
Draft paper June 24, 2013

An MILP approach to Multi-location, Multi-Period
Equipment Selection for Surface Mining with Case

Studies
Christina Burt

Department of Computing and Information Systems, University of Melbourne cnburt@unimelb.edu.au

Louis Caccetta
Western Australian Centre of Excellence in Industrial Optimisation, Curtin University of Technology l.caccetta@curtin.edu.au
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In the surface mining industry, the Equipment Selection Problem involves choosing an appropriate fleet of trucks and

loaders such that the long-term mine plan can be satisfied. An important characteristic for multi-location (multi-location

and multi-dumpsite) mines is that the underlying problem is a multi-commodity flow problem. The problem is therefore

at least as difficult as the fixed-charge, capacitated multi-commodity flow problem. For long-term schedules it is useful

to consider both the purchase and salvage of the equipment, since equipment may be superseded, and there is the pos-

sibility of pre-existing equipment. This may also lead to heterogeneous fleets and arising compatibility considerations.

In this paper, we consider two case studies provided by our industry partner. We develop a mixed-integer linear pro-

gramming model for heterogeneous equipment selection in a surface mine with multiple locations and a multiple period

schedule. Encoded in the solution is an allocation scheme in addition to a purchase and salvage policy. We develop a

solution approach, including variable preprocessing, to tackle this large-scale problem. We illustrate the computational

effectiveness of the resulting model on the two case studies for large sets of equipment and long-term schedule scenarios.

1. Introduction
The selection of an appropriate fleet of trucks and loaders to operate in a surface mine is an important

problem for the mining industry due to the large cost of purchasing and operating the equipment over many

years. A poor choice in the truck and loader fleet, in either types or fleet size, can lead to unnecessary

expense and, in some cases, the inability to satisfy capacity constraints. As a problem in itself, equipment

selection brings together the selection, purchase, replacement and allocation problems into one optimization

problem. It becomes more interesting still when we consider a mine with multiple locations or routes,

where the compatibility of the interacting fleets is enforced. Although the purchase of equipment is made

on a strategic (yearly) time scale, the equipment must be capable of fulfilling production requirements on a

tactical (daily) time scale. This mismatch in time fidelity can lead to poorly dimensioned models, which in

turn are computationally cumbersome. The additional dimension of the multiple routes and locations also

exacerbates what is already a large-scale problem.
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In this paper, we address this practical optimization problem of choosing equipment for a surface mine

plan. In particular, we wish to select a compatible fleet of trucks and loaders to move mined materials

between multiple mining and dumping sites, at minimum cost. As far as we know, there has been no litera-

ture that addresses multiple period schedules or multiple locations or allows for pre-existing equipment (and

subsequent heterogeneous fleets). Multiple periods and locations increase the dimension of the problem, but

it is the pre-existing equipment that requires compatible fleet constraints that makes the problem difficult.

We seek to address these deficiencies in the literature. The main features of our model approach are:

• the consideration of a multiple location and multiple period mining plan;

• the consideration of heterogeneous fleets and subsequent compatibility requirements;

• simultaneously optimizing the purchase and salvage policy, and equipment scheduling policy (i.e.

allocation policy);

• providing correction for discretization error;

• variable preprocessing based on a ‘staircase’ structure in the solution;

• development of solving approaches that help to reduce the total number of constraints in the model;

• illustration of computation effectiveness in a real-world context through two case studies.

Since the problem is large-scale, we also develop preprocessing of the variables and solving approaches

to enable solution for real world cases. In the remainder of this section, we will outline some important

background to the equipment selection problem and discuss relevant related literature.

A typical surface mine may have several mining locations, several dump-sites or several routes from a

location to a dump-site, as illustrated in Figure 1. Different mining locations may have capacity require-

ments that affect the type of loader selected to excavate the material, and consequently alter the rate of

production at that site. Along the routes the trucks may alternate between the mill and dump sites; the routes

themselves may also vary significantly in terms of time required to perform a full cycle. Furthermore, the

consideration of multiple locations or routes introduces the need to allocate equipment to locations. Since

truck route

dump−siteloading location

Figure 1 A multiple-location mine model with 2 loading locations, 2 dump-sites and 3 truck routes.
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Figure 2 Discretized operating cost function against age brackets. The rise in operating cost reflects the increased

maintenance expense; large drops in the expense occur when a significant maintenance, such as over-

haul, has taken place.

the movement of equipment around a network must be consistent, this feature leads to an underlying prob-

lem which can be described as a multi-commodity flow problem (4). Purchase may occur in any period. The

problem is therefore at least as difficult as the fixed-charge, capacitated multi-commodity flow problem.

We restrict the focus of this paper to mining equipment selection under the following assumptions:

• Multiple locations and multiple routes exist on which the selected fleet may move about;

• Multiple truck cycle times—one for each route per period;

• Known mine plan—an acceptable mine plan has already been derived (including selection of mining

method);

• Salvage—all equipment is salvageable at the start of each period at some depreciated value of the

original capital expense;

• No auxiliary equipment—wheel loaders and small trucks are not considered in this model, although

can be easily included if the cost and maintenance data is available;

• Known operating hours—the operating hours of the mine are estimated by taking planned downtime,

blasting and weather delays into account;

• Heterogeneous fleets—different types of equipment may work within one fleet, so long as compatibil-

ity requirements are satisfied;

• Fleet retention—all equipment is retained at the end of the last period;

• Full period utilization—operating costs are charged as though the equipment has been fully utilized

for each entire period in which it is owned.

• Age bracket size—the size of an age bracket, B0, used to discretize the availability function, is strictly

larger than the size of a period, i.e. B0 > max{Hk}.

In the surface mining industry, the generally non-linear non-convex operating cost and availability (as

functions of the age of the equipment) are commonly discretized to step-wise functions that are divided

into age brackets of size B0, as illustrated in Figure 2. The operating expense reflects the cost of operating
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and maintaining the equipment. It takes into account varying maintenance expenses, availability and pro-

ductivity levels, which are known to vary with the age of the equipment. The rise in operating cost reflects

the increased maintenance expense; large drops in the expense occur when a significant maintenance, such

as overhaul, has taken place. In our case studies, we use an age bracket size of 5000 hours, as in (25). We

have similar factors for the availability of the equipment (the proportion of time it is available to work),

utilization (the proportion of time it is effective) and maintenance (the proportion of time the equipment

is available after maintenance). All of these factors are functions of the age bracket the equipment is in,

indicating that the performance of the equipment changes with its use in a non-linear way.

The full period utilization assumption is really about the granularity of our data—we have set up this

problem with time windows of annual periods, and there are considerations such as budgets and labour flex-

ibility which are typically annual in nature. Purchase and salvage of equipment typically occur periodically,

so accordingly we define a period to be 1 year in length as a reasonable timeframe with which to consider

purchase and salvage of equipment and any cost benefits associated with bulk purchases. Smaller periods

may be considered, such as quarterly, to generate finer fidelity schedules and allocation solutions, but pur-

chase and salvage would generally not occur at these smaller intervals. For this reason, and also to aid the

tractability of the problem, we will not consider periods smaller than 1 year in length in our experiments.

Often the data for costing and even projected demand is imperfect. Since the projection period itself

can be quite long (up to 20 years), a pragmatic approach is to formulate the problem as a deterministic

problem to match the provided mine plan, and perform sensitivity analysis to understand the robustness of

the obtained solutions. Furthermore, since the problem is already large-scale, the additional consideration

of stochasticity and uncertainty would only exacerbate the difficulty of the problem. In this sense, obtaining

solutions via a deterministic modeling approach such as mixed-integer programming is appropriate for

the multi-location equipment selection problem where truck and loader units are integral and the capacity

constraints can be captured linearly.

This problem is closely related to facility material handling equipment selection and machine selection

in manufacturing systems (see, for e.g.,(1, 3, 9, 19, 21, 22)) and equipment replacement (see, for e.g., (21)).

Integer programming and decomposition techniques have been used to model these problems, such as in (3,

9). Recently, the equipment selection problem has been considered in the forestry harvesting industry, also

with a mixed-integer programming approach (see (2)). This problem is essentially the same as the surface

mining problem, whereby the models must select the equipment and the number of hours of operation for a

given harvesting schedule. In (2) the decision variables do not capture the age of the equipment as an index,

which initially reduces the overall number of integer or binary variables. However, in order to relate the

appropriate operating cost to equipment activity, the authors developed a piece-wise linear approximation

model which increased the quantity of binary variables dramatically. Another key difference is that, for
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the foresting industry, equipment are subdivided into compatible sets: compatible fleets do not need to be

enforced in the model.

Many modelling approaches have been applied to the surface mining equipment selection problem,

including genetic algorithms (19) and queuing theory (22). These approaches aim to obtain fast and robust

solutions respectively, for short time horizons, but lack the capabilities of obtaining exact solutions for

long-term horizon instances of their mixed-integer program counterparts. The use of integer programming

methods to solve operations research problems in surface mining is well established in both the mining

and construction literature (15). For example, there is extensive literature that details mixed-integer pro-

gramming approaches to finding mine plans (10, 11, 16, 17, 23). Mixed-integer programming has also been

considered for the equipment selection problem (13, 18, 25), however, much of the focus is on project

completion and dispatching or allocation. This literature in particular commonly has the assumption that

equipment types are given, rather than allowing the models to select these with the fleet size. Fleet homo-

geneity is also a common assumption (e.g., see (7)) that is too restrictive for the surface mining application.

Cebesoy (8) describes heterogeneous fleets as “unacceptable or even unthinkable”, although only anecdo-

tal evidence has supported these claims to date. A common belief is that the cost of training artisans and

storing spare parts far exceeds the benefit obtained through a mixed fleet that better matches the production

schedule. However, to the knowledge of the authors, there is no published study into these costs. The cost

comparison from our case studies provide interesting discussion points for this debate.

In other equipment selection literature, some solution methods look at optimizing productivity (24) and

equipment matching (20) rather than mining cost. Since maximising productivity is different to minimizing

cost (and can inadvertently lead to higher costs), such objectives are most useful in the construction industry

where earlier completion can be more profitable than finishing on time. To restrain these higher costs,

“budgeting constraints” have been considered where the maximum permissible budget cash outlay for a

given time period is an upper bound (8). In surface mining, however, we elect equipment for a mine plan

that must be met. In this sense, there is no advantage to having a fleet that is more productive than required.

In view of this, we choose the alternate approach—to optimize the cost of the operation in our model.

The development of key equipment selection literature is as follows:

• Webster and Reed (26) formulated the general materials handling problem as an assignment problem

in which they assume all equipment is compatible and the optimization horizon is one period (i.e., no

purchase occurs in this model, and it is unhindered by the time dimension). In their objective function

they minimized the cost of utilization (defined here as the amount of time the equipment has been

used) by using a predetermined utilization matrix—this objective function is ideal for the mining ESP

but is currently not achievable due to the dependency of costs and equipment availability on equipment

age. That is, it leads to a non-linear objective function.
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• Hassan et al. (14) extended the Webster and Reed model to combine the equipment selection problem

with the allocation problem. They developed this model such that the selected equipment perform a set

of tasks (rather than satisfying productivity requirements) within a nominated time-frame, thus making

it better suited to construction than mining equipment selection.

• Cebesoy et al. (8) developed a systematic decision making model for the selection of equipment types

under the assumption of homogeneous fleets and single period time horizon. Another key assumption

in the model is that equipment is kept for its entire life, and that we pay the cost of running it for its

entire life regardless of utilization or the number of periods it is actually required.

• Michiotis et al. (18) developed a binary integer programming model to select equipment for a mine,

which was paired with a layer stratification model. A solution to this model determines equipment

types that suit the surrounding environment, rather than fleets to meet a production schedule. It is

intended to reduce a large set of available equipment types to a satisfactory set from which optimal

equipment selection can take place using other methods.

• Edwards et al. (12) used a linear programming model to select the optimum loader type for construc-

tion use over a short time horizon. Salvage of equipment and productivity changes with the age of the

equipment are therefore not considered;

• Topal and Ramazan (25) developed a mixed-integer programming model that allocates mining equip-

ment to a schedule such that the maintenance cost is minimized. This is one of the first papers to

consider how the equipment is utilized across the schedule and the impact this has on operating cost.

The paper does not seek, however, to select the equipment types or fleet sizes.

We derive our model in Section 2. We begin by describing the model setting, decision variables and

reductions, before deriving the objective function with corrector for discretization error (Section 2.1) and

constraints (Section 2.2). We describe two surface mining case studies with varying mining locations and

routes in Section 3 with a note on practical implications of our solutions (Section 3.3). We conclude with a

discussion of the research and possible further advancements in Section 4.

2. Problem formulation
We define the problem using an arc-based representation of the mining locations and routes to dumpsites.

In an abuse of notation, we denote the set of all truck types by E τ and loader types by E λ . For simplicity,

we summarise the truck and loader type set to E = E τ ∪E λ . Here we adopt three indexes to represent type

(e ∈ E ), period (t ∈ T ) and age bracket (l ∈ L). We use integer variables to track whole equipment units

while continuous variables allocate equipment to routes:

xt,l
e : number of equipment of type e owned in period t which are in age bracket l (integer variable);

st,l
e : number of equipment of type e salvaged in period t which are in age bracket l (integer variable);

f t,l
e, j : portion of equipment of type e, in age bracket l, that are allocated to route j in period k, where

f t,l
e, j ∈ [0,xt,l

e ] (continuous variable).
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Figure 3 As time progresses, the xt,l
e variables move along the ‘steps’ of age-brackets, ending with a single

instance of the variable st,l
e . This staircase structure is important for preprocessing.

The relationship between the xt,l
e variable and the st,l

e is illustrated in Figure 3. The f t,l
e, j variable will trace the

‘staircase’ and allocate portions of the total time to particular routes, as described in the following section.

The precedence characteristic of the solutions elicit a natural ‘staircase’ structure in the possible values

of the decision variables. The possible height and depth of the staircase is limited by the maximum number

of hours the equipment can be used per period in combination with the age of the pre-existing equipment.

We use L(e) to denote the maximum age bracket of equipment type e—this value may vary depending on

the equipment type. Since B0 > H t , L(e) can also be restricted by the time period as equipment cannot age

more than one age bracket in one period. However, we consider the possibility of pre-existing equipment

(which is known a priori), with the starting age P(e). The maximum age bracket for equipment type e in

time period t is as follows:

Lt(e) = min{P(e)+ t−1,L(e)}.

This becomes a reduced limit for index l in any relevant constraint. We note that as salvage occurs at the

start of the period, salvage variables extend to Lt(e)+1.

At implementation, we do not permit over-age variables from existing, thus effecting forced salvage. That

is, restricting variable creation in this way is equivalent to the following constraint:

xt,l
e = st+1,l+1

e ∀ l > Lt(e),e, t < T.

If we consider the set of pre-existing equipment types, P , there is the possibility of immediate salvage

in the age bracket l = 0. However, for all other equipment types we can prevent the unbounded salvage

variables from dominating:

sk,0
e = 0 ∀ e /∈P,k.

This too can be effected during variable creation, thereby reducing the overall number of variables and

constraints required to represent the problem.

2.1. Objective function

We must satisfy demand either by location or route, depending on the nature of the mine plan. For this

formulation, the availability of the equipment throughout the period is determined by the age bracket. The
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(a) (b)

l l+1 l l+1

Figure 4 The two cases of equipment age landing between periods. For case (a), the equipment stays in the

same age bracket for the entire period. In case (b), the equipment steps over into the next age bracket

within the period.

production capability is determined by its availability (al
e), capacity (ce) and cycle time (tk

e ) (where the cycle

time for a truck is the route cycle time and the cycle time for a loader is the time required to fill a particular

truck type):

Pk,l
e =

ab(k)
e ce

tk
e

. (1)

In our objective for the mixed-integer program, we minimize the cost of running the fleet for the entire

mine plan, including purchase, operating expense and salvage. We represent the fixed cost of purchasing

equipment of type e by Fe and discount this purchase to the present using a discount factor,

Dt
1 =

1
(1+ I)t

(where t is the current period, starting from 0, and I is the interest rate). Thus, the total capital expense for

a truck or loader of type e is

∑
e,t

Fe

(1+ I)k
Dt

1xt,0
e .

The discretization of the variable costs over age brackets can lead to misleading operating costs, as the

equipment may start the period in one age bracket (and corresponding cost) and move into another age

bracket for the remainder of the period. To illustrate this, consider Figure 4. The best case is case (a), where

the age bracket of the equipment is correct for the entire period. However, in case (b) the equipment moves

into a new age bracket during the period. This will result in a discretisation error in the model.

In order to provide the most accurate costing possible for this model, we must determine the proportion

of time that the equipment remains in age bracket l within the period, and the proportion it lies in the

proceeding age bracket, l + 1. The process to achieve this in a way that obtains a constant coefficient for

variables, thereby maintaining linearity in the model, is described over the next page. Although it appears

tedious and cumbersome, in practice it is very simple to implement in a computer program.

To calculate the portion of time that each set of equipment spends in each age bracket, we first calculate

the age of the equipment (in age brackets) in any given period. To do this, we need to know when the

equipment was purchased. We denote the purchase period by t ′. The equipment must also be owned in the

current period for this calculation to take place. The availability of equipment is the proportion of the period

that the equipment is available to operate—unavailability is often due to planned maintenance. Availability
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as it is used here is calculated using the availability, utilization and maintenance factors discussed above,

and is dependent on the current age bracket of the equipment. Let H t be the operating hours for period t

and al
e be the availability of equipment type e in age bracket l. We obtain the age of equipment in operated

hours using a recursive formula since the availability of the equipment is a function of equipment age itself.

The base of the recursion is:

β (t ′) = a0
eH t′ .

Then, the age of the equipment in operated hours can be obtained for any period t by:

β (t) = ∑
t′≤h′<t

a

⌊
β (h′−1)

B0

⌋
e Hh′ .

We obtain the age bracket in which equipment lies at the beginning of a period by b(t):

b(t) =
⌊

β (t)
B0

⌋
.

Since B0 > H t , the equipment may only lie in h∈ {1,2} age brackets within one period. To begin, we define

Bt,l
h,e to be the proportion of total operated hours that equipment e spends in age bracket l +h−1 in period t

(where the incumbent age bracket is l).

THEOREM 1. The proportion of time that any group of machinery spends in any one age bracket can be

represented by the following two expressions:

Bt,l
1,e =

{
1, if (l +1)B0−β (t)> ab(t)

e H t

(l+1)B0−β (t)

ab(t)
e Ht

, otherwise

and

Bt,l
2,e = 1−Bt,l

1,e.

T he age at the start of the period is given by β (t) as defined above. The quantity of hours worked in the

current period is given by:

al
eH

t .

If the equipment stays in the same age bracket for the entire period, we require that the difference between

the marker for the next age bracket, (l +1)B0, and the age at the start of the period exceeds the quantity of

hours worked in the current period. That is, if:

(l +1)B0−β (t)> ab(t)
e H t .

Similarly, if the equipment moves into another age bracket for part of the period, we can simply look at

the difference between the marker for the next age bracket and the age at the start of the period. Dividing

by the operated hours for the current period gives the proportion of total operated hours, as required.
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�

We can easily adjust these formulas for the case of pre-existing equipment, but for the sake of clarity

omit this here. We can now use Bt,l
1,e and Bt,l

2,e to correct the operating cost (denoted by V t,l
e ) in the objective

function as follows (also with a discount factor):

∑
e,t,l,h

Bt,l
h,e

(1+ I)t
V t,b(t)+h−1

e xt,l
e .

Lastly, we consider the income from salvaging old equipment. We apply a combined depreciation (at rate

J per period) and discount factor (at rate I per period):

Dt,l
2 =

(1− J)l

(1+ I)t
,

where l is the age of the equipment at the start of period t. Since Fe is the original capital expense, the

salvage ‘cost’ is:

−∑
e,t,l

FeD
t,l
2 st,l

e .

2.2. Constraints

We denote the set of mining locations by J λ and the set of truck routes or dump sites by J τ . We require

the loaders to satisfy the productivity demand, T t
jλ

, at location jλ ∈J λ , giving us the following capacity

constraints:

∑
eλ ,l

Pt,l
eλ

f t,l
eλ , jλ
≥ T t

jλ ∀ t, jλ ∈J λ , (2)

where Pk,l
eλ

is the maximum possible productivity of loader eλ that is aged l in period k. This expression

is obtained by considering equipment capacity, swing time (time to deliver one load to the truck), number

of required swings (truck to loader capacity ratio), and downtime due to maintenance and other factors.

Similarly, we require the trucks to satisfy the demand for each route or dump site, jτ ∈J τ :

∑
eτ ,l

Pt,l
eτ f t,l

eτ , jτ ≥ T t
jτ ∀ t, jτ ∈J τ . (3)

The trucks must also match the capacity demand of the mining locations. For each location jλ , we are

only interested in the routes, jτ , that connect to the location. We denote the set of routes that connect to

location jλ by J (◦ jλ ). Then we have:

∑
eτ ,l; jτ∈J (◦ jλ )

Pt,l
eτ f t,l

eτ , jτ ≥ T t
jλ ∀ t, jλ ∈J λ . (4)

The capacity constraints must be satisfied with the set of compatible trucks and loaders for each location.

That is, from the chosen fleet of trucks we must consider whether the set of trucks that are compatible with

the loaders are capable of fulfilling the capacity constraints.
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LEMMA 1. Suppose we model the equipment selection problem as a mixed-integer linear program with

a minimizing cost objective function. Then production feasibility is not guaranteed with constraints 2 and 4

alone.

C onsider one loading location. Let there be exactly two types of loaders operating at this location, λ1

and λ2. From constraint 2, we have:

p(λ1)+ p(λ2)≥ T.

That is, the productivity of the loader fleets of type λ1 and λ2 meet the productivity requirements at the

location. Suppose we have two types of trucks servicing the location, τ1 and τ2. From constraint 4 we have:

p(τ1)+ p(τ2)≥ T.

That is, the productivity of the truck fleets of type τ1 and τ2 meet the productivity requirements of the

location.

Next, suppose that the compatibility sets of loader types with truck types are different for each type of

loader. Specifically:

E τ(◦λ1) = {τ1}, and E τ(◦λ2) = {τ2}.

Let p(τ2) = T and p(λ1) = p(λ2) =
T
2 . Then, since it is a minimization problem, the constraints 2 and 4

are met minimally and the actual productivity capability of the trucks and loaders (when working together)

is T
2 and the productivity requirements of the mine are not met.

�

Therefore, we must ensure that the weak productivity constraint is satisfied for every possible subset of

truck and loader fleets. To capture this in a constraint set, we first recall that the set of loader types is denoted

by E λ . Next, we define the set E τ(◦A ′) to be the set of truck types that are compatible with the subset of

loader types A ′ ⊂ E λ .

THEOREM 2. The compatibility of the selected fleets is ensured, in combination with constraint 2, by the

following superset constraint set:

∑
eτ∈E τ (◦A ′),l

Pt,l
eτ f t,l

eτ , jτ ≥ ∑
eλ∈A ′,l

Pt,l
eλ

f t,l
eλ , jλ

∀ A ′ ⊂ E λ , t, jλ . (5)

S uppose it is not sufficient. Then there exists some combination of equipment such that the compatibility

prevents satisfaction of productivity requirements. Let this set of equipment be represented by E τ(◦A 1).

From constraint 5 we know that:

∑
eτ∈E τ (◦A 1),l

Pt,l
eτ f t,l

eτ , jτ ≥ ∑
eλ∈A 1,l

Pt,l
eλ

f t,l
eλ , jλ

.
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That is, the productivity of the set of trucks at least matches the productivity of its compatible loader set.

This truck set cannot be the only equipment, otherwise

∑
eτ ,l

Pt,l
eτ f t,l

eτ , jτ ≥ T t
jτ

and we are done. Therefore the selected truck set includes the subset E τ(◦A 1) and some other subset

E τ(◦A 2).

That is, we have

∑
eλ∈A 1,l

Pt,l
eλ

f t,l
eλ , jλ

+ ∑
eλ∈A 2,l

Pt,l
eλ

f t,l
eλ , jλ
≥ T t

jλ ,

for all jλ , t. That is, we have

∑
eτ∈E τ (◦A 1),l

Pt,l
eτ f t,l

eτ , jτ + ∑
eτ∈E τ (◦A 2),l

Pt,l
eτ f t,l

eτ , jτ ≥ ∑
eλ∈A 1,l

Pt,l
eλ

f t,l
eλ , jλ

+ ∑
eλ∈A 2,l

Pt,l
eλ

f t,l
eλ , jλ
≥ T,

and the requirements are met.⇒⇐
�

Since A ′ comes from the power set of E λ , the compatibility constraint set will generate T |J λ |(2N − 1)

constraints (where T is the total number of periods and |J λ | is the total number of locations). As a power

set constraint, it should be implemented using a separation algorithm. However, for a given case study the

number of loaders possible in the final solution will generally be much lower than the complete set. In

this case we can limit the generation of constraints to a maximum of α loader types. This will produce

T |J λ |∑α

a=1(
n!

a!(n−a)!) constraints. To further reduce the overall number of these constraints in the solver, we

use a separation algorithm. With this branch-and-cut method, we begin with no compatibility constraints in

the model. We iteratively solve the model and check for feasibility—any violated constraints are then added

into the model before it is resolved.

We link the equipment tracking variables, xt,l
e , to the allocation variables f t,l

e, j by placing an upper bound

on the allocation in the following coupling constraints:

xt,l
e ≥∑

j

f t,l
e, j ∀ e, t, l. (6)

We ensure that, in each period, we can only own non-new equipment if we owned it in the previous

period, as captured in the following precedence constraints:

xt,l
e = xt−1,l−1

e − st,l
e ∀ t > 0, l > 0,e, (7)

xt−1,l−1
e ≥ st,l

e ∀ t > 0, l > 0,e. (8)

In this model we consider pre-existing equipment. We only need to consider pre-existing trucks and

loaders which are drawn from the subset P ⊂I ∪I ′. Recall that P(e) is the starting age of the pre-existing

equipment type e. Then, if xP(e)
e is the number of pre-existing equipment of type e, with age P(e), we have:

x0,P(e)
e + s0,P(e)

e = xP(e)
e ∀ e ∈P. (9)
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2.3. Complete model

subject to

min ∑
e,t

FeDt
1xt,0

e + ∑
e,t,l,h

Bt,l
h,eD

t
1V

t,b(t)+h−1
e f t,l

e, j−∑
e,t,l

FeD
t,l
2 st,l

e

subject to ∑
eλ ,l

Pt,l
eλ

f t,l
eλ , jλ
≥ T t

jλ ∀ t, jλ ∈J λ , (10)

∑
eτ ,l

Pt,l
eτ f t,l

eτ , jτ ≥ T t
jτ ∀ t, jτ ∈J τ , (11)

∑
eτ ,l; jτ∈J (◦ jλ )

Pt,l
eτ f t,l

eτ , jτ ≥ T t
jλ ∀ t, jλ ∈J λ , (12)

∑
eτ∈E τ (◦A ′),l

Pt,l
eτ f t,l

eτ , jτ ≥ ∑
eλ∈A ′,l

Pt,l
eλ

f t,l
eλ , jλ

∀ A ′ ⊂ E λ , t, jλ , (13)

xt,l
e ≥∑

j

f t,l
e, j ∀ e, t, l, (14)

xt,l
e = xt−1,l−1

e − st,l
e ∀ t > 0, l > 0,e, (15)

xt−1,l−1
e ≥ st,l

e ∀ t > 0, l > 0,e, (16)

x0,l
e + s0,l

e = xP(e)
e ∀ e ∈P, (17)

xt,l
e ,s

t,l
e ∈ Z+,

f t,l
e, j ∈R+.

3. Results
We consider two case studies provided by our industry partner. The first is for a mine with pre-existing

equipment and a comparative solution. The second is for a planned mine with no comparative solution.

These case studies illustrate that the difficulty in solving the model is not wholly influenced by the size of

K or the number of routes in the mine plan.

3.1. Case Study 1

This case study considers a surface mine operating under a truck-loader hauling system, and mines ore and

waste in an open pit.

3.1.1. Locations and routes The mine for this case study has eight loading locations—four mining

locations and four stockpiles, as depicted in Figure 5. Mixing constraints are the quantity of different grades

of ore required to make up the final grade. Typically the final grade is determined by market demand. The

mixing constraints are not considered in this model, as they are assumed to be pre-optimized when the mine

plan is produced. In this case study the stockpiles are old, and newly mined ore or waste is not dumped

in these locations. Instead, they are used to create the appropriate mix at the mill—so the flow from these

locations is unidirectional. There are also four dump sites including one mill. Connecting these mining

locations, stockpiles and dump site, are 13 routes in total (route key provided in Table 1).
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Figure 5 Routes from mining locations to dump sites for the first case study.

3.1.2. Production requirements Our industry partner provided the production requirement data for

both the mining locations and the truck routes. Tables 1 and 2 describe the quantity of material (tonnes)

to be moved from each location, to each dump site. We combined the location data to create a production

requirement graph for the mine over all periods in Figure 6. Our industry partner also provided pre-estimated

truck cycle times for each route, presented in Table 3.
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Figure 6 Capacity requirements for the 13 period case study.
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Period

Route 1 2 3 4 5 6 7 8 9 10 11 12 13

(a) 2598 0 0 0 0 0 0 0 0 0 0 0 0
(b) 455 0 0 0 0 0 0 0 0 0 0 0 0
(c) 203 10141 7659 0 0 0 0 0 0 0 0 0 0
(d) 741 7060 2964 0 0 0 0 0 0 0 0 0 0
(e) 221 827 5928 12797 9919 0 0 0 13990 13990 13990 5184 11
(f) 2592 22935 41035 26948 19873 0 0 0 8901 18191 12589 5572 32
(g) 0 650 0 0 0 0 0 0 0 0 0 0 0
(h) 0 270 809 0 0 0 0 0 0 0 0 0 0
(i) 0 1142 0 0 0 0 0 0 0 0 0 0 0
(j) 0 0 0 737 4071 12990 12890 13990 0 0 0 7713 0
(k) 0 0 0 17051 24126 8984 8583 12836 0 0 0 6251 0
(l) 0 0 0 0 0 799 0 0 0 0 0 0 0
(m) 0 0 0 0 0 0 798 0 0 0 0 0 0

Key for routes
(a) Mining location (1) to Dump site (3) (h) Stockpile (2) to Dump site (3)
(b) Mining location (1) to Dump site (1) (i) Stockpile (3) to Dump site (3)
(c) Mining location (2) to Dump site (3) (j) Mining location (4) to Dump site (1)
(d) Mining location (2) to Dump site (1) (k) Mining location (4) to Dump site (2)
(e) Mining location (3) to Dump site (3) (l) Mining location (4) to Dump site (3)
(f) Mining location (3) to Dump site (4) (m) Stockpile (4) to Dump site (3)
(g) Stockpile (1) to Dump site (3)

Table 1 The production requirements (tonnes) for the truck routes for case study one.

Period

Location 1 2 3 4 5 6 7 8 9 10 11 12 13

M(1) 3053 0 0 0 0 0 0 0 0 0 0 0 0
M(2) 944 17201 10624 0 0 0 0 0 0 0 0 0 0
M(3) 2813 23762 46963 39746 29792 0 0 0 22891 32181 26579 10756 43
M(4) 0 650 0 0 0 0 0 0 0 0 0 0 0
S(1) 0 270 809 0 0 0 0 0 0 0 0 0 0
S(2) 0 1142 0 0 0 0 0 0 0 0 0 0 0
S(3) 0 0 0 17789 28197 22773 21474 26826 0 0 0 13964 0
S(4) 0 0 0 0 0 0 798 0 0 0 0 0 0

Key for locations
M(i) Mining location i S(j) Stockpile j

Table 2 The production requirements (tonnes) for the mining locations for case study one.

Routes

Period (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

1 35.56 35.17 38.49 37.89 11.23 10.62 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 38.03 37.42 14.97 17.23 16.05 60.00 20.00 0.0 0.0 0.0 0.0
3 0.0 0.0 40.09 40.77 25.02 22.08 0.0 60.00 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 27.18 25.09 0.0 0.0 0.0 34.39 34.27 0.0 0.0
5 0.0 0.0 0.0 0.0 28.58 26.25 0.0 0.0 0.0 26.57 27.38 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.20 33.51 37.43 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.48 35.71 0.0 15.00
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.66 38.76 0.0 0.0
9 0.0 0.0 0.0 0.0 32.64 29.41 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 36.42 32.47 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 38.53 36.49 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 43.54 43.57 0.0 0.0 0.0 39.52 46.67 0.0 0.0
13 0.0 0.0 0.0 0.0 46.93 45.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3 Truck cycle times for case study one. A value of 0 indicates that the route is not in use in that period.

3.1.3. Pre-existing equipment We begin the mine plan with some pre-existing equipment, as listed in

Table 4. This includes eleven 172 tonne trucks of varying age in hours; and three loaders, namely two 34

tonne hydraulic shovels and one 42 tonne hydraulic shovel.
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Equipment i.d. LP
7 LP

7 LP
17 T P

12 T P
12 T P

12

Quantity 1 1 1 3 2 6
Capacity (tonnes) 34 34 42 172 172 172
Age (years) 16 17 16 7 8 11

Table 4 Pre-existing equipment for case study one.

3.1.4. Case-specific parameters Some parameters are defined by the industry partner:

• The mine operates for 7604 hours in each period (accounting for blasting days, holidays and other

non-operational days);

• The loaders are selected from a set of 20 loader types;

• The trucks are selected from a set of 8 truck types;

• The cost-bracket partition, B0, is 5000 hours;

• The schedule is 13 years long;

• The discount rate for all periods is 8% (the approximate interest rate obtainable on investments).

We define the following parameters:

• There are 13 periods, K, each of length 1 year;

• The depreciation rate is set to 50% (a rate of 40-60% is common for this application due to unreliability

in the second hand equipment market);

• The maximum value for any truck variable is 30;

• The maximum value for any loader variable is 10.

3.1.5. Computational results We implemented this case study on a Pentium 4 PC with 3.0GHz and

2.5GB of RAM. The model was implemented in C++ using Ilog Concert Technology v 2.5 objects and

Ilog Cplex v 11.0 libraries to solve the problem. The mixed-integer program contained 63433 variables and

19366 constraints; we set up the 13-period problem with just 15571 constraints before the compatibility

constraints were taken into account.

Table 5 shows the number of constraints that were added by the separation algorithm overall for the full

problem and versions of the problem with a reduced schedule length (namely, 10, 11 and 12 years).

After 7.5 hours of algorithm run-time, we obtained a solution within 3% of the optimal solution for the

50% depreciation case study. When the algorithm was permitted to run for a longer period, the computer

memory was exhausted. However, this is a satisfactory optimality gap for this application, as we will illus-

trate later with a retrospective solution comparison.

Periods Variables Constraints Time (seconds) Quality Solution

10 39855 9814 + 3319 5643 3% 1.26292×108

11 47166 11599 + 3043 3979 3% 1.31263×108

12 55032 13521 + 4043 17656 3% 1.37168×108

13 63433 15571 + 3795 26662 3% 1.37249×108

Table 5 The results summary for the first case study with varying depreciation and 13 periods.
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9
Period

10 11 12 13

v2×T8 fq 1×T8,0fq v1×T8fqv2×T9 fqv1×T9 fq v1×T9 fqv2×T9 fqv3×T P
12 fqv2×T P
12 fqv6×T P
12 fqv15×T15 fqv5×T15 fq 1×T15,0

v1×T15 fqv2×T15 fq
v1×L2 fqv1×L3

v1×L3 fqfq 1×LP
7,16

fq 1×LP
7,17

fq 1×LP
17,16

Keyv Purchasefq Salvage

Figure 7 The 3% optimal 13-period solution for case study one with the depreciation parameter set to 50%.

The purchase and salvage policy for this multi-location mine is complicated by the capacity require-

ments, which contain several significant changes from period to period (Figure 6). This leads to short-term

ownership of some trucks. For example a type-8 truck was purchased in period 8 and salvaged at the start of

period 9. The complete purchase and salvage policy is sketched in Figure 7, where pre-existing equipment

is indicated by the P index.

The allocation policy is shown in Tables 6–9. In the allocation policy for this case study, we represent

the age of the equipment in parentheses as an equipment tracking tool. Since the age of the equipment is a

factor in the cost of operating the equipment, it is important to allocate the correct age equipment as dictated

by the policy.

For the purposes of mine management, it would be a simple task to create a spreadsheet that can reflect the

flexibilities in the policy and allow dynamic changes in the policy without affecting the objective function

value.
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Period

Routes 1 2 3 4 5 6 7

(a) 1.81 T12(7)
6.00 T12(11)

(b) 0.35 T12(7)

(c) 0.17 T12(7) 9.42 T15(0) 6.00 T12(13)
0.97 T15(0)

(d) 2.00 T12(8) 5.90 T12(12) 0.68 T12(9)
2.00 T12(10)

(e) 0.05 T12(7) 0.18 T12(8) 3.70 T15(0) 2.65 T9(1) 0.42 T12(12)
0.09 T12(12) 1.50 T8(1) 6.00 T12(15)

6.73 T15(2)

(f) 0.61 T12(7) 2.32 T12(8) 2.00 T9(0) 1.00 T9(0) 3.00 T12(11)
2.00 T12(9) 2.32 T12(9) 2.00 T9(1) 1.58 T12(12)
4.87 T15(0) 0.32 T15(0) 3.00 T12(10) 1.00 T15(1)

15.0 T15(1) 1.97 T12(11) 5.00 T15(2)
0.99 T8(0) 6.00 T12(14) 0.67 T15(3)

(g) 0.31 T15(0)

(h) 0.40 T15(0) 1.00 T8(0)

(i) 0.50 T12(8)

(j) 0.50 T8(1) 2.67 T15(3) 12.84 T15(4) 13.115 T15(5)
0.03 T12(11)

(k) 1.00 T15(0) 11.7 T15(3) 1.00 T15(2) 1.00 T15(3)
5.00 T15(1) 4.26 T15(3) 5.00 T15(4)
8.27 T15(2) 2.16 T15(4) 1.59 T15(5)

(l) 0.74 T15(3)

(m) 0.30 T15(5)
Key: xTi( j) indicates that x trucks of type i and age j operate on the route in the given period.

Table 6 The truck allocation policy for case study one with 13 periods and 50% depreciation (first 7 periods).
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Period

Routes 8 9 10 11 12 13

(a)

(b)

(c)

(d)

(e) 1.00 T9(1) 1.00 T15(6) 2.00 T9(1) 2.00 T9(2) 0.01 T15(10)
15.00 T15(7) 5.00 T15(7) 1.00 T9(3) 1.00 T9(4)

6.85 T15(8) 2.00 T15(3) 0.72 T15(4)
1.00 T15(7) 1.00 T15(8)
5.00 T15(8)
0.83 T15(9)

(f) 2.00 T15(1) 2.00 T9(0) 14.2 T15(9) 6.16 T15(10) 0.99 T15(10)
1.00 T15(5) 1.00 T9(2)
5.00 T156) 2.00 T15(2)

8.15 T15(8)

(g)

(h)

(i)

(j) 1.00 T8(0) 1.28 T15(4)
1.00 T9(0) 6.43 T15(10)
10.6 T15(6)

(k) 2.00 T15(0) 5.00 T15(9)
1.00 T15(4) 2.41 T15(10)
5.00 T15(5)
4.37 T15(6)

(l)

(m)

Key: xTi( j) indicates that x trucks of type i and age j operate on the route in the given period.

Table 7 The truck allocation policy for the first case study solution with 13-periods and 50% depreciation (last

6 periods).
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Period

Locations 1 2 3 4 5 6 7

M1 0.13 L3(0)

M2 0.04 L3(0) 0.70 L3(0) 0.43 L3(2)

M3 0.12 L3(0) 0.21 L3(0) 0.51 L2(0) 1.00 L2(1) 0.33 L2(2)
0.76 L3(1) 1.00 L3(1) 0.93 L3(3) 1.00 L3(3)

0.56 L3(2)

M4 0.26 L3(0)

S1 0.01 L3(0) 0.05 L2(0)

S2 0.05 L3(0)

S3 0.73 L3(2) 0.67 L2(2) 0.93 L3(4) 0.89 L3(5)
0.68 L3(4) 0.13 L3(5)

S4 0.03 L3(5)
Key: xLi( j) indicates that x loaders of type i and age j operate on the route in the given period.

Table 8 The loader allocation policy for the first case study with 13 periods and 50% depreciation (first 7

periods).

Period

Locations 8 9 10 11 12 13

M1

M2

M3 0.34 L3(7) 0.38 L3(8) 0.26 L3(9) 0.47 L3(11) 0.01 L3(12)
0.97 L3(8) 1.00 L3(9) 1.00 L3(10)

M4

S1

S2

S3 0.13 L3(6) 0.07 L3(10)
1.00 L3(7) 0.53 L3(11)

S4
Key: xLi( j) indicates that x loaders of type i and age j operate on the route in the given period.

Table 9 The loader allocation policy for the first case study with 13 periods and 50% depreciation (last 6

periods).
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Period

Route 1 2 3 4 5 6 7 8 9

(a) 51701 668713 1602777 1463289 2227402 1657740 2031283 2230192 2474503
(b) 2082800 8843227 7294449 5837564 5356417 8051374 4582733 4666783 2001808
(c) 0 0 1189184 1120125 337101 1073245 1106596 455511 235810
(c) 0 9412391 9063476 10593225 11355932 4091566 530276 84354 94315

Key for routes:
(a) M1 to Mill
(b) M1 to Dump site (1)
(c) M2 to Mill
(d) M2 to Dump site (1)

Table 10 The production requirements for the routes for the second case study.

3.2. Case study 2

Our industry partner provided a second case study for an open pit iron ore mine operating under a truck-

loader hauling system. This mine is in the planning stages and begins with no pre-existing equipment.

3.2.1. Locations and routes For this mine, there are only two mining locations. Each location produces

ore which should be delivered to the mill, and waste which should be delivered to a dump site. Figure 8

describes the two mining locations and four routes which connect them to the waste dump site and the mill.

(c)

(1)

(2)

(1) (2)

(b)

(a)

(d)

Dump sites and Mill

Mining locations

Figure 8 The locations for case study two.

3.2.2. Production requirements The parameters are the same as the first case study with the exception

of T —for this case study there are T = 9 periods in total, each of length 1 year. This new mine is simpler

than the first in terms of the number of mining locations. The overall production requirements change at a

moderate rate (Table 10). However, the estimated truck cycle times (also provided by the industry partner)

demonstrate great variability from period to period, and also between locations (Table 11). For example, the

smallest truck cycle time is 2.64 minutes, while the longest is 23.82 minutes.
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Route

Period (a) (b) (c) (d)

1 8.24 2.64 0.0 0.0
2 8.3 3.48 0.0 8.24
3 9.28 3.84 5.74 10.23
4 10.52 4.88 8.73 10.45
5 11.16 6.01 10.38 12.6
6 12.47 7.23 11.71 16.72
7 12.05 8.49 13.82 19.6
8 15.77 10.11 15.49 21.37
9 17.74 12.05 16.52 22.82

Table 11 The truck cycle times for the second case study.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
Period

v1×T6 fqv1×T8 fqv1×T15 fq 1×T15,0

v1×T15

v fq1×T15

v1×L3

Keyv Purchasefq Salvage

Figure 9 The second case study 9-period purchase and salvage policy with depreciation 50%.

3.2.3. Computational results We implemented this problem with 14502 variables and 6858 con-

straints. The separation algorithm added a further 2380 compatibility constraints. We ran the 9-period

problem for 34 hours before the computer memory was exhausted and achieved a solution within 3% of

optimality. The solution obtained is given in Figure 9. It is interesting to note the significant decrease in

truck fleet size of this case study compared to the first, despite similar production requirements. This is due

to the comparatively short truck cycle times. The truck allocation solution is presented in Table 12.

Periods Variables Constraints Time (seconds) Quality Solution

7 9100 4242 + 2044 5331 Optimal 1.88599×107

8 11648 5473 + 1484 12049 Optimal 1.97785×107

9 14502 6858 + 2380 19477 3% 2.05244×107

Table 12 The results summary for the second case study solutions with varying periods.

This case study had many less routes than the first, which made the overall size of the problem signifi-

cantly smaller. However this problem was still difficult to solve, demonstrating the difficulty in differentiat-

ing between similar pieces of equipment over long-term schedules.

3.3. A practical analysis of solutions

Unfortunately, the second case study was based on a planned mine and no equipment selection solution was

provided. However, for the first case study the industry partner provided three solutions for retrospective
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Christina Burt, Louis Caccetta, Leon Fouché and Palitha Welgama: Equipment Selection Case Studies
25

comparison. We do not know the complete process behind the derivation of the industry solutions we use

here. However, from discussions with our partner combined with our knowledge of the literature, we can

describe our understanding of the process implemented under the guidance of an experienced equipment

selection engineer.

The first and cheapest solution was created on an in-house equipment selection spreadsheet. This spread-

sheet was not designed to consider mixed fleets—i.e. all trucks selected must be compatible with all loaders.

Furthermore, the truck fleet must be homogeneous. The spreadsheet functioned by first selecting the load-

ers by minimizing the cost of operation such that the capacity constraints were met. Then a match factor

equation (such as that discussed in (6)) was used to determine the best fleet size for trucks, whose type was

pre-determined by the pre-existing truck fleet. This solution kept one 34T loader but salvaged the other two

pre-existing loaders. Two new 40T loaders were purchased to meet the capacity constraints. The existing

truck fleet was kept, and further trucks (of the same type) were added according to the policy outlined in

Table 15. This selection policy cost $1.51483× 108 (using our objective function) for the full 13 period

schedule. In comparison, our policy yielded a saving of $14,234,000—a saving of 9.4%.

Periods

1 2 3 4 5 6 7 8 9 10 11 12 13

Pre-existing T12 11 11 11 11 11 11 11 11 11 11 11 11 11
New T12 5 5 5 5 5 5 5 5 5 5 5 5 5
New T12 0 2 2 2 2 2 2 2 2 2 2 2 2
New T12 0 0 0 0 1 1 1 1 1 1 1 1 1

Table 15 The comparative truck purchase and salvage policy for case study one.

The second solution provided by the industry partner contained the same truck purchase and salvage

policy. However, an equipment selection manager believed that all loaders should be salvaged, and that a

new 42T and two 57T loaders should be purchased instead. In this solution, the choice of loaders is restricted

in that they must be compatible with the existing truck fleet. This policy yielded a cost of $1.55241×108.

Comparatively, our solution saved $17,992,000 or 11.6%.

Finally, the third solution purchased a loader fleet that maintained full homogeneity—three 57T loaders.

The truck purchase and salvage policy was the same as above. This was the actual solution adopted for the

mine, and cost $1.66550×108. Comparatively our solution saved $29,301,000 or 17.6%.

It is interesting to observe that the industry partner selected the most expensive of their three solutions.

This indicates that they attribute a value to having homogeneous fleets. Since we did not account for the

cost of ancillary equipment, on-costs for spares and the training of artisans for maintenance and equipment

use, it is difficult to make a true comparison of these solutions. However, it is clear that there is an advantage

to using an integer programming approach if all the relevant data is available.
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As some of the data for the case studies was limited or unknown (such as the requirement for stockpiles to

have their own loaders, or when locations are mined simultaneously within a period) the solutions generated

by our model sometimes requires that one loader move from one location to another. This may not be

realistic and in this case can be amended by enforcing integrality constraints on the loader decision variables.

In the final solutions for the case studies, the model has selected 4 and 3 truck types respectively: it is

considered unusual in industry to have more than three types of trucks, and generally this number would

only arise due to pre-existing equipment. This suggests that the models are not reflecting the true penalties

associated with the fixed costs of owning different types of equipment, or conversely, that the reasoning

behind homogeneous or small mixes of fleet need further justification.

For a discussion of sensitivity analysis of this type of model, we direct the reader to (5).

4. Conclusions
In this paper, we have captured the truck and loader equipment selection problem for surface mines in

a large-scale mixed-integer program, developing preprocessing and adopting a separation algorithm to

improve the tractability. We used a continuous allocation variable that suggested the optimal portion of the

fleet that should work at each location. These variables created a flexible allocation policy alongside the

purchase and salvage policy generated by the model. This is a useful tool for mining engineers, who may

take the allocation policy as further evidence that the selected fleet would be able to perform the required

tasks under uncertainty, or simply use the policy as a guide to manage the fleet.

In our formulation, we paid particular attention to reducing the discretization error in the objective func-

tion. We provided a formula that accurately accounts for cost shifts that occur when equipment moves

from one age bracket to the next within a period. We solved two case studies over the entire mine plan,

demonstrating the model is computationally effective for real world problems.

We have adopted similar assumptions for this model as our work in (5)—a full discussion of the validity

of the assumptions can be found there. One important assumption is that the mine plan is deterministic.

However, the mine plan is dependent on future demand. Ideally, the equipment selection model would be

robust to uncertainty in the market and other stochastic elements, such as machine breakdown, maintenance

and truck cycle times. Modelled as a stochastic mixed-integer program, this would decrease the tractability

of the model as it stands. We are currently investigating ways to reformulate the model and developing

computational methods that would improve the chances of solving such a model to optimality for real world

instances.

Acknowledgments
This research was conducted at Curtin University of Technology (Australia) and was funded by the Australian Research

Council Linkage Grant No.: LP0454362 with industry partner Rio Tinto.
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