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Abstract

The `1-synthesis and `1-analysis models recover structured signals from their undersampled measure-

ments. The solution of the former model is often a sparse sum of dictionary atoms, and that of the

latter model often makes sparse correlations with dictionary atoms. This paper addresses the question:

when can we trust these models to recover specific signals? We answer the question with a necessary

and sufficient condition that guarantees the recovery to be unique and exact and that also guarantees

the recovery is robust in presence of measurement noise. The condition is one-for-all in the sense that

it applies to both of the `1-synthesis and `1-analysis models, and to both of their constrained and un-

constrained formulations. Furthermore, a convex infinity-norm program is introduced for numerically

verifying the condition. The comparison with related existing conditions are included.

Keywords: exact recovery, robust recovery, `1-analysis, `1-synthesis, sparse optimization, compressive

sensing

1 Introduction

Let x∗ ∈ Rn be a signal of interest. This paper studies when `1 minimization can uniquely and robustly

recover x∗ from its linear measurements

b = Φx∗ + w, (1)

where Φ ∈ Rm×n is a certain matrix and w ∈ Rm is noise. We focus on the compressive setting m ≤ n.

The results of this paper cover the following `1 minimization formulations:

minimize
x

‖ΨT x‖1, subject to Φx = b, (2a)

minimize
x

‖Φx − b‖2
2 + λ‖ΨT x‖1, (2b)

minimize
x

‖ΨT x‖1, subject to ‖Φx − b‖2 ≤ δ, (2c)

where δ, λ are positive parameters. When Ψ = Id, the identify matrix, models in (2) are referred to as the

`1 (or more generally, `1-synthesis) models. When Ψ 6= Id, they are referred to as the `1-analysis models

(see [6] for a recent overview).
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In synthesis models, the signal of interest is synthesized as x∗ = Dc, where D is a certain dictionary

and c has the sparse coefficients. The analysis model recently attracts a lot of attention. It is assumed in

[3, 14, 13] that the underlying signal makes sparse correlations with the columns (atoms) in a dictionary D̄,

i.e., D̄T x∗ is sparse. The signal recover model is (2b) with Ψ set to D̄.

For both synthesis and analysis models, one is interested in when the recovery is successful, that is,

the solution is unique and the solution error is proportional to the amount of noise. There are several non-

universal (applied to specific sparse signals) and universal (applied to all sparse signals) conditions addressing

questions in various forms for `1-synthesis minimization; examples include the non-universal dual certificate

condition [7] and the “RIPless” property [4], and universal conditions such as the restricted isometry principle

[2], the null space condition [5], the spherical section property [20], and others. Since `1-analysis minimization

takes a more general form than `1-synthesis minimization, some of the above conditions have been extended

to the analysis case; recent works [9, 18, 11, 16, 15, 12] have made significant contributions.

Regarding a specific signal x∗, this paper establishes a necessary and sufficient condition that guarantees

the unique solution of any model in (2) and also that the solutions of models (2b) and (2c) are robust to any

noise added to b. A method based on `∞ minimization that verifies the condition is presented. In addition,

the proposed condition is compared to other conditions in the literature, most of which are stronger than

ours and are thus sufficient but not necessary. Certain parts of our proofs are inspired by [1, 9, 10, 19].

Notation. We equip Rn with the canonical scalar product 〈∙, ∙〉 and Euclidean norm ‖ ∙ ‖2. We let | ∙ |

return the cardinality if the input is a set or the absolute value if the input is a number. For any x ∈ Rn,

supp(x) = {k : 1 ≤ k ≤ n, xk 6= 0} is the index set of the non-zero entries of x. sign(x) is the vector whose

ith entry is the sign of xi, taking a value among +1, −1, and 0. For any p ≥ 1, the `p-norm of x ∈ Rn is

‖x‖p =

(
n∑

i=1

|xi|
p

)1/p

,

its `0-“norm” is ‖x‖0 = |supp(x)|, and its `∞-norm is ‖x‖∞ = max{|xi| : i = 1, ∙ ∙ ∙ , n}. For x ∈ Rn and

I ⊂ {1, 2, ∙ ∙ ∙ , n}, xI denotes the vector formed by the entries xi of x for i ∈ I, and Ic is the complement of I.

Similarly, AI is the submatrix formed by the columns of A indexed by I. AT is the transpose of A. We use

AT
I for the transpose of submatrix AI , not a submatrix of AT . For square matrix A, λmax(A) and λmin(A)

denote its largest and smallest eigenvalues, respectively, Cond(A) denotes its condition number, and ‖A‖

denotes its spectral norm. The null and column spaces of A are denoted by Ker(A) and Im(A), respectively.

Outline. The rest of the paper is organized as follows. Section 2 states the main results of this paper.

Section 3 reviews several related results. Section 4 discusses condition verification. Proofs for the main

results are given in sections 5 and 6.

2 Main condition and results

2.1 Main condition

Condition 1. Given x̄ ∈ Rn, index sets I = supp(ΨT x̄) ⊂ {1, ∙ ∙ ∙ , l} and J = Ic satisfy

(1) Ker(ΨT
J )
⋂

Ker(Φ) = {0};

(2) There exists y ∈ Rl such that Ψy ∈ Im(ΦT ), yI = sign(ΨT
I x̄), and ‖yJ‖∞ < 1.

Part (1) of the condition says that there does not exist any nonzero Δx satisfying both ΨT
J x̄ = ΨT

J (x̄+Δx)

and Φx̄ = Φ(x̄+Δx). Otherwise, there exists a nonempty interval I = [x̄−αΔx, x̄+αΔx] for some sufficiently

small α > 0 so that Φx = Φx̄ and ‖ΨT x‖1 is linear for x ∈ I; hence x̄ cannot be the unique minimizer. Part
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(2) states the existence of a strictly-complementary dual certificate y. To see this, let us check a part of the

optimality conditions of (2a): 0 ∈ Ψ∂‖ ∙ ‖1(ΨT x) − ΦT β, where vector β is the Lagrangian multipliers; we

can rewrite the condition as 0 = Ψy − ΦT β, with y ∈ ∂‖ ∙ ‖1(ΨT x), which translates to yI = sign(ΨT
I x) and

‖yJ‖∞ ≤ 1. This y certifies the optimality of x̄. For solution uniqueness and/or robustness, we shall later

show that ‖yJ‖∞ < 1 strictly is needed.

A variant of Condition 1 is given as follows, which is equivalent to Condition 5 below from [9].

Condition 2. Given x̄ ∈ Rn, let I = supp(ΨT x̄). There exists a nonempty index set J ⊆ Ic such that the

index sets I, J and K = (I
⋃

J)c satisfy

(1) Ker(ΨT
J )
⋂

Ker(Φ) = {0};

(2) There exists y ∈ Rl such that Ψy ∈ Im(ΦT ), yI = sign(ΨT
I x̄), ‖yJ‖∞ < 1, and ‖yK‖∞ ≤ 1.

In Condition 2, a smaller J relaxes part (2) but gives a larger Ker(ΨT
J ) and thus tightens part (1).

Although Condition 2 allows a more flexible J than Condition 1, we shall show that they are equivalent.

2.2 Main results

Depending on the specific models in (2), we need the following assumptions:

Assumption 1. Matrix Φ has full row-rank.

Assumption 2. λmax(ΨΨT ) = 1.

Assumption 3. Matrix Ψ has full row-rank.

Assumptions 1 and 3 are standard. Assumption 2 is non-essential. We can scale a general Ψ by multiplying

it with 1√
λmax(ΨΨT )

. Below we state our main results, whose proofs are given in sections 5 and 6.

Theorem 1 (Uniqueness). Under Assumption 1, let x̂ be a solution to problem (2a) or (2b), or under

Assumptions 1 and 3, let x̂ be a solution to problem (2c). The followings are equivalent:

1) Solution x̂ is unique;

2) Condition 1 holds for x̄ = x̂;

3) Condition 2 holds for x̄ = x̂.

This theorem states that Conditions 1 and 2 are equivalent, and they are necessary and sufficient for a

solution x̂ to problem (2a), or to problem (2b), or to problem (2c) to be unique. To state our next result on

robustness, we let

r(J) := sup
u∈Ker(ΨT

J )\{0}

‖u‖2

‖Φu‖2
.

Part (1) of Condition 1 ensures that 0 < r(J) < +∞. If Ψ = I, then u ∈ Ker(ΨT
J )\{0} is a sparse nonzero

vector with maximal support Jc, so r(J) is the inverse of the minimal singular value of the submatrix ΦJc .

Below we claim Condition 1 ensures the robustness of problems (2b) and (2c) to arbitrary noise in b.

Theorem 2 (Robustness). Under Assumptions 1-3, given an original signal x∗ ∈ Rn, let I = supp(ΨT x∗)

and J = Ic. For arbitrary noise w, let b = Φx∗ + w. If Condition 1 is met for x̄ = x∗ and ‖w‖2 ≤ δ, then

1) For any C0 > 0, there exists constant C1 > 0 such that every minimizer xδ,λ of problem (2b) using

parameter λ = C0δ satisfies

‖ΨT (xδ,λ − x∗)‖1 ≤ C1δ;
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2) Every minimizer xδ of problem (2c) satisfies

‖ΨT (xδ − x∗)‖1 ≤ C2δ.

Moreover, defining

β = (ΦΦT )−1Ψy, C3 = r(J)
√

|I| and C4 =
1 + Cond(Ψ)‖Φ‖C3

1 − ‖yJ‖∞
,

we can let

C1 = 2C3 + C0‖β‖2 +
(1 + C0‖β‖2/2)2C4

C0
,

C2 = 2C3 + 2C4‖β‖2.

Remark 1. From the results of Theorem 2, it is straightforward to derive `1 or `2 bounds for (xδ,λ − x∗)

and (xδ − x∗) under Assumption 2.

Remark 2. Since C0 is free to choose, one can choose the optimal C0 =
√

4C4
4‖β‖2+C4‖β‖2

2
and simplify C1 to

C1 = 2C3 + C4‖β‖2 +
√

C2
4‖β‖

2
2 + 4C4‖β‖2 ≤ 2C3 + 2C4‖β‖2 + 2,

which becomes very similar to C2. This reflects the equivalence between problems (2b) and (2c) in the sense

that given λ, one can find δ so that they have the same solution, and vice versa.

Remark 3. Both C1 and C2 are the sum of 2C3 and other terms. 2C3 alone bounds the error when ΨT xδ,λ

(or ΨT xδ) and ΨT x∗ have matching signs. Since C3 does not depend on yJ , part (2) of Condition 1 does

not play any role, whereas part (1) plays the major role. When the signs of ΨT xδ,λ (or ΨT xδ) and ΨT x∗ do

not match, the remaining terms in C1 and C2 are involved, and they are affected part (2) of Condition 1; in

particular, ‖yJ‖∞ < 1 plays a big role as C4 is inversely proportional to 1 − ‖y‖∞. Also, since there is no

knowledge about the support of ΨT xδ,λ, which may or may not equal to that of ΨT x∗, C4 inevitably depends

the global properties of Ψ and Φ. In contrast, C3 only depends on the restricted property of Φ.

3 Related works

In the case of Ψ = Id, Condition 1 is well known in the literature for `1 (or `1-synthesis) minimization. It

is initially proposed in [7] as a sufficient condition for the `1 solution uniqueness. For problems (2b) and

(2c), [8, 17] present sufficient but non-necessary conditions for solutions uniqueness. Later, its necessity is

established in [10] for model (2b) and then in [19] for all models in (2), assuming Ψ = Id or equal to an

orthogonal basis. The solution robustness of model (2b) is given under the same condition in [10]. Below we

restrict our literature review to results for the `1-analysis model.

3.1 Previous uniqueness conditions

Papers [9, 14, 18, 11] cover the uniqueness of the `1-analysis model and use stronger conditions than ours.

The following condition in [14] guarantees the solution uniqueness for problem (2a):

Condition 3. Given x̄, let Q be a basis matrix of Ker(Φ), and I = supp(ΨT x̄). The followings are met:

(1) ΨT
IcQ is full column rank;

(2)‖(QT ΨIc)+QT ΨIsign(ΨT
I x̄)‖∞ < 1.
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Paper [18] proposes the following condition for the solution uniqueness and robustness for problems (2a)

and (2b) (the robustness requires the non-zero entries of ΨT
I x to be sufficient large compared to noise).

Condition 4. For a given x̄, index sets I = supp(ΨT x̄) and J = Ic satisfy:

(1)Ker(ΨT
J )
⋂

Ker(Φ) = {0};

(2)Let A[J] = U(UT ΦT ΦU)−1UT and Ω[J] = Ψ+
J (ΦT ΦA[J]−Id)ΨI , where U is a basis matrix of Ker(ΨT

J ).

Then

IC(sign(ΨT
I x̄)) := min

u∈Ker(ΨJ )
‖Ω[J]sign(ΨT

I x̄) − u‖∞ < 1.

According to [18], Conditions 3 and 4 do not contain each other.

The following example shows that Conditions 3 and 4 are both stronger than Conditions 1 and 2. Let

Ψ =






10.5 1 10

0 1 0

0 0 1




 , Φ =

(
0 1 0

0 0 1

)

, x̂ =






1

−1

−10




 , b =

(
−1

−10

)

.

It is straightforward to verify that Conditions 1 and 2 hold. However, Conditions 3 and 4 fail to hold. Indeed,

we have ΨT x̃ = (10.5, 0, 0)T and I = {1}. Q = (1, 0, 0)T is a basis matrix of Ker(Φ). Thus

‖(QT ΨIc)+QT ΨIsign(ΨT
I x̃)‖∞ =

∥
∥
∥
∥
∥

(
10.5
101

,
105
101

)T
∥
∥
∥
∥
∥
∞

=
105
101

. (3)

Hence, Condition 3 does not hold. Furthermore, U = (1,−1,−10)T is a basis matrix of Ker(ΨT
J ), and the

definition of Ω[J] gives us Ω[J] = ( 10.5
101 , 105

101 )T . Therefore, IC(sign(ΨT
I x̃)) = 105

101 > 1, so Condition 4 does not

hold either. Paper [18] also presents sufficient conditions for solution uniqueness, which are reviewed in [19]

and shown to be not necessary.

3.2 Previous robustness conditions

Turning to solution robustness, [9, 11] have studied the robustness of problems (2b) and (2c) in the Hilbert-

space setting. Translating to the finite dimension, the conditions in [9] read:

Condition 5. Given x̄, the following two statements hold:

(1) Ker(ΨT
J )
⋂

Ker(Φ) = {0};

(2) There exists y ∈ ∂‖ ∙ ‖1(ΨT x̄) such that Ψy ∈ Im(ΦT ) and J = {i : |yi| < 1} 6= ∅.

This condition is equivalent to Condition 2. Under Condition 5, [9] shows the existence of constant C (not

explicitly given) such that the solution xδ,λ to (2b) obeys ‖ΨT (xδ,λ − x∗)‖2 ≤ Cδ when λ is set proportional

to the noise level δ. In order to obtain an explicit formula for C, [11] introduces the following:

Condition 6. Let Ψ̂ = (ΨΨT )−1Ψ. Given x̄, the following two statements hold:

(1) There exists some y ∈ ∂‖ ∙ ‖1(ΨT x̄) such that Ψy ∈ Im(ΦT );

(2) For some t ∈ (0, 1), letting I(t) = {i : |yi| > t}, the mapping Φ̂ := Φ|Span{Ψ̂i:i∈I(t)} is injective.

Under this condition, the solutions to (2b) and (2c) are subject to error bounds whose constants depend

on t, Φ̂, the lower frame bound of Ψ, and other quantities.

Proposition 1. Condition 6 is stronger than Condition 2.
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Proof. Let J = I(t)c; then we have ‖yJ‖∞ ≤ t < 1 from the definition of I(t). It remains to show that

Ker(ΨT
J )
⋂

Ker(Φ) = {0}. For any x ∈ Ker(ΨT
J ), we have

x = (ΨΨT )−1ΨΨT x = (ΨΨT )−1ΨJΨT
J x + (ΨΨT )−1ΨJcΨT

Jcx = (ΨΨT )−1ΨI(t)Ψ
T
I(t)x.

Since Φ restricted to Span{Ψ̂i : i ∈ I(t)} = Im((ΨΨT )−1ΨI(t)) is injective, we have what we need.

Paper [18] provides a much stronger condition below that strengthens Condition 4 by dropping the

dependence on the Ψ-support (see the definition of RC(I) below).

Condition 7. Given x̄, index sets I = supp(ΨT x̄) and J = Ic satisfy:

(1) Ker(ΨT
J )
⋂

Ker(Φ) = {0};

(2) Letting Ω[J] be given as in Condition 4,

RC(I) := max
p∈R|I|,‖p‖∞≤1

min
u∈Ker(ΨJ )

‖Ω[J]p − u‖∞ < 1.

Under this condition, a nice error bound and a certain kind of “weak” sign consistency (between ΨT xδ,λ

and ΨT x∗) are given provided that problem (2b) is solved with the parameter λ = ρ‖w‖2cJ

2(1−RC(I)) for some ρ > 1,

where cJ = ‖Ψ+
J ΦT (ΦA[J]ΦT − Id)‖2,∞. When 1 −RC(I) gets close to 0, this λ can become too large than

it should be.

4 Verifying the conditions

In this section, we present a method to verify Condition 1. Our method includes two steps:

(Step 1:) Let Φ = UΣV T be the singular value decomposition of Φ. Assume V = [v1, ∙ ∙ ∙ , vn]. Since Φ

has full row-rank, we have Ker(Φ) = Span{vm+1, ∙ ∙ ∙ , vn} and Q = [vm+1, ∙ ∙ ∙ , vn] as a basis of Ker(Φ). We

verify that ΨT
J Q has full row-rank, ensuring part (1) of Condition 1.

(Step 2:) Let u1 = −QT ΨIsign(ΨT
I x̄) and A = QT ΨJ . Solve the convex problem

minimize
u∈R|J|

‖u‖∞, subject to Au = u1. (4)

If the optimal objective of (4) is strictly less than 1, then part (2) of Condition 1 holds. In fact, we have:

Proposition 2. Part (2) of Condition 1 holds if and only if (4) has an optimal objective < 1.

Proof. Let û be a minimizer of (4). Assume ‖û‖∞ < 1. We consider the vector y composed by yI = sign(ΨT
I x̄)

and yJ = û. To show part (2) of Condition 1, it suffices to prove Ψy ∈ Im(ΦT ), or equivalently, QT Ψy = 0.

Indeed,

QT Ψy = QT ΨJyJ + QT ΨIyI = QT ΨJ û + QT ΨIyI = 0.

The converse is obvious.

Convex program (4) is similar in form to one in [18] though they are used to verify different conditions.

5 Proof of Theorem 1

We establish Theorem 1 in two steps. Our first step proves the theorem for problem (2a) only. The second

step proves Theorem 1 for problems (2b) and (2c).
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5.1 Proof of Theorem 1 for problem (2a)

The equivalence of the three statements is shown in the following orders: 3) =⇒ 1) =⇒ 2) =⇒ 3).

3) =⇒ 1). Consider any perturbation x̂ + h where h ∈ Ker(Φ)\{0}. Take a subgradient g ∈ ∂‖ ∙ ‖1(ΨT x̂)

obeying gI = sign(ΨT
I x̂) = yI , gK = yK , and ‖gJ‖ ≤ 1 such that 〈gJ , ΨT

J h〉 = ‖ΨT
J h‖1. Then,

‖ΨT (x̂ + h)‖1 ≥ ‖ΨT x̂‖1 + 〈Ψg, h〉 (5a)

= ‖ΨT x̂‖1 + 〈Ψg − Ψy, h〉 (5b)

= ‖ΨT x̂‖1 + 〈g − y, ΨT h〉 (5c)

= ‖ΨT x̂‖1 + 〈gJ − yJ , ΨT
J h〉 (5d)

≥ ‖ΨT x̂‖1 + ‖ΨT
J h‖1(1 − ‖yJ‖∞), (5e)

where (5b) follows from Ψy ∈ Im(ΦT ) = Ker(Φ)⊥ and h ∈ Ker(Φ), (5d) follows from the setting of g, and

(5e) is an application of the inequality 〈x, y〉 ≤ ‖x‖1‖y‖∞ and 〈gJ , ΨT
J h〉 = ‖ΨT

J h‖1. Since h ∈ Ker(Φ)\{0}

and Ker(ΨT
J )
⋂

Ker(Φ) = {0}, we have ‖ΨT
J h‖1 > 0. Together with the condition ‖yJ‖∞ < 1, we have

‖ΨT (x̂ + h)‖1 > ‖ΨT x̂‖1 for every h ∈ Ker(Φ)\{0} which implies that x̂ is the unique minimizer of (2a).

1) =⇒ 2). For every h ∈ Ker(Φ)\{0}, we have Φ(x̂ + th) = Φx̂ and can find t small enough around 0

such that sign(ΨT
I (x̂ + th)) = sign(ΨT

I x̂). Since x̂ is the unique solution, for small and nonzero t we have

‖ΨT (x̂)‖1 < ‖ΨT (x̂ + th)‖1 = ‖ΨT
I (x̂ + th)‖1 + ‖ΨT

Ic(x̂ + th)‖1 (6a)

= 〈ΨT
I (x̂ + th), sign(ΨT

I (x̂ + th))〉 + ‖tΨT
Ich‖1 (6b)

= 〈ΨT
I x̂ + tΨT

I h, sign(ΨT
I x̂)〉 + ‖tΨT

Ich‖1 (6c)

= 〈ΨT
I x̂, sign(ΨT

I x̂)〉 + t〈ΨT
I h, sign(ΨT

I x̂)〉 + ‖tΨT
Ich‖1 (6d)

= ‖ΨT (x̂)‖1 + t〈ΨT
I h, sign(ΨT

I x̂)〉 + ‖tΨT
Ich‖1. (6e)

Therefore, for any h ∈ Ker(Φ)\{0}, we have

〈ΨT
I h, sign(ΨT

I x̂)〉 < ‖ΨT
Ich‖1. (7)

If the condition Ker(ΨT
Ic)
⋂

Ker(Φ) = {0} does not hold, we can choose a nonzero vector h ∈ Ker(ΨT
Ic)
⋂

Ker(Φ).

We also have −h ∈ Ker(ΨT
Ic)
⋂

Ker(Φ). Then we have 〈ΨT
I h, sign(ΨT

I x̂)〉 < 0 and −〈ΨT
I h, sign(ΨT

I x̂)〉 < 0,

which is a contradiction.

It remains to show the existence of y in item (2) of Condition 1. This part is in spirit of the methods

in papers [10] and [19], which are based on linear programming strong duality. We take ŷ with restrictions

ŷI = sign(ΨT
I x̂) and ŷIc = 0. If such ŷ satisfies Ψŷ ∈ Im(ΦT ), then the existence has been shown. If

Ψŷ /∈ Im(ΦT ) = Ker(Φ)⊥, then we shall construct a new vector to satisfy part (2) of Condition 1. Let Q

be a basis matrix of Ker(Φ). We have that a := QT Ψŷ must be a nonzero vector. Consider the following

problem

minimize
z∈Rl

‖z‖∞ subject to QT Ψz = −a and zI = 0. (8)

For any minimizer ẑ of problem (8), we have Ψ(ŷ + ẑ) ∈ Ker(Φ)⊥ = Im(ΦT ) and (ŷ + ẑ)I = ŷI = sign(ΨT
I x̂).

Thus, we shall show that the objective of problem (8) is strictly less than 1. To this end, we rewrite problem

(8) in an equivalent form as:

minimize
z

‖zIc‖∞ subject to QT ΨIczIc = −a, (9)

whose Lagrange dual problem is

maximize
p

〈p, a〉 subject to ‖ΨT
IcQp‖1 ≤ 1. (10)
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Note that Qp ∈ Ker(Φ) and |〈p, a〉| = |〈p,QT Ψŷ〉| = |〈p,QT ΨIsign(ΨT
I x̂)〉| = |〈ΨT

I Qp, sign(ΨT
I x̂)〉|. By using

(7), for any p we have

|〈p, a〉| =

{
|〈ΨT

I Qp, sign(ΨT
I x̂)〉| = 0, if Qp = 0;

|〈ΨT
I Qp, sign(ΨT

I x̂)〉| < ‖ΨT
IcQp‖1 ≤ 1, otherwise.

(11)

Hence, problem (10) is feasible, and its objective value is strictly less than 1. By the linear programming

strong duality property, problems (8) and (9) also have solutions, and their the objective value is strictly

less than 1, too. This completes the proof.

2) =⇒ 3). Let J = Ic and K = ∅; then Condition 2 follows.

The proof of 3) =⇒ 1) is a standard technique in compressed sensing community.

5.2 Proof of Theorem 1 for problems (2b) and (2c)

Lemma 1. Let γ > 0. If γ‖Φx− b‖2
2 + ‖ΨT x‖1 is constant on a convex set Ω, then both Φx− b and ‖ΨT x‖1

are constant on Ω.

Proof. It suffices to prove the case where the convex set has more than one point. Suppose x1 and x2 are

arbitrary two different points in Ω. Consider the line segment L connecting x1 and x2. By the convexity of

set Ω, we know L ⊂ Ω. Thus, ĉ = γ‖Φx − b‖2
2 + ‖ΨT x‖1 is a constant on L. If Φx1 − b 6= Φx2 − b, then for

any 0 < α < 1, we have

γ‖Φ(αx1 + (1 − α)x2) − b‖2
2 + ‖ΨT (αx1 + (1 − α)x2)‖1 (12a)

= γ‖α(Φx1 − b) + (1 − α)(Φx2 − b)‖2
2 + ‖α(ΨT x1) + (1 − α)(ΨT x2)‖1 (12b)

< α(γ‖Φx1 − b‖2
2 + ‖ΨT x1‖1) + (1 − α)(γ‖Φx2 − b‖2

2 + ‖ΨT x2‖1) (12c)

= αĉ + (1 − α)ĉ = ĉ, (12d)

where the strict inequality follows from the strict convexity of γ‖ ∙ ‖2
2 and the convexity of ‖ΨT x‖1. This

means that the points αx1 +(1−α)x2 on L attain a lower value than ĉ, which is a contradiction. Therefore,

we have Φx1 − b = Φx2 − b, from which it is easy to see ‖ΨT x1‖1 = ‖ΨT x2‖1.

We let Xλ and Yδ denote the sets of solutions to problems (2b) and (2c), respectively; moreover, we

assume that these two sets are nonempty. Then, from Lemma 1, we have the following result.

Corollary 1. In problem (2b), Φx−b and ‖ΨT x‖1 are constant on Xλ; in problem (2c), Φx−b and ‖ΨT x‖1

are constant on Yδ.

Proof. Since ‖Φx − b‖2
2 + λ‖ΨT x‖1 is constant over Xλ, the result follows directly from Lemma 1 for prob-

lem (2b). For problem (2c), if 0 ∈ Yδ, then we have Yδ = {0} because of the full row-rankness of Ψ. The

result holds trivially. Suppose 0 6∈ Yδ. Since the optimal objective ‖ΨT x‖1 is constant for all x ∈ Yδ, we

have to show that ‖Φx− b‖2
2 = δ for all x ∈ Yδ. If there exist a nonzero x̂ ∈ Yδ such that ‖Φx̂− b‖2

2 < δ, we

can find a non-empty ball B centered at x̂ with a sufficiently small radius ρ > 0 such that ‖Φx̃− b‖2
2 < δ for

all x̃ ∈ B. Let α = min{ ρ
2‖x̂‖2

, 1
2} ∈ (0, 1). We have (1 − α)x̂ ∈ B and ‖(1 − α)ΨT x̂‖1 < ‖ΨT x̂‖1, which is a

contradiction.

Proof of Theorem 1 for problems (2b) and (2c). This proof exploits Corollary 1. Since the results of Corol-

lary 1 are identical for problems (2b) and (2c), we present the proof for problem (2b) only.
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By assumption, Xλ is nonempty so we pick x̂ ∈ Xλ. Let b∗ = Φx̂, which is independent of the choice of

x̂ according to Corollary 1. We introduce the following problem

minimize
x

‖ΨT x‖1, subject to Φx = b∗, (13)

and let X∗ denote its solution set.

Now, we show that Xλ = X∗. Since Φx = Φx̂ and ‖ΨT x‖1 = ‖ΨT x̂‖1 for all x ∈ Xλ and conversely

any x obeying Φx = Φx̂ and ‖ΨT x‖1 = ‖ΨT x̂‖1 belongs to Xλ, it suffices to show that ‖ΨT x‖1 = ‖ΨT x̂‖1

for any x ∈ X∗. Assuming this does not hold, then since problem (13) has x̂ as a feasible solution and has

a finite objective, we have a nonempty X∗ and there exists x̃ ∈ X∗ satisfying ‖ΨT x̃‖1 < ‖ΨT x̂‖1. But,

‖Φx̃ − b‖2 = ‖b∗ − b‖2 = ‖Φx̂ − b‖2 and ‖ΨT x̃‖1 < ‖ΨT x̂‖1 mean that x̃ is a strictly better solution to

problem (2b) than x̂, contradicting the assumption x̂ ∈ Xλ.

Since Xλ = X∗, x̂ is the unique solution to problem (2b) if and only if it is the unique solution to

problem (13). Since problem (13) is in the same form of problem (2a), applying the part of Theorem 1 for

problem (2a), which is already proved, we conclude that x̂ is the unique solution to problem (2b) if and only

if Condition 1 or 2 holds.

6 Proof of Theorem 2

Lemma 2. Assume that vectors x̄ and y satisfy Condition 1. Let I = supp(ΨT x̄) and J = Ic. We have

‖ΨT x − ΨT x̄‖1 ≤ C3‖Φ(x − x̄)‖2 + C4dy(x, x̄), ∀x, (14)

where dy(x, x̄) := ‖ΨT x‖1 −‖ΨT x̄‖1 −〈Ψy, x− x̄〉 is the Bregman distance of function ‖ΨT ∙ ‖1, the absolute

constants C3, C4 are given in Theorem 2.

Proof. This proof is divided into two parts. They are partially inspired by [9].

1. this part shows that for any u ∈ Ker(ΨT
J ),

‖ΨT x − ΨT x̄‖1 ≤

(

1 +
C3‖Φ‖

√
λmin(ΨΨT )

)

‖ΨT (x − u)‖1 + C3‖Φ(x − x̄)‖2. (15)

2. this part shows that

f(x) := min
{
‖ΨT (x − u)‖1 : u ∈ Ker(ΨT

J )
}
≤ (1 − ‖yJ‖∞)−1dy(x, x̄). (16)

Using the definition of C4, combining (15) and (16) gives (14).

Part 1. Let u ∈ Ker(ΨT
J ). By the triangle inequality of norms, we get

‖ΨT x − ΨT x̄‖1 ≤ ‖ΨT (x − u)‖1 + ‖ΨT (u − x̄)‖1. (17)

Since x̄ ∈ Ker(ΨT
J ), we have u − x̄ ∈ Ker(ΨT

J ) and thus ‖u − x̄‖2 ≤ r(J)‖Φ(u − x̄)‖2, where r(J) < +∞

follows from part (1) of Condition 1. Using the fact that supp(ΨT (u − x̄)) = I, we derive that

‖ΨT (u − x̄)‖1 ≤
√

|I|‖ΨT (u − x̄)‖2 (18a)

≤
√

|I|‖u − x̄‖2 (18b)

≤
√
|I| r(J)‖Φ(u − x̄)‖2 (18c)

= C3‖Φ(u − x̄)‖2, (18d)
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where we have used the assumption λmax(ΨΨT ) = 1 and the definition C3 = r(J)
√
|I|. Furthermore,

‖Φ(u − x̄)‖2 ≤ ‖Φ(x − u)‖2 + ‖Φ(x − x̄)‖2 (19a)

≤ ‖Φ‖‖x − u‖2 + ‖Φ(x − x̄)‖2 (19b)

≤
‖Φ‖‖ΨT (x − u)‖2√

λmin(ΨΨT )
+ ‖Φ(x − x̄)‖2 (19c)

≤
‖Φ‖‖ΨT (x − u)‖1√

λmin(ΨΨT )
+ ‖Φ(x − x̄)‖2. (19d)

Therefore, we get (15) after combining (17), (18), and (19).

Part 2. Since 〈Ψy, x̄〉 = ‖ΨT x̄‖1 implies dy(x, x̄) = ‖ΨT x‖1 − 〈Ψy, x〉, it is equivalent to proving

f(x) ≤ (1 − ‖yJ‖∞)−1(‖ΨT x‖1 − 〈Ψy, x〉). (20)

Since u ∈ Ker(ΨT
J ) is equivalent to ΨT

J u = 0, the Lagrangian of the minimization problem in (16) is

L(u, v) = ‖ΨT (x − u)‖1 + 〈v, ΨT
J u〉 = ‖ΨT (x − u)‖1 + 〈ΨJv, u − x〉 + 〈ΨJv, x〉. (21)

Then, f(x) = minu maxv L(u, v). Following the minimax theorem, we derive that

f(x) = max
v

min
u

L(u, v) =max
v

min
u

{‖ΨT (x − u)‖1 + 〈ΨJv, u − x〉 + 〈ΨJv, x〉} (22a)

=max
w

min
u

{‖ΨT (x − u)‖1 + 〈w, u − x〉 + 〈w, x〉 : w ∈ Im(ΨJ )} (22b)

=max
w

{〈w, x〉 : w ∈ ∂‖ΨT ∙ ‖1(0) ∩ Im(ΨJ )} (22c)

=max
w

{〈cΨy + w, x〉 : w ∈ ∂‖ΨT ∙ ‖1(0) ∩ Im(ΨJ )} − 〈cΨy, x〉, ∀c > 0 (22d)

=c max
w

{〈Ψy + w, x〉 : w ∈ c−1∂‖ΨT ∙ ‖1(0) ∩ Im(ΨJ )} − c〈Ψy, x〉, ∀c > 0. (22e)

Let

c = (1 − ‖yJ‖∞)−1

and ZJ = {z ∈ Rl : zI = 0}. Since ‖yJ‖∞ < 1 from part (2) of Condition 1, we have c < +∞ and get

(
y + c−1∂‖ ∙ ‖1(0) ∩ ZJ

)
⊂ ∂‖ ∙ ‖1(0), (23)

from which we conclude
(
Ψy + c−1∂‖ΨT ∙ ‖1(0) ∩ Im(ΨJ )

)
⊂ ∂‖ΨT ∙ ‖1(0). (24)

Hence, for any w ∈ c−1∂‖ΨT ∙ ‖1(0) ∩ Im(ΨJ ), it holds Ψy + w ⊂ ∂‖ΨT ∙ ‖1(0), which by the convexity of

‖ΨT ∙ ‖1 implies 〈Ψy + w, x〉 ≤ ‖ΨT x‖1. Therefore, f(x) ≤ c(‖ΨT x‖1 − 〈Ψy, x〉).

Lemma 3. ([1], Theorem 3; [10], Lemma 3.5) Suppose that x∗ ∈ Rn is a fixed vector obeying supp(ΨT x∗) = I

and that there are vectors satisfying y ∈ ∂‖ ∙ ‖(ΨT x∗) and Ψy = ΦT β. Then for every δ > 0 and every data

vector b satisfying ‖Φx∗ − b‖2 ≤ δ, the following two statements hold:

1)Every minimizer xδ,λ of problem (2b) satisfies dy(xδ,λ, x∗) ≤ (δ+λ‖β‖2/2)2

λ and ‖Φxδ,λ−b‖2 ≤ δ+λ‖β‖2;

2)Every minimizer xδ of problem (2c) satisfies dy(xδ, x
∗) ≤ 2δ‖β‖2.

From Ψy = ΦT β and the full-rankness of Φ, we have β = (ΦΦT )−1Ψy.
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Proof of Theorem 2. Firstly, we derive that

‖Ψ(xδ,λ − x∗)‖1 ≤ C3‖Φ(xδ,λ − x∗)‖2 + C4dy(xδ,λ, x∗) (25a)

≤ C3‖Φxδ,λ − b‖2 + C3‖Φx∗ − b‖2 + C4dy(xδ,λ, x∗) (25b)

≤ C3(δ + λ‖β‖2) + C3δ + C4
(δ + λ‖β‖2/2)2

λ
, (25c)

where the first and the third inequalities follow from Lemmas 2 and 3, respectively. Substituting λ = C0δ

and collecting like terms in (25c), we obtain the first part of Theorem 2. The second part can be proved in

the same way.
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