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Abstract

We consider the problem of scheduling on uniform processors which may
not start processing at the same time with the purpose of minimizing the
maximum completion time. We give a variant of the Multifit algorithm
which generates schedules which end within 1.382 times the optimal maxi-
mum completion time for the general problem, and within

√
6/2 times the

optimal maximum completion time for problem instances with at most two
processors. This results from properties of a variant of the Multifit algo-
rithm for scheduling on uniform processors with simultaneous start times.
We also show that if a better approximation bound of the Multifit variant
for scheduling on uniform processors will be found in the future, this bound
will also apply to our Multifit variant for scheduling on nonsimultaneous
uniform processors.
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1. Introduction

We consider the problem of non-preemptively scheduling a given set of
tasks onm uniformly related processors with nonsimultaneous machine avail-
able times in order to minimize the maximum completion time. With other
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words, the machines process the tasks at different speeds, and they may start
processing at at different times, that is, non-simultaneously. After starting
to process the machines are available as much as necessary.

This problem is strongly NP-hard since it is a generalization of the mul-
tiprocessor scheduling problem. For scheduling on parallel machines in order
to minimize the maximum completion time, the algorithms LPT of Graham
[5] and Multifit of Coffman, Garey and Johnson [6] are among the most
studied.

For same-speed processors which do not start simultaneously, Lee [8]
and Chang and Hwang [2] give worst-case analyses for scheduling on non-
simultaneous parallel machines when using LPT and Multifit respectively.
There, it was shown that schedules produced by a modified version of LPT
(MLPT) and by Multifit are bounded by 4/3 and respectively 9/7 (about
1.286) times the optimal maximum completion time. In [9], Wang provided
an improvement of the bound from [2] to 1.275.

For uniform processors that start simultaneously, worst-case approxima-
tion bounds of 1.4 and respectively 1.382 for a Multifit variant were ob-
tained in Friesen and Langston [4] and Chen [3]. For two uniform processors,
Burkard and He [1] derive a tight worst-case bound of

√
6/2+ (1/2)k (about

1.2247 + (1/2)k) for scheduling using Multifit with k calls of FFD within
Multifit. When Multifit is combined with LPT as an incumbent algorithm,
they show that the worst case bound decreases to (

√
2+1)/2+(1/2)k (about

1.2071 + (1/2)k).
Approximation for scheduling on uniform non-simultaneous machines was

previously considered in Yong [10], where the performance of LPT was shown
to within 5/3 times the optimal schedule’s maximum completion time, and
that the bound is better when there are only two machines.

In this paper we give a variant of Multifit for scheduling on uniform non-
simultaneous parallel machines, and show that its worst-case approximation
factor is the same as that of the Multifit variant considered in [4] and [3],
namely 1.382.Also, when our Multifit variant is used for two uniform nonsi-
multaneous parallel machines the bound of

√
6/2 applies as a consequence of

the result from [1].

2. A Multifit Variant

We consider the problem of scheduling on uniform processors with non-
simultaneous machine available times. In the following we describe a variant
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of the Multifit algorithm for this problem which approximates the maximum
completion time of the optimal schedule with an approximation factor of
1.382 and prove this bound.

We assume that the worst-case approximation bound for the maximum
completion time of Multifit for the problem of scheduling on simultaneous
uniform parallel machines as it was described in [4] and [3] is q. We show
that our Multifit variant for scheduling on uniform nonsimultaneous parallel
machines also has a worst-case approximation bound of q when minimizing
the maximum completion time. We also assume that Multifit for scheduling
on uniform processors first orders the time slots available for processing in
nondecreasing order of their capacity to fit jobs, or equivalently, orders the
processors on which they are in nondecreasing order of their speed factors,
as was done in [4] and [3]. We next define a problem instance and more
formally describe the Multifit algorithm for scheduling on nonsimultaneous
uniform processors.

Definition 2.1 (Problem Instance)
A problem instance is given by a tuple (P, T, α : P → Q, γ : P → N, l :
T → N), where N represents the set of natural numbers and Q is the set of
rational numbers. Here,

• P is a set of processors,

• T is a set of tasks,

• l(X) denotes the length of a task X, that is, the time the task needs
to execute on the slowest processor

• γ(p) denotes the moment at which processor p is able to start processing
tasks, its starting time,

• α(p) is the speed factor of the processor p, meaning that the time a

task X takes to execute on p is l(X)
α(p)

.

We call length of a time slot the time that would be necessary on the slowest
processor to process tasks that would fill that time slot, and use the term
duration for the actual time passed from the beginning until the end of that
time slot. For example, a time slot on a processor p starting at γ(p) and
ending at a deadline b assigned by Multifit has a duration b − γ(p) and a
length α(p)(b− γ(p)).
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A pseudocode for the Multifit variant we propose for uniform processors with
nonsimultaneous machine available times is given as follows:

Multifit(ǫ, upper bound, lower bound)
(1) Order all tasks in nonincreasing order of their length ;
(2) Set deadline at b = upper bound + lower bound

2
;

(3) Order all time slots tsp with p ∈ P in nondecreasing order of their length
and initialize all time slot schedules as the empty list;
(4) Assign tasks in the given order to the first time slot in which they fit
while considering the time slots in the determined order;
(5) If all tasks were successfully assigned
(5.1) decrease the upper bound (upper bound=b) and
(5.2) save the schedule;

Else increase the lower bound (lower bound =b);
(6) If b− lower bound ≥ ǫ loop back to step (2);
(7) return the saved schedule;

This algorithm builds a schedule the maximum completion time of which
is within ǫ accuracy of the earliest time t∗ with the property that FFD within
the Multifit loop returns a feasible schedule for any deadline t ≥ t∗. With
other words, if Multifit would be allowed to run indefinitely, it would return
t∗, unless it would stumble by accident upon a deadline t < t∗ for which a
feasible schedule is obtained by FFD.

3. Approximation bound

Next, we prove a statement that is necessary for showing the main result
of this work. Also, it holds only in case the upper and lower bound are not
wired into the Multifit algorithm for uniform processors, i.e. they are given
as input to the algorithm, as in the variant presented above and as was done
in [3].

Lemma 3.1 (Property of approximation bound)
If the Multifit algorithm for simultaneous uniform processors (as described in
[3]) has a worst-case approximation bound q, then for any problem instance
PI (with simultaneous machine available times), FFD always returns a fea-
sible schedule if the Multifit deadline is set at b ≥ q ∗ opt. Here opt denotes
the end of an optimal schedule for PI.
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Proof: Suppose this is not the case for a problem instance PI for a bound
b ≥ q ∗ opt.

Let FFD(b′) be the schedule returned by Multifit when 2b and 0 are
assigned as the initial upper and lower bounds respectively. Let b′ be the
deadline considered by Multifit when it constructed FFD(b′). Let FFD(b)
be the schedule constucted by FFD for PI when the Multifit deadline is set
at b. By assumption, FFD(b) does not contain all tasks, since FFD does
not produce a feasible schedule when the deadline is b. Also, the search for
deadlines is continued by Multifit between b and 2b after the deadline b is
considered, thus b′ > b.

Since PI is an instance with simultaneous machine available times, the
length of the time slot on each processor is equal to the considered deadline
times the speed factor of the processor, and thus FFD considers the time
slots in nondecreasing order of the speed factors of the processors on which
they are. Thus, when assigning tasks to processors, FFD considers these in
an order which is the same for any deadline.

We next show that FFD(b′) ends after q ∗ opt, thus contradicting the
Therorem’s hypothesis. Let X be the first task which is not scheduled on
the same processor by FFD when the deadline is b′ and when the deadline is
b. There must be such a task since FFD(b′) contains all tasks while FFD(b)
does not. At the time at which X is assigned the two FFD schedules are
thus identical. Let p′ be the processor on which FFD schedules X when the
deadline is b′. Such a processor must exist since FFD(b′) contains all tasks.
When the deadline is b, FFD can not schedule X on any processor that is
considered before p′, since else X would also be assigned to that processor
when the deadline is b′. When the deadline is b, FFD also does not assign X
to p′ (by definition of X), and thus X does not fit on p′ when the deadline is
b but does so when the deadline is b′. Thus the maximum completion time
of FFD(b′) is greater than b, and thus also greater than q ∗ opt. △

The rest of this work is mostly dedicated to proving the following Theo-
rem.

Theorem 3.2 (Approximation bound)
We assume that for each instance of the problem of scheduling on simul-
taneous uniform processors any schedule generated by Multifit ends within
q ∗ opt, where opt is the maximum completion time of an optimal schedule.
Then, for the problem of scheduling on nonsimultaneous uniform processors
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the worst-case approximation bound of our Multifit variant for the maximum
completion time is also q.

The statement of Theorem 3.2 is proved by contradiction. For this, we
assume that there is a counterexample, that is, a problem instance and a
Multifit deadline b ≥ q ∗ opt for which FFD within the Multifit loop from
our algorithm does not produce a feasible schedule. We define minimal coun-
terexample to be a counterexample with a minimal number of processors.

Obviously, if there is a counterexample, there also is a minimal counterex-
ample. Let PI = (P, T, α : P → Q, γ : P → Q, l : T → N) be a minimal
counterexample, and b ≥ q ∗ opt be a deadline for which FFD within the
Multifit loop does not generate a feasible schedule.

We next show that in a minimal counterexample the optimal schedule
ends after all start times, a statement which we afterward use to prove that
there is no minimal counterexample, and thereby show the statement of
Theorem 3.2.

Lemma 3.3 (opt > max
p∈P

(γ(p)))

The optimal schedule of PI ends after all start times.

Proof: Suppose there is a processor p such that γ(p) ≥ opt. In that case,
the optimal schedule has no task on p. Removing p and any tasks FFD put
on p when the deadline is b we obtain a lesser counterexample, which contra-
dicts the assumption that PI is minimal. This is because after removing p
and the mentioned tasks the optimal schedule stays the same or gets better
whereas the FFD schedule stays unchanged. △

Now we are ready to proceed with the proof of Theorem 3.2.

Completion of proof of Theorem 3.2:
We next construct a new instance PI ′ = (P, T, β, γ′, l) of the problem of
scheduling on uniform processors with simultaneous machine available times,
such that the lengths of the time slots available for processing on processors,
ts′p, are the same as in PI when the deadline assigned by Multifit is b. This
can be done by assigning for each processor p a new speed factor β(p), such
that tsp = ts′p = β(p) ∗ b, and by setting γ′(p) = 0. Thus

β(p) =
tsp
b

=
α(p)(b− γ(p))

b
. (1)
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We will denote the maximum completion time of an optimal schedule for PI ′

with opt′.

For the new instance PI ′ we have

Cmax(Multifit(PI ′)) ≤ q ∗ opt′, (2)

according to the bound for scheduling on uniform processors. Here, Cmax(Multifit(PI ′))
is the maximum completion time of the schedule produced by Multifit for
PI ′. We consider the schedule produced by FFD for the problem instance
PI ′ when the Multifit deadline is set at b, FFD(PI ′, b). For a time slot ts we
denote with FFD(ts) the FFD schedule produced by FFD in the time slot
ts when the Multifit assigned deadline is b. We have FFD(tsp) = FFD(ts′p),
since for all p ∈ P we have ts′p = tsp and since Multifit orders the time slots
in the same way in both cases. Then FFD assigns in each time slot ts′p
when considering problem instance PI ′ the same tasks it assigns in tsp when
considering the problem PI. Concluding, for problem instance PI ′ and Mul-
tifit deadline b, FFD also fails to successfully schedule all tasks. Therefore,
b < q ∗ opt′ by Lemma 3.1.

We next show that opt′ ≤ opt. We denote the set of tasks assigned by
the optimal schedule OPT of PI to p with OPT (tsp). With opt∗p we denote
the end of the processing time of this set of tasks in ts′p. We have:

opt∗p =
1

β(p)

∑

X∈OPT (tsp)

l(X) =
α(p)

β(p)

∑

X∈OPT (tsp)

l(X)

α(p)
(3)

Let optp denote end of the optimal schedule OPT on p. Since optp − γ(p)
is greater than or equal to the duration of the time interval in which the
tasks X ∈ OPT (tsp) were scheduled for problem instance PI, we have∑

X∈OPT (tsp)
l(X)
α(p)

≤ optp − γ(p). Together with (3) this implies

opt∗p ≤
α(p)

β(p)
(optp − γ(p)), (4)

Because of (4) and (1) we have:

opt∗p
optp − γ(p)

≤α(p)

β(p)
=

b

b− γ(p)
. (5)
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Next, we derive the inequality

optp
optp − γ(p)

≥ b

b− γ(p)
, (6)

which together with (5) implies opt∗p ≤ optp since by Lemma 3.3 optp > γ(p)
and since thus b ≥ q ∗ opt > γ(p).

Inequality (6) can be derived as follows. Let ǫ = b − optp. We have
ǫ > 0 by Lemma 3.3. Inequality (6) becomes optp

optp−γ(p)
≥ optp+ǫ

optp+ǫ−γ(p)
, which

is equivalent to optp(optp + ǫ − γ(p)) ≥ (optp − γ(p))(optp + ǫ), and thus to
opt2p + optp(ǫ − γ(p)) ≥ opt2p − optpγ(p) + optpǫ − γ(p)ǫ and to 0 ≥ −γ(p)ǫ,
which holds.

Let opt∗ be the end of the schedule OPT when used as a solution for
PI ′, i.e. opt∗ = max

p∈P
(opt∗p). An optimal schedule for PI ′ must end at time

opt∗ or before that. For at least one processor p we have opt∗ = opt∗p. Then
opt′ ≤ opt∗ = opt∗p ≤ optp ≤ opt, and thus opt′ ≤ opt, which together with
b < q ∗ opt′ implies that b < q ∗ opt, contradiction. △

By Theorem 3.2 the described Multifit variant generates schedules which
end within q ∗ opt when Multifit schedules for scheduling on simultaneous
uniform processors always end within q times the end of the optimal sched-
ule. In particular, according to the bound in [3], schedules produced by the
presented Multifit variant end within 1.382 times the optimal maximum com-
pletion time when scheduling on uniform processors with nonsimultaneous
machine available times.

The conclusion of Lemma 3.1 for the bound of q = 1.382 was also shown in
[3], in the process of proving this bound for simultaneous uniform processors.
In fact, proofs of Multifit bounds usually also show that a feasible schedule
is returned by FFD for any deadline that is later than the bound to prove.

Even for same-speed processors, the statement similar to that of of Lemma
3.1, that if a feasible schedule is found for a bound b than for any bound b′ > b
FFD also returns a feasible schedule, does not hold. This was shown in [6].

It is not possible to adapt our proof of Theorem 3.2 to show that the
approximation bound of Multifit for scheduling on simultaneous same-speed
processors also applies to scheduling on nonsimultaneous same-speed proces-
sors. This is mainly because the assumption that the approximation bound
q applies to all instances of scheduling on simultaneous uniform processors is
necessary even when considering instances with nonsimultaneous same-speed
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processors in order to derive equation (2) from our proof. In fact, Kellerer
[7] gives a problem instance for which the approximation factor of Multifit
for non-simultaneous same-speed processors is 24/19, which is greater than
the approximation bound proved for simultaneous same-speed processors.

Next, we consider the situation when there are at most two processors in
the considered problem instance. We show that a worst-case bound of

√
6/2

applies in this case.

Proposition 3.4 (Bound for instances with 2 processors)
For problem instances with at most 2 processors, our Multifit variant pro-
duces schedules which end within q times the maximum completion time of
an optimal schedule, assuming that q is a worst-case approximation bound for
scheduling on two simultaneous uniform processors for our Multifit variant.

Proof: Let PI be a problem instance for which the schedule generated by
our Multifit variant ends later than q times the end of an optimal schedule,
opt. If the optimal schedule only uses one processor, say p1, Multifit will find
this schedule, since any subset of tasks assigned to p1 ends before or at the
optimal maximum completion time opt, and thus, any schedule generated
when the Multifit deadline is b ≥ opt contains all tasks. Thus, PI must have
two processors, and opt is greater than the latest processing starttime.

The proof of Lemma 3.1 can also be used to show that if for the Multifit
algorithm for instances with m simultaneous uniform processors a worst-case
bound q applies, than for such problem instances for any deadline b ≥ q ∗ opt
FFD(b) contains all tasks.

Having thus shown statements corresponding to those of Lemma 3.1 and
of Lemma 3.3 for our bound q for all problem instances with at most 2 pro-
cessors that may violate this bound, we can use the proof of Theorem 3.2
as it is given to show that this bound also holds for problem instances with
non-simultaneous machine available times with at most 2 processors. From
[1] we know that q =

√
6/2 if the Multifit loop is repeated enough times. △

4. Conclusion

We described a variant of the Multifit algorithm which applies to non-
preemptive scheduling on uniform processors with nonsimultaneous machine
available times. We have then shown that the worst-case approximation fac-
tor when minimizing the maximum completion time is 1.382 for the general
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problem, and
√
6/2 for problem instances with at most two processors. We

also showed that in certain situations Multifit bounds for scheduling on si-
multaneous uniform machines also hold for our Multifit variant for scheduling
on nonsimultaneous uniform machines. As a consequence, tightness results
for Multifit scheduling on uniform processors can now be shown by using
instances with nonsimultaneous uniform processors.

References

[1] R. E. Burkard and Y. He. A note on multifit scheduling for uniform
machines. Computing, 61:277 – 283, March 1998.

[2] Soo Y. Chang and Hark-Chin Hwang. The worst-case analysis of the
multifit algorithm for scheduling nonsimultaneous parallel machines.
Discrete Applied Mathematics, 92:135 – 147, June 1999.

[3] B. Chen. Tighter bound for multifit scheduling on uniform processors.
Discrete Applied Mathematics, 31:227–260, May 1991.

[4] D.K. Friesen and M.A. Langston. Bounds for multifit scheduling on
uniform processors. SIAM Journal on Computing, 12:60 – 69, February
1983.

[5] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J.
of Applied Mathematics, 17:416 – 429, March 1969.

[6] E. G. Coffman Jr., M. R. Garey, and D.S.Johnson. An application of
bin-packing to multiprocessor scheduling. SIAM J. on Computing, 7:1–
17, February 1978.

[7] H. Kellerer. Algorithms for multiprocessor scheduling with machine
release times. IIE Transactions, 30:991 – 999, 1998.

[8] C.Y. Lee. Parallel machine scheduling with nonsimultaneous machine
available time. Discrete Applied Mathematics, 30:53 – 61, January 1991.

[9] H.M. Wang. The multifit algorithm for a class Pm||Cmax problem.
Applied Mathematics - A Journal of Chinese University, 12:361 – 368,
1998.

11



[10] H. Yong. Uniform machine scheduling with machine available con-
straints. Acta Mathematicae Applicatae Sinica (English Series), 16:122
– 129, April 2000.

12


