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Exploring the Modeling Capacity of Two-stage
Robust Optimization – Two Variants of Robust Unit

Commitment Model
Yu An and Bo Zeng

Abstract—To handle significant variability in loads, renewable
energy generation, as well as various contingencies, two-stage
robust optimization method has been adopted to construct unit
commitment models and to ensure reliable solutions. In this
paper, we further explore and extend the modeling capacity of
two-stage robust optimization and present two new robust unit
commitment variants, the expanded robust unit commitment and
the risk constrained robust unit commitment models. We derive
some structural properties, show the connection to the scenario
based stochastic unit commitment model, and present a cus-
tomized column-and-constraint generation method. Numerical
experiments on those models are performed using a practical data
set, which illustrate their modeling strength, economic outcomes
and the algorithm performance in solving those models.

Index Terms—robust optimization, unit commitment problem,
uncertainty, column-and-constraint generation method

I. INTRODUCTION

RECENTLY, robust optimization (RO) techniques [1, 2,
3, 4, 5], especially two-stage robust optimization method

[6], have attracted many researchers’ attentions and been uti-
lized to solve practical system design and operation problems.
Different from classical stochastic programming models, an
RO formulation has two features: (i) instead of assuming
any probabilistic information on random factors, it assumes
uncertain sets to capture randomness. (ii) instead of seeking
for solutions with the optimal expected value, it derives
solutions with the best performance with respect to the worst
case situations in the uncertainty sets. So, the RO model is
less demanding on data analysis for capturing randomness and
its solution is more reliable towards uncertainty. Therefore,
robust optimization approaches are often adopted to address
real problems, e.g., the operational problems in power industry,
where it is challenging to construct a stochastic model to
capture randomness or the system reliability is of more critical
concern.

Nevertheless, because a solution of the regular (single-stage)
RO must hedge against any possible realization within the
uncertainty set, it tends to be overly conservative and may not
be cost-effective. To address such issue, two-stage (and multi-
stage) robust optimization model [6] has been introduced to
support decision making where decisions are partitioned into
two stages, i.e., before and after uncertainty is disclosed. The
first stage decisions still need to be made with respect to any
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realization in the uncertainty set while the second stage deci-
sions can be made after the first stage decisions are determined
and the uncertainty is revealed, which essentially enables the
decision maker a recourse opportunity. Hence, comparing with
that of the regular (single-stage) RO, a solution to two-stage
RO is less conservative and more cost-effective. Note that this
decision making structure nicely matches that of the day-ahead
unit commitment (UC) problem, which makes use of dispatch
as the recourse tool but must handle significant variability
in loads, renewable energy generation, as well as various
contingencies. So, over the last few years, several two-stage
robust unit commitment formulations have been developed and
implemented to ensure reliable power generation and dispatch,
see [7, 8, 9, 10, 11, 12, 13].

As a new optimization scheme, we note that two key
concepts of two-stage RO, i.e., the uncertainty set and the
consideration of the worst case performance with recourse
opportunities, jointly provide a very flexible mechanism that
can actually be used to satisfy more complicated modeling
needs. For example, on the one hand, when a single uncertainty
set maybe too rough to describe the random factor, we can
utilize different uncertainty sets to jointly define it. On the
other hand, hard constraints on the worst case performance
can be included to control the overall risks. As a result, the
standard two-stage RO can be extended to capture different
random situations, diverse data availabilities and qualities, and
to meet various requirements. We mention that, although new
models may be more involved than the typical robust UC
models in existing literatures, they generally can be solved
efficiently by the recent column-and-constraint generation
computing method with minor customizations [14].

Under this direction, we present two robust unit commit-
ment variants in this paper to demonstrate the advanced mod-
eling capabilities of two-stage RO in solving practical prob-
lems. The first one is the expanded robust unit commitment
model that considers the weighted summation of performances
over multiple uncertainty sets. It actually generalizes the the
scenario based stochastic unit commitment model and can
yield solutions that are less conservative than those from a
basic robust unit commitment model. The second one is the
risk constrained robust unit commitment model that derives
solutions subject to constraints on the worst case performances
in those uncertainty sets. Therefore, any feasible solution,
if it exists, will have a guaranteed performance under those
uncertainty sets.

The paper is organized as follows. In Section II, we first
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provide the expanded robust UC model and discuss its prop-
erties and connection with the scenario based stochastic UC
model. Then, we introduce risk constrained robust UC model
as well as present a customized column-and-constraint solution
method. In Section III, we perform a set of computational
study of these two models and report numerical results.
Section IV concludes the paper and discusses future research
directions.

II. TWO ROBUST UNIT COMMITMENT VARIANTS

A. The Expanded Robust Unit Commitment Model

The typical robust unit commitment model is formulated
as the following. We provide a matrix format for a compact
exposition and the detailed formulations can be found in [8,
9, 10].

min
y,z

(az + ry) + max
v∈V

min
x,s∈Ω(y,z,v)

(gx + qs) (1)

s.t. Dy + Fz ≥ f ; y, z binary, (2)
Ω(y, z,v) = {(x, s) : Ex ≤ e,

Ax ≤ L−Gy −Pz−Rv, Ix + Hs = d−Tv} (3)

where y, z are the first stage commitment decisions that take
binary values, (x, s) are the second stage (aka. recourse)
economic dispatch and market buy/sell decisions that are con-
tinuous, v represents some uncertain factor, e.g., the renewable
energy generation, load or contingencies, whose randomness
is captured by the uncertainty set V. Note that, because of the
two-stage decision making nature, the essential solution to the
above robust unit commitment problem is the first stage start-
up/shut-down z and on-off decisions y while the second stage
decisions are made with perfect information on v. Hence the
set V plays a critical role in determining the quality of the
first stage decisions.

Lemma 1. Consider two uncertainty sets V1 and V2 such
that V1 ⊆ V2 and denote their corresponding optimal values
of (1-3) by θ(V1) and θ(V2). We have θ(V1) ≤ θ(V2), i.e., θ
is non-decreasing in V (in the terms of set inclusion).

Note that this result can be easily proven by the fact that
any first stage solution derived with respect to V1 will incur
a higher or equal recourse cost in the worst case situations of
V2. Hence, it would be ideal to adopt a tight V to reduce the
objective function value. However, if the scope of V is small, it
cannot sufficiently depicts the uncertain factor. For example,
we consider random loads as V and use historical data for
estimation. As demonstrated in Figure 1, which presents 7
consecutive days’ loads of a city in Florida, the set defined
by the average curve ± σ (standard deviation) clearly cannot
ensure a coverage on all load possibilities, which may cause
us to take a risky UC solution that is infeasible to meet load
or with a high recourse cost. Also, if the scope of V is large,
we may take a solution that is costly and over protective. As
in Figure 2, the set defined by the average curve ± 3σ might
overstate that randomness, which causes to run units more than
necessary.

To balance the risk and cost, one way is to construct a
sophisticated uncertainty set to capture the randomness, which

Fig. 1. 24-hour Load Distribution and Single STD Description

Fig. 2. 24-hour Load Distribution and Three STD Description

could be technically challenging and make the robust UC
computationally demanding [14]. We believe another improved
strategy is to expand the uncertainty description by using
multiple sets, along with their respective recourse problems.
Then, we can integrate their impacts under the same umbrella
by assigning different weights to the worst case performances
of those sets. Specifically, let Vk, k = 1, . . . ,K denote K
uncertainty sets and ρk be their weight coefficients that are
normalized for the totality being one. The expanded robust
unit commitment model is formulated as

min
y,z

(az + ry) +
∑

k

ρk

(
max
v∈Vk

min
x,s∈Ω(y,z,v)

(gx + qs)
)

(4)

s.t. Dy + Fz ≥ f ; y, z binary, (5)
Ω(y, z,v) = {(x, s) : Ex ≤ e,

Ax ≤ L−Gy −Pz−Rv, Ix + Hs = d−Tv} (6)

The following result can be obtained easily based on Lemma 1.

Proposition 2. Consider two uncertainty sets V1 and V2 such
that V1 ⊆ V2, and two coefficients ρ1 ≥ 0 and ρ2 ≥ 0 such
that ρ1 + ρ2 = 1. Denote the corresponding optimal value of
(4-6) by Θ((V1,V2), (ρ1, ρ2)). We have

θ(V1) ≤ Θ((V1,V2), (ρ1, ρ2)) ≤ θ(V2).

The equality is achieved by setting ρ1 = 1 or 0 respectively.
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So, by taking non-trivial ρ1 and ρ2, the expanded robust UC
model yields solutions that are less conservative than those
derived under V2 exclusively while are more reliable than
those derived under V1 exclusively.

We further point out that weight coefficients reflect decision
maker’s conservative/protective level and his understanding
on the likelihoods of those sets. For example, V1 and V2

are defined by the average curve ± σ and 3σ respectively,
to describe the overall load uncertainty. Based on data in
Figures 1-2, although rigorous statistical analysis might not
be obtainable, we are confident to conclude that the worst
case situations of V1 are much more likely than those of
V2. So, we can set ρ1 to a value larger than ρ2 to show our
confidence. Clearly, assigning weights to multiple uncertainty
sets provides us a new modeling function to take advantage
of inexact but reliable information from practical data. Note
that such a function is not available if any single uncertainty
set is adopted.

The result in Proposition 2 can be generalized for more
general expanded robust UC models.

Corollary 1. Consider a collection of uncertainty sets ~V =
{V1, . . . ,VK} and a set of coefficients ~ρ = {ρ1, . . . , ρK} such
that

∑
k ρk = 1. Denote the corresponding optimal value of

(4-6) by Θ(~V, ~ρ). We have

min
k
θ(Vk) ≤ Θ(~V, ~ρ) ≤ max

k
θ(Vk).

In fact, for a special case, this expanded robust UC reduces
to the classical scenario based stochastic programming UC
model.

Proposition 3. Consider a case where the randomness of the
uncertainty factor is completely captured by scenarios v̂k, k =
1, . . . ,K. If we let Vk be a singleton {v̂k} and set ρk equal to
the corresponding realization probability, then the expanded
robust UC is equivalent to the stochastic programming UC
model.

Proof: Note that when Vk = {v̂k}, the max operator can
be eliminated from the formulation. Hence, we have

min
y,z

(az + ry) +
∑

k

ρk

(
min

x,s∈Ω(y,z,v̂k)
(gx + qs)

)
(7)

s.t. Dy + Fz ≥ f ; y, z binary, (8)
Ω(y, z, v̂k) = {(x, s) : Ex ≤ e,

Ax ≤ L−Gy −Pz−Rv̂k, Ix + Hs = d−Tv̂k}(9)

Because economic dispatch and buy/sell decisions are made
specific to individual scenarios, we can replace x, s by intro-
ducing recourse variables xk, sk for scenario v̂k. Also, the
second min operator can be removed given that it aligns with
the first min operator. Hence, the overall min−max−min

formulation can be simplified as

min
y,z

(az + ry) +
∑

k

ρk(gxk + qsk)

s.t. Dy + Fz ≥ f , (10)
Exk ≤ e, ∀k (11)

Axk ≤ L−Gy −Pz−Rv̂k, ∀k (12)
Ixk + Hsk = d−Tv̂k, ∀k

y, z binary, (13)

which is exactly the scenario based stochastic programming
UC model.

Remark 1. According to Proposition 3, we can conclude
that the expanded robust UC model is a complete and
flexible modeling framework to handle various randomness.
Decision makers can customize their uncertainty sets and
adjust weight coefficients for their conveniences, according to
data availability, data quality, system requirements and their
conservative/protective level. In fact, even for simple interval
uncertainty sets that are easily defined by lower and upper
bounds, they can be used, as building blocks, to capture or
approximate any sophisticated randomness, by appropriately
adjusting their weights.

In Appendix B, we present a concrete expanded robust
UC model by considering multiple load uncertainty sets.
Numerical results of this model are provided in Section III.

B. The Risk Constrained Robust Unit Commitment Model

In this section, we show how to further extend our mod-
eling capacity by introducing constraints on uncertainty sets
and their worst case performances. Specifically, based on
the nature of random factors and system requirements, we
explicitly impose hard constraints to restrict some performance
measurements in the worst case situations in the uncertainty
sets. As a result, any derived solution, if exists, will guarantee
its performance with respect to those uncertainty sets. Let
γk denote our performance restriction in uncertainty sets Vk,
k = 1, . . . ,K. Also, let v0 be the nominal situation that the
decision maker would like to consider.

The risk constrained robust unit commitment model is
formulated as

min
y,z,x0,s0

az + ry + g0x0 + q0s0 (14)

s.t. Dy + Fz ≥ f ; y, z binary, (15)
Ex0 ≤ e, (16)

Ax0 ≤ L−Gy −Pz−Rv, (17)
Ix0 + Hs0 = d−Tv0, (18)

max
v∈Vk

min
x,s∈Ω(y,z,v)

(gkx + qks) ≤ γk, ∀k (19)

Ω(y, z,v) = {(x, s) : Ex ≤ e,

Ax ≤ L−Gy −Pz−Rv, Ix + Hs = d−Tv}(20)

Note that it is not necessary to keep gk and qk identical among
k = 0, . . . ,K. So, we can consider different performance
measures with respect to different Vk. Again, we mention that
the essential solution to the above robust UC model is the first
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stage y and z decisions. It may not be optimal to implement
the solution (x0, s0) because the virtual optimal one can be
derived after v is disclosed.

Let ~γ denote {γ1, . . . , γK} and Φ(~V, ~γ) be the optimal value
of (14-20) with respect to ~V and ~γ. The following results can
be easily proven.

Proposition 4. (i) For a given ~V, the function Φ(~V, ~γ) is
non-increasing in ~γ; (ii) For a given ~γ, the function Φ(~V, ~γ)
is non-decreasing in ~V (in the terms of set inclusion); (iii)
When ~γ = ~∞, the risk constrained UC model reduces to the
standard UC model built on v0.

In Appendix C, we present a concrete risk constrained UC
model by considering G-1 (i.e., one generator in forced outage)
and G-2 (i.e., two generators in forced outages) contingencies
as our V1 and V2. We impose upper bounds on load shedding
in the worst case situations in those two uncertainty sets to
control our risks. Numerical results of this model are presented
in Section III.

C. A Solution Procedure: Customization of the Column-and-
Constraint Generation Method

The aforementioned robust UC models can be solved by
classical Benders dual methods, which have been applied to
solve typical robust UC models in existing literatures [8, 9, 10,
11]. A recent column-and-constraint generation method has
also been developed in [9, 14] that solves the typical robust
UC models an order of magnitude faster than Benders dual
methods. This algorithm can simply be customized to solve
our new robust UC variants. Because the expanded robust
UC is similar to the typical robust UC and just needs a few
modifications, our illustration is within the context of the risk
constrained robust UC model.

The column-and-constraint generation method is imple-
mented in a master-subproblem framework. For a given
(y∗, z∗), we define the following subproblem

SPk : Qk(y∗, z∗) = max
v∈Vk

min
x,s∈Ω(y∗,z∗,v)

gkx + qks

s.t. Ex ≤ e,

Ax ≤ L−Gy∗ −Pz∗ −Rv,

Ix + Hs = d−Tv.

Although SPk is a bi-level program, because the inner
problem is a linear program, it can be converted into a
mixed integer program by using classical Karush-Kuhn-Tucker
(KKT) conditions and big-M linearization method [14]. To
avoid distraction, we simply assume an oracle can solve it
or identify some v∗ ∈ Vk for which the inner problem is
infeasible (and Qk(y∗, z∗) is conventionally set to +∞). Next,
we give the algorithm details to solve the risk constrained UC
model.

1) Set i = 0, VIOLATION = VIOLk= FALSE, and Lk = 0
for k = 1, . . . ,K.

2) Solve the following mixed integer master problem

MP : min
y,z,x0,s0

az + ry + g0x0 + q0s0

s.t. Dy + Fz ≥ f ; y, z binary,

Ex0 ≤ e,

Ax0 ≤ L−Gy −Pz−Rv0,

Ix0 + Hs0 = d−Tv0,

gkxk,l + qksk,l ≤ γk, ∀k, l ≤ Lk

Exk,l ≤ e, ∀k, l ≤ Lk

Axk,l ≤ L−Gy −Pz−Rvk,l, ∀k, l ≤ Lk

Ixk,l + Hsk,l = d−Tvk,l, ∀k, l ≤ Lk

Derive an optimal solution
(y∗, z∗,x∗0, s

∗
0,x
∗
1,1 . . . ,x

∗
K,LK

, s∗1,1, . . . , s
∗
K,LK

).
3) With given (y∗, z∗), for k = 1, . . . ,K, do

a) call the oracle to solve SPk;
b) if Qk(y∗, z∗) > γk, set VIOLATION = VIOLk =

TRUE, use vk,Lk+1 to record the optimal v∗ and
update Lk = Lk + 1.

4) If VIOLATION = FALSE, return (y∗, z∗) and termi-
nate. Otherwise, set VIOLATION = FALSE and for
k = 1, . . . ,K, do

a) If VIOLk = TRUE, create variables (xk,Lk
, sk,Lk

)
and add the following constraints

gkxk,Lk
+ qksk,Lk

≤ γk,

Exk,Lk
≤ e,

Axk,Lk
≤ L−Gy −Pz−Rvk,l,

Ixk,Lk
+ Hsk,Lk

= d−Tvk,Lk
,

to MP.
b) Set VIOLk= FALSE,

5) Update i = i+ 1 and go to Step 2). �

Given that the second stage recourse problems are linear
programs, the convergence and the complexity results follow
from the complexity analysis of the column-and-constraint
generation method presented in [14]. Let pk be the number of
extreme points of Vk if it is a polytope (e.g., the uncertainty
sets for random loads) or the set cardinality if it is a finite
discrete set (e.g., the G-k contingency set). We have

Proposition 5. The column-and-constraint generation method
either terminates with an optimal solution or reports infeasi-
bility of the risk constrained robust UC model (the expanded

robust UC model, respectively) in O(
K∏

k=1

pk) iterations.

Actually, the computational performance of this method
on solving practical problems is drastically better than the
theoretical result, which can be seen in the next section.

III. NUMERICAL EXAMPLES

In this section, we numerically investigate our proposed
robust UC models for illustration, based on a dataset with
loads of 7 consecutive days and 11 generators from a utility
company in Florida (see specifications provided in [15]). The
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TABLE I
RESULTS FOR TWO UNCERTAINTY SETS WITH ρ1 = 0.86 AND ρ2 = 0.14

Case Γ1,Γ2 iter. time(s) Obj. Cost in V1 Cost in V2

1 12,12 2 0.869 973087.4 951082.07 1035048.71
2 12,10 2 0.853 969668.16 951082.07 1010625.6
3 12,8 2 0.837 966147.13 951082.07 985475.38
4 12,6 2 0.869 962286.85 951082.07 957901.93
5 12,4 2 0.837 958204.08 951082.07 928739.26
6 12,2 2 0.869 954041.31 951082.07 899005.23
7 6,6 2 0.79 929118.42 913618.57 958974.63
8 6,4 2 0.806 925028.02 913618.57 929757.5
9 6,2 2 0.885 920861.62 913618.57 899997.51

column-and-constraint generation method is implemented in
C++ and tested on a Dell Optiplex 760 desktop computer (Intel
Core 2 Duo CPU, 3.0GHz, 3.25GB of RAM) in Windows XP
environment. CPLEX 12.5 is adopted as the mixed integer
programming solver and its optimality tolerance is set to 10−4.

In the computation of the expanded robust UC model, we
consider the formulation in Appendix B with two uncertainty
sets. They are in the form of (26) constructed by the approach
presented in [8]. In (26), v̄t is set to the average load in time t,
and v̂t is set to 1.5σ and 3σ in V1 and V2 respectively, noting
that taking values beyond ±3σ is very unlikely (< .27%) if
loads follow normal distributions.

Parameters Γ1 and Γ2 are chosen such that Γ2 ≤ Γ1,
knowing that random loads are less likely to reach lower/upper
bounds if the uncertain interval is larger. We consider two sets
of weight coefficients, i.e., ρ1 = 0.86 and ρ2 = 0.14, and
ρ1 = 0.6 and ρ2 = 0.4, in our computation. The first set is
selected according to the fact that loads will fall within ±1.5σ
range with probability 0.86 under the normal distribution. The
second set is simply selected to emphasize the importance of
V2, which might lead to a more conservative solution. All
numerical results are presented in Tables I and II.

We note in Table I that the (worst case) cost in V1 does not
change, in spite of the change of Γ2 in V2, which indicates
that the first stage commitment solution remains the same.
Such an observation can be explained by the fact that ρ2 is
small and the uncertainty set V1 dominates the final solution.
Nevertheless, more interesting interactions between V1 and V2

can be seen in Table II where weight coefficient ρ2 is larger.
Specifically, when Γ1 = 12 and Γ2 changes from 12 to 2,
we note that the (worst case) cost in V1 starts with 951156.8,
then deceases to 951082.07 and finally increases to 952236.35.
Such a behavior is basically due to the large value of ρ2

that enables V2 to heavily affect the commitment solution.
When Γ2 is large, more generators are committed that may
be unnecessary for any realization in V1. So, the (worst case)
cost in V1 has to include cost associated with their minimum
generation levels. When Γ2 is moderate, less generators are
committed but they are sufficient to handle any possibility
inside V1. Then, the (worst case) cost in V1 decreases. Finally,
when Γ2 is small, much less generators are committed, which
in turn causes expensive market purchases to deal with the
worst cases of V1. As a result, the (worst case) cost in V1

increases.
In the computation of the risk constrained robust UC

model, we consider the formulation in Appendix C with load

TABLE II
RESULTS FOR TWO UNCERTAINTY SETS WITH ρ1 = 0.6 AND ρ2 = 0.4

Case Γ1,Γ2 iter. time(s) Obj. Cost in V1 Cost in V2

1 12,12 2 0.79 994916.84 951156.8 1035056.91
2 12,10 2 0.917 985147.59 951156.8 1010633.8
3 12,8 2 0.932 975089.39 951082.07 985475.38
4 12,6 2 0.917 964060.01 951082.07 957901.93
5 12,4 2 0.933 952394.95 951082.07 928739.26
6 12,2 2 0.901 940490.81 952236.35 899997.51
7 6,6 2 0.837 940911 913618.57 958974.63
8 6,4 2 0.885 929224.14 913618.57 929757.5
9 6,2 2 0.821 917320.15 913618.57 899997.51

shedding restrictions on G-1/G-2 contingencies. Numerical
results, along with the algorithm performance on load shedding
(LS) over iterations, for different γ1 and γ2 are presented in
Table III.

Note that with γ1 and γ2 become more restrictive in G-1
and G-2 contingencies, solutions with higher costs and more
units turned on are derived. When constraints with γ1 = 200
and γ2 = 2000 are imposed, the model actually becomes
infeasible. Hence, we can conclude that if the reliability
standard with γ1 = 200 and γ2 = 2000 is required, the system
needs to obtain and operate extra generators. Therefore, this
model can also be treated as a decision support tool for system
expansion under reliability consideration.

TABLE III
RESULTS OF G-1/G-2 RISK CONSTRAINED MODEL

Case Case 1 Case 2 Case 3
Obj. 885890.90 886219.02 NA

LS\γk 300 3000 250 2500 200 2000
iter.1 4793.44 10812.8 4793.44 10812.8 4793.44 10812.8
iter.2 4793.44 10812.8 4793.44 10812.8 4793.44 10812.8
iter.3 821.99 4793.44 1729.08 4793.44 650.99 4793.44
iter.4 325.8 3197.15 420.46 2720.74 INF INF
iter.5 268.8 2912.15 225.26 2499.03

time(s) 70.203 44.312 10.35

IV. CONCLUSION

In this paper, we explore and extend the modeling capacity
of two-stage robust optimization method. We demonstrate the
improved capability by presenting two new robust unit com-
mitment models, i.e., the expanded robust unit commitment
and the risk constrained robust unit commitment models. We
derive some structural properties, show that the first model
generalizes the scenario based stochastic unit commitment
model, and present a customized column-and-constraint gener-
ation method. We then perform a set of numerical experiments
on those models to illustrate their modeling strength, economic
outcomes with respect to different uncertainty sets and the
algorithm performance in solving those models.

Although those unit commitment models improve our ability
to capture uncertainties and handle risks in power systems,
we mention that the presented research is a basic work in
exploring robust optimization, a new optimization paradigm
that may have many powerful modeling and solution features.
For example, a natural extension is to adopt mixed integer
recourse programs [16] that can model quick-start generators
and transmission line switching in the second stage [17]. Also,
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the concepts of modeling presented in this paper can be applied
into other robust optimization applications, e.g., [18, 19], to
address practical needs.

APPENDIX A
NOMENCLATURE

Indices and Sets
i Generator, i = 0, 1, ..., I − 1
t Planning period, t = 0, 1, ..., T − 1
Vk The k-th uncertainty set

Parameters
ai Start up cost of unit i
ri Running cost of unit i
ci Fuel cost of unit i
q+
t Purchase price at time t in power market
q−t Sale price at time t in power market
vt Load (or generator forced outage) at time

t
v̄t Nominal value of load at time t
v̂t Bound on load deviation from the nominal

value at time t
Γk the right-hand-side for the budget con-

straint of the k-th uncertainty set
li Lower bound output of unit i
ui Upper bound output of unit i
∆i

+ Ramping up limit of unit i
∆i
− Ramping down limit of unit i

mi
+ Minimum up time limit of unit i

mi
− Minimum down time limit of unit i

Decision variables
yit Binary on/off status of unit i at time t
zit Binary start up of unit i at time t
xit Continuous generation of unit i at time t
s+

t Purchased power or load shedding at time
t (continuous)

s−t Sold power at time t (continuous)

APPENDIX B
THE EXPANDED ROBUST UC MODEL

In this model, we consider the unit commitment problem
with random loads, which is captured by multiple uncertainty
sets. For simplicity, we do not include spinning reserve con-
straints and assume a linear fuel cost function, which can
be included or replaced by a piecewise linear function. The
expanded robust UC is formulated as following.

min
y,z

I−1∑
i=0

T−1∑
t=0

(riyit + aizit) +
K∑

k=1

ρk max
v∈Vk

min
(x,s+,s−)∈Ω(y,z,v)( I−1∑

i=0

T−1∑
t=0

cixit +
T−1∑
t=0

(q+
t s

+
t − q−t s−t )

)
(21)

s.t.

− yi(t−1) + yit − yih ≤ 0

∀i, t ≥ 1, t ≤ h ≤ min{mi
+ + t− 1, T − 1}; (22)

yi(t−1) − yit + yih ≤ 1

∀i, t ≥ 1, t ≤ h ≤ min{mi
− + t− 1, T − 1}; (23)

− yi(t−1) + yit − zit ≤ 0 ∀i, t ≥ 1; (24)
yit, zit ∈ {0, 1} ∀i, t; (25)

where
Vk = {v̄t − v̂t ≤ vt ≤ v̄t + v̂t, ∀t;

T−1∑
t=0

|vt − v̄t|
v̂t

≤ Γk} k = 1, . . . ,K; (26)

and
Ω(y, z,v) = {liyit ≤ xit ≤ uiyit, ∀i, t; (27)

I−1∑
i=0

xit + s+
t − s−t = vt, ∀t; (28)

xi(t+1) ≤ xit + yit∆i
+ + (1− yit)ui

∀i, t = 0, 1, ..., T − 2; (29)

xit ≤ xi(t+1) + yi(t+1)∆i
− + (1− yi(t+1))ui

∀i, t = 0, 1, ..., T − 2; (30)

xit ≥ 0 ∀i, t; s+
t , s
−
t ≥ 0 ∀t; } (31)

The objective function in (21) is to minimize the total cost,
including the first stage commitment cost and the second stage
economic dispatch cost estimated by the weighted worst case
costs in different uncertainty sets. Constraints in (22-25) are
typical commitment constraints that define the minimum up
and down times and define the start-up decision and generator
status, as well as define variable type restrictions. Vk in (26)
is defined in the same fashion as those in [8, 9] that uses
a budget constraint to refine our uncertainty set description.
The set Ω(y, z,v), a polyhedral set, is the feasible set of the
economic dispatch problem, for the fixed y, z,v. Constraints
in (27) define the lower and upper bounds on generation
level. Constraints in (28) ensure loads can be satisfied all the
time. Constraints (29) and (30) are ramping up/down limits.
Constraints in (31) provide variable type restrictions.

APPENDIX C
THE RISK CONSTRAINED ROBUST UC MODEL

In this model, we consider the unit commitment problem
with bound constraints on load shedding under G-k contingen-
cies (i.e., up to k generators in forced outages). Most notations
and variables are identical to those used in the expanded
robust UC model. Important differences are: spinning reserve
constraints are included in the nominal situation with wit rep-
resenting spinning reserve of generator i and SRt representing
system reserve requirement at time t, Vk is a finite discrete
set to describe the generator outage status, and dt is used to
represent load at time t that is certain.
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min
y,z,x

I−1∑
i=0

T−1∑
t=0

cix0,it + riyit + aizit (32)

s.t. (33)
− yi(t−1) + yit − yih ≤ 0

∀i, t ≥ 1, t ≤ h ≤ min{mi
+ + t− 1, T − 1}; (34)

yi(t−1) − yit + yih ≤ 1

∀i, t ≥ 1, t ≤ h ≤ min{mi
− + t− 1, T − 1}; (35)

− yi(t−1) + yit − zit ≤ 0, ∀i, t ≥ 1; (36)
x0,it ≥ liyit, ∀i, t; (37)
x0,it + wit ≤ uiyit, ∀i, t; (38)∑

i

wit ≥ SRt, ∀t; (39)

x0,i(t+1) ≤ x0,it + yit∆i
+ + (1− yit)ui (40)

∀i, t = 0, 1, ..., T − 2;

x0,it ≤ x0,i(t+1) + yi(t+1)∆i
− + (1− yi(t+1))ui (41)

∀i, t = 0, 1, ..., T − 2;
I−1∑
i=0

x0,it ≥ dt ∀t; (42)

max
v∈Vk

min
(x,s+)∈Ω(y,z,v)

∑
t

s+
t ≤ γk, k = 1, . . . ,K (43)

yit, zit ∈ {0, 1}, x0,it ≥ 0, wit ≥ 0, ∀i, t; (44)

where
Vk = {vit ∈ {0, 1},∀i, t; (45)

vi(t+1) ≥ vit, ∀i, 0 ≤ t ≤ T − 2; (46)∑
i

vit ≤ k,∀t} k = 1, . . . ,K; (47)

and

Ω(y, z,v) = {s+
t ≥ dt −

∑
i

xit, ∀t; (48)

liyit(1− vit) ≤ xit ≤ uiyit(1− vit) ∀i, t; (49)

xi(t+1) ≤ xit + yit∆i
+ + (1− yit)ui (50)

∀i, t = 0, 1, ..., T − 2;

xit ≤ xi(t+1) + yi(t+1)∆i
− + (1− yi(t+1))ui + uivi(t+1)

(51)
∀i, t = 0, 1, ..., T − 2;
s+

t ≥ 0 ∀t; xit ≥ 0 ∀i, t; }; (52)

The objective function in (32) is to minimize the overall
cost in the nominal situation. Constraints in (34-42) are the
regular unit commitment constrains, along with variable type
restrictions in (44). Constraints in (43) define the different
restrictions on the overall load shedding in K contingency
sets. The contingency set Vk in (45-47) includes all the
contingencies with up to k generator outages. Specifically,
constraints in (46) indicate that once generator i is in outage
at time t, i.e., vi,t = 1, it remains in outage status. Constraints
in (47) ensure that at any time, no more than k generators

are in outage. Finally, the set Ω(y, z,v) in (48-52) defines the
feasible set of the economic dispatch subject to fixed (y, z,v).
Note from (49) that once generator i is in outage at time t, its
generation will be zero. Also, (51) ensures that the ramping
down constraint is not needed if generator i is in outage at
time t+ 1.
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