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Abstract

Performance variability of modern mixed-integer programming solvers and
possible ways of exploiting this phenomenon present an interesting opportu-
nity in the development of algorithms to solve mixed-integer linear programs
(MILPs). We propose a framework using multiple branch-and-bound trees
to solve MILPs while allowing them to share information in a parallel exe-
cution. We present computational results on instances from MIPLIB 2010
illustrating the benefits of this framework.
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1. Introduction

Mixed-Integer Linear Programming (MILP) problems are commonly solved
using a linear programming based branch-and-cut scheme. The scheme pro-
ceeds by partitioning the space of solutions in the form of a search tree
obtained by fixing variable bounds (branching), and uses lower bounds from
linear programming (LP) relaxations, typically tightened by the addition of
cutting planes, and upper bounds, from feasible solutions, to prune parts of
the search space. Modern implementations of this generic scheme involve a
multitude of options, e.g. how to select a partition to further subdivide (node
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selection), how to select a variable to branch on (variable selection), what
kinds of cutting planes to add and how often to add them, what types of
heuristics to use and how often to use them and so on. It is well known that
different choices of these options can have very significant effect on the per-
formance of the branch-and-cut scheme [2]. In addition to these algorithmic
options, it has been noted in [3] that the performance of a specific implemen-
tation on a particular problem instance can vary very significantly with less
understood factors, such as the computational environment, random seeds
used in the inner workings of the implementation, and permutation of the
rows and columns of the instance. To alleviate inconsistency of computa-
tional results due to performance variability issues, [9] suggest a performance
variability score to present computational results on the MIPLIB 2010 in-
stances. For more details regarding performance variability, the reader is
referred to the recent survey article [11].

One way of exploiting performance variability in solving an instance is
processing it with multiple different settings (called configurations through-
out the rest of this paper) of a MILP solver and then selecting the best of
these executions. In [12] commercial solvers like CPLEX and Gurobi are
executed multiple times with different random seeds (5 at the time of this
writing) to solve a set of MILP benchmark instances and the best result is
reported. The results show improvements in time to optimality relative to
the default settings of these solvers (around 40% for CPLEX and 30% for
Gurobi). In [5], a bet-and-run approach is proposed, where multiple configu-
rations of a MILP solver obtained by different kinds of randomization of the
root LP are run simultaneously until a given number of nodes is explored.
Then a bet is placed on the “best” configuration, which is then run to opti-
mality. The authors report a reduction in the number of branch-and-bound
nodes. A similar approach is reported in the context of implementing branch
and bound in a parallel architecture [13, 10, 14]. A well known issue here is
the “ramp-up” phase of the algorithm in which not many branch-and-bound
nodes have been generated, making it hard to balance work among available
multiple processors and potentially leaving many idle resources. In [13] and
then in [10, 14] a technique (that is called racing ramp-up in [10]) is proposed,
which involves running different configurations of a MILP solver in parallel
independently across the available processors until a given criterion is met.
Then the best generated branch-and-bound tree is used to continue the al-
gorithm by sending its nodes to the different processors. All other generated
trees are discarded. According to [10], this approach has not proven to be
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very effective. In [4], the effect of variability in collecting good cutting planes
and solutions within the CPLEX MILP solver is investigated. The approach
starts by running a sampling phase that executes the default root-node cut
loop starting from different optimal bases of the initial LP (through the use
of the random seed parameter available in CPLEX) multiple times, while
collecting cutting planes and feasible solutions. After this, a final run is done
where the instance is solved by using the collected pools of cuts and solu-
tions. They report considerable reduction in the variability of the percentage
root node LP gap closed on a set of “unstable” instances from MIPLIB 2010.
They also note improvements in primal solutions at the root node and re-
ductions in the time of the final run of the algorithm (without taking into
account the sampling phase).

In this paper, we study a possible way of exploiting performance vari-
ability by considering a diverse set of configurations of a MILP solver and
executing these in parallel while allowing them to share information among
each other. We test different types of information to be shared and com-
pare the performance with that of the base solver with default settings. Our
experimental results confirm previous evidence [5] that by simply selecting
the best of multiple runs of a MILP solver with different configurations can
yield significant performance improvements. We also show that the addi-
tion of communication yields substancial benefits in terms of reaching good
feasible solutions or good upper bounds quickly. Although previous work
(like [4]and [5]) has explored ideas that can be potentially used in a parallel
setting, in most cases a serial implementation is used. However our approach
allows for communication on-the-fly and parallelism is a core part of our
implementation.

2. The diversification-communication framework

Our scheme consists of multiple configurations of a MILP solver running
in parallel on the same instances. We call the set of different configurations
a diversification. The configurations can share communication in different
modes:

• No communication. Configurations run independently until one of
them proves optimality or all of them run out of time.

• Light communication. Configurations run independently, but the
best lower and upper bound obtained among all configurations are
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recorded. Thus optimality can be proved earlier by having one con-
figuration providing the optimal solution and another the best dual
bound.

• Communication. Configurations share some information with the
other configurations, which then use the information in their own searches.

In the communication mode, the configurations can share one or more of
the following types of information:

• Feasible solutions. Configurations send feasible solutions they find
to the other configurations. Each configuration that receives a solution
adds it as a heuristic solution to its search.

• LP bounds. Configurations send their best LP bound to other config-
urations. Each configuration uses the value to add an objective value
cut of the form cTx ≥ z̄, where z̄ is a global lower bound for the prob-
lem.

• Cuts at the root node. The pool of cutting planes generated during
the root node cut loop in each configuration is shared with the other
configurations. When a configuration receives cutting planes from other
configurations, it adds these as new rows to the problem. More details
on the way this is implemented are given in Section 3.

• Feasible solution as forbidden paths. In an instance with binary
variables, configurations share feasible solutions. When a configuration
receives a solution, it uses the value of its binary variables to forbid it
from the feasible region. Given B ⊆ I the set of indices of binary
variables in the problem, a feasible solution x∗ and all the paths in the
branch-and-bound tree that coincide with it in its binary variables can
be forbidden by adding the cut:∑

j∈B,
x∗
j=0

xj +
∑
j∈B,
x∗
j=1

(1− xj) ≥ 1.

Additionally, in order to use the upper bound information provided
by the solution, an objective-value cut of the form cTx ≤ cTx∗ is also
added.
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• Fathoming paths. Again, in the context of problems with binary
variables, the configurations keep track of paths in the branch-and-
bound tree that end in fathomed nodes. These paths are then shared
with the other configurations which cut them off from their feasible
regions with cuts of the form:∑

j∈B∩P0

xj +
∑

j∈B∩P1

(1− xj) ≥ 1.

Here, a path P consists of two sets of indices of variables that are fixed
to 0 and 1, P0 and P1 respectively.

3. Parallel implementation and experimental framework

We implemented the diversification-communication framework described
in the previous section by using a master-worker scheme, in which the master
process is only in charge of managing communication among the workers,
which are in turn running the different configurations of the MILP solver
in parallel. Our code is written in C++ using OpenMPI [6] to implement
the communication and CPLEX 12.4 [7] as the base MILP solver. All the
communication with the worker processes is done through the use of CPLEX
callback functions implemented using its C callable library.

The sharing of cuts at the root node is implemented using a two-phase
approach. First, a set of configurations with different emphases in generating
cutting planes execute CPLEX’s root node cut loop until it reaches its end or
a certain time limit. Second, the configurations share their corresponding cut
pools and best solution found so far (if any). Then, a different diversification
is used, which we discuss below, and the optimization is restarted using the
cuts received as new rows. Because we need to reference the original variables
when collecting cuts, we apply presolve to every instance in our test set and
therefore the presolve feature in CPLEX is turned off.

Our experiments are performed over the Benchmark class of problems
from MIPLIB 2010 [9]. We only use the feasible instances from this class due
to the requirements of our algorithm and we also omit instance dfn-gwin-UUM
because it does not have any binary variables. This leaves 84 instances in
total. All runs are given a time limit of 3 hours of wall-clock time. When
sharing cuts at the root node, a 1 hour time limit is given to the root node
cut loop and 3 hours for the re-optimization phase.
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One of our goals is to compare the performance of the proposed diversification-
communication framework with default CPLEX using the same number of
threads as processors that run in parallel. We limit our experiments to
using 8 processes because of machine availability. Since our implementa-
tion of diversification-communication uses user callback functions in CPLEX,
dummy callbacks were used when CPLEX was executed with default settings.

In order to test the effect of communication, we fixed a diversification
consisting of 8 configurations, listed below, each using one thread, obtained
by changing one parameter of CPLEX 12.4 at a time (The corresponding
CPLEX parameter considered is indicated in parenthesis.)

1. CPLEX 12.4 with default settings.

2. Emphasis on feasibility (CPX MIPEMPHASIS FEASIBILITY).

3. Emphasis on optimality (CPX MIPEMPHASIS OPTIMALITY).

4. Increase of heuristic frequency to every 10 nodes (CPX PARAM HEURFREQ).

5. Use best estimate for node selection (CPX NODESEL BESTEST).

6. Use of pseudo costs for variable selection (CPX VARSEL PSEUDO).

7. Use of pseudo reduced costs for variable selection (CPX VARSEL PSEUDOREDUCED).

8. Generate Gomory fractional cuts aggressively (CPX PARAM FRACCUTS).

These configurations consider various aspects of the branch-and-bound al-
gorithm and seem to have a significant effect on performance, based on our
experience with CPLEX 12.4.

We consider several metrics to measure the performance of the proposed
framework. Note that the optimal values are known for the instances used
here.

• Number of instances solved to optimality.

• Time to optimality reported by the algorithm.

• Times to reach 1%, 5% and 10% gap, as reported by the algorithm.
At a given time, let zbest and zbound be the values of the best feasible
feasible solution and best lower bound found so far. The current gap
is computed as (zbest − zbound)/(1.0−10 + |zbest|).

• Times to reach 1%, 5% and 10% primal gap. Let zopt be the optimal
value. At a given time, the current primal gap is computed as (zbest −
zopt)/(1.0−10 + |zbest|).
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• Times to reach 1%, 5% and 10% dual gap. At a given time, the current
dual gap is computed as (zopt − zbound)/(1.0−10 + |zopt|).

Every time an algorithm fails to prove optimality or to reach one of the
different gap values mentioned above, the corresponding time is counted as
the time limit.

4. Results

In Table 1 we present a performance comparison of the various modes of
our framework against default CPLEX 12.4 using 8 threads (labeled CPX8T
in the table). We use the three modes of communication given in Section 2,
the no-communication and light-communication modes (NoComm and Light-
Comm, in the table) and within the communication mode:

• Feasible solutions (SolsComm in table).

• Root node cuts (CutsComm in table).

• Root node cuts and feasible solutions in the re-optimization (CutsSolsComm
in table).

• Feasible solutions as forbidden paths (SolsForbComm in table).

• Feasible solutions as forbidden paths and paths that lead to fathomed
nodes (SPForbComm in table).

We do not include results on sharing lower bounds since the performance
obtained was significantly worse than in the rest of the modes. This can be
explained by the fact that the cuts used to add the bounds are parallel to
the objective function and can lead to significant dual degeneracy [8].

The set of instances is separated into three difficulty classes. These classes
are determined by ranking the instances according to the maximum time to
optimality among all the modes as well as default CPLEX. The easy, medium
and hard classes consist of instances solved within 0 to 1000 seconds, 1001
to 10000 seconds, and more than 10000 seconds, respectively. The number
of instances in each class is indicated in Table 1, in parenthesis next to the
name of the class.
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For each mode of our framework, Table 1 shows the percentage improve-
ment in geometric mean (across all instances in a class) of the performance
measures presented in Section 3 relative to CPLEX 12.4 with default settings
using 8 threads.

A first observation from the results in Table 1 is that by just using the 8
diverse configurations each using one thread in no-communication mode, we
already outperform default CPLEX using eight threads. The only exceptions
are for the medium class for time to optimality and time to 1%.

Surprisingly, the effect of the light-communication mode is not very sig-
nificant and can even be detrimental, probably due to the communication
overhead. This indicates that it might typically be the case that one config-
uration proves optimality by itself, instead of one configuration finding the
optimal solution and another finding the best lower bound to prove optimal-
ity.

The addition of communication has a positive impact on performance rel-
ative to the no-communication setting. Communication of feasible solutions
and fathoming paths (algorithms SolsComm, SolsForbComm and SPForb-
Comm) show consistent good performance across classes, and are always
located among the top modes.

Communication of cuts appears to be the worst performer, except for
a few exceptions on the dual gaps for hard instances. These results may
be a little unfair since the execution times considered here include the time
spent in the first phase in which the cuts are collected. However, consider-
ing the performance only during the re-optimization phase (results that are
not presented in this article) this communication mode gives better results,
especially in the times to reach good dual gaps. This is consistent with the
experience reported in [4].

One possible reason that can explain the weak performance of commu-
nication modes in terms of time to optimality and time to good gaps in
the medium instances is that when a configuration on a particular instance
reaches a point where upper and lower bounds changes are small, sharing
information may not be that helpful anymore.

Finally, in terms of the number of instances solved to optimality, some of
the modes are able to solve one more instance than CPLEX using 8 threads
in the hard class. Again, the modes that share cuts failed to prove optimality
in more instances than the others in the same class.
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5. Conclusions

We have studied a potential way to take advantage of performance vari-
ability in MILP solvers, by sharing of information among diverse configura-
tions during parallel execution. We have tested various types of information,
such as feasible solutions, cutting planes and branching information in terms
of paths that lead to fathomed nodes. Experimental results on instances
from MIPLIB 2010 indicate that we outperform CPLEX using 8 threads by
simply considering 8 different settings of CPLEX using a single thread that
run independently. This confirms previous experiences cited in the literature.

The impact on performance of allowing communication among different
configurations of the solver is positive, but usually mild relative to the set-
ting without communication. In our experience, it seems that sharing of
feasible solutions and some branching information are the most promising
approaches. On the other hand the communication of cutting planes seems
not to be helpful, but this may be because of the preliminary phase of cut
collection.

In summary, our work indicates that there is potential in the use of com-
munication among different configurations of a MILP solver. Future efforts
should consider ways of obtaining diverse branching information from the
participating configurations and using it to ensure that a more efficient search
is done by avoiding bad branching decisions and promoting those that quickly
fathom big parts of the tree.
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