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Abstract—This work introduces a robust formulation of the uncertain set
covering problem combining the concepts of robust and probabilistic opti-
mization and defines ’Γ-robust α-covers’. It is shown that the proposed ro-
bust uncertain set covering problem can be stated as a compact mixed-integer
linear programming model which can be solved with modern computer soft-
ware. This model is a natural extension of the classical set covering problem
in order to cope with uncertainty in covering constraints.
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1 Introduction

The Set Covering Problem (SCP) minimizes the column costs that are necessary to
ensure a full coverage of all rows. Let I = {1, . . . ,m} ⊂ N denote the index set of rows
(indexed with i), J = {1, . . . , n} ⊂ N denotes the index set of columns (indexed with j)
and let Ni = {j ∈ J | i can be covered by j} denote the neighborhood of a given column
i. Costs associated with a column j are denoted by cj for all j ∈ J . A {0, 1}-linear
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formulation of the classical set covering problem is given by (see [9, 5])

min
∑
j∈J

cjyj (1)

s. t.
∑
j∈J

aijyj ≥ 1 ∀i ∈ I (2)

yj ∈ {0, 1} ∀j ∈ J (3)

where

aij =

1, if j ∈ Ni

0, else.

The set covering problem is a well known NP-hard combinatorial optimization problem
with many applications, particularly in emergency medical service facility location (see
i. e. Degel et al. [4]). In order to cope with different aspects of uncertainty regarding the
input parameters various models can be found in literature. Beraldi and Ruszczyński [1]
introduce the probabilistic set covering problem, a chance-constraint formulation, where
the right-hand side of constraint (2) is replaced by a binary random variable. Pereira
and Averbakh [8] present a robust version of the set covering problem with interval
uncertainty in cost-coefficients cj. Hwang, Chiang and Liu [7, 3] as well as Fischetti
and Monaci [6] focus on uncertainty in the coefficients aij. Hwang et al. [7] develop a
fuzzy set covering problem and provide a binary linear reformulation of the problem [3].
Fischetti and Monaci define an uncertain set covering problem where constraint (2) is
also replaced by a chance-constraint which deals with columnwise coefficient uncertainty.
For each column j ∈ J the entries in the coefficient vector a:j flip from 1 to 0 with a
known probability pj ∈ [0, 1]. That means a complete column j ∈ J which is assumed
to be able to cover row i ∈ I (aij = 1) may disappear (aij = 0) with a probability of pj.
We extend this concept by including individual and independent coefficient disap-

pearing probabilities pij ∈ [0, 1] for each row i ∈ I and column j ∈ J . Generalizing
the approach of [6] and assuming the coefficients aij to be independent binary random
variables leads to

aij =

1, with probability 1− pij

0, with probability pij .

Let P be a probability measure, then we define an α-covering constraint, α ∈ (0, 1], of
row i by

P (
∑
j∈J

aijyj ≥ 1) ≥ α .
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This constraint ensures that each row i ∈ I will be covered with a probability of at least
α. Then we define the generalized uncertain set covering problem (GUSCP) as

min
∑
j∈J

cjyj

s. t. P (
∑
j∈J

aijyj ≥ 1) ≥ α ∀i ∈ I (4)

yj ∈ {0, 1} ∀j ∈ J

A solution y? ∈ {0, 1}n is feasible for GUSCP if and only if P (∑
j∈J aijy

?
j ≥ 1) ≥ α is

satisfied for all i ∈ I which is equivalent to P (∑
j∈J aijy

?
j < 1) = ∏

j∈C(y?) pij ≤ 1 − α
with C(y?) = {j ∈ J | y?

j = 1} for all i ∈ I.

2 Robust covers and the robust uncertain set covering problem

In most real world applications the actual probabilities pij are not known precisely.
It is more likely to estimate these probabilities on the basis of a given set of data.
This leads to natural deviations of the estimated probabilities, in the following called
nominal value, from their true but unknown counterparts. In cases with a large data
set, these deviations are typically smaller compared to situations with relatively small
data sets. These deviations can be quantified by intervals which allow the use of interval
uncertainties following the robustness concept of Bertsimas and Sim [2]. Hence, we
assume pij to be uncertain within the interval [p̄ij − p̂ij, p̄ij + p̂ij] ⊂ [0, 1] (note that our
results are still valid if pij has only realizations in [p̄ij, p̄ij + p̂ij] ⊂ [0, 1]) where p̄ij ≥ 0
indicates the nominal value and p̂ij ≥ 0 denotes the maximum absolute deviation. The
goal is to obtain an α-coverage of row i ∈ I which remains feasible even if up to Γi ∈ N0

values of pij are realized in their worst case scenario p̄ij + p̂ij and the n − Γi other
realizations of pij take their nominal values p̄ij. A Γ-robust α-cover is defined as follows.

Definition 1 Let i ∈ I be fixed. Let Γi ∈ N0, α ∈ (0, 1] and let pij have realizations in
[p̄ij − p̂ij, p̄ij + p̂ij] ⊂ [0, 1] for all j ∈ J . A Γi-robust α-cover of the i-th row is defined as
a solution y? ∈ {0, 1}n with PΓi

(∑
j∈J aijy

?
j ≥ 1) ≥ α where PΓi

(∑
j∈J aijy

?
j ≥ 1) denotes

the minimum coverage probability on the condition that at most Γi realizations of pij

with j ∈ C(y?) are equal to their worst case scenario p̄ij + p̂ij and the n − Γi other
realizations of pij with j ∈ C(y?) are equal to their nominal values p̄ij.

If all realizations of pij only take values within the interval [p̄ij, p̄ij + p̂ij] the definition
can be stated in an analogous way. The obtained solutions coincide in both cases. This
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leads to the following robust uncertain set covering problem (RUSCP)

min
∑
j∈J

cjyj

s. t. PΓi
(
∑
j∈J

aijyj ≥ 1) ≥ α ∀i ∈ I (5)

yj ∈ {0, 1} ∀j ∈ J.

In the following, we will show how to derive a mixed-integer linear programming formu-
lation of RUSCP. In the first step, a reformulation of the left-hand side of the chance-
constraint (5) is provided in the following proposition.

Proposition 1 Let y? ∈ {0, 1}n and set

w′ij :=

ln(p̄ij + p̂ij) if p̄ij + p̂ij > 0
ln(1− α) if p̄ij + p̂ij = 0

and

wij :=

ln(p̄ij) if p̄ij > 0
ln(1− α) if p̄ij = 0

for all i ∈ I and j ∈ J . Let C(y?) = {j ∈ J | y?
j = 1}, then

PΓi
(
∑
j∈J

aijy
?
j ≥ 1) ≥ α ⇐⇒ max

{U⊂C(y?)||U |≤Γi}

∑
j∈U

w′ijy
?
j +

∑
j∈J\U

wijy
?
j

 ≤ ln(1− α) (6)

holds for all i ∈ I. 2

Proof Let i ∈ I be fixed and let y? ∈ {0, 1}n. The left-hand side of the i-th Γi-robust
α-covering constraint can be stated as

PΓi
(
∑
j∈J

aijy
?
j ≥ 1) = 1−PΓi

(
∑
j∈J

aijy
?
j < 1) = 1− max

{U⊂C(y?)||U |≤Γi}

 ∏
j∈U

(p̄ij + p̂ij)
∏

j∈C(y?)\U
p̄ij

 .

We divide the proof into two cases. At first assume p̄ij > 0 for all j ∈ J . Then constraint
(5) can be reformulated as follows
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1− max
{U⊂C(y?)||U |≤Γi}

 ∏
j∈U

(p̄ij + p̂ij)
∏

j∈C(y?)\U
p̄ij

 ≥ α

⇐⇒ max
{U⊂C(y?)||U |≤Γi}

∑
j∈U

ln(p̄ij + p̂ij) +
∑

j∈{k∈J\U |y?
k
=1}

ln(p̄ij)
 ≤ ln(1− α)

⇐⇒ max
{U⊂C(y?)||U |≤Γi}

∑
j∈U

ln(p̄ij + p̂ij)y?
j +

∑
j∈J\U

ln(p̄ij)y?
j

 ≤ ln(1− α)

⇐⇒ max
{U⊂C(y?)||U |≤Γi}

∑
j∈U

w′ijy
?
j +

∑
j∈J\U

wijy
?
j

 ≤ ln(1− α).

Analogously, one can proof the case of p̄ij = 0 or p̄ij + p̂ij = 0, but the index sets have
to be split into two sets, where one set contains all indices of positive p̄ij or p̄ij + p̂ij and
the other set contains all indices for zero elements. �

By analogy with the idea of Bertsimas and Sim [2] the maximization subproblem in (6)
is defined as

βi(y,Γi) := max
{U⊂C(y)||U |≤Γi}

∑
j∈U

w′ijyj +
∑

j∈J\U
wijyj

 .

The next proposition shows how to derive a linear programming formulation of the
subproblem of the i-th row βi(y,Γi) for a given solution y? ∈ {0, 1}n.

Proposition 2 Let i ∈ I be fixed. For a given solution y? ∈ {0, 1}n the subproblem

βi(y?,Γi) = max
{U⊂C(y?)||U |≤Γi}

∑
j∈U

w′ijy
?
j +

∑
j∈J\U

wijy
?
j


can be stated as a linear program in the form

βi(y?,Γi) =
∑
j∈J

wijy
?
j + min

∑
j∈J

ζij + Γiηi

s. t. ζij + ηi ≥ (w′ij − wij)y?
j ∀j ∈ J

ζij ≥ 0 ∀j ∈ J
ηi ≥ 0 . 2

Proof Let i ∈ I be fixed. It is easy to verify that for a given solution y? ∈ {0, 1}n the
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subproblem

βi(y?,Γi) = max
{U⊂C(y?)||U |≤Γi}

∑
j∈U

w′ijy
?
j +

∑
j∈J\U

wijy
?
j


can be stated as an integer linear program

βi(y?,Γi) = max
∑
j∈J

w′ijy
?
j ξj +

∑
j∈J

wijy
?
j (1− ξj)

s. t.
∑
j∈J

ξj ≤ Γi

ξj ∈ {0, 1} ∀j ∈ J.

The objective function of this problem can be reformulated as

∑
j∈J

wijy
?
j + max{

∑
j∈J

w′ijy
?
j ξj −

∑
j∈J

wijy
?
j ξj} =

∑
j∈J

wijy
?
j + max{

∑
j∈J

(w′ij − wij)y?
j ξj}

due to the fact that ∑
j∈J wijy

?
j is constant. For all j ∈ J holds w′ij ≥ wij which implies

w′ij − wij ≥ 0. The polytope {ξ ∈ Rn | ∑
j∈J ξj ≤ Γi, ∀j ∈ J : ξj ≤ 1, ξj ≥ 0} is integral

which allows us to write the subproblem as:

βi(y?,Γi) =
∑
j∈J

wijy
?
j + max

∑
j∈J

(w′ij − wij)y?
j ξj |

∑
j∈J

ξj ≤ Γi, ∀j ∈ J : ξj ∈ [0, 1]
 . (7)

If the primal problem in (7) is feasible and bounded then the dual problem is also feasible
and bounded. Applying the strong duality theorem it follows that both objective values
coincide. Dualizing the maximization problem in (7) concludes the proof. �

Replacing the nonlinear constraint (5) we receive a mixed-integer linear formulation for
the robust uncertain set covering problem (RUSCP):

min
∑
j∈J

cjyj

s. t.
∑
j∈J

wijyj +
∑
j∈J

ζij + Γiηi ≤ ln(1− α) ∀i ∈ I

ζij + ηi ≥ (w′ij − wij)yj ∀i ∈ I, ∀j ∈ J
ζij ≥ 0 ∀i ∈ I, ∀j ∈ J
ηi ≥ 0 ∀i ∈ I
yj ∈ {0, 1} ∀j ∈ J.
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3 Example

A very important application of the SCP addresses the location of emergency medical
service facilities. The goal is to determine locations j ∈ J of emergency medical service
facilities assuring the coverage of all demand nodes i ∈ I such that induced costs are
minimized. A demand node i ∈ I is covered if it can be reached by an emergency medical
vehicle within a pre-specified time limit. In real world applications of this problem, there
may exist some demand nodes i ∈ I which cannot be covered with certainty. Even their
covering probabilities cannot be forecasted with certainty. The following figure illustrates
the geographical interpretation and the robust covering constraint for a given demand
node i:

b
i

pij = 0
r

j1
0 1

[ ]
pij

r
j2

0 1
[ ]

pij

r
j3

0 1
×

pij = 1

b i = demand node i ∈ I

r j = facility site j ∈ J

Figure 1: Geographical interpretation of the RUSCP.

The inner radius determines the certain-region. Each vehicle associated to a facility
j ∈ J within this area can reach demand node i with certainty. This corresponds to a
disappearing probability of zero. The grey area around i illustrates the uncertain-region.
In this illustration facilities j1 and j2 belong to the uncertain-region. The probability
that a vehicle is not able to reach demand node i from this area cannot be quantified
exactly. These probabilities are assumed to have realizations within pre-defined intervals,
denoted by the brackets on the [0, 1]-line. If facilities, e. g. j3, are located outside of the
mentioned regions, it is not possible to reach demand node i within the time limit.
Assume that we have four demand nodes, I = {1, 2, 3, 4}, that should be covered with

a probability of at least α = 0.98 by at most three different facilities, J = {1, 2, 3}.
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Let yj = 1 if facility j ∈ J is built and yj = 0 otherwise. The nominal value p̄ij of
the probability that demand node i cannot be covered by facility j and the maximum
deviation p̂ij are given by

p̄ =


0.02 0.16 0.02
0.16 0.02 0.02
0.04 0.14 0.02
0.13 0.03 0.02

 p̂ =


0.05 0.1 0.12
0.1 0.04 0.13
0.05 0.07 0.1
0.05 0.04 0.1


for all i ∈ I, j ∈ J . The disappearing probability matrix p has realizations within the
interval [p̄, p̄+ p̂]. The goal is to minimize the number of facilities (cj = 1 for all j ∈ J)
such that all nodes are α-covered and protected against Γ := Γi, 1 ≤ i ≤ 4 worst case
realizations of p according definition 1. This leads to Γ-robust 0.98-covering constraints.
Table 1 shows the conditional minimum covering probabilities for each demand node
depending on the value of Γ. A solution is feasible if the corresponding row only contains
entries greater or equal to 0.98. Feasible solutions are highlighted bold while optimal
solutions are marked with a star. The first row of the table shows conditional minimal

demand built facility
node 1 2 3 1 & 2 1 & 3 2 & 3 1 & 2 & 3

Γ = 0

i = 1 0.98 0.84 0.98? 0.9968 0.9996 0.9968 0.999936
i = 2 0.84 0.98 0.98? 0.9968 0.9968 0.9996 0.999936
i = 3 0.96 0.86 0.98? 0.9944 0.9992 0.9972 0.999888
i = 4 0.87 0.97 0.98? 0.9961 0.9974 0.9994 0.999922

Γ = 1

i = 1 0.93 0.74 0.86 0.9888? 0.9972 0.9776 0.999552
i = 2 0.74 0.94 0.85 0.9904? 0.976 0.997 0.99952
i = 3 0.91 0.79 0.88 0.9874? 0.9952 0.9832 0.999328
i = 4 0.82 0.93 0.88 0.9909? 0.9844 0.9964 0.999532

Γ = 2

i = 1 0.93 0.74 0.86 0.9818? 0.9902 0.9636 0.998432
i = 2 0.74 0.94 0.85 0.9844? 0.961 0.991 0.99856
i = 3 0.91 0.79 0.88 0.9811? 0.9892 0.9748 0.998488
i = 4 0.82 0.93 0.88 0.9874? 0.9784 0.9916 0.998908

Γ = 3

i = 1 0.93 0.74 0.86 0.9818? 0.9902 0.9636 0.997452
i = 2 0.74 0.94 0.85 0.9844? 0.961 0.991 0.99766
i = 3 0.91 0.79 0.88 0.9811? 0.9892 0.9748 0.997732
i = 4 0.82 0.93 0.88 0.9874? 0.9784 0.9916 0.998488

Table 1: Γ-robust covering probabilities for all demand nodes and all combinations of
facilities (Γ ∈ {0, 1, 2, 3})
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covering probabilities with no protection against deviations, that means Γ = 0. Clearly,
this solution coincides with the GUSCP with nominal values and the optimal solution
is to build only facility 3. The second row shows minimal covering probabilities with
Γ = 1, which means protecting against at most one worst case realization. Building only
one facility is no longer feasible. The alternatives to build facilities 1 and 3 as well as
building facilities 2 and 3 are not feasible due to demand node 2 respectively demand
node 1. The optimal solution is to built facilities 1 and 2. Protecting against at most
two or three worst case realizations (Γ = 2 resp. Γ = 3) leads to the same optimal
solution as in the former case.

4 Conclusion

In this paper a new approach to cope with uncertainties in set covering problems, called
RUSCP, was developed. We extended the current state of the art literature regarding the
integration of interval uncertainties in the probability distribution of {0, 1} parameters.
It was shown that the robust counterpart of the uncertain set covering problem can be
stated as a mixed-integer linear programm in a compact formulation.
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