop between 3 steps:

Step 1: Construct new cutting-plane model calling the coarse oracle only. In standard
bundle-type methods, the cutting-plane model (1.10) is updated with adding a linearization
(1.9) obtained by calling the η-oracle. In our setting, we consider that the cutting-plane
model is constructed by an “external module” having the previous model as an input, and
using only the coarse inexact oracle. For example, this external module can be the run of an
inexact bundle method calling the coarse oracle. In Algorithm 1, Step 1 consists in running
an inexact Kelley-method. In Algorithm 2, we consider the abstract case with a general
external module producing a cutting-plane model.

Step 2: Test termination. Assuming that the most expensive operation is to call the fine η-
orcale, we test η-optimality before Step 3. Any standard test using the bundle information
given by Step 1 and guaranteeing to have an approximate η-solution is appropriate for this
step. In the two algorithms of this paper, the stopping test is based on testing approximate
negativity of an inexact gap

∆k = f up
k − f low

k , (1.12)

with a lower bound f low
k and an inexact upper bound f up

k such that

f low
k ≤ f∗ ≤ f up

k +η for all k. (1.13)

Step 3: Call fine oracle and compute next iterate. This step consists in an iteration of
a bundle-type algorithm: call of the η-oracle and definition of the next iterate. In Algo-
rithm 1, Step 3 is an iteration of the type of the ones of the Kelley method. In Algorithm 2,
Step 3 consists in a descent proximal iteration, similar to the one of [BKL95]. At iteration
k of these algorithms, we have both a current iterate xk and a current “best point” x̂k (called
“stability center” in the usual bundle terminology).

The difference between standard bundle-type algorithms and the ones considered in this
paper is essentially contained in Step 1. The call of an external module makes us lose control
on the construction of the cutting-plane model and therefore on the next iterate (see e.g.
[HUL93]). The standard convergence proofs do not apply for the instances of this generic
sheme.

1.5. Structure of the paper. The paper is structured as follows. Section 2 studies the
simple Kelley-type algorithm following the above scheme, and proves (under a compactness
assumption) its convergence up to η – which means that the sequence {x̂k} generated by

Nonsmooth optimization using uncontrolled inexact information 5

the algorithm satisfies (1.6). Section 3 presents a general limited-memory proximal-descent
level bundle algorithm following the scheme, and proves its convergence up to η (without any
assumption). In Section 4, computational illustrations are exposed and discussed, to show that
these methods save computational time in using both fine and coarse information.

2. Basic instance : Kelley method using two oracles. In this section, we study a simple
instance of the general scheme presented in the introduction. The main ingredients of this
method are an inexact Kelley method using the coarse oracle in Step 1, the test termination
using the inexact gap ∆k (1.12) in Step 2, and a simple descent-test in Step 3. Altogether, this
gives the inexact Kelley-type method of Algorithm 1.

Algorithm 1 Inexact Kelley method using two oracles
. Step 0: Initialization

1: Choose x1 ∈ X and the stopping tolerance tol∆ > 0
2: (fx1 ,gx1)← η-oracle(x1),
3: Set x̂1getsx1, f up

1 ← fx̂1 , Jf1 ←{1}, Jc0 ← /0

4: for k = 1,2, . . . do
. Step 1: Construct new cutting-plane model with coarse oracle

5: (y∗, f low
k ,Jck)← Kelley method(Jfk ,Jck−1)

6: ∆k← f up
k − f low

k
. Step 2: Test termination

7: if ∆k ≤ tol∆ then
8: return x̂k and fx̂k = f up

k
9: end if

. Step 3: Call the η-oracle and compute next iterate
10: xk+1← y∗

11: (fxk+1 ,gxk+1)← η-oracle(xk+1)
12: Jfk+1← Jfk ∪{k +1}
13: if fxk+1 < f up

k then
14: f up

k+1← fxk+1 and x̂k+1← xk+1
15: else
16: f up

k+1← f up
k and x̂k+1← x̂k

17: end if

18: end for

When the run of the Kelley method of line 5 is stopped at the first iteration (i.e. only
one minimization of the cutting-plane model), Algorithm 1 corresponds to an inexact Kelley
method using only the η-oracle. Up to our knowledge, this basic method has not been studied
so far in the litterature of inexact bundle methods.

The proof of the convergence of Algorithm 1 (encompassing the inexact Kelley method)
is inspired from the one of the exact Kelley method of [HUL93, XII.4.2]. We also use the
following technical lemma, valid in a more general context and used later in section 3.3.

LEMMA 2.1 (Nonpositivity of ∆k and convergence). Consider two sequences { f up
k } and

{ f low
k } satisfying (1.13), and a sequence {x̂k} such that f up

k = fx̂k . Suppose that { f up
k } is

nonincreasing and { f low
k } is nondecreasing. If lim∆k ≤ 0, then the sequence x̂k satisfies

f∗−η ≤ lim fx̂k ≤ f∗ ≤ liminf f (x̂k)≤ f∗+η . (2.1)

6 J. MALICK, W. OLIVEIRA and S. ZAOURAR

Furthermore, if at some iteration k we have ∆k ≤ 0, then we have in fact

f∗−η ≤ fx̂k ≤ f∗ ≤ f (x̂k)≤ f∗+η . (2.2)

Proof. Note first that the η-oracle properties imply that, for all k,

f∗−η ≤ f (x̂k)−η ≤ fx̂k , (2.3)

so that f up
k = fx̂k satisfies (1.13). The nonincreasing sequence { fx̂k} is bounded from below

thus converges and lim fx̂k ≥ f∗−η . Similarly the nondecreasing { f low
k } is bounded from

above by f∗, thus it also converges and lim f low
k ≤ f∗. Writing lim∆k ≤ 0 as

lim fx̂k − lim f low
k ≤ 0

we obtain

f∗−η ≤ lim fx̂k ≤ f∗. (2.4)

Now passing to the limit-inf in (2.3) and adding η , we also have

f∗ ≤ liminf f (x̂k)≤ lim fx̂k +η ≤ f∗+η .

Combining this inequalities with (2.4) gives the announced inequalities (2.1).
The argument leading to the second announced inequality (2.2) is exactly the same as

above. For a fixed k, (2.3) and ∆k ≤ 0 give f∗−η ≤ fx̂k ≤ f∗, and adding η to (2.3) yields

f∗ ≤ f (x̂k)≤ fx̂k +η ≤ f∗+η .

Combining the inequalities gives (2.2).
We are going to apply this lemma with the two bounds f up

k and f low
k of Algorithm 1; let

us explicit their expression. The test of line 13 yields that the inexact upper bound f up
k is the

minimum of the fxi given by the η-oracle: for all k

f up
k = fx̂k = min

i≤k
fxi . (2.5)

After calling the Kelley method of line 5, the lower bound f low
k is equal to the minimum of

the cutting-plane model: by line 10, we have for all k

f low
k = f̌k(xk+1) = min

x∈X
f̌k(x)

(
≤min

x∈X
f (x) = f∗

)
(2.6)

We are now in position to prove convergence of Algorithm 1.
THEOREM 2.2 (Convergence of the inexact Kelley method). Set tol∆ to zero in Algo-

rithm 1. If X is a compact set, then the sequence testing optimality ∆k becomes nonpositive
(lim∆k ≤ 0), and the iterates {x̂k} generate an η-minimizing sequence; more precisely

f∗−η ≤ lim fx̂k ≤ f∗ ≤ liminf f (x̂k)≤ f∗+η .

Proof. By line 12, the models f̌k are defined as maximums over an increasing set of
linearisations. So we have f̌k+1(x) ≥ f̌k(x) for all x ∈ X , and then f low

k defined as (2.6) is a
nondecreasing sequence bounded from above by f∗. By construction, f up

k defined as (2.5) is

Nonsmooth optimization using uncontrolled inexact information 7

nonincreasing and bounded from below by f∗−η . Thus the assumptions of lemma 2.1 are
enforced: we just have to show that lim∆k ≤ 0 and the proof will be finished.

By monotonicity of f up
k and f low

k , we have that ∆k is nonincreasing. For sake of a contra-
diction, assume that the sequence is bounded below by ε > 0. Take two indices j < k; then
develop the fact that ε ≤ ∆k−1 as follows:

ε ≤ f up
k−1− f low

k−1
= f up

k−1− f̌k−1(xk) by (2.6)
≤ fx j − f̌k−1(xk) by (2.5)
≤ fx j − (fx j +g>x j

(xk− x j)) since j ≤ k−1
≤ ‖gx j‖‖xk− x j‖
≤ Λ‖xk− x j‖

the last inequality coming from the fact that η-subgradients are bounded (by Λ) on X compact
([HUL93, Prop. XI.4.1.2]). Therefore we have

‖xk− x j‖ ≥
ε

Λ
for all j < k.

This contradicts the fact that there exists a converging subsequence of the bounded sequence
{xk} ⊂ X . Thus we have lim∆k ≤ 0.

The inexact Kelley method of Algorithm 1 using two oracles (1.8) is thus η-convergent
when X is compact. Using more information than standard Kelley method, we expect it to
be faster in practice: this is indeed what we observe on the computational experiments of
section 4.

3. Advanced instance : level method using two oracles. The algorithm of the previous
section illustrates, in a very simple way, our scheme to use the coarse information. But it has
two important drawbacks – a theoretical one and a practical one. First, its convergence is
guaranteed only under a compactness assumption. Second, Kelley methods in general are
known to be instable; bundle methods (proximal or level) are meant to stabilize them, and to
have better practical efficiency.

We present in this section a bundle method following the generic sheme and answering
to both of the above points: general convergence and practical performance. The algorithm is
presented in Section 3.1, its convergence is stated in Section 3.2 and analyzed in Section 3.3.
Its numerical behaviour is illustrated in Section 4.

3.1. An inexact proximal-descent level bundle method. This section presents Algo-
rithm 2, following the scheme involving the two oracles in (1.8). The main novelty of this
bundle method is the managment of coarse information (Jck 6= /0).

Note that, disregarding coarse information (taking Jck = /0), the algorithm corresponds to
an inexact proximal-descent level bundle method, extending the one of [BKL95] to handle
inexact oracles. Up to our knowledge, this is the first level-bundle method for unbounded
feasible set with fixed inexact oracle; previous inexact level methods used indeed: a vanishing
inexactness (see [OS13] and [Fáb00]) or a compact feasible set (as in the PhD dissertation of
the second author).

Let us review the main ingredients of the algorithm.
External module. Contrary to Algorithm 1, Step 1 is not specified here: it can be anything
creating a cutting-plane model. The algorithm does not care either about what is done inside
of the external module, nor about the returned candidate y∗. In the numerical experiments,
we use a standard level method [LNN95] using the coarse oracle.

8 J. MALICK, W. OLIVEIRA and S. ZAOURAR

Level iteration. We consider a level version of bundle methods, which give us a better
control on the iterations (to compensate the lost of control on the construction of the model
in Step 1). As in other level methods, the next iterate xk+1 is the projection of the current
stability center x̂k onto the polyedral “level set”

Xk :=
{

x ∈ X : f̌k(x)≤ f lev
k

}
=

{
x ∈ X : f̄i(x)≤ f lev

k for all i ∈ Jfk ∪ Jck
}

(3.1)

with a level parameter f lev
k = f up

k − vk and a depth vk ≥ 0; in other words,

xk+1 = PXk(x̂k) := arg min
x∈Xk

1
2
‖x− x̂k‖2. (3.2)

Optimality conditions of this projection problem can be written, with the help of the La-
grange multipliers αi ≥ 0 associated to the constraints f̄i(x)≤ f lev

k , as

−x+ x̂k− ∑
i∈Jfk ∪Jck

αigi ∈ NX (x) (the normal cone to X at x).

Introducing the “stepsize” µk := ∑αi, observe that xk+1, the unique solution of the above
optimality conditions, can be written as the “subgradient step”

xk+1 = x̂k−µkĝk (such that µk(f̌k(xk+1)− f lev
k) = 0), (3.3)

along the direction ĝk ∈ ∂ f̌k(xk+1)+NX (xk+1) called “aggregated subgradient” (which will
have a role in the stopping tests). In practice, the problem (3.2) is solved at line 16 by
a quadratic programming solver which provides xk+1 and µk, from which we deduce ĝk
by (3.3). If Xk is empty, there holds f lev

k < f̌k(x) ≤ f (x) for all x ∈ X , and we exploit this
information: when the quadratic programming solver raises a flag of empty set, we can
update f low

k = f lev
k the lower bound for the optimal value f∗ (see line 14).

Descent step. To avoid any compactness assumption in our convergence analysis, we con-
sider a proximal-descent version of level bundle method, inspired from the one of [BKL95].
The stability center is updated only if the observed decrease is at least a fraction of the level
depth, that is,

fxk+1 ≤ fx̂k −κ f vk , with κ f ∈ (0,1) . (3.4)

Inexactness. Proximal bundle methods face excessive inexactness by increasing the step-
sizes (see [Kiw06] or the recent [OSL13]). In level methods, the stepsize is a Lagrange
multiplier on which we have not a direct control. Thus, the level bundle algorithm of
[BKL95] does not handle inexact oracles. In contrast, our algorithm does handle a fixed
inexact oracle, together with the uncontrolled coarse inexactness. More precisely, inexact-
ness of the oracle is handled at line 22: roughly speaking, we do not decrease the depth
vk when the noise is excessively large compared to gk. Note also that our convergence
proof differs from the one of [BKL95]. As a result, we obtain convergence without any
compactness-like assumption.

Bundle compression. We use cutting-plane models f̌k incorporating both fine and coarse
linearizations, which are possibly numerous and not so precise. It is then important to be
able to work with a limited memory and to somehow extract the useful part from all the
bundle information. In bundle algorithm terminology, this is called “bundle compression”,
which is a desirable property in general [HUL93], and thus even more in our context. We

Nonsmooth optimization using uncontrolled inexact information 9

Algorithm 2 Inexact proximal level method using two oracles
. Step 0: initialization

1: Choose x1 ∈ X , set x̂1← x1
2: Choose stopping tolerances tol∆ > 0, tole > 0 and tolg > 0
3: Select κl κ f ,κδ ,κatt ∈ (0,1)
4: Choose an upper bound µmax > 0
5: (fx1 ,gx1)← η-oracle(x1), set ĝ1← gx1 and ê1← 0
6: Set f up

1 ← fx1 , f low
1 ←−∞, ∆1←+∞, Jf1 ←{1}, Jc0 ← /0

7: for k = 1,2, . . . do
. Step 1: Construct new cutting-plane model with coarse oracle

8: (y∗, fy∗ ,Jck)←external module(x̂k,Jfk ,Jck−1) . abstract external module
9: if k = 1 then

10: v1← f up
1 − fy∗

11: end if
. Step 2: Test termination

12: Update f lev
k ← f up

k − vk and Xk←
{

x ∈ X : f̌k(x)≤ f lev
k

}
. level management

13: if Xk is empty then
14: f low

k ← f lev
k , ∆k← f up

k − f low
k , vk← (1−κl)∆k . lower bound

15: else
16: solve (3.2) to get xk+1 and µk, and compute ĝk . projection
17: êk← vk−µk‖ĝk‖2

18: end if
19: if ∆k ≤ tol∆ or (êk ≤ tole and ‖ĝk‖ ≤ tolg) then . stopping test
20: return x̂k and fx̂k = f up

k
21: end if
22: if µk > µmax and êk ≥−κattµk‖ĝk‖2 then . attenuation
23: vk← vk

2 , and go back to line 12
24: end if

. Step 3: Call the η-oracle, and compute next iterate
25: (fxk+1 ,gxk+1)← η-oracle(xk+1) . call fine oracle
26: if fxk+1 ≤ fx̂k −κ f vk then
27: x̂k+1← xk+1, f up

k+1← fx̂k+1 and f low
k+1← f low

k . descent step
28: ∆k← f up

k+1− f low
k+1 and vk+1←min{vk, (1−κl)∆k}

29: else
30: x̂k+1← x̂k, ∆k+1← ∆k, vk+1← vk, f up

k+1← f up
k and f low

k+1← f low
k . null step

31: end if
32: Choose Jfk+1 ⊃ {k +1,−k} and update Jck . bundle compression
33: end for

emphasize that in theory we can compress a lot: are enough (see line 32) only the current
fine information and the so-called “aggregate linearization”

f̄−k(·) := f̌k(xk+1)+ ĝ>k (·− xk+1) (3.5)

which can be proved (see e.g. [OS13, Prop. 3.2]) to be a linearization itself

f̄−k(x)≤ f̌k(x)≤ f (x) for all x ∈ X . (3.6)

More aggregated objects. We use the convenient notation “−k” for objects related to the
aggregate linearization at iteration k (see e.g. [OSL13]). We define the “aggregate level set”

10 J. MALICK, W. OLIVEIRA and S. ZAOURAR

X−k := {x ∈ X : f̄−k(x) ≤ f lev
k }, which can be proved (see [OS13, Prop. 3.2]) to produce

the same iterate that the (complete) level set Xk; in other words,

xk+1 = PXk(x̂k) = PX−k(x̂k) and (x̂k− xk+1)>(x− xk+1)≤ 0 for all x ∈ X−k . (3.7)

We also define the “aggregated linearization error” by

êk := fx̂k − f̄−k(x̂k)
(
≥−η

)
; (3.8)

the inequality coming from (1.3) and (3.6) since: êk ≥ f (x̂k)− η − f̄−k(x̂k) ≥ −η . In
addition to the (inexact) optimality gap ∆k, an additional certificate of optimality makes use
of êk (see line 19 and lemma 3.2 below). Finally we note that the aggregated linearization
error can be computed from the agregated subgradient and the level depth: more precisely,
when µk > 0, we have

êk = vk−µk‖ĝk‖2 . (3.9)

To see this, notice from (3.3) that µk > 0 ensures that f̌k(xk+1) = f lev
k and, therefore

êk = fx̂k − (f̌k(xk+1)+ ĝ>k (x̂k− xk+1)) = fx̂k − f lev
k −µk‖ĝk‖2 = vk−µk‖ĝk‖2 .

3.2. Convergence result. We have the following theorem stating the convergence of
Algorithm 2, which is of the same vein as Theorem 2.2 for Algorithm 1.

THEOREM 3.1 (Convergence of inexact proximal level). Set the tolerances at zero in Al-
gorithm 2. Then the sequences testing optimality {∆k}, {êk} and {ĝk} become “nonpositive”,
in the sense that

• either the sequence {∆k} tends to be nonpositive: lim∆k ≤ 0,
• or there exists a subsequence (indexed by I) such that: liminfk∈I êk ≤ 0 and

limk∈I ‖ĝk‖= 0.
Furthermore, the iterates {x̂k} generate a η-minimizing sequence, i.e.

f∗ ≤ liminf f (x̂k)≤ f∗+η (3.10)

Thus Algorithm 2 terminates after finitely many steps with an approximate solution if the
tolerances tol∆, tolg, and tole are strictly positive.

The next section is devoted to the proof of this theorem. We will say that the algorithm
converges up to η when (3.10) holds.

Before moving on to the proof of η-convergence, let us take a closer look at the stopping
tests of Algorithm 2. We see that { f up

k = fx̂k} is nonincreasing (line 27), { f low
k } is nonde-

creasing (line 14), and {∆k} is nonincreasing (line 28). By Lemma 2.1, we have that

lim∆k ≤ 0 =⇒ convergence up to η . (3.11)

This leads us to the first stopping test of line 19, the same as the one of Algorithm 1. Without
some compactness assumption on the problem, we cannot guarantee this stopping test to
hold. Then we need a second stopping test (see line 19) based on the agregated error and
subgradients; the next lemma explains its consistency.

LEMMA 3.2 (Vanishing aggregated errors and convergence). For the sequences {x̂k},
{êk} and {ĝk} generated by Algorithm 2, we have, for all x ∈ X,

f (x̂k)≤ f (x)+ êk +η− ĝ>k (x− x̂k). (3.12)

Nonsmooth optimization using uncontrolled inexact information 11

Assume that {x̂k} is bounded and that there exists a subsequence indexed by I ⊂ {1,2, . . .}
such that

liminf
k∈I

êk ≤ 0 and lim
k∈I
‖ĝk‖= 0. (3.13)

Then the algorithm is convergent up to η .
Proof. Fix x ∈ X . The inequality (3.12) comes from (3.5) as follows:

f (x) ≥ f̄−k(x)
= f̌k(xk+1)+ ĝ>k (x− xk+1)
= f̌k(xk+1)+ ĝ>k (x̂k− xk+1)+ ĝ>k (x− x̂k)
= f̄−k(x̂k)+ ĝ>k (x− x̂k)
= fx̂k − (fx̂k − f̄−k(x̂k))+ ĝ>k (x− x̂k)
= fx̂k − êk + ĝ>k (x− x̂k)
≥ f (x̂k)−η− êk + ĝ>k (x− x̂k).

We also get the upper bound

f∗ ≤ f (x̂k)≤ f (x)+ êk +η +‖ĝk‖‖x− x̂k‖.

Passing to the liminf, the assumption (3.13) together with the boundedness of {x̂k} yields

f∗ ≤ liminf
k∈I

f (x̂k)≤ f (x)+η .

Taking the infimum over x ∈ X gives (3.10).

3.3. Convergence proof. To prove Theorem 3.1, we adapt the usual rationale of conver-
gence proof of bundle methods, by considering the two cases of infinitely many and finitely
many descent steps (line 27). We show that in both cases one of the two stopping tests is ac-
tive, which guarantees in turn that the algorithm converges up η (by (3.11) and Lemma 3.2).
The technical challenge is to handle, first, a fixed inexactness in a level method and, second,
the uncontrolled cutting-plane model.

We start with a remark about the level depth vk in the algorithm. Looking at lines 14, 23
and 28, we see that {vk} is nonincreasing, and that if vk ≥ 0 then êk ≥ −µk‖ĝk‖2. We also
notice that if vk < 0 then we have ∆k < 0 and then (3.11). Therefore, we consider that vk ≥ 0
in the remainder of the section.

We will also need the following two index sets:
• the set A of the iterations requiring a level attenuation (line 23),
• the set K of the iterations for which vk = (1−κl)∆k.

The next lemma studies the situation of infinitely many level attenuations, and the fol-
lowing proposition treats the first case of infinitely many descent steps.

LEMMA 3.3 (Infinitely many level attenuations). If A contains infinitely many indices,
then (3.13) holds with I = A . If the sequence {x̂k} is furthermore bounded, then the algo-
rithm converges up to η .

Proof. Recall that vk = êk + µk‖ĝk‖2 by (3.9). If k ∈A , then we have

vk = êk + µk‖ĝk‖2 ≥ (1−κatt)µk‖ĝk‖2 ≥ (1−κatt)µmax‖ĝk‖2 ≥ 0.

If the set A is infinite, then we have vk→ 0, and therefore ‖ĝk‖→ 0 by the above inequality.
By (3.9), this yields that êk → 0 and then we have (3.13) with I = A . As a result, if the
sequence {x̂k} is bounded, we can invoke Lemma 3.2 and get that {x̂k} is η-minimizing.

12 J. MALICK, W. OLIVEIRA and S. ZAOURAR

PROPOSITION 3.4 (Infinitely many descent steps). Suppose there are infinitely many
descent steps (line 27). Then the algorithm converges up to η .

Proof. Let us index the descent steps by `. More precisely k(`) denotes the `th descent
iteration, and j(`) = k(`+1)−1 the last iteration before the (`+1)th. Note that x̂k(`) is the `th

(different) stability center, and that x̂k(`) = x̂ j(`). The descent step (3.4) gives the inequality

fxk(`) − fxk(`+1) ≥ κ f v j(`) ≥ 0 .

Summing over ` we get

fxk(0) − lim
`

fxk(`+1) ≥ κ f

∞

∑
`=0

v j(`) .

Since lim` fxk(`+1) ≥ f∗−η >−∞, we get that the serie converges and then

lim
`

v j(`) = 0. (3.14)

By monotonicity of vk, we thus have limk vk = 0, and therefore either

lim
k∈K

vk = 0 or lim
k∈A

vk = 0.

In the first case, we have limk∈K ∆k = 0, by definition of K . Thus, (3.11) holds and the
proof is over.

In the second case, Lemma 3.3 ensures first (3.13). If {x̂k} is bounded, it also ensures
that {x̂k} is η-minimizing. Let us focus on the case when {x̂k} is unbounded, and let us prove
by contradiction that {x̂k} is still η-minimizing.

Suppose that there exists ε > 0 such that f (x̂k) > f∗+η + ε for all k large enough. This
yields that there exists x̃ ∈ X such that f (x̂k(`))≥ f (x̃)+η + ε/2 for all large `. Then (3.12)
applied to k = j(`) gives

ĝ>j(`)(x− x̂k(`))≤ f (x)+η− f (x̂k(`))+ ê j(`) for allx ∈ X ,

which yields

ĝ>j(`)(x̃− x̂k(`))≤ ê j(`)− ε/2 .

Using this inequality and (3.9), we develop

‖x̂k(`+1)− x̃‖2 = ‖x̂k(`)−µ j(`)ĝ j(`)− x̃‖2

= ‖x̂k(`)− x̃‖2 +‖µ j(`)ĝ j(`)‖2 +2µ j(`)ĝ>j(`)(x̃− x̂k(`))
= ‖x̂k(`)− x̃‖2 + µ j(`)[µ j(`)‖ĝ j(`)‖2 +2ĝ>j(`)(x̃− x̂k(`))]
≤ ‖x̂k(`)− x̃‖2 + µ j(`)[µ j(`)‖ĝ j(`)‖2 +2ê j(`)− ε]
≤ ‖x̂k(`)− x̃‖2 +2µ j(`)[v j(`)− ε/2] .

As lim` v j(`) = 0 by (3.14), we have for all ` large enough v j(`) ≤ ε/2 and then

‖x̂k(`+1)− x̃‖2 ≤ ‖x̂k(`)− x̃‖2

which contradicts the fact that the sequence {x̂k} is unbounded. Hence, (3.10) must hold.
We consider now the second case of finitely many descent steps. We start with a lemma

showing that null iterates get further away from the last stability center.

Nonsmooth optimization using uncontrolled inexact information 13

LEMMA 3.5 (After a last descent step). If x̂k = x̂k−1 = x̂, f lev
k ≤ f lev

k−1 and vk = vk−1, then
we have

‖xk+1− x̂‖2 ≥ ‖xk− x̂‖2 +
(1−κ f)2

‖gxk‖2 v2
k .

Proof. The bundle management strategy at line 32 incorporates two pieces: the k-th
linearization (f̄k) and the aggregate linearisation (f̄−k) in the model f̌k. We thus distinguish
two parts in the proof.

Part 1: Since f̄−(k−1) ≤ f̌k and f lev
k ≤ f lev

k−1, we have Xk ⊂ X−(k−1), and therefore xk+1 ∈
X−(k−1). Apply now (3.7) to get

(x̂− xk)>(xk+1− xk)≤ 0.

Developing ‖xk+1− x̂‖2 = ‖xk+1− xk +(xk− x̂)‖2, the inequality gives

‖xk+1− x̂‖2 ≥ ‖xk− x̂‖2 +‖xk− xk+1‖2

We just have to prove now that

‖xk+1− xk‖ ≥
(1−κ f)
‖gxk‖

vk. (3.15)

Part 2: Since f̄k ≤ f̌k and xk+1 ∈ Xk, we have fxk +g>xk
(xk+1− xk)≤ f lev

k , which gives

fxk − f lev
k ≤ ‖gxk‖‖xk+1− xk‖ . (3.16)

Iteration k is not an descent iteration: the converse of line 26 reads fxk ≥ fx̂−κ f vk−1. Recall-
ing that f lev

k = fx̂−vk and vk = vk−1, this yields fxk− f lev
k ≥ (1−κ f)vk. Together with (3.16),

this gives (3.15), and ends the proof.
PROPOSITION 3.6 (Finitely many descent steps). Suppose that Algorithm 2 generates

only finitely many descent steps. Then the algorithm converges up to η .
Proof. Let us consider first two easy cases. If lim∆k ≤ 0 then (3.11) holds, and the proof

is over. If A has infinitely many indices, we can conclude with Lemma 3.3 together with the
fact that the sequence {x̂k} is constant for k large enough.

Let us focus on the case where there exists ∆̄ > 0 such that ∆k ≥ ∆̄ for all k, and there is
eventually no noise attenuation (the set A has finitely many indices). For k large enough, the
stability center is fixed (denoted x̂) and the level depth is also fixed (at v̄ > 0).

We claim that the sequence ‖xk+1 − x̂‖ is not bounded. For sake of a contradiction,
suppose that it is bounded. Then the η-subgradients are bounded (by a constant Λ) by
[HUL93, Prop. XI.4.1.2]. Apply Lemma 3.5, since the vk and the f lev

k are fixed: the sequence
‖xk+1− x̂‖ increase by a constant factor (1−κ f)2v̄2/Λ2 at each iteration. This contradicts
the boundedness.

We claim now that µk→∞. In order to get a contradiction, suppose that {µk} is bounded:
there exists µ̄ > 0 such that µk ≤ µ̄ for all k large enough. Using (3.9) we have that

µkvk = µkêk + µ
2
k ‖ĝk‖2 ≥−µkη + µ

2
k ‖ĝk‖2 ≥−µ̄η +‖xk+1− x̂‖2 .

As {vk} is nonincreasing, we have that µ̄v0 ≥ µkvk ≥−µ̄η +‖xk+1− x̂‖2 , contradicting that
‖xk+1− x̂‖2→ ∞. Hence, µk→ ∞.

Since there is eventually no noise attenuation, we have (see line 22)

êk <−κattµk‖ĝk‖2 < 0 for all k large enough.

By (3.8), this yields ‖ĝk‖2 ≤ η/(κattµk). Since µk → ∞, we get that ĝk → 0. Hence, (3.13)
holds with I being all the large indices. Since the sequence {x̂k} is finite (thus bounded), we
can conclude with Lemma 3.2.

14 J. MALICK, W. OLIVEIRA and S. ZAOURAR

4. Numerical illustration. In this section, we illustrate the efficacy of our scheme on
a standard stochastic optimization problem. Our goal is not to obtain the best computational
results for these problems, but to show that our scheme to use coarse bundle information
does speed-up computations. Specifically, we compare Algorithm 1 and Algorithm 2 to their
respective basic versions which do not use additional coarse information (namely, the Kelley
method and the level bundle method, respectively).

4.1. Description of the numerical tests. We consider a set of two-stage stochastic lin-
ear test-problems (see e.g. [SDR09, Deá06, OSS11]). These problems are available on line at
the webpage of István Deák, http://web.uni-corvinus.hu/∼ideak1/kut en.htm. Let
us describe them briefly.

Each of these problems has the form (1.1) with

f (x) = c>x+
N

∑
i=1

pi fi(x) and X = {x ∈ Rn
+ : Ax = b} ,

where c ∈ Rn, A ∈ Rm1×n and b ∈ Rm1 are such that the set X is bounded. Also,

fi(x) := min
y∈Rn2

+

q>y s.t. T x+Wy = hi (4.1)

is the so-called recourse function associated with the i-th scenario hi ∈ Rm2 (which has a
probability pi > 0). In these problems, the vectors hi are the only uncertainty parameters and
are normally distributed. The dual linear problem of (4.1) is

fi(x) = sup
W>u≤q

(hi−T x)>u. (4.2)

A family of problems is given by the data (c,A,b,q,T,W) along with a generator of
appropriate scenarios, which takes as an input the number of scenarios N, and returns (pi,hi)
for i = 1, . . . ,N. We got on the webpage of István Deák 9 families of problems of different
sizes; we call them F1 to F9. For each family, we have 7 problems corresponding to a number
of scenarios N ∈ {100,200,500,800,1000,1200,1500}.

We use these tests-problems to illustrate our scheme using both fine and coarse bundle
information. As explained in the introduction, computing exact information on f requires to
solve the N linear optimization subproblems (4.1)-(4.2), but solving only a fraction of these
subproblems still gives inexact information of f : the optimal solution ūi giving fi(x) can also
be used to under-approximate other terms f j(x) (since the dual feasible sets are the same,
we have (d j−Tix)>ūi ≤ f j(x)). Therefore, for a fixed fraction of solved problems, we have
inexact information but with a unknown accuracy.

Thus we consider the following two oracles:
• a fine oracle providing the (exact) value f (x) and a subgradient g ∈ ∂ f (x) (η = 0)

by solving exactly the N subproblems (4.2)
• a coarse oracle computing an under approximation of f and an approximate subgra-

dient, by solving N
5 of the subproblems (4.2) and taking a feasible solution of the

remaining subproblems. This oracle is about five times faster than the fine one, but
we do not control its accuracy.

We have implemented in MATLAB (using the ILOG CPLEX solver) the algorithms 1
and 2, along with their basic counterparts (taking Jk

c = /0). In Algorithm 2, we used an inexact
level method for the external module creating the uncontrolled cutting-plane model. In prac-
tice, we used a relative stopping tolerance of 10−3 for Algorithm 1 (and the Kelley method)
and 10−5 for Algorithm 2 (and the level method). Note that since the fine oracle is exact
(η = 0), all four methods converge to the exact solution, up to the stopping tolerance.

Nonsmooth optimization using uncontrolled inexact information 15

4.2. Numerical results. We test the four algorithms on the above 63 problems; we mea-
sure the CPU time and the number of calls to the fine oracle to reach convergence. Our goal
is to compare the algorithms two by two (Algorithm 1 vs its basic version, and Algorithm 2
vs its basic version) to illustrate the interest of including coarse bundle information following
our scheme.

Table 4.1 reports the (minimum, average and maximum) reduction on CPU time and fine
oracle calls of Algorithm 1. First, we observe a substantial decrease in fine oracle calls for all
the problems and a decrease in running time for the majority of the problems (50/63). For a
few instances we see an increase in the running time despite the decrease in fine oracle calls;
this is due to the numerous calls to the coarse oracle, which for these instances, may have
given very poor information. Note that on average, we observed more than ten times more
calls to the coarse oracle than to the fine one. This also explains why the running time does
not decrease in the same proportion as fine oracle calls.

Table 4.2 reports the reduction of CPU time and fine oracle calls for Algorithm 2. We
observe a behaviour similar to the one showed by Table 4.1 with a global decrease in both
CPU time and fine oracle calls. We see though that the reduction in oracle calls of Algorithm 2
is less important than the one of Algorithm 1, because the level method is already an efficient
optimized algorithm. Finally, we noticed that the number of coarse oracle calls has the same
order as the number of fine oracle calls.

CPU time reduction (%) Exact calls reduction (%)
Problem family min avg max min avg max

F1 31 44 54 56 79 87
F2 12 35 48 62 73 75
F3 11 33 54 57 75 90
F4 26 47 60 52 81 90
F5 40 50 61 71 83 87
F6 9 32 47 51 77 87
F7 -18 12 48 47 71 96
F8 -18 -4 36 38 63 94
F9 -17 1 38 38 60 91

Total average 8 28 50 52 74 88
TABLE 4.1

Reduction of CPU time and exact oracle calls of Algorithm 1 compared to exact Kelley method

CPU time reduction (%) Exact calls reduction (%)
Problem family min avg max min avg max

F1 23 31 51 42 53 72
F2 -5 15 38 16 42 66
F3 5 20 30 17 33 41
F4 10 27 45 33 42 50
F5 19 29 39 40 49 57
F6 8 15 28 20 25 35
F7 11 19 31 15 30 42
F8 0 14 33 8 24 44
F9 -6 5 17 10 18 24

Total average 7 19 35 22 35 48
TABLE 4.2

Reduction of CPU time and exact oracle calls of Algorithm 2 compared to exact level method

16 J. MALICK, W. OLIVEIRA and S. ZAOURAR

To compare speed and robustness of the algorithms globally on all the problems, we use
the performance profiles introdced by [DM02]. For each algorithm, we plot the proportion
of problems that it solved within a factor of the time required by the best algorithm. More
precisely, if we denote by tA(p) the time spent by algorithm A to solve problem p and t∗(p)
the best time for solving problem p, then the proportion of problems solved by A within a
factor τ is

θA(τ) =
number of problems p such that tA(p)≤ τ t∗(p)

total number of problems
.

Figure 4.1 presents the performance profile of Algorithm 1 vs Kelley algorithm. Since
its curve is always higher, Algorithm 1 clearly dominates. The values at τ = 1 indicate that
Algorithm 1 is the fastest to solve almost 80% of the problems. Then it solves 100% of the
problems within a factor τ ≈ 1.2 of the best times, whereas Kelley algorithm needs τ ≈ 2.6
times the best times. Thus Algorithm 1 is much more robust than Kelley algorithm.

Figure 4.2 gives the performance profile of Algorithm 2 vs level algorithm. Similarly
to the previous comparison, we see that Algorithm 2 dominates: it is faster for more than
90% of the problems, and solves all the problems within 1.4 times the best time, while level
algorithm needs almost 2 times longer.

FIGURE 4.1. Performance profiles for Kelley algorithms FIGURE 4.2. Performance profiles for level algorithms

5. Conclusions. This paper presents a scheme to extend inexact bundle-type algorithms
to incorporate (already available or cheap to compute) uncontrolled bundle information. We
formalize this additional information as a second inexact oracle, required only to give under-
linearizations of the objective function, without bounded inexactness (which is, in contrast, an
important requirement for other inexact bundle methods, see e.g. [Kiw06], [OS13], [OSL13]
among others). We study two algorithms using this uncontrolled bundle information and in-
stanciating the generic sheme; we also illustrate numerically that they are faster that their
basic versions using only controlled bundle information.

This paper is mainly methodological and theoretical: beside the consideration of uncon-
trolled bundle information, the main contribution is the proof of convergence of the second
algorithm (proximal-level bundle method using two oracles) which has several nice features,

Nonsmooth optimization using uncontrolled inexact information 17

including a limited memory and a convergence without any assumption. The technical chal-
lenge of this convergence proof was to manage the inexact oracles, the fixed inexactness of
the first and the uncontrolled of the second. It is likely that other bundle-type algorithms
could be proved to be convergent following the same rationale.

Beyond provably convergent algorithms, we finish with a practical comment. Recall that
for Lagrangian relaxations of combinatorial optimization problems, and for decompositions
of stochastic optimization problems, the call of the uncontrolled oracle is often neglectable
compared to the call of the fine one. In this case, a wise practitioner can be tempted to use the
uncontrolled bundle information readily inside of his current bundle method (implementing
a basic version of the generic sheme). We hope that this paper can serve as an incentive
to follow this meaningful practical intuition, as it establishes that incorporating uncontrolled
bundle information is also coherent in theory.

REFERENCES

[BKL95] U. Brannlund, K. C. Kiwiel, and P. O. Lindberg, A descent proximal level bundle method for convex
nondifferentiable optimization, Operations Research Letters 17 (1995), no. 3, 121 – 126.

[Deá06] I. Deák, Two-stage stochastic problems with correlated normal variables: computational experiences,
Annals OR 142 (2006), no. 1, 79–97.

[DM02] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathemat-
ical Programming 91 (2002), 201–213.

[Fáb00] C. Fábián, Bundle-type methods for inexact data, Central European Journal of Operations Research 8
(2000), 35–55.

[Fra02] A. Frangioni, Generalized bundle methods, SIAM Journal on Optimization 13 (2002).
[Geo72] A.M. Geoffrion, Generalized Benders decomposition, Journal of Optimization Theory and Applications

10 (1972), no. 4, 237–260.
[Hin01] M. Hintermüller, A proximal bundle method based on approximate subgradients, Computational Opti-

mization and Applications 20 (2001), 245–266, 10.1023/A:1011259017643.
[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms, Grund. der math.

Wiss, no. 305-306, Springer-Verlag, 1993, (two volumes).
[Kel60] J. E. Kelley, The cutting plane method for solving convex programs, J. Soc. Indust. Appl. Math. 8 (1960),

703–712.
[Kiw06] K. C. Kiwiel, A proximal bundle method with approximate subgradient linearizations, SIAM Journal on

Optimization 16 (2006), no. 4, 1007–1023.
[Lem01] C. Lemaréchal, Lagrangian relaxation, Computational Combinatorial Optimization (M. Jünger and

D. Naddef, eds.), Springer Verlag, Heidelberg, 2001, pp. 112–156.
[LNN95] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, New variants of bundle methods, Math. Program. 69

(1995), no. 1, 111–147.
[OS13] W. Oliveira and C. Sagastizábal, Level bundle methods for oracles with on-demand accu-

racy, Tech. Report Submitted for publication, preprint available on optimization-online
http://www.optimization-online.org/DBHTML/2012/03/3390.html, 2013.

[OSL13] W. Oliveira, C. Sagastizábal, and C. Lemaréchal, Bundle methods in depth: a unified analysis for in-
exact oracles, Tech. Report Submitted for publication, preprint available on optimization-online
http://www.optimization-online.org/DBHTML/2013/02/3792.html, 2013.

[OSS11] W. Oliveira, C. Sagastizbal, and S. Scheimberg, Inexact bundle methods for two-stage stochastic pro-
gramming, SIAM Journal on Optimization 21 (2011), no. 2, 517–544.

[SDR09] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on stochastic programming: Modeling and the-
ory, MPS-SIAM Series on Optimization, SIAM - Society for Industrial and Applied Mathematics
and Mathematical Programming Society, Philadelphia, 2009.

[Sol03] M.V. Solodov, On approximations with finite precision in bundle methods for nonsmooth optimization,
Journal of Optimization Theory and Applications 119 (2003), no. 1, 151–165.

[ZPR00] G. Zakeri, A. Philpott, and D. Ryan, Inexact cuts in benders decomposition, SIAM Journal on Optimiza-
tion 10 (2000), no. 3, 643–657.

