
UPDATING LU FACTORS OF LP SIMPLEX BASES

G. SANDE ∗

Abstract. Methods for updating the LU factors of simplex basis matrices are reviewed. An
alternative derivation of the Fletcher and Matthews method is given. This leads to generalizations
of their method which avoids problems with both the Bartels and Golub method and the Fletcher
and Matthews method. The improvements are to both numerical stability and data access locality.
The resulting updating algorithm is preferred to the Reid variant of the Bartels and Golub method
for both numerical stability and cost of execution.

Key words. LP basis updating, LU factor updating, Bartels and Golub method, Fletcher and
Matthews method

AMS subject classifications. 65F05, 65F50, 90C05

Version timestamp: 10:25 – Friday 9th October, 2015

1. Introduction. Methods for updating the LU factors of LP simplex bases have
been in successful use since the introduction of LU factoring for LP bases by Bartels
and Golub [1] in the 1960s. Experience with the method shows that the factors have
both growth in the number of nonzero elements in their sparse representations and
growth in the size of the elements of the factors. The number of nonzero elements
growth is much like that of the earlier method of product form inverses in use with
LP bases so was to be expected. The growth in size of the elements is unwelcome by
those who value numerical stability.

In the 1960s computers were few in number, usually shared and operated with
budgets. The processors were slower than the memories. Execution time for even
moderate sized problems could be of concern. Memory was a limiting resource, for
other than small problems, which had to be carefully managed. The most important
memory distinction was whether it was internal or external. Analysis of algorithms
was a matter of careful counting of arithmetic operations. Benchmarking was an
empirical confirmation of the analysis results and was not seriously influenced by
programming details.

Current computers are common with only very large computers shared. Proces-
sors have become much faster and memories are both faster and larger. Processors
are typically faster than memories. Execution time can become a concern for larger
problems. Memory is rarely a limiting resource, except for large problems, although
it is no longer homogeneous with caches often used to improve performance. Data
movement can easily be more time consuming than the operations to be performed on
the data. Locality of data access has become very important with some data having
redundant storage, sometimes combined with redundant computation, to decrease ac-
cess times. Benchmarking has become subject to many details so that a single analysis
is rarely definitive.

In the intervening time the field of analysis of algorithms has developed with the
notion of amortized costing where several types of operations alternate. Here we have
the operations of calculating the factors of the basis, updating the factors of the basis
and solving equations with the resulting factors of the basis. The question is whether
some extra effort in one of the operations might lower the overall computational cost

∗Sande and Associates, 10 Regency Park Drive #604, Halifax, Nova Scotia B3S 1P2,
email:Gordon.Sande@EastLink.ca

1

2 G. Sande

of the combined usage. The Fletcher and Matthews [3] method is such a change
where more work in the factor updating method is balanced by less growth in the
size of the factors. Their method has its own operational problems but does suggest
generalizations which avoid those problems.

2. Review. The Revised Simplex method for Linear Programming partitions
the coefficient matrix into basic and nonbasic portions, A = [B N]. The operations
performed with the basis are solving the systems B x = r and BT x = r as well as
updating the basis by replacing a column by a new column. The basis matrix

B = [b1 b2 . . . bj . . . bn]

is updated by replacing a column to become

B̃ = [b1 b2 . . . b̃j . . . bn].

The simplex basis update maintains a nonsingular basis although the basis may be
as ill conditioned as the linear programming problem.

The basis update may be expressed algebraically as

B̃ = B + (b̃j − bj) · etj

where ej is the jth unit basis vector. This is an application for the Sherman-Morrison
formulae for updating a matrix inverse with a rank one modification. After a suitable
number of updates the inverse would be calculated directly to limit the accumula-
tion of numerical errors. This method was used in the early applications of linear
programming.

Alternately we could write

B̃ = B (I + B−1 (b̃j − bj) · etj)

and notice that a matrix of the form I + x · yt has an inverse of the same form.
Multiplying by such an update factor is less costly than updating the entire inverse
matrix. Successive updates would lead to more factors of this form, which is called
the product form of the inverse. After a suitable number of updates the inverse would
be calculated directly either to limit the accumulation of numerical errors or to lower
the cost of applying the several update factors.

Elble and Sahinidis [2] provide a recent review of LU updates for the simplex
algorithm.

3. Bartels and Golub Method. Bartels and Golub (B&G) suggested that the
basis matrix should be factored rather than inverted. The storage requirements are
reduced and the operation count is lower as a sparse B leads to sparse factors but
typically the inverse will not be sparse.

In practice we will have B = PLUQ−1 where L is a unit lower triangular matrix,
U is an upper triangular matrix and both P and Q are permutation matrices. With
these factors it is easy to solve B x = r and BT x = r. The first step of the updating
is to calculate ũk = L−1 P−1 b̃j , a column of Ũ where B̃ = PLŨQ−1, which converts
the problem to one in which

U = [u1 u2 . . . uk . . . un]

is updated by replacing a column to become

Ũ = [u1 u2 . . . ũk . . . un].

Updating LU Factors of LP Simplex Bases 3

LP computations typically provide this computation so the first step is completed at
no extra cost.

Active block with

column spike.

3.1. Usual variants. B&G provided a method for bringing
Ũ to a form which enables easy solution of the required equations.
They factor Ũ to obtain products of P and L terms with the Q
terms multiplied together. Four variants of their method have been
developed. The variants are examples of zero chasing using more
and more elaborate permutations to avoid arithmetic operations.

The new column of Ũ is called a column spike as it may have
elements that are below the diagonal. If there are no elements
below the diagonal then Ũ will be upper triangular and no further
processing is required. The smallest diagonal block which includes
the column spike would be called the active block. We have a
column spike inserted into an upper triangular matrix. The active block is centred
on the diagonal and encloses the column spike. The first row of the active block is
indicated so it can be followed.

Column spike par-

tially eliminated.

Column spike

completely elimi-

nated.

3.1.1. Stange et al. [7] variant. This variant is a direct
application of simple Gaussian elimination with attention to re-
ducing fillin of the active block. The combination of rows which
produces the least fillin would be the last two rows which have few
nonzero elements in the active block. By construction the column
spike will be nonzero for the last row of the active block. The row
above it can be used to eliminate this element. A row exchange
may be required to avoid a zero pivot element or to enhance nu-
merical stability.

A nonzero will be introduced in the subdiagonal of the last
row and the column spike will now be nonzero in the second last
row. This process can be repeated to reduce the column spike to a
single element in the subdiagonal. All of the subdiagonal elements
of the active block will be nonzero in an upper Hessenberg form.

A sequence of eliminations, starting from the top row of the
active block, will remove the subdiagonal of the upper Hessenberg
form and provide more permutation and elimination matrix terms.
Each step will generate both a permutation matrix, which might
be an identity if there was no row interchange, and an elimina-
tion matrix, which might be an identity if there had been a row
interchange required for a zero pivot.

These matrices will be part of a product form of the L factor, where L will connote
left rather than lower and will be an operator rather than a matrix. If this operator
were to be multiplied out it would not be a lower triangle matrix due to the presence
of the permutation matrices and could not be readily back solved.

Although this form appears to be a simple direct application of zero chasing with
elimination matrices it was reported after the other variants. The method shown here
is implicit in the solution of a more general related problem that uses the absence of
a column permutation.

4 G. Sande

Column spike

permuted.

3.1.2. Bartels and Golub variant. This original variant
produces a nonzero subdiagonal of the Hessenberg form by per-
muting the columns rather than by use of repeated eliminations
of the column spike of the previous variant.

The first column of the active block is moved to the last col-
umn and the remaining columns are moved one column closer to
the beginning of the active block. This is a cyclic permutation
applied to the column indices of the active block. The column
permutation matrix can be combined with the existing column
permutation matrix Q. The subdiagonal of the upper Hessenberg
form can be eliminated in the same fashion as with the previous variant.

3.1.3. Forrest and Tomlin [4] variant. This variant uses both column and
row permutations to produce a row spike version of the active block. In the B&G
variant the column spike is permuted to be in the upper triangular portion of the
active block in exchange for a nonzero subdiagonal.

Row spike per-

muted.

A cyclic permutation of row indices moves the first row of the
active block to the last row. The other rows are moved up one
closer to the beginning of the active block. The subdiagonal will
return to the diagonal except for the last row. This is a cyclic per-
mutation of subscripts of the diagonal elements with each diagonal
element carrying along its row and column.

The column permutation can be combined with the existing
column permutation. The row permutation can be combined with
the row permutation that may be required to eliminate the row
spike. The row spike can be eliminated by combining with the
successive rows of the active block using the diagonal element as the pivot in a stan-
dard Gaussian elimination. The diagonal will be nonzero so row exchanges will only
be required for numerical stability. A common optimization of this method is to omit
any row exchanges needed for numerical stability.

Singleton column.

Singleton column

permuted.

3.1.4. Reid [6] variant. This variant uses repeated diagonal
element permutations to reduce the size of the active block.

The basic observation of this variant is that when the row
spike form is constructed the row may not require the full active
block. If there are leading zeroes in the row spike the active block
can be made smaller by removing leading columns until the row
spike has a leading nonzero.

Once this has been done the active block can be returned to
a column spike form to check if the new column spike requires
the full active block. If not, the active block can have some rows
removed until the bottom element of the column spike is nonzero.
This can be repeated until both the column and row spike require
the same sized active block.

As well, if any column of the active block has only one nonzero
element, which would be on the diagonal, that element can be
moved to the first row and column of the active block using a
cyclic permutation of a portion of the diagonal elements. The first
column, and row, can then be removed from the active block.

If any row of the active block has a single nonzero element, which would be on
the diagonal, that element can be moved to the last row and column of the active

Updating LU Factors of LP Simplex Bases 5

block using a cyclic permutation of a portion of the diagonal elements. The last row,
and column, can then be removed from the active block.

The four types of operations can be repeated until the column and row spike
forms of the active block both require the same sized active block and all rows and
columns in the active block have two or more nonzero entries. The result may be
that no eliminations are required as the active block has been effectively removed. If
eliminations are required a row spike form would be convenient.

3.2. Other variants. We can use other methods to obtain two additional vari-
ants. These methods do not follow the zero chasing row oriented elimination paradigm
of the usual B&G Methods. These variants are like the B&G Method but would not
be considered a usual B&G variant. Zero chasing provides low computational cost
and little fillin as each step causes only minor change in the sparsity structure. Row
oriented methods are commonly used in numerical linear algebra algorithms. These
two related variants were implemented as part of this study but have had only limited
experimental use.

3.2.1. Irreducible Blocks variant. Without additional structure desirable ini-
tial row and column permutations would be ones that yield the irreducible blocks of
the active block. The irreducible blocks found would not be in any special form. Find-
ing the irreducible blocks is the first step in many factoring procedures. Factoring
the irreducible blocks would yield further eliminations and permutations. The exper-
imental code developed to use this strategy was found to be less costly than the Reid
variant of B&G Methods. The explanation of this unexpected result is that the irre-
ducible blocks of the active block are typically very small even when the active block
becomes fairly large with a sparse column spike. The row and column permutations
for the Irreducible Blocks variant are not the same as they would be for methods, like
the Reid variant, that are limited to permuting the elements of the diagonal.

3.2.2. Column Pivoting variant. Later in this note we will observe that the
active block can also be factored using column pivoting with no need for any row per-
mutations. Column pivoting would be expected both to require more computation
and to result in more fillin than the zero chasing row eliminations and related per-
mutations used by the usual B&G variants. Although column pivoting systematically
introduces zeros it does not preserve the known zeros of the column spike form. The
absence of a row permutation means that the L terms can be combined so the form
of the factoring is preserved. Zero chasing row eliminations and related permutations
lead to both P and L terms with their fillin and eventual need for refactoring. The
usual B&G Methods seek to lower the cost of the update without considering any
effect on the other operations. Such a cost analysis will favour zero chasing row elimi-
nations and related permutations. Analyzing the cost of column elimination is a more
difficult discounted analysis of a method which would have other differing properties.
The experimental code developed to use this strategy was found to be more costly
than the Reid variant of B&G Methods.

3.3. Multiple permutations. If we follow the usual B&G Methods we would
arrive at a form like

B = P1L1P2L2 . . . PMLMUMQ−1
M

which would require representing many lower triangular matrices L and permuta-
tion matrices P . With an algebraic rearrangement the need for storing intermediate

6 G. Sande

permutations can be eliminated. Starting with

B = P1L1U1Q
−1
1

we form

B = (P1L1P
−1
1)P1U1Q

−1
1 .

If U1 is replaced by

Ũ1 = P2L2U2Q
−1
2

we would have

B = (P1L1P
−1
1)P1P2L2U2Q

−1
2 Q−1

1

which is

B = (P1L1P
−1
1)(P1P2L2P

−1
2 P−1

1)P1P2U2Q
−1
2 Q−1

1

or

B = (P1L1P
−1
1)(P̃2L2

˜P−1
2)P̃2U2

˜Q−1
2

if products of permutations are combined. The general formulae is both obvious
and long. A form of PLP−1 is a matrix in the original indices although not lower
triangular. When L = I + y · xt, which includes the elimination matrices constructed
above, we have PLP−1 = I + (Py) · (Px)t where the permutation can be combined
with the vector indices. All of the products of intermediate permutation matrices
can be combined with vectors and need not be stored. Any initial L matrix can be
represented as a product matrices of the form I + y · xt as can be demonstrated by
applying Gaussian elimination to factor L. The composite permutation matrices P
and Q are only needed for U as all of the L terms are represented in the original
subscripts.

3.4. Balancing factoring, updating and solving. A practical problem is
how many updates should be applied before new factors are calculated. Each update
causes the backsolving to take slightly more time as there are more terms in L and U
may have some degree of fillin. If only a few updates are applied before new factors
are calculated the factoring will be the more time consuming part of the computation.
If many updates are applied before new factors are calculated the backsolving will be
the more time consuming part of the computation. A practical policy is to calculate
new factors when the accumulated fillin becomes excessive. A doubling of size was
found to provide a good compromise for examples of interest. This usually took
about 30 updates with some examples of doubling in size in under 10 updates and
other examples taking as many as 100 updates.

As part of the study of timings it was observed that not all backsolve right-hand-
sides took the same time. Some right-hand-sides were very sparse, as would be true
to find a column of the inverse of the basis B−1, while others were merely sparse,
as might be true to find a column of the simplex tableau B−1N , and others were
dense, as might be B−1(b − NxN). The very sparse backsolve problems could be
done with priority queue based methods which have too much overhead to be used
effectively with the sparse or dense problems. The sparse problems could be done

Updating LU Factors of LP Simplex Bases 7

with the common gather-scatter methods for sparse matrices which have too much
overhead to be used effectively with either the very sparse or dense problems. The
dense methods have too much overhead to be used effectively with either the very
sparse or sparse problems. Many sparse matrix packages provide sparse and dense
solvers without additional methods for very sparse problems.

For typical LPs, the sparsity of B can be attributed to two sources. When suitably
permuted, B is highly structured as a block matrix of zero blocks and nonzero blocks
that form a block triangular matrix. The nonzero blocks are themselves sparse. Sparse
matrix storage methods do not require explicit representation of the block structure as
it is used implicitly. Many factoring procedures will determine the irreducible blocks
to make explicit use of the block structure to help in lowering the fillin of the factors.
The inverse of B will be highly structured as a block triangular matrix but will not
be sparse as the nonzero blocks will not generally be sparse. When solving equations
the structure of the inverse will cause some right-hand-sides to have more fillin than
others.

To deal with both B and BT it is convenient to have both row and column oriented
representations. The extra effort required to maintain a redundant representation is
more than repaid by the savings obtained by the use of the suitable representation
for each task. Redundant representations cost less than the scanning of a single
representation that would be needed without the redundant representations. Work
vectors can be represented in both gathered and scattered forms, with the requirement
for scanning reduced by the use of the phase markers method, for overall savings in
effort. Having a column representation of the coefficient matrix A of the LP problem is
convenient for use with the LU decomposition of the basis while a row representation
is more convenient for the various update operations required in the simplex method.
A sparse row representation of A will make implicit use of the block structure of
A. The LP updates corresponding to B−1N will typically be structured from the
structures of A and the inverse of B. The redundant representation allows the sparse
matrix techniques to avoid computations with and of many zeroes. Sparse methods
can even be used to track the infeasible components of the solution, which become
a smaller fraction of the solution as optimality is approached. Much of the early
sparse techniques literature was done when memory was a limiting resource so the
advantages of redundant representations, which typically double the storage, were not
explored.

3.5. Discussion of B&G Method. It was also observed that some examples
had substantial growth in the size of elements of U . When this became excessive
new factors would be calculated even before indicated to lower fillin. The individual
L factors had no growth in the size of their elements as would be expected from a
partial pivoting policy. It was assumed that if L were to be multiplied out that it
would show corresponding growth in the size of its elements. When memory sizes
became larger it was possible to accumulate the product the L factors, and their
inverses, and it was then observed that some examples had growth in the size of the
elements of the product even with no growth in the size of elements of U . Whenever
refactoring happened the size of the elements in both L and U returned to their
nominal values.

The experience with the B&G Methods is that they have been effective for many
years. The multiple terms of the L factors is part of the design and much like the
product form of the inverse algorithms which had been in use before B&G. The growth
of the size of the elements of U is an undesirable aspect of these methods that is usually

8 G. Sande

treated as one part of dealing with numerical accuracy issues in simplex algorithms.
The growth of the size of elements in the expanded L is also undesirable even though
not directly observed except in the occasions when L is explicitly expanded.

The growth of the size of the elements of L has a simple heuristic plausibility
explanation. If we multiply two partial pivoting elimination matrices the product
may no longer be a partial pivoting elimination matrix. For[

1
x 1

] [
1
y 1

]
=

[
1

x + y 1

]
the absolute values of x and y are bounded by one for partial pivoting but the absolute
value of x+y is not bounded by one and may have more growth than expected under
partial pivoting. Larger growth would require repeated reinforcement which would
only happen in special circumstances. We would not expect much repetition in sparse
matrices. Even with repetition we would expect both reinforcement and cancellation
in the accumulated size. The presence of any permutations P will both loose the lower
triangular nature of L and make any self correcting capability of partial pivoting less
effective.

The numerical problems are most evident when the basis is refactored. What
had appeared to be a feasible solution before the refactoring may become an infea-
sible solution afterward. Recovering from a loss of feasibility can be dealt with by a
temporary return to phase one of the usual two phase simplex algorithm. An optimal
solution may no longer be optimal after refactoring and require either feasibility re-
covery or more iterations. In extreme cases the refactoring may report a singular basis
which can be addressed by returning to previous bases to find an earlier nonsingular
basis. Truncating small values to aid sparsity makes the numerical problems more
severe.

4. Fletcher and Matthews Method. Fletcher and Matthews (F&M) sought
a form preserving method for the basis update. This would avoid the many L factors
with the need for periodic refactoring. Their method starts after U has been brought
to upper Hessenberg form by a column permutation. The first step is the elimination
of the first subdiagonal in the upper Hessenberg form which leaves us with a new
problem of the same form but with one less subdiagonal element. The process is
repeated until there are no subdiagonal elements.

4.1. Separate cases. They provide a method which has two distinct cases de-
pending upon whether a row interchange is needed. The following development is
equivalent to that of F&M but with differing motivation and notation.

4.1.1. No row interchange case. The objective of the numerical processing
to produce LŨ = L̄Ū where L̄ is unit lower triangular and Ū is upper triangular. We
will abuse the notation by dropping the diacritical markings and using an order four
matrix as illustrative of the general case.

The first stage would be to eliminate the first element of the subdiagonal in U
using Gaussian elimination. We would form LU = LM−1MU where

M =


1

1 0
−m 1

1

 and M−1 =


1

1 0
m 1

1



Updating LU Factors of LP Simplex Bases 9

are the standard form and m = uk+1,k/uk,k. LM−1 will be modified in column k and
MU will be modified in row k + 1. m may not be defined or we may prefer to not
use this elimination because of a loss of numerical stability. We then would require
an alternate method to eliminate the first element of the subdiagonal of U .

4.1.2. Row interchange case. In the standard development of partial pivoting
we would interchange rows to avoid lack of definition or loss of numerical stability.
Here we interchange the two rows of U . The row interchange matrix will be

M1 =


1

0 1
1 0

1


which is its own inverse. We would form LM−1

1 and M1U . But LM−1
1 is not in a

convenient form as

LM−1
1 =


1
. . . 0 1
. . . 1 lk+1,k

. 1


with columns k and k + 1 exchanged but we can restore the diagonal by forming
M1LM

−1
1 to have

M1LM
−1
1 =


1
. . . 1 lk+1,k

. . . 0 1

. 1


which has both rows k and k+1 as well as columns k and k+1 exchanged. It is lower
Hessenberg as well as having a zero in its subdiagonal. The row permutation can
be used to update the permutation P . We have applied three permutations which
interchange rows of U , columns of L and rows of L to have a product of a lower
Hessenberg matrix with an upper Hessenberg matrix.

If the element that is permuted to be above the diagonal is zero then the lower
Hessenberg form is lower triangular. The row interchange can be applied to L without
complication other than restoring the diagonal and the elimination in U is like the no
row interchange case. The formal development is the same although an implementa-
tion would benefit from this special case.

We may reduce the lower Hessenberg form to lower triangle with a transposed
Gaussian elimination. We would formM1LM

−1
1 M−1

2 and M2M1U where

M2 =


1

1 −m
1

1

 and M−1
2 =


1

1 m
1

1


for m = lk+1,k to eliminate the superdiagonal element of L. The result will be a
modification of column k+ 1 of L and row k of U which is the pivot row after the row
interchange.

10 G. Sande

We now have the product of a lower triangle matrix and an upper Hessenberg ma-
trix which was the intended result of the row interchange in U . Gaussian elimination
can now be applied. So we form M1LM

−1
1 M−1

2 M−1
3 and M3M2M1U where

M3 =


1

1 0
−m 1

1

 and M−1
3 =


1

1 0
m 1

1


for m = uk,k/(uk+1,k + lk+1,k · uk,k). This may be undefined or numerically unstable
so that the elimination without the row interchange might be preferred. F&M suggest
a modified test for which of the two forms of the elimination to use after examining
several possibilities. It is the usual partial pivoting rule of using the larger of the two
pivots, which has the complication that the alternate pivot needs some computation
to be determined. They observe that it is not possible for both elimination forms to
be undefined so that one of the two forms is always possible. This derivation shows
that their suggested test is the usual test used for partial pivoting row interchanges.

If the alternate elimination form is declined we might interchange the now mod-
ified rows of U again. The subdiagonal zero in L means that L will remain lower
triangular. The final elimination will fill in that zero and achieve the original elimina-
tion in two stages. This variant provides logical completeness and an analysis which
may be of use elsewhere. There is an obvious optimization of combining the two
eliminations which reinforces the utility of being able to judge which of the two cases
should be used.

4.2. Alternative description. We can use this analysis to provide a different
description of the F&M Method. The first step would be to introduce the subdiagonal
zero in L using a column elimination, if it is not already zero, with its corresponding
modification of the rows of U . The decision of whether a row interchange is appro-
priate can be made and the corresponding permutation applied. The form of L will
not be changed whether that permutation is an identity, for no row interchange, or
not, for a row interchange. The elimination of the subdiagonal of U can be completed
with the corresponding modifications of the columns of L The possible requirement
for a row interchange has become a question limited to the second step under this
different description. A careful implementation would notice that the two elimina-
tions under no row interchange can be combined so that the original form of the F&M
Method would be recovered. This analysis shows that the F&M Method is just an
alternate implementation of an elementary Gaussian elimination applied to adjacent
rows. Stange et al. use the F&M Method with their version of their update as the
only row permutation is interchange of adjacent rows.

4.3. Discussion of F&M Method. F&M provide a direct derivation of the
matrix identified above as M3M2M1 by starting with the assumption of a row inter-
change in U . The M3M2M1 matrix is then recognized as being a product and two
factors are exhibited. The permutations are not factored out to provide standard
form elimination matrices. The present derivation starts with a row interchange used
to facilitate Gaussian elimination and provides additional terms to preserve the struc-
ture of the matrices. The additional terms are constructed in much the same style as
is used in the zero chasing algorithms of many numerical decomposition algorithms.
One of the additional terms is the row interchange in L. In this derivation all of the
operations are seen to be standard operations which are commonly used in the numer-
ical manipulation of sparse matrices. The elimination matrices are in a form in which

Updating LU Factors of LP Simplex Bases 11

trivial cases can be easily skipped. The numerical properties of the two derivations
are identical as the same terms are calculated. F&M provides an extensive analysis
of the numerical properties. Powell [5] has an additional discussion of the numerical
properties. The data motions will be different for the two formulations. The explicit
factoring of the permutations provides additional implementation flexibility.

Various discussions of the F&M Method suggest that it is an algorithm more
suitable for dense problems. It is not clear if this was based on fillin experience or
was avoiding the nonstandard manipulations apparently required of sparse matrices.

When the F&M Method was used the numerical properties were as well behaved
as expected. Usually the size of the factors would either grow or shrink slightly for
little change in size with no ongoing growth in size. Upon occasion an update would
take considerable time and the sizes of the updated factors would have considerably
increased. The very bad examples of fillin in some papers were not just possible
constructs but were being observed. The increase in size was so large that a refactoring
was indicated rather than another update. The practical solution to the long time
and increased size was to notice when such fillin became apparent before the update
was completed so that the update could be terminated before completion and the
matrix factored instead. The new factors did not show the increase in size. This form
of failure was attributed to the updating algorithm not having adequate flexibility in
choice of possible permutations to avoid the fillin although the factoring algorithm did
have adequate flexibility of choice. The final judgement was that the F&M Method
was an improvement in numerical properties but was not adequate in avoiding excess
computational time due to its poorer fillin behaviour.

5. Generalizations of F&M Method. A solution for the inadequacies of the
F&M Method would be to seek a form preserving method like the F&M Method
but one with more flexibility in its choice of permutations. An immediate possibility
would be the F&M Method but with elimination applied to blocks larger than just
two by two.

5.1. Block matrices. We use block matrices to provide a general development.
We would identify active blocks on the diagonals of U and L which will be labelled
U22 and L22. The initial permutation to upper Hessenberg form is not required here.
The active block U22 will not be upper triangular but the active block L22 will be
lower triangular. We have

B =

 L11

L21 L22

L31 L32 L33

 U11 U12 U13

U22 U23

U33


.

5.1.1. Remultiply and Factor variant. We remultiply U22 and L22 to form a
block which would be full in general. In matrix terms we would form B = LM−1MU
where

M =

 1
L22

1

 .

The result is

B =

 L11

L21 I
L31 L32L

−1
22 L33

 U11 U12 U13

L22U22 L22U23

U33

 .

12 G. Sande

The block L22U22 can be factored and the factors multiplied into the block matrices.
If L22U22 = PL̄ŪQ−1, then

B =

 L11

L21 PL̄
L31 L32L

−1
22 PL̄ L33

 U11 U12 U13

ŪQ−1 L̄−1P−1L22U23

U33

 .

We can separate out the permutation factors to obtain

B = P

 L11

P−1L21 L̄
L31 L32L

−1
22 PL̄ L33

 U11 U12Q U13

Ū L̄−1P−1L22U23

U33

Q−1

where

P =

 I
P

I

 and Q−1 =

 I
Q−1

I

 .

Some of the internal blocks will have their rows or columns permuted and the
overall row and column permutations will be modified. The main computation will
be remultiplying and then factoring L22U22, forming L32L

−1
22 PL̄ and forming

L̄−1P−1L22U23. These seem unlikely terms until we recall that they are just interme-
diates that would be formed in the course of a Gaussian elimination with the newly
formed permutations. The presence of the L−1

22 and L̄−1 terms are uncomfortable to
those who try to avoid multiplying by matrix inverses but a close examination of a
block Gaussian elimination shows that any element size growth attributable to L−1

22

or L̄−1 would also be present in the block Gaussian elimination.

5.1.2. Column Pivoting variant. We might factor U22 directly to try to find
a simpler method. If U22 = PL̄ŪQ−1, then

B =

 L11

L21 L22PL̄
L31 L32PL̄ L33

 U11 U12 U13

ŪQ−1 L̄−1P−1U23

U33

 .

We can separate out the permutation factors to obtain

B = P

 L11

P−1L21 P−1L22PL̄
L31 L32PL̄ L33

 U11 U12Q U13

Ū L̄−1P−1U23

U33

Q−1

where

P =

 I
P

I

 and Q−1 =

 I
Q−1

I


which has the problem that P−1L22P may no longer be lower triangular. The previ-
ous development had preliminary processing that turned L22 into an identity matrix
which allowed P to be arbitrary. Here the solution is to restrict P to be an identity
permutation so L22 can be arbitrary with U22 = L̄ŪQ. This simpler and restricted

Updating LU Factors of LP Simplex Bases 13

factoring is recognized as column pivoting. It has limited flexibility that might be
exploited for some sparsity control. The simpler method becomes

B =

 L11

L21 L22L̄
L31 L32L̄ L33

 U11 U12Q U13

Ū L̄−1U23

U33

 I
Q−1

I

 .

The lower triangular factors multiply to provide an updated lower triangular factor.
The upper triangular factor has a column permutation which is part of its factoriza-
tion. This would have provided a form preserving variant on the B&G method but
did not follow the zero chasing paradigm so does not seem to have been previously
reported.

5.2. Discussion of the block matrix forms. Both block matrix generaliza-
tions of the F&M Method were implemented for experimental use and run with quite
sparse examples. The unexpected result was that the Remultiply and Factor variant
was less costly than the Column Pivoting variant. The Remultiply and Factor variant
used a sparse matrix factorization with a first step of finding the irreducible blocks.
The cost of finding the irreducible blocks more than saved its cost as it produced
many blocks of size one and provided better sparsity control. This seems to occur in
many problems but may not occur in all as it is undoubtedly problem dependent.

If the active block is a small portion of the full matrix its remultiplication and
factoring will take less work than factoring the full matrix. When the active block is
most of the full matrix the remultiplication and factoring will take more work than
factoring the full matrix. An elementary analysis, confirmed by simple experiments,
would suggest that direct factoring is less work when the active block has more than
half of the elements of the matrix, or equivalently more than about 70 per cent of the
columns.

These refactorings would happen occasionally and serve as a pragmatic solution
to how often a refactoring should be forced to control possible accumulated rounding
errors.

A very abstract and telegraphic description of the Remultiply and Factor variant
can be given as starting from the update forming an improper block matrix factor-
ization

B =

 L11

L21 L22

L31 L32 L33

 U11 U12 U13

U U23

U33


in which U is no longer upper triangular. This is a factoring but it is improper as it is
redundant and U is not in a form which permits ready backsolving. We try to make
the problem with U more tractable by forming a new block matrix factorization

B =

 L11

L21 I
L31 L̄32 L33

 U11 U12 U13

M Ū23

U33

 .

This could have been formed by a block Gaussian elimination of a form that we are
unlikely to see in practice as it has bypassed a diagonal block. This might be described
as partially undoing the existing improper factorization structure so that it can be
redone as a proper elimination. We now complete the reduction of the reconstructed
M to triangular factors and update any blocks as required. This is useful in practice
as M typically has only a few small irreducible blocks.

14 G. Sande

The numerical properties of the Remultiply and Factor variant matched those
of the F&M Method as no spurious growth in size of the elements of L or U was
observed in use. The size of the factors after updating was observed to both increase
and decrease while remaining stable. The size of the factors after refactoring was
always close to the size before refactoring with both increase and decrease being
observed. The final judgement would be that the generalization was successful both
in terms of numerical properties and fillin.

There is a simple heuristic plausibility explanation for the lack of growth in the
size of elements of L. The newly factored active block will have no element size
growth in L̄ with partial pivoting in the factoring. The other block which is modified
is post multiplied first by an inverse matrix and then by a permuted matrix that is
related to the inverse matrix. This suggests that there will usually be no material
change in size of its elements. The active block is only part of the L matrix but over
successive updates all of the elements of L will be either unchanged elements of an
earlier active block or will have been modified, perhaps several times, by the inverse
matrix times related matrix combination. This follows from the observation that L
could be produced produced by a Gaussian elimination although not with the usual
computational formulae.

The basic processor costs of the Remultiply and Factor variant can be easily
estimated. The factorings will have the same cost as for a B&G Method although
there will be fewer factorings. The solving will be less costly than for a B&G Method
as the LU factors are smaller since there is less fillin. The higher numerical accuracy
has a tendency to require slightly fewer simplex iterations, or pivotal exchange steps.
There will be the same number of updates as for a B&G Method, after correcting
for the change in the number of factorings and simplex iterations. The updates will
operate on smaller factors but with more elaborate processing.

Using the Reid B&G variant as a reference we find, as already noted, that the
Irreducible Blocks variants is less costly and the Column Pivoting variant is more
costly than the Reid B&G variant. The Remultiply and Factor variant was found to
be less costly that the Reid B&G variant but more costly than the Irreducible Blocks
variant. The costing order of these four variants is from the least costly being the
Irreducible Blocks variant, then the Remultiply and Factor variant, then the Reid
B&G variant with the most costly being the Column Pivoting variant. The better
than expected performance of the Remultiply and Factor variant resulted in its being
promoted from experimental to regular use. The major effect is the reduction in cost
from finding the irreducible blocks with the increase in cost from the form preservation
being the secondary effect. This is at most a rough approximation as there are many
other differences between the variants. The improved data localization means that the
memory system can operate more efficiently on systems with hierarchical memories.

The presence of numerical issues is very evident in linear programming test suites.
Some test problems are noted as being ill conditioned. Others are noted as sensitive to
tolerance parameters. Yet others have the reported optimum value updated multiple
times. In solutions where one expects to see integer values the reported values are only
nearly integer. Some formulation techniques are prone to numerical issues. Common
questions from beginners are what value for M (the so called Big-M) will be effective
both in achieving the intended result and in avoiding numerical problems as well as the
whole issue of how to deal with tolerances. Although linear programming is stated
as an optimization problem many applications are more interested in determining
the solution vector than in determining the optimum value. Some applications are

Updating LU Factors of LP Simplex Bases 15

concerned with the values of the smaller components of the solution vector although
error estimates are commonly only given relative to the larger components.

The presence of numerical errors should be of no surprise as the observed growth
in the size of the elements in the U factor of a B&G Method greatly exceeds what
would be judged tolerable by the standards of numerical analysis. As noted above, the
size of elements in the L factor of a B&G Method also grows but is rarely observed.
Actual errors in solving depend on both the matrix factors and the right-hand-side.
Summaries like the growth in the size of elements of the factors are part of worst case
estimates over all possible right-hand-sides. The extensive use of updating formulae
in linear programming codes is a source of numerical error that is made worse by
numerical errors in determining the updates. The numerical errors in determining the
updates are those arising from the numerical errors in solving which are made worse
by the numerical problems in factoring the basis. Many LP codes pay considerable
attention to guarding against numerical errors as if the problem was with the updating
rather than in both the updating and the solving. For problems where time is not a
limiting factor the increased numerical stability and ease of formulation may justify
the increase in computing cost to lower overall user and programming costs.

5.3. Related Problems. There are related problems that can be solved with
these techniques. Sometimes the problem is to update the basis factorization after
replacement of a row in the basis. If all updates are row updates then the problem
is just the transpose of the column update problem and requires only a minor change
of notation. If there is a rare row update with mostly column updates then we might
view the row update as several column updates where the several columns have only
been changed in the row being updated. We can no longer assume that the result of
an update will be nonsingular. The complications of allowing for updates that lower
the rank followed by other updates that restore the rank can be analysed but it would
be considerable work for a rare case that may trigger refactoring in any case. It is
probably easier to treat the rare row update as another opportunity to refactor.

If there is a mix of row and column updates we would seek a more symmetric form
of the method. Rather than a LU factoring we could use a LDU factoring with unit
triangular factors and a diagonal matrix. For a column update the initial processing
would use LD to produce a modified U much as has been done here. For a row
update the initial processing would use DU to produce a modified L. The two update
procedures would be conceptual transposes although the requirement that they work
on the same data would make separate programs more obvious.

The replacement of a basis column, which yields the column spike, is a restricted
form of rank one update. The methods that use zero chasing, the usual B&G methods
or the F&M Method, rely on this restriction in their processing except the Stange et al.
variant uses the absence of column permutations to permit general rank one updates.
The methods that do not use zero chasing, the Irreducible Blocks, column pivoting
or remultiply and factor methods, have no restriction on the rank of the update other
than that implied by the size of the active block.

5.4. Further Work. The original suggestion was to develop a generalization
of the F&M Method which worked on several rows rather than the two rows of the
F&M Method. Following this suggestion we could use a column permutation to form
a Hessenberg form as used in the F&M Method. Then we could apply the methods
developed above to several rows.

We could start by developing alternate descriptions of the methods we already
know. We might choose to operate only on the first two rows of the Hessenberg form

16 G. Sande

in the same way as the F&M Method. Notice that the two by two matrix we seek
to factor could be of rank either one or two and that we should not use a column
exchange. These properties are implicit in the description of the F&M Method but
need to be explicitly observed in a matrix formulation. We might choose to operate
on the entire active block using the block matrix generalizations developed above but
with an extra column permutation. Notice that it has no effect other than to the form
of some formulae as other terms compensate for the presence of the permutation.

We could then extend the development to operate only on an initial portion of
the active block. In such a partial active block the sparsity pattern could result in
the first row or the last column being all zero. Either of these would be a structural
rank deficiency or there might be a numerical rank deficiency without the presence
of a structural rank deficiency. The presence of the nonzero subdiagonal limits the
rank deficiency to being either one or none. The rank deficiency is only in the upper
triangular factor with the corresponding block of the lower triangular factor of full
rank. We might choose to use the remultiply and factor method. When the par-
tial active blocks are remultiplied the rank deficiency will remain. When we factor
the remultiplied partial active block we need to restrict any column permutation to
leave the last column in that position. Both of these problems were observed in the
F&M Method when we used a matrix description. Rather than an irreducible block
representation we would need something like a Dulmage-Mendelsohn decomposition
to deal with both the possible low rank and the restricted column permutation. A
succeeding partial active block will overlap the current partial active block so there
will be serial dependence which prevents parallel operation. Or we might choose to
use column pivoting as the remultiply and factor method seems to have fewer advan-
tages for smaller partial active blocks. Column pivoting has the attractive feature
that rows can be added at any time to form a sliding partial active block. A partial
active block can be interpreted as a restriction on the choice of the pivot column. A
rank deficiency may require a row permutation so column pivoting may not always
be possible.

When we use a partial active block there will be several new questions. There is
the question of what size of partial active block we should choose both for computa-
tional efficiency and adequate flexibility in choice of permutation to avoid the sparsity
control problems of the F&M Method. Should we use only one of the two methods
available or should we have some way to choose between them for each partial active
block. The issues in the choice between remultiply and factor or column pivoting are
more complex when we use partial active blocks. If we use multiple partial active
blocks to avoid the need for refactoring for a large active block we will have the issue
of how many updates can be applied before refactoring is suggested.

All of these methods use chained matrix products that may permit a more efficient
order of forming the products. There are instances of the product of a matrix and
the permuted inverse of a minor modification of the same matrix that may benefit
from special methods. There is a need for both more and wider experience with these
methods.

6. Conclusion. The original LP basis update methods for explicit inverses were
based on the rank one modification of an inverse as given by the Sherman-Morrison
formula. This became an update in the form of multiplicative factors. The B&G
updates for the LU factored LP basis were a natural development of these methods.
The irreducible blocks variant uses a stronger analysis than is possible within the
constraints of zero chasing methods.

Updating LU Factors of LP Simplex Bases 17

The F&M Method for LU updating has not been widely used. Experience shows
that it may generate considerable fillin for some problems. The alternate derivation
given here has been in terms of operations that are common for sparse matrices with
the trivial cases readily recognized so they may be omitted. The derivation is in the
style of zero chasing algorithms in common use. This revised derivation makes the
pivoting test suggested by F&M appear to be the simple and natural test for pivoting.
The revised derivation suggests generalizations which are better able to control fillin.

The difficulty encountered in trying to develop more direct update methods was
that a mixed product of lower triangular and permutation matrices was not lower
triangular. The methods developed here use one of two techniques to address this
issue.

One method is that the modified upper triangular factor may be factored into a
lower triangular and upper triangular factor with column pivoting which uses only
column permutations. This permits the lower triangular factors to be multiplied
without lose of their special structure. The switch from row, rook or complete pivoting
to column pivoting would be of little significance in the dense case but would be
expected to often have considerable impact on fillin in the sparse case. Column
pivoting was not found to be cost competitive with methods that could use pivoting
based on irreducible blocks.

Many iterative numerical methods are based on improving the current approxi-
mate solution. The factoring and then combining the new factors with the existing
factors follows this style. The difficulty is that sometimes the new factors do not
combine well with the existing factors as we have seen in the variants on the B&G
Method. The result shown here is that there is an alternative that does combine
cleanly although it requires further analysis to see if it also provides benefits in fillin
and numerical stability. The result was that other methods are more cost effective.

The other method uses analysis developed here that shows that an identity block
in the lower triangular factor which permits permutations of rows or columns without
losing the lower triangular property is very useful. Constructing such an identity
block requires modification of other blocks as a preliminary step before the main
updating processing can be done. The updating can then use all the techniques for
sparse matrix factoring rather than conforming to the requirements imposed by zero
chasing. The general form is very flexible and can be applied to related problems.
No spurious growth in either size of the factors or of the elements in the factors was
observed.

This method has a style which is more like the backtracking typical of combinato-
rial optimization algorithms. Rather than improving the current solution the method
seeks to improve an earlier solution but by using different improvements. Since this
is not being done in an explicit backtracking environment the problem is how to look
for and find the earlier solution. The answer is to find an identity matrix multiplying
a full matrix as the earlier solution. Once the earlier solution has been found all of
the usual sparse matrix tools can be used to full advantage.

There have been eight variants on updating LU factors described here. Five have
been in the literature and three are new. The Irreducible Blocks variant is of interest
as it follows the style of the B&G Method but with stronger methods. It could be
viewed as what the Reid B&G variant would be with a stronger analysis of the active
block. However it has the same type of problems. The Column Pivoting variant is
of interest as it both follows the style of the B&G Method and is form preserving.
It achieves both ends in a very simple fashion using well known methods. Like the

18 G. Sande

F&M Method it may be of more interest for dense applications. The Remultiply and
Factor variant is of interest as it is form preserving, avoids the problems of the usual
B&G variants as well as those of the F&M Method and is less costly than the Reid
B&G variant. It is technically more elaborate than the other variants.

When we have several possible methods it is often convenient to classify them on
both their design attributes and their operational properties. B&G has the attribute
of zero chasing as their algorithm design technique. F&M has the attribute of form
preserving to deal with the product form of the L factor. In examining these methods
the attribute of the algorithm depending on only U or on both L and U is useful.
Dependence on both L and U requires the access to L that comes from form preserv-
ing. The properties of interest are the ability to maintain sparsity and to maintain
numerical stability as indicated by not having growth in the number of or the size
of the elements of L or U . With three possible design attributes we would expect
eight algorithm forms. In practice there are only five possible forms. Dependence on
both L and U requires form preservation which rules out two combinations. Being
dependent on only U would require row permutations to be zero chasing and require
no row permutations to be form preserving which rules out the combination of having
both attributes.

The simplest form would be no zero chasing and no form preservation thus de-
pendent on only U by the use of dense or sparse matrix methods. An example of this
form would be the irreducible blocks method although the distinction between zero
chasing and identifying the irreducible blocks maybe be minor and arbitrary. Simpler
common methods like row, rook or complete pivoting make less use of the structure
and have not been used as they generate more fillin. Notice that row pivoting becomes
the original B&G variant with the column permutation to Hessenberg form. The four
usual B&G variants are zero chasing and not form preserving thus dependent on only
U . The Column Pivoting variant is not zero chasing, is form preserving and is de-
pendent on only U as it avoids row permutations. The F&M Method is zero chasing,
form preserving and dependent of both L and U as its zero chasing combines row
permutations with dependence on both L and U . The Remultiply and Factor variant
is not zero chasing, is form preserving and depends on both L and U as the remultiply
is not zero preserving although the factoring benefits from the identification of the
irreducible blocks of the product. There are five observed combinations of attributes
with one combination having four variants and four combinations having one variant
each.

The zero chasing attribute is realized in two forms with a total of five variants
which have been described in the literature. The three forms with a total of three
variants which are not zero chasing are newly described in this note. The forms which
are either form preserving or dependent on both L and U are both in the literature
or new to this note.

The variants which are zero chasing, dependent on only U or both do not have
the property of preserving sparsity well. The variants which depend on both L and
U , which in practice requires it to be form preserving, have the property of numerical
stability. The design technique of using the irreducible blocks is associated with
lowered execution costs. We notice that the Remultiply and Factor variant achieves
both sparsity preservation and numerical stability by being not zero chasing, form
preserving and dependent on on both L and U which systematically differs from the
design of the B&G Method.

Linear programming codes benefit from the improved numerical properties that

Updating LU Factors of LP Simplex Bases 19

lower the need for feasibility recovery and allow for the use of tighter tolerances that
reflect the problem being solved rather than the introduced error from factoring prob-
lems. This will be of particular benefit to those applications of linear programming
that repeatedly solve variations on the same underlying problem. The ability to use
tighter tolerances may also make use of linear programming simpler for those end
users who are not experts in applying the methods and dealing with possible sources
of error.

The form preservation both lowers the immediate size of the factors and allows
the factors to be stored in more contiguous data structures. Current processors often
have memory hierarchies that operate more efficiently with greater data locality. It is
common for the data movements within the memory hierarchies to be more expensive
than the arithmetic carried out on the data.

Summary of Algorithm Attributes and Properties

Design Attributes Operational Properties
Zero

Chasing

Form
Preserv-

ing

Depend-
ency

Possible
Combi-
nation

Low
Fillin

Low Nu-
merical
Growth

Speed
Ordering

Algorithm

Yes No U Yes No No
3

(Reid)

Bartels &
Golub

(4 variants)

Yes No L & U No

Yes Yes U No

Yes Yes L & U Yes No Yes
Fletcher &
Matthews

No No U Yes No No 1
Irreducible

Blocks

No No L & U No

No Yes U Yes No No
Column
Pivoting

No Yes L & U Yes Yes Yes 2
Remultiply &

Factor

REFERENCES

[1] R. H. Bartels and G. H. Golub, The Simplex Method of Linear Programming Using the LU
Decomposition, Communications of the ACM, 12 (1969), pp 266-268.

[2] J. M. Elble and N. V. Sahinidis, A Review of the LU Update in the Simplex Algorithm, Int.
J. Mathematics in Operations Research, 4 (2012), pp 366-399.

[3] R. Fletcher and S. P. F. Matthews, Stable Modification of Explicit LU Factors for Simplex
Updates, Mathematical Programming, 30 (1984), pp 267-284.

[4] J. J. H. Forrest and J. A. Tomlin, Updating Triangular Factors of the Basis to Maintain
Sparsity in the Product Form Simplex Method, Mathematical Programming, 2 (1972) pp.
263-278.

[5] M. J. D. Powell, On Error Growth in the Bartels-Golub and Fletcher-Matthews Algorithms
for Updating Matrix Factorizations, Linear Algebra and Its Applications, 88/89 (1987), pp
597-621.

[6] J. K. Reid, A Sparsity-Exploiting Variant of the Bartels-Golub Decomposition for Linear Pro-
gramming Bases, Mathematical Programming, 24 (1982), pp 55-69.

[7] P. Stange, A. Griewank and M. Bollhoefer. On The Efficient Update of Rectangular LU
Factorizations Subject to Low Rank Modifications, Electronic Transactions On Numerical-
Analysis, 26 (2007), pp 161-177.

