
June 7, 2013 Submitted sipconvex

A branch and bound approach for convex semi-infinite

programming

Le Thi Hoai Ana∗, Mohand Ouanesb, and A.I.F. Vazc

aLaboratory of Theorical and Applied computer Science (LITA)

UFR MIM, University of Lorraine

Ile du Saucly, 57045 Metz Cedex, France
bDépartement de Mathématiques, Faculté des Sciences,

Université de Tizi-Ouzou, Algérie
cProduction and Systems Department, Algoritmi Center,

Engineering School, University of Minho, Portugal
(Received 00 Month 200x; in final form 00 Month 200x)

In this paper we propose an efficient approach for globally solving a class of convex semi-
infinite programming (SIP) problems. Under the objective function and constraints (w.r.t. the
variables to be optimized) convexity assumption, and appropriate differentiability, we propose
a branch and bound exchange type method for SIP. To compute a feasible point for a SIP
problem (and check feasibility) we need to solve a global optimization (sub-)problem, which
is herein addressed by a branch and bound strategy. The major novelty of the proposed
method consists in generating a sequence of feasible points for the SIP problem, obtained by
a convex combination of a feasible point and the solution of a discretized finite optimization
problem. A branch and bound strategy is also used to address the problem of minimizing the
objective function, since we naturally obtain, as a result of the iterative process, bounds for the
objective function. Under mild assumptions we prove convergence of the proposed algorithm.
To illustrate the proposed approach, we provide some numerical results using some benchmark
test problems.

Keywords:
Global optimization; Semi-infinite Programming; Exchange type method; Discretization

scheme; Branch and Bound.

AMS Subject Classification: 90C26; 90C34.

1. Introduction

In this paper we consider a semi-infinite programming (SIP) problem of the form

(SIP)

f∗ = minx∈IRn f(x)

s.t. gj(x, s) ≤ 0, j = 1, . . . , q, ∀s ∈ S ⊂ IRm, |S| = +∞.

In (SIP), the objective function f is expressed in terms of a finite number (n)
of optimization variables, x, while it is minimized subject to an infinite number
of constraints, which are expressed over a compact set S of infinite cardinality.
If S is independent of x then we have a standard SIP problem, otherwise (i.e.
S = S(x)) we have a generalized SIP problem. This paper addresses standard SIP
problems. Problems of this type arise in several engineering areas, like material

∗Corresponding author. Email: hoai-an.le-thi@univ-lorraine.fr

June 7, 2013 Submitted sipconvex

2 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

stress modeling, design under uncertainty, air pollution control [12], robot trajec-
tory planning [11, 23, 37, 39], optimal signal sets design [1, 14], production planning
[19, 40], and in machine learning [2]. Many approaches have been proposed to deal
with SIP problems. Traditionally, they can be classified into three main classes:
discretization methods, exchange methods, and methods based on local reduction
(see e.g. [8, 18, 20, 29, 34], and reference therein). Recently, some works on fea-
sibility enforcing methods have been developed (see, e.g., [33]). For an extensive
survey and a complete list of bibliography on semi-infinite programming problems
we refer to the paper of Hettich and Kortanek [12]. A recent paper dedicated to
standard and generalized SIP can be found in [31].

We consider, in this paper, the particular case where the functions f and gj(., s),
j = 1, . . . , q, are convex and continuously differentiable in IRn and IRn×m, respec-
tively. We are then faced with a so called convex semi-infinite programming prob-
lem. The herein developed theory can be easily extended to a SIP that considers
q constraints. So, in order to simplify the notation and without loss of generality,
we consider the SIP problem in the form

(CSIP)

f∗ = minx∈IRn f(x)

s.t. g(x, s) ≤ 0, ∀s ∈ S ⊂ IRm.

We further assume that (CSIP) has a non-empty interior of its feasible set
(denoted by Ω), and S is a Cartesian product of intervals on IRm, i.e. S =
[α1, β1] × · · · × [αm, βm]. We also assume that g(x, .) is twice continuously dif-
ferentiable on S.

Regular inequality constraints (dependent only on x) can also be considered in
(CSIP), provided that they are convex.

A natural way to address problem (CSIP) is to consider a discretization of the
set S (in an equally spaced grid of points). Usually discretization methods solve a
sequence of finite problems for successive grid refinements. The idea is to succes-
sively compute an optimal solution to a so called discretized problem, which is a
finitely constrained (discretized) approximation to the SIP problem, namely

P[S̄]

minx∈IRn f(x)

s.t. g(x, si) ≤ 0, si ∈ S̄ ⊂ S,

where |S̄| is a finite number.
A conceptual discretization algorithm can be described as follows.

Conceptual discretization algorithm.

1) Define S0 as the initial (discretized) set of points. Let S̃0 = S0. Solve P[S̃0] and
let x0 be the found solution. Set k = 1.

2) If xk−1 is not feasible ∀s ∈ Sk−1 (i.e. ∃s̄ ∈ Sk−1 : g(xk−1, s̄) > 0),

• then include all points in Sk−1 that make xk−1 infeasible into S̃k−1. Solve

P[S̃k−1] and let xk−1 be the found solution. Go to step 2 (keeping the value
of k).

• else if the maximum number of refinements is attained then stop. Otherwise
build another set S̃k from Sk and S̃k−1. Solve P[S̃k] and let xk be the found
solution. Set k = k + 1 and go to step 2.

While it is easy to implement and a solver for finite optimization can be used,

June 7, 2013 Submitted sipconvex

Submitted 3

discretization methods for SIP have many drawbacks. These methods are also
known as outer approximation methods and an infeasible solution for SIP is usually
obtained. Also the SIP solution is only obtained when the grid is close to the set
S (in the sense that the grid considers a huge number of points), leading to a
high number of constraints to be considered in the discretized finite problem, if a
solution with high accuracy is requested. In such a case an ill posed problem could
be attained since a high number of related (by the functional g) constraints are
considered.

It is well known that, if the grid density of Sk tends to zero, i.e.
limk→+∞ dist(Sk, S) = 0, where dist(Sk, S) = maxs∈S mins̄∈Sk ‖s̄ − s‖, and the
level set of P [Sk], at each iteration, is compact, any accumulation point of the
sequence of solutions {xk} is a solution to the SIP problem ([28]).

Exchange type methods try to address some of the difficulties in discretization
methods. In exchange methods, approximate solutions to the subproblem (we have
as many subproblems as constraints in the (SIP))

max
s∈S

g(x̄, s), (1)

are computed, for a given x̄.
The key idea is to consider the solution(s) of the (also known as lower level,

in opposition to the minimization of f that is called the upper lever optimiza-
tion problem) subproblem (1) to be added to an auxiliary set S̃ while previous
added points may be dropped (exchange of points). As in discretization methods,
a sequence of finite optimization problems are to be solved.

A conceptual exchange algorithm follows.

Conceptual exchange algorithm.

1) Let S̃0 be given and k = 0.

2) Solve P[S̃0] and let x0 be the found solution.

3) Approximately solve the lower level subproblem Sk = argmaxs∈S g(xk, s).

4) If g(xk, s) ≤ 0, ∀s ∈ Sk then stop. We have a feasible xk that is optimal to
P[Sk], and, consequently, optimal to (CSIP).

5) Add the new constraints and eventually drop others (S̃k+1 ⊆ S̃k
⋃
Sk).

6) Solve P[S̃k+1] and let xk+1 be the solution found.

7) Set k = k + 1 and go to step 3.

Since f and g(., s) are convex functions, the discretized problem (P [Sk]) is a
convex program to which several convex programming methods can be applied. The
major difficulty with the mentioned algorithm is with the optimization problem (1),
since it has to be solved for a global solution, and with the possible huge number
of constraints in problem P[S̃k].

Having in mind the computation of a global optimum for (CSIP), we are, there-
fore, faced with two crucial questions to be studied from an algorithmic point of
view: how to check the feasibility of xk (i.e. how to globally solve problem (1)) and
how to find a good SIP feasible solution.

In this paper we propose to use two integrated branch and bound algorithms that
address these questions, i.e., one branch and bound algorithm for the upper level
problem and another branch and bound algorithm for the lower level problem.

June 7, 2013 Submitted sipconvex

4 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

Firstly, we investigate an inexpensive adaptive branch and bound scheme applied
to problem (1) to check the feasibility of a given point x̄ for (CSIP). For a suitable
presentation we consider problem (1) in the standard form of a global optimization
problem, say the following minimization problem

γx̄ = min{−g(x̄, s) : s ∈ S} = min{θx̄(s) : s ∈ S} (2)

with θx̄(s) = −g(x̄, s). Checking the feasibility of x̄ is equivalent to check the con-
dition γx̄ ≥ 0. Our aim is to construct tight lower bounds (LB) and upper bounds
(UB) of γx̄ and improving them via a Branch and Bound procedure. Checking
the inequality γx̄ ≥ 0 amounts to checking the conditions LB ≥ 0 or UB < 0.
Consequently, we may decide on the feasibility of x̄ for (CSIP) before obtaining
an optimal (global) solution to (2). We define a convex underestimator for θx̄ by
using a linear interpolan and adding a quadratic term (see [9, 10] for other possible
underestimator). In [7, 32] the αBB algorithm also constructs convex relaxations
of the lower level problem (2), by adding a quadratic term to the function θx̄. The
herein considered underestimator provides a similar error bound with the extra
properties of being quadratic for m = 2 and a polynomial of degree m for m > 2
([15, 16]), in opposition to the αBB method that is proposed only for m = 1 and the
estimator is quadratic only if θx̄ is, by itself, linear or quadratic. Additionally αBB
method is proposed to find first order stationary points. In [26] the lower bounding
problem is obtained by a formulation that combines the first- and second-order
KKT necessary conditions on the lower level problem. Other methods have also
been proposed for SIP (see the ICR method in [3] and further studied in [4], where
interval analysis is used. See also [22] where an interval method is used to solve the
lower level problem and a genetic algorithm to solve the upper level problem). An
exchange type method for convex SIP is proposed in [41]. The proposed method
uses similar assumptions on the problem structure (convexity and differentiability)
and problem (2) is addressed by using Newton’s method taking as initial guesses
points in an equally spaced grid of point.

For branch and bound type methods for global optimization the reader is pointed
to [30, 36], and [35]. See also [25] where a new procedure for the generation of
feasible points is proposed.

Secondly, we investigate a procedure to compute a feasible solution to (CSIP), in
the case where x̄ is not feasible for (CSIP). We first propose a way to find a feasible
point for (CSIP). Knowing a feasible point we can improve it w.r.t. the objective
function of (CSIP), during the iterations of the discretization scheme. So, the lower
bound Lf and the upper bound Uf of f∗ may be improved at each iteration, and
the algorithm terminates when either we get a solution to (CSIP) or Uf −Lf ≤ ε,
where ε is a given tolerance. In both cases the obtained solution is always feasible
to (CSIP).

Our approach may be considered as an exchange type algorithm, as it considers
a branch and bound algorithm to solve problem (1). The main algorithm is divided
in two phases. The first phase is used to compute a feasible point for (CSIP). The
second phase consists in a procedure that computes successive lower and upper
bounds on the objective function f . For the upper-bounding procedure for (CSIP)
we propose a simple formula to compute a better feasible point to (CSIP) from a
feasible point and an optimal solution of the current discretized problem. Thanks
to this procedure, the algorithm may find an optimal solution to (CSIP) before the
termination of the standard discretization scheme (i.e. as soon as x̄ is feasible for
(CSIP)).

The main advantages of our algorithm are that in the first phase it furnishes,

June 7, 2013 Submitted sipconvex

Submitted 5

by a very simple calculation, a feasible solution to (CSIP). In the second phase it
computes successive feasible approximation to the (CSIP) solution, meaning that
we can stop the algorithm prematurely and still obtain a feasible approximation
to the (CSIP) solution. We prove convergence, in this second phase, to a global
optimum.

The rest of the paper is organized as follows. In Section 2 we propose an adaptive
branch and bound scheme applied to the global optimization of problem (1), in
order to check the (CSIP) feasibility of a given point x̄. Section 3 is devoted to
computing upper bounds of f∗. More precisely, we first present a procedure to find
a feasible solution to (CSIP), and then show how to get a better (CSIP) feasible
solution from a feasible solution. The description of our main algorithm for solving
(CSIP) and its convergence to an optimal point are presented in Section 4. Finally,
computational experiments are presented in the last section.

2. An adaptive Branch and Bound (B&B) algorithm for checking (CSIP)
feasibility

We propose, in this section, an adaptive branch and bound scheme for problem (1)
in its equivalent form (2), allowing to check the (CSIP) feasibility of a given point
x̄ ∈ IRn. Our algorithm is based on the following result, whose proof is trivial and
therefore omitted.

Proposition 2.1: Let LB and UB be real numbers such that LB ≤ γx̄ ≤ UB.

i) If LB ≥ 0, then γx̄ ≥ 0 and consequently x̄ is a feasible point for (CSIP).

ii) If UB < 0, then γx̄ < 0 and therefore x̄ is not a feasible point for (CSIP).

iii) If UB−LB ≤ ε, for a sufficiently small positive number ε, and LB < 0 ≤ UB,
then −ε ≤ LB < 0 and we say that x̄ is an ε-feasible point for (CSIP).

Before describing the B&B algorithm for problem (2) we present the three core
operations: lower bounding – to compute a lower bound on θx̄(s), upper bounding
– to compute an upper bound on θx̄(s) and branching – to branch a given subset
of the feasible region.

To simplify our notation we use θ(s) instead of θx̄(s), implicitly knowing that
θ(s) also depends on x̄.

2.1. Lower bounding

From the assumptions on the function g we known that θ(s) is twice continuous
differentiable and we further assume that the Hessian of θ(s) can be evaluated at
any element in S. Under these assumptions, we develop, in this section, an under-
estimator LBθ(s) for θ(s). For the clarity of exposition we separate the univariate
case from the multivariate case.

The lower bound on g can then be obtained by solving the following convex
optimization problem,

min
s∈S

LBθ(s), (3)

whose analytic solution can be trivially obtained from the first order optimality
conditions for the m = 1, 2 cases.

June 7, 2013 Submitted sipconvex

6 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

2.1.1. Univariate global optimization case

We first consider the case where m = 1. Consider the given bounded closed
interval

[
s0, s1

]
⊆ [α, β] ⊂ IR. Let wj(s) : IR → IR, j ∈ {0, 1}, be the functions

defined as

w0(s) =


s1−s
s1−s0 if s0 ≤ s ≤ s1

0 otherwise

, w1(s) =


s−s0
s1−s0 if s0 ≤ s ≤ s1

0 otherwise.

(4)

Clearly, we have

w0 (s) + w1 (s) = 1, ∀s ∈ [s0, s1]

and, for i, j ∈ {0, 1},

wj(si) =

0 if j 6= i

1 otherwise.

Let Lθ(s) be the linear interpolant of θ(s) at points s0, s1 ([6]), given by

Lθ(s) =

1∑
i=0

θ(si)wi(s). (5)

In [15] a tight quadratic underestimator for θ(s), on the interval [s0, s1], is pro-
posed, which is better than the well-known linear underestimator of g ([6]). The
underestimator is given by

LBθ(s) = Lθ(s)− 1

2
K
(
s− s0

) (
s1 − s

)
,

where K is a positive number such that |θ′′(s)| ≤ K, ∀s ∈ [s0, s1], and θ′′(s) denotes
the θ(s) second derivative.

2.1.2. Multivariable global optimization case

In this section, we extend to the multivariate case the previous underestimator
for θ(s). Let S be the bound and closed product of intervals Πm

i=1[s0
i , s

1
i], whose

vertex set is denoted by V (S). An element in V (S) is denoted by v = (si11 , . . . , s
im
m)

with ij ∈ {0, 1}, j = 1, . . . ,m.

The w functions also need to be adapted for the multivariate case. Let wji (s) :
IR→ IR, j ∈ {0, 1}, i = 1, . . . ,m, be the functions defined as

w0
i (si) =


s1i−si
s1i−s0i

if s0
i ≤ si ≤ s1

i

0 otherwise

, w1
i (si) =


si−s0i
s1i−s0i

if s0
i ≤ si ≤ s1

i

0 otherwise.

June 7, 2013 Submitted sipconvex

Submitted 7

The function LBθ(s) : IRm → IR is then defined as

LBθ(s) = LBθ(s1,...,sm) =

1∑
im=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im
m)wi11 (s1)

)
. . .

)
wimm (sm)

− 1

2
K

(
m∑
i=1

(si − s0
i)(s

1
i − si)

)
, (6)

where K is a positive number such that

||Hθ(s)||∞ ≤ K, ∀s ∈ S

and Hθ(s) denotes the function θ(s) Hessian matrix.
The next proposition is a generalization of the result in the univariate case. Let

θ′′sisj (s) be the second derivative of θ(s) w.r.t. the variables si and sj , i, j = 1, . . . ,m.

Proposition 2.2:

i) The functions LBθ(s) and θ(s) agree for all the vertices v on the vertex set
V (S) of S, i.e., LBθ(v) = θ(v), ∀v ∈ V (S).

ii) If

K ≥ max
s∈S

max
i=1,...,m

∣∣θ′′sisi(s)∣∣ ,
then LBθ(s) is a minorization of θ(s) on S, i.e. LBθ(s) ≤ θ(s), ∀s ∈ S.

iii) The function LBθ(s) is convex on S if

K ≥ max
s∈S

max
i=1,...,m

m∑
j=1,j 6=i

∣∣∣θ′′sisj (s)∣∣∣ .
Remark 2.1 : Proposition 2.2 is a consequence of Theorem 1 and 2 available
in [16]. For a matter of completeness of the present paper, and since [16] is not
widely available, we reproduce these results in section A.1.

2.2. Upper bounding

In global optimization, a good way to compute upper bounds for a given function
is by using efficient local approaches or, for example, the overestimator described
in [15, 16].

In this paper we just use the simplest way to determine an upper bound, which
consists in computing the objective value function at known feasible points.

2.3. Branching

For box constrained optimization the adaptive w-subdivision developed in [27]
has been shown to be efficient in several problems (see, e.g., [13, 17]). Thus, we
are motivated to use this procedure in our B&B algorithm. A simple description
follows.

June 7, 2013 Submitted sipconvex

8 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

Let Sl = Πm
i=1

[
s0,l
i , s

1,l
i

]
be the box chosen to be divided at iteration l, using

the side
[
s0,l
il
, s1,l
il

]
, where il ∈ arg max{s1,l

i − s
0,l
i }. We divide

[
s0,l
il
, s1,l
il

]
at sL,l ∈

arg min
{
LBθ(s) : s ∈ Sl

}
, i.e., we get S1

l =
[
s0,l
il
, sL,lil

]
× Πm

i=1,i 6=il

[
s0,l
i , s

1,l
i

]
and

S2
l =

[
sL,lil , s

1,l
il

]
× Πm

i=1,i 6=il

[
s0,l
i , s

1,l
i

]
. Whenever sL,lil equals s0,l

il
or s1,l

il
we consider

sL,lil =
s1,lil +s0,lil

2 for the branching procedure.

2.4. Adaptive B&B algorithm for checking CSIP feasibility

We are now in position to describe the full B&B algorithm, used to check for (CSIP)
feasibility of a given point x ∈ Ω. Whenever x is not feasible and as a sub-product,
the algorithm provides a point s∗ ∈ S such that g(x, s∗) > 0.

Algorithm 2.1: Checking the (CSIP) feasibility

• Initialization. Given x (a point to check for (CSIP) feasibility) and let ε be a
given sufficiently small positive number. Compute K, an upper bound of ‖Hθ(s)‖.
Set l = 0, S = S =

∏m
i=1[αi, βi] and M = {S}. Compute LB0 = LBθ(s̄0), where

s̄0 is obtained by solving the box constrained convex program

s̄0 = arg min
{
LBθ(s) : s ∈ S

}
.

Set s0 = arg min
{
θ(s) : s ∈

(
V (S) ∪ {s̄0}

)
⊂ S

}
and UB0 = θ(s0).

• While LBl < 0 and UBl ≥ −ε and UBl − LBl > ε do

• Let Sl ∈M be the set such that LBl equals its lower bound.

• Bisect Sl into two sets: S1
l and S2

l , accordingly to the strategy described in
the previous section.

• Compute LBl
1 = LBθ(s̄1) and LBl

2 = LBθ(s̄2), by solving the box constrained
convex programs

s̄1 = arg min
{
LBθ(s) : s ∈ S1

}
, s̄2 = arg min

{
LBθ(s) : s ∈ S2

}
.

• Update current best solution sl+1 = arg min
{
UBl, θ(s̄)

}
, with s̄ ∈ (V (S1) ∪

V (S2) ∪ {s̄1, s̄2}) and the upper bound UBl+1 = θ(sl+1).

• Set M = M ∪ {Sil : LBl
i < UBl+1 + ε, i = 1, 2}\{Sl}. (Additionally, the

sets from M whose estimated lower bound is greater than UBl+1 + ε can be
removed).

• Update the lower bound by setting LBl+1 = min{LBθ(s̄)}, s̄ ∈ S, S ∈ M (i.e.

set LBl+1 to the minimum lower bound for all sets in M).

• Set l = l + 1.

• End while

Algorithm 2.1 outputs LB∗x = LBl and UB∗x = UBl as approximations to the
lower and upper bounds on θ(s), s ∈ S, respectively, and s∗ = sl as the point where
the upper bound is attained. Clearly the algorithm ends with one of the following
three possible cases.

June 7, 2013 Submitted sipconvex

Submitted 9

i) LB∗x ≥ 0, meaning that x is feasible for (CSIP).

ii) LB∗x < 0, UB∗x ≥ −ε and UB∗x − LB∗x ≤ ε, meaning that s∗ is an ε−optimal
solution of (1) and then x is ε−feasible for (CSIP).

iii) UB∗x < −ε, meaning that x is not feasible for (CSIP). The algorithm ends
with s∗, a point that violates the (CSIP) constraint and therefore s∗ should
be included in a discretized problem of (CSIP).

A proof of the finite termination of Algorithm 2.1 or the generation of a bounded
sequence converging to a global solution of (2) is presented in [16] (again and
for a matter of completeness of the present paper we reproduce this results in
Appendix A.2).

3. Bounding procedures for the (CSIP) objective function

In this section we propose a procedure to compute a feasible point with a lower
objective function value for (CSIP), starting with a feasible point, i.e. a point in
the interior of the (CSIP) feasible set. We begin by presenting an algorithm to find
a (CSIP) feasible point.

3.1. Upper bounding: finding a feasible point for (CSIP)

We determine a feasible point for (CSIP) by computing centers of several boxes
Tk, generated during the discretization scheme. To check feasibility we use Algo-
rithm 2.1. The optimality can be checked by using lower bounds obtained while
solving the discretized problems and once the feasibility holds. Let Sk and xk de-
note, respectively, the finite (discretized) set of points in S at iteration k in the
discretization scheme and the solution of the discretized problem. At iteration k,
we use Ufk and Lfk to denote the best known upper bound and lower bound,
respectively, of f∗, the optimal value of (CSIP).

Algorithm 3.1: Finding a feasible point of (CSIP)

• Set k = 0, stop = false, feasible = false, Uf0 = +∞. Let S0 be a given finite
set of chosen points in S such that problem P ([S0]) is bounded. Let x0

feas, x
0
disc,

and ε be given.

• While not stop and not feasible do

1) Solve the following 2n convex programs for j = 1, . . . , n,
lkj = min

x∈X
xj

s.t. g(x, si) ≤ 0,

si ∈ Sk

and


ukj = max

x∈X
xj

s.t. g(x, si) ≤ 0,

si ∈ Sk

(7)

where X is set of bound constraints to prevent the problems unboundedness.
The set X considered is a neighborhood (in the infinite norm) of xkdisc with
radius ρ > 0, i.e., we have X =

{
x ∈ IRn :

∥∥x− xkdisc∥∥∞ ≤ ρ}.

Set Tk = Πn
j=1

[
lkj , u

k
j

]
.

2) Compute the center ck of Tk, i.e. ck = uk+lk

2 .

June 7, 2013 Submitted sipconvex

10 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

3) Apply Algorithm 2.1 to check the feasibility of ck (considering x replaced
by ck).

• If LB∗ck ≥ −ε and f(ck) < Ufk then set Ufk = f(ck) and xk+1
feas = ck, else

set xk+1
feas = xkfeas.

• If LB∗ck ≥ 0 then feasible = true, and go to step 8.

4) Solve the discretized problem P([Sk]) to get an optimal solution xk∗. If prob-
lem P([Sk]) is unbounded then go to step 7.

5) Apply Algorithm 2.1 to check the feasibility of xk∗.

• Set Lfk = f(xk∗) and xk+1
disc = xk∗. If xk∗ is feasible (LB∗xk∗

≥ −ε) then set

stop = true and go to step 8.

6) If Ufk−Lfk ≤ ε then set stop = true, xk+1
disc = xk+1

feas (xk+1
feas is an (ε-)optimal

solution of (CSIP)), and go to step 8.

7) Set Sk+1 = Sk ∪
{
s∗ck
}

if s∗xk∗
is not defined in step 4 otherwise set Sk+1 =

Sk ∪
{
s∗ck
}
∪
{
s∗xk∗

}
, and set k = k + 1.

8) Continue.

• End while

Algorithm 3.1 ends if a feasible point or an optimal solution to (CSIP) is attained.
In the case of feasible = true (and stop = false) the algorithm outputs x∗feas =

xkfeas, a feasible point to (CSIP) and x∗disc = xkdisc, the solution (not feasible to

(CSIP)) of the discretized optimization problem P([Sk]). In the case of stop = true
the algorithm outputs x∗disc = xkdisc as an optimal solution to (CSIP), since we have
a solution to P([Sk]) that is feasible to (CSIP) or, by chance, a central point is
optimal do (CSIP) (controlled by the upper and lower bounds on f). As additional
output of the algorithm we have Lf = Lfk and Uf = Ufk, representing lower and
upper bounds on f , respectively.

Proposition 3.1: Convergence of Algorithm 3.1. Under the assumption of Ω
to be a bounded compact set with non empty interior and given ρ big enough,
Algorithm 3.1 generates a sequence of sets Tk such that Tk ⊃ Tk+1 ⊃ · · · ⊃ Ω, ∀k,
where Ω is the feasible set of problem (CSIP). Hence, there exists an iteration k0,
such that the center ck0 of Tk0 is feasible.

Proof : The results follows trivially by noting that Sk ⊂ Sk+1 whenever ck is not
feasible. The ρ radius is necessary to prevent problems (7) to be unbounded and ρ
big enough is requested so problems (7) includes all (CSIP) feasible points in the
feasible region, i.e., Tk ⊃ Ω, ∀k. �

Remark 3.1 :
Algorithm 3.1 can also be used for solving (CSIP), provided that the stopping

criteria is changed to ignore the feasibility test. Such an algorithm differs from the
standard discretization scheme due to steps 1, 2, 3, and 6, which consists in finding
a feasible point to (CSIP) and the upper bound on f∗.

3.2. Improving upper bounds: finding a better feasible point of (CSIP) from
a feasible point.

In this section we develop a scheme to compute a better (with lower objective
function value) feasible point for (CSIP). Algorithm 3.1 allows us to assume that we

June 7, 2013 Submitted sipconvex

Submitted 11

have x∗feas, a feasible point to (CSIP), and x∗disc, an optimal point to the discretized

optimization problem P([S∗]). As previously stated, x∗disc is not feasible to (CSIP),
otherwise we would be in the presence of an optimal point to (CSIP), and all the
optimization process could be stopped.

Clearly we have LB∗x∗
feas
≥ 0, since x∗feas is feasible to (CSIP), and LB∗x∗

disc
< 0,

since x∗disc is not feasible to (CSIP).
The following result establishes a way to obtain a feasible point whose objective

function value is lower than for x∗disc.

Proposition 3.2: Let x∗feas be a feasible point of (CSIP) and x∗disc be an optimal

solution of the discretized problem P[S∗], which is not feasible for (CSIP). Let
LB∗x∗

feas
≥ 0 and LB∗x∗

disc
< 0 be the lower bounds of γx∗

feas
and γx∗

disc
, respectively,

obtained at the end of Algorithm 2.1, while checking for the feasibility of x∗feas and
x∗disc. Let

µ =
−LB∗x∗

disc

−LB∗x∗
disc

+ LB∗x∗
feas

. (8)

We have then,

i) The point x̂ = x∗disc + µ(x∗feas − x∗disc) = (1 − µ)x∗disc + µx∗feas is feasible for

(CSIP).

ii) Either x̂ is an optimal solution for (CSIP) or x̂ is a better feasible point than
x∗feas, i.e. f(x̂) < f(x∗feas).

Proof :

i) By construction we have that LB∗x∗
disc

< 0 and LB∗x∗
disc

≤ θx∗
disc

(s) =

−g(x∗disc, s), ∀s ∈ S. The same applies to LB∗x∗
feas

≥ 0 and LB∗x∗
feas

≤
θx∗

feas
(s) = −g(x∗feas, s), ∀s ∈ S.

Using the convexity of g, in the variable x, we have

g(x̂, s) = g((1− µ)x∗disc + µx∗feas, s) ≤ (1− µ)g(x∗disc, s) + µg(x∗feas, s) (9)

≤ (1− µ) (−LB∗x∗
disc

) + µ(−LB∗x∗
feas

) (10)

= µ(LB∗x∗
disc
− LB∗x∗

feas
)− LB∗x∗

disc
= 0, (11)

getting that x̂ is feasible for (CSIP).

ii) We will argue by contradiction. Suppose that we have f(x̂) ≥ f(x∗feas).
Using f convexity, we have

f(x̂) = f((1− µ)x∗disc + µx∗feas) ≤ (1− µ)f(x∗disc) + µf(x∗feas).

Using f(x̂) ≥ f(x∗feas) it follows that

f(x̂) ≤ (1− µk)f(x∗disc) + µkf(x∗feas) ≤ (1− µ)f(x∗disc) + µf(x̂),

and therefore

f(x̂) ≤ f(x∗disc).

June 7, 2013 Submitted sipconvex

12 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

Noting that x̂ is feasible to (CSIP), x∗disc is infeasible to (CSIP), and f(x∗disc)
is a lower bound of f∗, the optimal value of (CSIP), we arrive to:
a) f(x̂) = f(x∗disc) and x̂ is optimal to (CSIP).

b) f(x̂) < f(x∗disc), a contradiction (noting that f(x∗disc) is a lower bound)

�

Remark 3.2 :
When q > 1 constraints are present the LB∗x∗

feas
and LB∗x∗

disc
in (8) are replaced

by the lowest lower bounds for all the q constraints. It is an easy exercise to show
that equations (9)-(11) are still valid for all gi, i = 1, . . . , q, constraints.

3.3. Lower bounding

Traditionally we get lower bounds of f∗ while solving the discretized problems.

4. The main algorithm

We are now in position to describe the main algorithm for (CSIP). The algorithm
takes advantage of Algorithm 2.1 to check for iterates feasibility (and to provide
a new point on S that violates the constraints). Algorithm 3.1 is used to obtain a
feasible point (and as a sub-product a point that is optimal to the discretized prob-
lem, but is not feasible to (CSIP)). From the two points obtained by Algorithm 3.1,
we proceed iteratively, by computing a feasible point with better objective func-
tion value, until an optimal point for (CSIP) is obtained. We consider the main
algorithm to be divided in two phases.

i) Phase 1: finding a feasible point for (CSIP) during the iterative discretization
scheme.

ii) Phase 2: finding an optimal point for (CSIP), using a procedure to find a better
feasible point during the iterative discretization scheme.

In both phases the adaptive branch and bound algorithm (Algorithm 2.1) is
used for checking the SIP feasibility. The main algorithm is terminated when the
current best upper bound and lower bound coincide or optimality is reached.

Algorithm 4.1: A two phase algorithm for (CSIP)

1) Initialization. Choose D0, a finite set of points in S, set k = 0 and stop =
false. Let x0 be a given initial guess.

2) Phase 1. Apply Algorithm 3.1 to find a feasible point xfeas and x0
disc, Uf, Lf ,

and S0. Get from Algorithm 2.1 (used in Algorithm 3.1) LB∗xfeas , LB
∗
x0
disc

and
sx0

disc
.

If we got a stop = true in Algorithm 3.1 then x∗ = x0
feas is an optimal

solution to (CSIP) and stop.
Set Sk+1 = Sk ∪ {sxkdisc} and k = k + 1.

3) Phase 2. Improve upper and lower bounds on f .

While not stop do

a) Set x̂k = xkdisc +
−LB∗

xk
disc

−LB∗
xk
disc

+LB∗
xfeas

(xfeas − xkdisc), Ufk+1 = Ufk and Lfk+1 =

Lfk.
If f(x̂k) < Ufk then set Ufk+1 = f(x̂k) and xbest = x̂k.

June 7, 2013 Submitted sipconvex

Submitted 13

b) If Ufk+1 − Lfk+1 ≤ ε then set stop = true and x∗ = xbest, an optimal
solution to (CSIP). Stop the algorithm.

c) Solve the discretized problem P[Sk] to get an optimal solution xk+1
disc .

d) Apply Algorithm 2.1 to check xk+1
disc feasibility. Get also sxk+1

disc
and LB∗

xk+1
disc

.

If xk+1
disc is feasible then set stop = true, Ufk+1 = Lfk+1 = f(xk+1

disc), x
∗ =

xk+1
disc , and stop the algorithm. Else set Lfk+1 = f(xk+1

disc).

e) Set Sk+1 = Sk ∪
{
sxk+1

disc

}
and k = k + 1.

End while

Algorithm 4.1 outputs x∗, an optimal solution to (CSIP).

Theorem 4.1 : (Convergence theorem.) The two phase algorithm generates a se-
quence of points {xkdisc} and two sequences of values {Ufk} and {Lfk} such that

i) The sequence {Ufk} is decreasing and the sequence {Lfk} is increasing.

ii) Either there is an iteration k∗ such that Ufk∗ = Lfk∗ (getting an optimal
solution for (CSIP)) or

lim
k→+∞

(Ufk − Lfk) = 0.

In the last case any accumulation point of {xkdisc} solves the problem (CSIP).

Proof :

i) This result is immediate from the construction of Ufk and Lfk.

ii) If there is an iteration k∗ such that Ufk∗ = Lfk∗ , then x∗ is an optimal solution
to (CSIP).

Just recall that if
{
xkdisc

}
, for some k, is feasible for (CSIP) then it would

also be optimal. Therefore we have that all points in the sequence
{
xkdisc

}
are

not feasible for (CSIP), i.e. LB∗
xkdisc

< 0, ∀k.

Considering that µk =
−LB∗

xk
disc

−LB∗
xk
disc

+LB∗
xfeas

, we have that

Ufk − Lfk = f(xbest)− f(xkdisc)

≤ f(x̂k)− f(xkdisc)

= f(xkdisc + µk(xfeas − xkdisc))− f(xkdisc)

≤ µkf(xfeas) + (1− µk)f(xkdisc)− f(xkdisc)

= µk(f(xfeas)− f(xkdisc)).

Since limk→+∞−LB∗xkdisc = 0 we have that limk→+∞ µk = 0 and therefore

limk→+∞(Ufk − Lfk) = 0.

�

June 7, 2013 Submitted sipconvex

14 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

5. Numerical experiments

5.1. Implementation details

We choose to implement Algorithm 4.1 using MATLAB [24]. While other, more ef-
ficient (w.r.t. CPU time), platform could be selected (e.g. using the C programming
language), we choose to provide a more simple and widely available implementa-
tion in a high level programming language. We also choose to provide a general
implementation of our proposed algorithm. An implementation for a given SIP
optimization problem may lead to a somehow more efficient implementation. For
example, estimates of K are difficult to obtain for a generic problem while they
can be analytically obtained for the majority of the problems in our test set.

The first practical issue is the computation of K, where ‖Hθ(s)‖∞ ≤ K, ∀s ∈ S,
for a given x, requested by the underestimator function LBθ(s). We choose to
initialize K to be the maximum value of the Hessian infinite norm at all the vertices
that define the feasible region and K ≥ 1, i.e.,

K = max

{
max
s∈V (S)

‖Hθ(s)‖, 1
}
.

The value of K is then updated whenever new Hessian values are available during
the B&B procedure. When K is updated all the B&B procedure has to restart (as
some sets may have been erroneously removed from the set M in Algorithm 2.1).
A more sophisticated algorithm could be used to estimate K, as the one reported
in [32] based on interval analysis.

Another implementation detail is related with Algorithm 3.1 initial set S0. As
stated in Remark 3.1, steps 1, 2, and 3 are not crucial for the convergence of
Algorithm 3.1 and, consequently, for the Algorithm 4.1 convergence. Not being
able to obtain a feasible ck will drive Algorithm 3.1. Nevertheless, not being able
to obtain a feasible ck and to compute an xk∗, ∀k, would lead Algorithm 3.1 to an
infinite cycle. Therefore, the set S0 is dynamically computed as described in the
following algorithm, in the hope to obtain a suitable initial set S0.

Algorithm 5.1:

(1) Set h̄0
i = (βi − αi)/nh, i = 1, . . . ,m, and set S0

0 to be an equally spaced
grid of points of step size h̄0. Let r = 0.

(2) While P ([Sr0]) is unbounded then set h̄r+1 = h̄r/2 and r = r + 1.

The radius ρ is set to max(‖xkdisc‖, 10) in Algorithm 3.1, and the default value
for nh is 8.

While Algorithm 2.1 is not designed to provided a good lower bound on θ(s)
when a feasible x is provided, LBx∗

feas
plays an important role in Algorithm 4.1.

Algorithm 2.1 is forced to perform at least two interval subdivisions in order to
provide an acceptable lower bound when x is feasible.

In order to keep the B&B algorithm manageable in time and computationally
affordable a branch of a set when hi < 0.01× 10m−1, i = 1, . . . ,m, is not allowed.

In spite off all the optimization subproblems considered are convex, due to our
convexity assumptions on the CSIP problem, we choose to use the MATLAB
fmincon solver. While efficient algorithm exist for convex optimization (e.g. [5])
we choose to make our implementation independent of other third party software.

The implemented solver is publicly available at www.norg.uminho.pt/aivaz/

csip.html.

June 7, 2013 Submitted sipconvex

Submitted 15

Table 1. Test problems. ’Problem’ is the problem name, n is the number of finite vari-

ables, m is the number of infinite variables, and q is the number of infinite constraints.

Problem n m q Problem n m q Problem n m q

andreson1 3 2 1 leon1 4 1 2 lin1 6 2 1
coopeN 2 1 1 leon2 6 1 2 liu1 2 1 1
fang1 50 1 1 leon3 6 1 2 liu2 2 1 1
fang2 50 1 1 leon4 7 1 2 liu3 16 1 2
fang3 50 1 1 leon5 8 1 2 polak1 4 2 2
ferris1 7 1 2 leon6 5 1 2 powell1 2 1 1
ferris2 7 1 1 leon7 5 1 2 priceK 2 1 1
goerner4 7 2 2 leon8 7 1 2 reemtsen1 11 3 2
goerner5 7 2 2 leon9 7 1 2 reemtsen2 10 2 2
goerner6 16 2 2 leon10 3 1 2 reemtsen3 10 2 2
hettich2 3 1 2 leon11 3 1 2 reemtsen4 37 2 2
hettich4 2 1 2 leon12 2 1 1 reemtsen5 11 3 2
hettich5 3 2 2 leon13 2 1 1 still1 2 1 1
hettich6 7 2 2 leon14 2 1 1 watson1 2 1 1
hettich7 7 2 2 leon15 2 1 1 watson3 3 1 1
hettich8 5 1 2 leon16 3 1 1 watson4a 3 1 1
hettich9 11 2 2 leon17 3 1 1 watson4b 6 1 1
hettich10 2 1 2 leon18 2 1 1 watson4c 8 1 1
hettich12 16 2 2 leon19 5 1 1 watson5 3 1 1
hettich13 2 2 1 leon20 2 1 1 watson6 2 1 1
hettich14∗ 2 2 1 leon21 2 1 2 watson7 3 2 1
kortanek1 2 1 1 leon22 2 1 1 watson8 6 2 1
kortanek2 2 2 1 leon23 3 1 4 watson9 6 2 1
kortanek3 7 1 1 leon24 4 1 5 zhou1 2 1 1
kortanek4 8 1 1

∗This problem has an additional finite constraint.

5.2. Test problems

We tested our implementation on 73 differentiable convex test problems from the
test set available in SIPAMPL [38] that match our assumptions. The test set is
reported in Table 1, where ‘Problem’ is the problem name under the SIPAMPL. The
problems mathematical formulation can be obtained from the references in [38] or
by downloading our own database from www.norg.uminho.pt/aivaz/csip.html.

SIPAMPL provides an interface between AMPL [21] and MATLAB, which is used
in our implementation. AMPL provides automatic differentiation (first and second
derivatives for the objective and constraints), allowing a fast and efficient coding
of optimization problems. AMPL also provides a presolver phase which attempts
to transform the problem into an equivalent one that is smaller and easier to solve.

Whenever possible we use the initial guess provided by (SIP)AMPL (proposed in
the papers where the problems were first published). Please note that our proposed
algorithm does not request a feasible initial guess. For problems that do not have
an initial guess we just start with a vector of ones, i.e. x0 = (1, . . . , 1)T .

5.3. Numerical results

In the absent of a solver that addresses all the problems proposed herein we just
report our numerical results with a compare between the obtained objective func-
tion values against the previously reported (also available in the publicly available
problem mathematical formulation as described in Section 5.2), whenever they
are available. See [32] for a generalized semi-infinite programming solver, where a
design centering problem is address.

The tolerance ε is chosen to be ε = 10−6, both for feasibility and for optimality.
We report the numerical results in Table 2 obtained with an 8 GB memory lap-

top Intel(R) Core(TM) i7 CPU running a Windows 7 operative system. We report
for each problem the number of iterations in phase one (iterations performed in
Algorithm 2.1), the number of iterations in phase two (iterations performed in Al-

June 7, 2013 Submitted sipconvex

16 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

gorithm 3.1), the CPU time taken to obtain the solution, and the objective function
value attained at the reported solution. CPU time is merely given as an indication
of running times, since these times are computer load and programming language
dependent. An efficient C programming language implementation can significantly
reduce the presented figures. To allow a comparison we include the objective func-
tion value previously reported by other authors, whenever they are available. These
objective function values where obtained under several types of methods for SIP,
where an infeasible point may be obtained. Higher objective function values are
possible for our implementation as the proposed method enforces feasibility (until
a accuracy of ε = 10−6).

A further analysis and explanation of the results in Table 2 are now in order.
For the test problems considered, our implementation takes on average one it-

eration on phase one and 3 iterations on phase two to reach an optimal solution.
The average CPU time is 3.73 seconds.

For the majority of the test problems (more than 60%) we achieved an absolute
value of the difference between our obtained objective function and the previous
reported objective function value (reported on column ‘Diff.’) lower than 10−4.
We have a maximum of 1,328612E-01 in ‘Diff.’. We get an exact match (for the
provided accuracy) between objective function values for 7 problems.

For 60 problems only one iteration on phase one is performed, meaning that a
feasible or optimal point is immediately obtained. From these, 42 problems need to
enter phase two, where the phase one obtained feasible point is driven to optimality.
For 18 problems we get an optimal solution in one iteration of phase one.

A feasible point in not obtained in phase one until optimality is reached for 10
problems (phase two is not entered and more than one iteration is performed in
phase one), confirming in practice Remark 3.1.

Finally, from Table 2 we can conclude that the implementation of Algorithm 4.1
solved all the test problems in the SIPAMPL database that matched our assump-
tions, proving its robustness in getting a CSIP solution.

6. Conclusion

In this paper we propose and implement an exchange type algorithm for convex
semi-infinite programming problems (CSIP). By assuming differentiability of the
considered problem we are able to prove convergence of the proposed algorithm to a
CSIP optimal point. The algorithm considers two phases. The first one is devoted
to obtain a feasible point for CSIP. The second phase uses a strategy based on
a feasible point and on an optimal point (not feasible to CSIP) for a discretized
optimization problem in order to drive a sequence of iterates to CSIP optimality. A
B&B algorithm is used to check the CSIP feasibility of a given point and another
B&B algorithm is used in the second phase in order to obtain a CSIP optimal
point.

We implemented the proposed algorithm in MATLAB and we provide extensive
numerical results with a set of 73 test problems from the SIPAMPL database.
Numerical results allows us to conclude that the proposed solver is robust (always
getting a CSIP solution) and we provide directions on how to obtain a more efficient
implementation.

As future work we plan to extend the proposed algorithm for non-convex SIP
optimization problems.

June 7, 2013 Submitted sipconvex

Submitted 17

Table 2. Numerical results.

Phase 1 Phase 2 CPU Reported [38]
Problem Iter. Iter. (seconds) f(x∗) f(x∗) Diff.

andreson1 7 0 7.11 -3.333333E-01 -3.333333E-01 3.333333E-08
coopeN 1 0 1.19 -9.434727E-09 0.000000E+00 9.434727E-09
fang1 1 2 21.73 4.794255E-01 4.792677E-01 1.578200E-04
fang2 1 6 23.07 6.931482E-01 6.931481E-01 1.500000E-07
fang3 1 1 21.28 1.718282E+00 1.718536E+00 2.544600E-04
ferris1 1 5 5.99 4.881276E-04 4.880000E-04 1.276000E-07
ferris2 1 23 7.46 -1.785873E+00 -1.786880E+00 1.007000E-03
goerner4 1 2 8.25 5.331155E-02 5.332400E-02 1.245000E-05
goerner5 1 16 22.00 2.720494E-02 2.727500E-02 7.006000E-05
goerner6 1 9 46.58 1.082269E-03 1.077000E-03 5.269000E-06
hettich2 7 0 2.68 5.382455E-01 5.380000E-01 2.455000E-04

hettich4 1 0 0.36 1.000000E+00 (1)

hettich5 6 0 119.95 5.382415E-01 5.380000E-01 2.415000E-04
hettich6 1 8 55.04 2.805990E-02 2.810000E-02 4.010000E-05
hettich7 1 4 49.76 1.776457E-01 1.780000E-01 3.543000E-04

hettich8 1 3 2.29 5.643852E-03 (2)

hettich9 1 12 84.65 3.468757E-03 3.470000E-03 1.243000E-06

hettich10 1 0 0.28 1.000000E+00 (2)

hettich12 1 22 78.44 1.154055E-03 (2)

hettich13 2 26 10.31 -2.236286E+00 (2)

hettich14∗ 1 14 3.82 -2.121382E+00 (2)

kortanek1 1 6 48.02 3.221170E+00 3.221175E+00 5.040000E-06
kortanek2 1 0 1.11 6.862915E-01 5.857864E-01 1.005051E-01
kortanek3 1 0 1.50 2.169838E-04 1.470768E-02 1.449070E-02
kortanek4 1 3 26.66 2.712498E-05 5.208333E-03 5.181208E-03
leon1 1 2 1.29 4.505040E-03 4.505000E-03 4.000000E-08
leon2 1 2 11.11 4.178053E-05 4.188000E-05 9.947000E-08
leon3 1 6 5.12 5.217055E-04 5.219000E-04 1.945000E-07
leon4 1 14 13.81 2.602607E-03 2.602800E-03 1.930000E-07
leon5 1 36 47.22 1.425647E-02 1.425650E-02 3.000000E-08
leon6 1 3 4.12 1.552448E-04 1.554000E-04 1.552000E-07
leon7 1 6 4.37 2.099721E-03 2.099700E-03 2.100000E-08
leon8 1 20 21.39 5.422198E-02 5.422210E-02 1.200000E-07
leon9 1 19 16.96 1.633809E-01 1.633810E-01 1.000000E-07
leon10 7 0 2.65 5.382455E-01 5.382453E-01 1.820000E-07
leon11 2 0 1.28 4.841439E-02 4.841440E-02 1.000000E-08
leon12 1 5 0.55 -9.999997E-01 -1.000000E+00 3.000000E-07
leon13 1 11 1.26 2.360679E-01 2.360680E-01 7.749979E-08
leon14 2 12 1.40 6.666670E-01 6.666666E-01 4.000000E-07
leon15 1 7 0.95 -6.666667E-01 -6.666667E-01 3.333333E-08
leon16 1 0 0.22 1.859141E+00 1.726280E+00 1.328612E-01
leon17 1 0 0.19 -2.000000E+00 -2.000000E+00 0.000000E+00

leon18 18 0 3.63 -1.750000E+00 (2)

leon19 1 12 2.12 7.858409E-01 (2)

leon20 3 1 1.68 3.238012E-01 3.238015E-01 3.000000E-07
leon21 4 0 3.73 -9.966068E+01 -9.966067E+01 8.000000E-06
leon22 1 3 0.59 -1.047214E+01 -1.047214E+01 4.040000E-06
leon23 1 0 0.51 -3.085714E+01 -3.085714E+01 2.000000E-06

leon24 1 0 1.54 -1.199868E+01 (2)

lin1 1 45 29.80 -1.824437E+00 (2)

liu1 1 0 0.19 -4.653846E+00 -4.653850E+00 4.000000E-06
liu2 8 0 2.23 -3.363442E+00 -3.363500E+00 5.800000E-05
liu3 7 0 27.36 1.541178E+02 1.541176E+02 2.200000E-04

polak1 1 18 32.93 5.443703E+00 (2)

powell1 1 6 0.92 -1.000000E+00 -1.000000E+00 0.000000E+00
priceK 1 3 0.51 -3.000000E+00 -3.000000E+00 0.000000E+00
reemtsen1 1 0 126.89 1.516059E-01 1.524860E-01 8.801000E-04
reemtsen2 1 8 101.45 5.833739E-02 5.835897E-02 2.158000E-05
reemtsen3 1 19 166.33 7.348724E-01 7.354679E-01 5.955000E-04
reemtsen4 1 52 451.09 2.090823E-04 1.140057E-02 1.119149E-02
reemtsen5 1 0 145.13 8.867492E-02 8.893175E-02 2.568300E-04
still1 1 0 0.39 1.000000E+00 1.000000E+00 0.000000E+00
watson1 1 0 0.22 -2.500016E-01 -2.500000E-01 1.600000E-06
watson3 1 0 0.53 5.334687E+00 5.334690E+00 3.000000E-06
watson4a 1 11 1.78 6.490420E-01 6.490420E-01 0.000000E+00
watson4b 1 10 2.22 6.160851E-01 6.168760E-01 7.909000E-04
watson4c 1 7 2.82 6.156891E-01 6.166070E-01 9.179000E-04
watson5 1 5 0.84 4.301184E+00 4.301191E+00 7.000000E-06
watson6 1 0 0.41 9.715891E+01 9.715890E+01 1.000000E-05
watson7 1 0 1.23 1.000000E+00 1.000000E+00 0.000000E+00
watson8 1 20 21.89 2.435598E+00 2.435644E+00 4.600000E-05
watson9 1 0 16.44 -1.200000E+01 -1.200000E+01 0.000000E+00
zhou1 14 0 3.09 1.783937E-01 2.360538E-01 5.766011E-02

(1)Infinite number of solutions with objective function values in the set [0.75, 1].

(2)Objective function value not available at the SIPAMPL problems database.

June 7, 2013 Submitted sipconvex

18 REFERENCES

Acknowledgements

The first author acknowledges the support from the FEDER of Lorraine under
the project INNOMAD. The third author acknowledges the support from the
FEDER under COMPETE program, by FCT under project FCOMP-01-0124-
FEDER-022674, and from the University of Lorraine. This work was partially done
under a visit to the University of Lorraine, France.

References

[1] M.G. Anthony and A.J. Kearsley. Optimal signal sets for non-gaussian detectors. SIAM J.
Optim., 9:316–326, 1997.

[2] K.P. Bennett and E. Parrado-Hernández. The interplay of optimization and machine learning
research. J. Mach. Learn. Res., 7:1265–1281, 2006.

[3] B. Bhattacharjee, W.H. Green, and P. Barton. Interval methods for semi-infinite programs.
Comput. Optim. Appl., 30:63–93, 2005.

[4] B. Bhattacharjee, P. Lemonidis, W.H. Green Jr., and P.I. Barton. Global solution of semi-
infinite programs. Math. Program., 103:283–307, 2005.

[5] Inc. CVX Research. CVX: Matlab software for disciplined convex programming, version 2.0
beta. http://cvxr.com/cvx, 2012.

[6] C. de Boor. A Practical Guide to Splines, revised edition, volume 27 of Applied Mathematical
Sciences. Springer-Verlag, 2001.

[7] C.A. Floudas and O. Stein. The adaptive convexification algorithm: A feasible point method
for semi-infinite programming. SIAM J. Optim., 18:1187–1208, 2007.

[8] M.A. Goberna and M.A. Lopez, editors. Semi-infinite programming: recent advances, vol-
ume 57 of Nonconvex Optimization and Its Applications. Kluwer, 2001.

[9] C.E. Gounaris and C.A. Floudas. Tight convex underestimators for C-2-continuous problems:
I. univariate functions. Journal of Global Optimization, 42:51–67, 2008.

[10] C.E. Gounaris and C.A. Floudas. Tight convex underestimators for C-2-continuous problems:
IU. multivariate functions. J. Global Optim., 42:69–89, 2008.

[11] E. Haaren-Retagne. A Semi-Infinite Programming Algorithm for Robot Trajectory Planning.
PhD thesis, University of Trier, 1992.

[12] R. Hettich and K. Kortanek. Semi-infinite programming: Theory, methods and applications.
SIAM Rev., 35:380–429, 1993.

[13] H. Konno and A. Wijayanayake. Portfolio optimization under dc transaction costs and
minimal transaction unit constraints. J. Global Optim., 22:137–154, 2002.

[14] C.T. Lawrence. A Computationally Efficient Feasible Sequencial Quadratic Programming
Algorithm. PhD thesis, Institute for Systems Research, 1998.

[15] H.A. Le Thi and M. Ouanes. Convex quadratic underestimation and branch and bound for
univariate global optimization with one nonconvex constraint. RAIRO Oper. Res., 40:285–
302, 2006.

[16] H.A. Le Thi, M. Ouanes, and T.P. Nguyen. A branch and bound method for multivari-
ate global optimization with box constraints. In Proceedings du colloque International sur
l’Optimisation et les Systèmes d’Information COSI’06, pages 325–336, Alger, June 11-13
2006.

[17] H.A. Le Thi and T. Pham Dinh. Solving a class of linearly constrained indefinite quadratic
problems by D.C. algorithms. J. Global Optim., 11:253–285, 1997.

[18] E. Levitin and R. Tichatschke. A branch-and-bound approach for solving a class of generalized
semi-infinite programming problems. J. Global Optim., 13:299–315, 1998.

[19] Y. Li and D. Wang. A semi-infinite programming model for earliness/tardiness production
planning with simulated annealing. Math. Comput. Modelling, 26:35–42, 1997.

[20] Y. Liu, S. Ito, H.W.J. Lee, and K.L. Teo. Semi-infinite programming approach to
continuously-constrained linear-quadratic optimal control problems. J. Optim. Theory Appl.,
108(3):617–632, 2001.

[21] AMPL Optimization LLC. AMPL: A modeling language for mathematical programming.
http://www.ampl.com, 2012.

[22] C.G. Lo Bianco and A. Piazzi. A hybrid algorithm for infinitely constrained optimization.
Internat. J. Systems Sci., 32:91–102, 2001.

[23] S.P. Marin. Optimal parametrization of curves for robot trajectory design. IEEE Trans.

June 7, 2013 Submitted sipconvex

Optimization 19

Automat. Control, 33:209–214, 1988.
[24] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts, 2010.
[25] A. Mitsos. Global optimization of semi-infinite programs via restriction of the right-hand

side. Optimization, 60:1291–1308, 2011.
[26] A. Mitsos, P. Lemonidis, C.K. Lee, and P.I. Barton. Relaxation-based bounds for semi-infinite

programs. SIAM J. Optim., 19:77–113, 2008.
[27] T.Q. Phong, H.A. Le Thi, and P. Dinh Tao. On globally solving linearly constrained indefinite

quadratic minimization problems by decomposition branch and bound method. RAIRO Oper.
Res., 30:31–49, 1996.

[28] R. Reemsten and S. Gorner. Numerical methods for semi-infinite programming: A survey. In
R. Reemsten and J. Ruckmann, editors, Semi-infinite Programming, volume 25 of Nonconvex
Optimization and Its Applications, pages 195–275, Dordrecht, Netherlands, 1998. Kluwer
Academic Publishers.

[29] R. Reemtsen and J.-J. Rückmann, editors. Semi-infinite programming, volume 25 of Non-
convex Optimization and Its Applications, Dordrecht, Netherlands, 1998. Kluwer Academic
Publishers.

[30] H.S. Ryoo and N.V. Sahinidis. A branch-and-reduce approach to global optimization. J.
Global Optim., 8:107–138, 1996.

[31] O. Stein. How to solve a semi-infinite optimization problem. European J. Oper. Res., 223:312–
320, 2012.

[32] O. Stein and P. Steuermann. The adaptive convexification algorithm for semi-infinite pro-
gramming with arbitrary index sets. Math. Program., 136:183–207, 2012.

[33] O. Stein and A. Winterfeld. Feasible method for generalized semi-infinite programming. J.
Optim. Theory Appl., 146:419–443, 2010.

[34] G. Still. Discretization in semi-infinite programming: the rate of the convergence. Math.
Program., 91:53–69, 2001.

[35] M. Tawarmalani and N.V. Sahinidis. Convexification and Global Optimization in Continuous
and Mixed-Integer Nonlinear Programming, volume 65 of Nonconvex Optimization and its
Applications. Kluwer Academic Publishers, Boston, 2002.

[36] M. Tawarmalani and N.V. Sahinidis. A polyhedral branch-and-cut approach to global opti-
mization. Math. Program., 103:225–249, 2005.

[37] A.I.F. Vaz, E.M.G.P. Fernandes, and M.P.S.F. Gomes. Robot trajectory planning with semi-
infinite programming. European J. Oper. Res., 153:607–617, 2004.

[38] A.I.F. Vaz, E.M.G.P. Fernandes, and M.P.S.F. Gomes. SIPAMPL: Semi-infinite programming
with AMPL. ACM Trans. Math. Software, 30:47–61, 2004.

[39] O. von Stryk and M. Schlemmer. Computational optimal control. volume 115 of International
Series of Numerical Mathematics, chapter Optimal control of the industrial robot manutec
R3, pages 367–382. Birkhauser Verlag, 1994.

[40] D. Wang and S.-C. Fang. A semi-infinite programming model for earliness/tardiness produc-
tion planning with a genetic algorithm. Comput. Math. Appl., 31:95–106, 1996.

[41] L. Zhang, S. Wu, and M. Lopez. A new exchange method for convex semi-infinite program-
ming. SIAM Journal on Optimization, 20:2959–2977, 2010.

Appendix A. Theoretical results from [16]

We provide in this section some results from [16] related with the underestimating
function LBθ(s) for the multidimensional case and with the convergence of the B&B
Algorithm 2.1.

A.1. A multidimensional convex underestimator

Theorem A.1 : (Theorem 1 in [16]) Let S be the bound and closed set defined by
a product of intervals Πm

i=1[s0
i , s

1
i], whose vertex set is denoted by V (S). Let LBθ(s)

be the multidimensional function defined in (6).

i) The functions LBθ(s) and θ(s) agree for all vertices v ∈ V (S).

June 7, 2013 Submitted sipconvex

20 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

ii) LBθ(s) is a minorization of θ(s) on S, i.e. LBθ(s) ≤ θ(s), ∀s ∈ S, if

K ≥ max
s∈S

max
i=1,...,m

|θ′′sisi(s)|.

Proof :

i) By definition we have

LBθ(s) =
1∑

im=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im
m)wi11 (s1)

)
. . .

)
wimm (sm)

− 1

2
K

(
m∑
i=1

(si − s0
i)(s

1
i − si)

)
. (A1)

Let v = (sυ1

1 , . . . , s
υm
m), υi ∈ {0, 1}, i = 1, . . . ,m be a vertex of S, i.e.

v ∈ V (S). We have

LBθ(sυ11 ,...,sυmm) =

1∑
im=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im
m)wi11 (sυ1

1)

)
. . .

)
wimm (sυmm)

− 1

2
K

(
m∑
i=1

(sυii − s
0
i)(s

1
i − s

υi
i)

)
. (A2)

Clearly,

1

2
K

(
m∑
i=1

(sυii − s
0
i)(s

1
i − s

υi
i)

)
= 0, (A3)

since υi ∈ {0, 1}, i = 1, . . . ,m, which makes each term in the sum to be zero.

Considering the definition of w
ij
j (s), ij ∈ {0, 1}, j = 1, . . . ,m, it follows that

w0
j (s

0
j) = w1

j (s
1
j) = 1 and w0

j (s
1
j) = w1

j (s
0
j) = 0, j = 1, . . . ,m.

Therefore, noting that each w
ij
j (s

υj
j), j = 1, . . . ,m, is zero (when ij 6= υj) or

one (when ij = υj) it follows that

1∑
i1=0

θ(si11 , . . . , s
im
m)wi11 (sυ1

1) = θ(sυ1

1 , s
i2
2 , . . . , s

im
m).

Using the same reasoning we obtain the following rule for each sum in the
left hand side of equation (A1),

1∑
ik=0

θ(sυ1

1 , . . . , s
υk−1

k−1 , s
ik
k , . . . , s

im
m)wikk (sυkk)

= θ(sυ1

1 , . . . , s
υk
k , s

ik+1

k+1, . . . , s
im
m), ∀k = 2, . . . ,m, (A4)

June 7, 2013 Submitted sipconvex

Optimization 21

noting that, when k = m, {simm , . . . , simm } degenerates in simm and

{sim+1

m+1, . . . , s
im
m } is an empty set of parameters.

Hence using (A3) and applying the results in (A4) to the sequence of sums
in (A2) we have LBθ(sυ11 ,...,sυmm) = θ(sυ1

1 , . . . , s
υm
m), getting the desired result.

ii) We start by computing an error bound between the function θ(s) and the left
hand side of equation (A1).

∣∣∣∣∣θ(s1, . . . , sm)−
1∑

im=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im
m)wi11 (s1)

)
. . .

)
wimm (sm)

∣∣∣∣∣ =

∣∣∣∣∣θ(s1, . . . , sm)−
1∑

i1=0

θ(si11 , s2, . . . , sm)wi11 (s1)+

(
1∑

i1=0

θ(si11 , s2, . . . , sm)wi11 (s1)−
1∑

i2=0

(
1∑

i1=0

θ(si11 , s
i2
2 , s3, . . . , sm)wi11 (s1)

)
wi22 (s2)

)
+

(
1∑

i2=0

(
1∑

i1=0

θ(si11 , s
i2
2 , s3, . . . , sm)wi11 (s1)

)
wi22 (s2)− . . .

)
+ · · ·+

 1∑
im−1=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im−1

m−1, sm)wi11 (s1)

)
. . .

)
wim−1
m (sm−1)−

1∑
im=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im
m)wi11 (s1)

)
. . .

)
wimm (sm)

)∣∣∣∣∣ ≤

∣∣∣∣∣θ(s1, . . . , sm)−
1∑

i1=0

θ(si11 , s2, . . . , sm)wi11 (s1)

∣∣∣∣∣+∣∣∣∣∣
1∑

i1=0

θ(si11 , s2, . . . , sm)wi11 (s1)−
1∑

i2=0

(
1∑

i1=0

θ(si11 , s
i2
2 , s3, . . . , sm)wi11 (s1)

)
wi22 (s2)

∣∣∣∣∣+∣∣∣∣∣
1∑

i2=0

(
1∑

i1=0

θ(si11 , s
i2
2 , s3, . . . , sm)wi11 (s1)

)
wi22 (s2)− . . .

∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣
1∑

im−1=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im−1

m−1, sm)wi11 (s1)

)
. . .

)
w
im−1

m−1(sm−1)−

1∑
im=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im
m)wi11 (s1)

)
. . .

)
wimm (sm)

∣∣∣∣∣

June 7, 2013 Submitted sipconvex

22 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

≤ 1

2
K1(s1−s0

1)(s1
1−s1)+

1

2
K2(s2−s0

2)(s1
2−s2)+· · ·+1

2
Km(sm−s0

m)(s1
m−sm)

≤ 1

2
K

m∑
i=1

(si − s0
i)(s

1
i − si),

where Ki ≥ |θ′′sisi(s)|, s ∈ S, i = 1, . . . ,m and K ≥ maxi=1,...,mKi.

The second to last inequality is obtained by a similar reasoning as in [16,
Theorem 2] proof. We provide a sketch of the proof for the first term in the
sum. The remaining terms are proved in a similar way and therefore we omit
the proof. Define the function φ1(s1) in the following way

φ1(s1) = θ(s1, s2, . . . , sm)−
1∑

i1=0

θ(si11 , s2, . . . , sm)wi11 (s1)+
1

2
K1(s1−s0

1)(s1
1−s1),

for a given constant K1. Noting that φ1(s1) is a concave one dimensional
function and by using a similar argument as in [16, Theorem 2] we get that
φ1(s1) ≥ 0 for s1 ∈ [s0

1, s
1
1], where K1 ≥ |θ′′s1s1(s)|, s ∈ S.

Using the provided error bound and the LBθ(s) definition allows to conclude
that LBθ(s) ≤ θ(s), ∀s ∈ S, where K ≥ maxi=1,...,m |θ′′sisi(s)|, s ∈ S.

�

As an immediate consequence of Theorem A.1 we have the following result.

Corollary A.2:

∣∣∣∣∣θ(s1, . . . , sm)−
1∑

im=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im
m)wi11 (s1)

)
. . .

)
wimm (sm)

∣∣∣∣∣
≤ 1

2
K
(
h2

1 + · · ·+ h2
m

)
where hi = s1

i − s0
i , i = 1, . . . ,m.

Proof : This results can be simple checked by noting that,

max
s∈S

(si − s0
i)(s

1
i − si) =

1

4
(s1
i − s0

i)
2 ≤ h2

i , i = 1, . . . ,m.

�

Theorem A.3 : (Theorem 2 in [16]) The function LBθ(s) is convex on S if

K ≥ max
s∈S

max
i=1,...,m

m∑
j=1,j 6=i

|θ′′sisj (s)|.

Proof : Let

Lθ(s1, . . . , sm) =
1∑

im=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im
m)wi11 (s1)

)
. . .

)
wimm (sm).

June 7, 2013 Submitted sipconvex

Optimization 23

We then express LBθ(s) in the form

LBθ(s) = Lθ(s1, . . . , sm)− 1

2
K

(
m∑
i=1

(si − s0
i)(s

1
i − si)

)

= Lθ(s1, . . . , sm) +
1

2
K

m∑
i=1

s2
i −

1

2
K

m∑
i=1

(
(s1
i + s0

i)si − s0
i s

1
i

)
.

Since the part

1

2
K

n∑
i=1

((s1
i + s0

i)si − s0
i s

1
i)

is linear, it suffices to prove that the function Φ(s), defined by

Φ(s1, . . . , sm) = Lθ(s1, . . . , sm) +
1

2
K

m∑
i=1

s2
i

is convex. This amounts to show that the Hessian matrix of Φ(s), denoted by HΦ(s),
is semi-definite positive.

From the definition of wji , j ∈ {0, 1}, it is easy to see that all elements (Lθ(s))′′sisi
are zero, for i = 1, . . . ,m. Hence, HΦ(s) takes the form

HΦ(s) =


K L12 L13 . . . L1n

L21 K L23 . . . L2n
...

...
Ln1 Ln2 Ln3 . . . K

 ,

where Lij = (Lθ(s1, . . . , sn))′′sisj is the second mixed derivative of Lθ(s) with re-
spect to the variables si and sj .

We will prove that HΦ(s) is semi-positive definite by using the sufficient condition
that HΦ(s) is diagonally dominant.

For a matter of simplicity of exposition we just provide the analytic formula for
L12, since the remaining values of Lij can be obtained in a similar way. We start
by providing the fist derivative of Lθ(s) with respect to s1.

(Lθ(s1, . . . , sm))′s1 =

(
1∑

im=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im
m)wi11 (s1)

)
. . .

)
wimm (sm)

)′
s1

=
1∑
im

(
. . .

(
1∑

i2=0

(
θ(s0

1, s
i2
2 , . . . , s

im
m)(w0

1(s1))′s1+

θ(s1
1, s

i2
2 , . . . , s

im
m)(w1

1(s1))′s1

)
wi22 (s2)

)
. . .

)
wimm (sm)

June 7, 2013 Submitted sipconvex

24 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

=
1∑
im

(
. . .

(
1∑

i2=0

(
θ(s0

1, s
i2
2 , . . . , s

in
n)

−1

s1
1 − s0

1

+

θ(s1
1, s

i2
2 , . . . , s

in
n)

1

s1
1 − s0

1

)
wi22 (s2)

)
. . .

)
wimm (sm)

=

1∑
im

(
. . .

(
1∑

i2=0

(
θ(s1

1, s
i2
2 , . . . , s

in
n)− θ(s0

1, s
i2
2 , . . . , s

in
n)

s1
1 − s0

1

)
wi22 (s2)

)
. . .

)
wimm (sm)

=

1∑
im

(
. . .

(
1∑

i2=0

(
θ′s1(ξ, s

i2
2 , . . . , s

in
n)
)
wi22 (s2)

)
. . .

)
wimm (sm),

with s0
1 < ξ < s1

1.
The second derivative, with respect to s2, can be computed in the following way.

(Lθ(s1, . . . , sm))′′s1s2 =

(
1∑

im=0

(
. . .

(
1∑

i2=0

(
θ′s1(ξ, s

i2
2 , . . . , s

in
n)
)
wi22 (s2)

)
. . .

)
wimm (sm)

)′
s2

=
1∑

im=0

(
. . .

(
1∑

i3=0

(
θ′s1(ξ, s

0
2, s

i3
3 , . . . , s

im
m)(w0

2(s2))′s2+

θ′s1(ξ, s
1
2, s

i3
3 , . . . , s

im
m)(w1

2(s2))′s2

)
wi33 (s3)

)
. . .

)
wimm (sm)

=

1∑
im=0

(
. . .

(
1∑

i3=0

(
θ′s1(ξ, s

0
2, s

i3
3 . . . , s

im
m)

−1

s1
2 − s0

2

+

θ′s1(ξ, s
1
2, s

i3
3 , . . . , s

im
m)

1

s1
2 − s0

2

)
wi33 (s3)

)
. . .

)
wimm (sm)

=
1∑

im=0

(
. . .

(
1∑

i3=0

(
θ′s1(ξ, s

1
2, s

i3
3 , . . . , s

im
m)− θ′s1(ξ, s

0
2, s

i3
3 , . . . , s

im
m)

s1
2 − s0

2

)
wi33 (s3)

)
. . .

)
wimm (sm)

=
1∑

im=0

(
. . .

(
1∑

i3=0

(
θ′′s1s2(ξ, η, s

i3
3 , . . . , s

im
m)
)
wi33 (s3)

)
. . .

)
wimm (sm)

June 7, 2013 Submitted sipconvex

Optimization 25

with s0
1 < ξ < s1

1 and s0
2 < η < s1

2.
Since w0

i (si) + w1
i (si) = 1 for all si ∈ [s0

i , s
1
i], i = 1, . . . ,m, we have

1∑
i3=0

θ′′s1s2(ξ, η, s
i3
3 , . . . , s

im
m)wi33 (s3) ≤ max

s3∈[s03,s
1
3]
θ′′s1s2(ξ, η, s3, s

i4
4 , . . . , s

im
m),

and therefore

1∑
im=0

(
. . .

(
1∑

i3=0

(
θ′′s1s2(ξ, η, s

i3
3 , . . . , s

im
m)
)
wi33 (s3)

)
. . .

)
wimm (sm)

≤ max
(s1,...,sm)∈S

θ′′s1s2(s1, . . . , sm).

Since Lθ′′s1s2(s) is a linear interpolator for each si, i = 1, . . . ,m, we conclude that∣∣Lθ′′s1s2(s1, . . . , sm)
∣∣ ≤ max

(s1,...,sm)∈S

∣∣θ′′s1s2(s1, . . . , sm)
∣∣ .

Likewise, for each pair i 6= j, i, j = 1, . . . ,m, we have

|Lθ′′sisj (s1, . . . , sm)| ≤ max
(s1,...,sm)∈S

|θ′′sisj (s1, . . . , sm)|.

Therefore, provided that

K ≥ max
s∈S

max
i=1,...,m

m∑
j=1,j 6=i

∣∣∣θ′′sisj (s)∣∣∣ ,
we have

K ≥ max
s∈S

max
i=1,...,m

m∑
j=1,j 6=i

∣∣∣Lθ′′sisj (s)∣∣∣ ,
making HΦ(s) to be diagonally dominant and consequently semi-definite positive.
�

Remark A1 : The inequality

K ≥ max
s∈S

max
i=1,...,m

m∑
j=1

∣∣∣(θ)′′sisj (s)∣∣∣ ,
i.e. K ≥ ‖Hθ(s)‖∞, implies that

K ≥ max
s∈S

m∑
i=1

∣∣(θx)′′sisi(s)
∣∣ ,

a sufficient condition for LBθ(s) to be a underestimator of θ(s) (see Theorem A.1)

June 7, 2013 Submitted sipconvex

26 Le Thi Hoai An, Mohand Ouanes, and A.I.F. Vaz

and

K ≥ max
s∈S

max
i=1,...,m

m∑
j=1,i 6=j

∣∣∣(θ)′′sisj (s)∣∣∣ ,
a sufficient condition for LBθ(s) to be convex on S.

A.2. Convergence of the B&B Algorithm 2.1

Theorem A.4 : (Theorem 4 in [16]) Either Algorithm 2.1 is finite or it generates
a bounded sequence {sl}, where every accumulation point is a global optimal solution
of (2), and

LBl ↗ γx, UBl ↘ γx.

Proof : For each iteration l let hli = s1,l
i − s0,l

i , for i = 1, . . . ,m, and Sl =

Πm
i=1

[
s0,l
i , s

1,l
i

]
. We have

min
ik∈{0,1},k=1,...,m

θ(si11 , . . . , s
im
m)− 1

2
K

((
hl1

)2
+ · · ·+

(
hlm

)2
)

≤ min
s∈Sl

(
1∑

im=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im
m)wi11 (s1)

)
. . .

)
wimm (sm)

−1

2
K

(
m∑
i=1

(si − s0,l
i)(s1,l

i − si)

))

≤ min
s∈Sl

θ(s1, . . . , sm).

Additionally let

LBl
1 = min

ik∈{0,1},k=1,...,m
θ(si11 , . . . , s

im
m)− 1

2
K

((
hl1

)2
+ · · ·+

(
hlm

)2
)
,

LBl = min
s∈S

(
1∑

im=0

(
. . .

(
1∑

i1=0

θ(si11 , . . . , s
im
m)wi11 (s1)

)
. . .

)
wimm (sm)

−1

2
K

(
m∑
i=1

(si − s0
i)(s

1
i − si)

))
,

and

UBl = min
ik∈{0,1},k=1,...,m

θ(si11 , . . . , s
im
m).

June 7, 2013 Submitted sipconvex

Optimization 27

Then we have

0 ≤ lim
l→∞

(
UBl − LBl

)
≤ lim

l→∞

(
UBl − LBl

1

)
≤ lim

l→∞
K

((
hl1

)2
+ · · ·+

(
hlm

)2
)

= 0,

which implies that liml→∞ UB
l − LBl = 0, since we have hli → 0, i = 1, . . . ,m, as

a consequence of the branching procedure.
Moreover, since sl ∈ S and UBl = θ(sl), any cluster point of the sequence {sl}

belongs to S and has the function value γx, i.e., it solves problem (2). �

