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Abstract. A spectrahedron is the positivity region of a linear matrix pencil and thus
the feasible set of a semidefinite program. We propose and study a hierarchy of sufficient
semidefinite conditions to certify the containment of a spectrahedron in another one.
This approach comes from applying a moment relaxation to a suitable polynomial opti-
mization formulation. The hierarchical criterion is stronger than a solitary semidefinite
criterion discussed earlier by Helton, Klep, and McCullough as well as by the authors.
Moreover, several exactness results for the solitary criterion can be brought forward to
the hierarchical approach.

The hierarchy also applies to the (equivalent) question of checking whether a map
between matrix (sub-)spaces is positive. In this context, the solitary criterion checks
whether the map is completely positive, and thus our results provide a hierarchy between
positivity and complete positivity.

1. Introduction

Containment problems of convex sets belong to the classical problems in convex ge-
ometry (see, e.g., Gritzmann and Klee for the containment of polytopes [15], Freund and
Orlin for containment problems of balls in balls [10], or Mangasarian for containment of
convex sets in reverse-convex sets [32]).

In this paper, we consider the containment problem for spectrahedra using the following
common notation. Let Sk be the set of real symmetric k × k-matrices, S+

k be the set of
positive semidefinite k×k-matrices, and Sk[x] be the set of symmetric k×k-matrices with
polynomial entries in x = (x1, . . . , xn). For A0, . . . , An ∈ Sk, denote by A(x) the linear
(matrix) pencil A(x) = A0 + x1A1 + · · ·+ xnAn ∈ Sk[x]. The set

(1.1) SA = {x ∈ Rn : A(x) � 0}
is called a spectrahedron, where A(x) � 0 denotes positive semidefiniteness of the matrix
A(x). Our work is intrinsically motivated by the fact that spectrahedra have become an
important class of non-polyhedral sets due to the availability of fast semidefinite pro-
gramming solvers. See [6, 7, 11, 18, 33] for general background on spectrahedra, and their
significance in optimization and convex algebraic geometry. Spectrahedra can be used to
represent observables in quantum information theory [41]. From an application point of
view, interest in non-polyhedral, and thus particularly semidefinite, set containment is
stimulated by non-polyhedral knowledge based data classification (see [23, 32], for semi-
definite classifiers see [24]).

Given two linear pencils A(x) ∈ Sk[x] and B(x) ∈ Sl[x], the containment problem
for spectrahedra is to decide whether SA ⊆ SB. This problem is co-NP-hard [4, 25].
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The study of algorithmic approaches and relaxations has been initiated by Ben-Tal and
Nemirovski [4] who investigated the case where SA is a cube (“matrix cube problem”).
Helton, Klep, and McCullough [17] studied containment problems of matricial positivity
domains (which live in infinite-dimensional spaces), and from this they derive a semi-
definite sufficient criterion for deciding containment of spectrahedra. In [25], the authors
of the present paper provided a streamlined presentation of the results on spectrahedral
containment in [17] and showed that in several cases the sufficient criterion is exact.

From an operator algebra point of view (such as in [17, 26]), this semidefinite fea-
sibility condition states that a natural linear map ΦAB between the subspaces A =
span(A0, . . . , An) and B = span(B0, . . . , Bn) is completely positive (as defined in Sec-
tion 4.1). These maps also appear in the context of Positivstellensätze in non-commuting
variables; see [16]. Building upon these results, in the current paper we go one step fur-
ther, presenting a hierarchy of monotone improving sufficient semidefinite optimization
problems to decide the containment question.

Our point of departure is to formulate the containment problem in terms of polynomial
matrix inequalities (PMI). We use common relaxation techniques (by Kojima [27], Hol
and Scherer [21] as well as Henrion and Lasserre [20]) to derive a (sufficient) semidefinite
hierarchy for the containment problem. The semidefinite hierarchy provides a much more
comprehensive approach towards the containment problems than the aforementioned suf-
ficient criterion (see Theorem 4.8). We also discuss a variant of the semidefinite hierarchy
which avoids additional variables (see Section 3.3).

Main contributions. 1. Based on polynomial matrix inequalities, we provide a hierarchy
of sufficient semidefinite criteria for the containment problem and prove that the sequence
of optimal values converges to the optimal value of the underlying polynomial optimization
problem; see Theorem 3.3.

2. Any relaxation step of the hierarchy yields a sufficient criterion for the containment
problem. We prove that each of these sufficient criteria is at least as powerful as the one
in [17, 25], in the sense that whenever the criterion of [17, 25] is satisfied, then also the
criterion from any of the relaxation steps of the hierarchy is satisfied; see Theorem 4.8. In
particular, this already holds for the criterion coming from the initial relaxation step. This
allows to carry all exactness results from [25] forward to our new hierarchical approach;
see Corollaries 4.11 and 4.12.

3. Application of the hierarchy to the problem of deciding whether a linear map between
matrix subspaces is positive gives a monotone semidefinite hierarchy of sufficient criteria
for this problem.

4. We demonstrate the effectiveness of the approach by providing numerical results for
several containment problems and radii computations.

We remark that the containment question is intimately linked to the computation of
inner and outer radii of convex sets. (See Gritzmann and Klee [13, 14] for the polytope
case). Moreover, Bhardwaj, Rostalski, and Sanyal [5] study the related question of whether
a spectrahedron is a polytope. In [12], Gouveia, Robinson, and Thomas reduced the ques-
tion of computing the positive semidefinite rank of nonnegative matrices to a containment
problem involving projections of spectrahedra.
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The paper is structured as follows. In Section 2, we collect some notations and concepts
on spectrahedra and polynomial matrix inequalities. The semidefinite hierarchy, as well
as a variant avoiding additional variables, is introduced in Section 3. In Section 4, we
connect the hierarchy to (complete) positivity of operators and the sufficient semidefinite
criteria from [17, 25]. Section 5 discusses applications of radii computations and provides
numerical results.

2. Preliminaries

Throughout, general matrix polynomials will be denoted by G(x) ∈ Sk[x], while linear
matrix pencils will usually be denoted by A(x) ∈ Sk[x] or B(x) ∈ Sl[x]. Let In abbreviate
the n× n identity matrix, and let Eij denote the matrix with a one in position (i, j) and
zeros elsewhere. By Br(p), we denote the (closed) Euclidean ball with center p and radius
r > 0.

2.1. Spectrahedra and semidefinite programming. Given a linear pencil

(2.1) A(x) = A0 +
n∑
p=1

xpAp ∈ Sk[x] with Ap = (apij) , 0 ≤ p ≤ n ,

the spectrahedron SA = {x ∈ Rn : A(x) � 0} contains the origin if and only if A0 is posi-
tive semidefinite. Since the class of spectrahedra is closed under translation, this can always
be achieved (assuming that SA is nonempty). Indeed, there exists a point x′ ∈ Rn such that
A(x′) � 0 if and only if the origin is contained in the set {x ∈ Rn : A(x+ x′) � 0}. In
particular, the constant term in the linear pencil A′(x) = A(x+x′) is positive semidefinite.

The equivalence between positive definiteness of A0 and the origin being an interior
point is not true. Moreover, in general, the interior of SA does not coincide with the
positive definiteness region of the pencil. However, if the spectrahedron SA has nonempty
interior (or, equivalently, SA is full-dimensional), then there exists a reduced linear pencil
that is positive definite exactly on the interior of SA.

Proposition 2.1 ([11, Corollary 5]). Let SA = {x ∈ Rn : A(x) � 0} be full-dimensional
and let N be the intersection of the nullspaces of Ai, i = 0, . . . , n. If V is a basis of the
orthogonal complement of N , then SA = {x ∈ Rn : V TA(x)V � 0} and the interior of
SA is int(SA) = {x ∈ Rn : V TA(x)V � 0}.

Furthermore, the spectrahedron SA contains the origin in its interior if and only if there
is a linear pencil A′(x) with the same positivity domain such that A′0 = Ik; see [19]. To
simplify notation, we sometimes assume that A(x) is of this form and refer to it as a
monic linear pencil, i.e., A0 = Ik.

In addition, we occasionally assume the matrices A1, . . . , An to be linearly independent.
This assumption is not too restrictive. In order to see this, denote by Ã(x) = A(x)− A0

the pure-linear part of the linear pencil A(x). Recall the well-known fact that the lineality
space LA of a spectrahedron SA, i.e., the largest linear subspace contained in SA, is
the set LA = {x ∈ Rn : Ã(x) = 0}; see [11, Lemma 3]. Obviously, if the coefficient
matrices A1, . . . , An are linearly independent, then the lineality space is zero-dimensional,
i.e., LA = {0}. In particular, this is the case whenever the spectrahedron SA is bounded
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(and A0 � 0); see [17, Proposition 2.6]. Conversely, if there are linear dependencies in
the coefficient matrices, then we can simply reduce the containment problem to lower
dimensions.

Proposition 2.2. Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be linear pencils such that SA is
non-empty.

(1) LA = {0} if and only if A1, . . . , An are linearly independent.
(2) If SA ⊆ SB, then LA ⊆ LB.
(3) If LA ⊆ LB, then SA ⊆ SB holds if and only if SA′ ⊆ SB′ holds, where SA′ =

SA ∩ L⊥A and SB′ = SB ∩ L⊥A.

To prove the Proposition, we need a result concerning the lineality space of a closed
convex set.

Lemma 2.3. [40, Theorem 2.5.8] Let S be a non-empty closed convex set in Rn with
lineality space L. Then S = L+ (S ∩ L⊥) and the convex set S ∩ L⊥ contains no lines.

Proof. (of Proposition 2.2)
To (1): This follows directly from LA = {x ∈ Rn : Ã(x) = 0} and the definition of linear
independence.
To (2): If LA = {0}, then LA ⊆ LB is obviously true. Therefore, assume LA 6= {0}. Let
x̄ ∈ SA ⊆ SB and 0 6= x ∈ LA. As above, denote by B̃(x) = B(x)− B0 =

∑n
p=1 xpBp the

pure-linear part of B(x). Then A(x̄ + tx) � 0 for all t ∈ R and hence B(x̄) ± tB̃(x) =
B(x̄ ± tx) � 0 for all t ∈ R. Consequently, ±B̃(x) � 0, i.e., B̃(x) = 0. Thus the linear
subspace spanx is contained in LB. Since 0 6= x ∈ LA was arbitrary and LB is a linear
subspace, we have LA ⊆ LB.
To (3): Assume first SA ⊆ SB holds. Then SA′ = SA ∩ L⊥A ⊆ SB ∩ L⊥A = SB′ . For the
converse, note that SA = LA + SA′ . Let x ∈ SA. Then x = x1 + x2 with x1 ∈ LA and
x2 ∈ SA′ . Since x1 ∈ LA ⊆ LB and x2 ∈ SA′ ⊆ SB′ ⊆ SB, we have x ∈ LB + SB = SB. �

A (linear) semidefinite program (SDP) is an optimization problem where one optimizes
a linear objective function cTx over a spectrahedron, inf {cTx : A(x) � 0}. A semidefinite
feasibility problem (SDFP) is the decision problem of deciding whether for a given linear
pencil A(x) the spectrahedron SA is nonempty. While SDPs (with rational input data) can
be approximated in polynomial time (see [9]), the complexity of SDFP is open. The best
known results are contained in [35]. In practice, however, SDFPs can be solved efficiently
by semidefinite programming.

2.2. Polynomial matrix inequalities. Problems involving a polynomial objective func-
tion and positive semidefinite constraints on matrix polynomials are called polynomial
matrix inequality (PMI) problems and can be written in the following standard form.

inf f(x)

s.t. G(x) � 0,
(2.2)

where f(x) ∈ R[x] and G(x) ∈ Sk[x], not necessarily linear, for x = (x1, . . . , xn).
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Hol and Scherer [21], and Kojima [27] introduced sums of squares relaxations for PMIs,
leading to semidefinite programming relaxations of the original problem. Here we fo-
cus mainly on the dual viewpoint of moment relaxations, as exhibited by Henrion and
Lasserre [20]. As in Lasserre’s moment method for polynomial optimization [28], the basic
idea is to linearize all polynomials by introducing a new variable for each monomial. The
relations among the monomials give semidefinite conditions on the moment matrices.

As discussed in [20], directly linearizing the positive semidefiniteness condition (2.2) can
lead to relaxations that use a relatively small number of variables. To formalize this, let
[x] be the monomial basis of R[x] and let y = {yα}α∈Nn be a real-valued sequence indexed
in the basis [x]. A polynomial p(x) ∈ R[x] can be identified by its vector of coefficients
~p in the basis [x]. By [x]t we denote the truncated basis containing only monomials of
degree at most t. For the linearization operation, consider the operator Ly defined by the
linear mapping p 7→ Ly(p) = 〈~p, y〉.

Let M(y) be the moment matrix defined by [M(y)]α,β = Ly([[x][x]T ]α,β) = yα+β. Mt(y)
denotes the truncated moment matrix that contains only entries [M(y)]α,β with |α|, |β| ≤ t.

The positive semidefiniteness constraint on a matrix polynomial G(x) ∈ Sk[x] can be
modelled by so called localizing matrices (which for 1× 1-matrices specialize to the usual
localizing matrices within Lasserre’s relaxation for polynomial optimization [28]). The
truncated localizing matrix Mt(Gy) is the block matrix obtained by

[Mt(Gy)]α,β = Ly([[x]t[x]Tt ⊗G(x)]α,β).

We write Mt(Gy) = Ly([x]t[x]Tt ⊗ G(x)) for short. Let dG be the highest degree of a
polynomial appearing in G(x). With this notation only linearization variables coming
from monomials of degree at most 2t+ dG appear in Mt(Gy).

We arrive at the following hierarchy of semidefinite relaxations for the polynomial op-
timization problem (2.2),

f (t)
mom = inf Ly(f(x))

s.t. Mt(y) � 0

Mt−ddG/2e(Gy) � 0.

(2.3)

We only use the monomial basis of degree up to t− ddG/2e in the last constraint so that
only moments coming from variables of degree 2t or lower appear in the whole optimization
problem. Note that t = dmax{dG, df}/2e is the smallest possible relaxation order, since
for smaller t there are unconstrained variables in the objective or the truncated localizing
matrix is undefined. We call t = dmax{dG, df}/2e the initial relaxation order.

The optimal value of the hierarchy (2.3) converges under mild assumptions to the
optimal value of the original problem (2.2). To make this statement precise, we call a
matrix polynomial S(x) ∈ Sk[x] a sum of squares (or sos-matrix ) if it has a decomposition
S(x) = U(x)U(x)T with U(x) ∈ Rk×m[x] for some positive integer m. For k = 1, S(x) is
called sos-polynomial.

Proposition 2.4. [20, Theorem 2.2], see also [21, Theorem 1]. Let G(x) ∈ Sk[x]. Assume
there exists a polynomial p(x) = s(x) + 〈S(x), G(x)〉 for some sos-polynomial s(x) ∈ R[x]
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and some sos-matrix S(x) ∈ Sk[x], such that the level set {x ∈ Rn : p(x) ≥ 0} is compact.

Then f
(t)
mom ↑ f ∗ as t→∞ in the semidefinite hierarchy (2.3).

3. A (sufficient) semidefinite hierarchy

Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be two linear pencils. In this section, we provide
an optimization formulation to decide the question of whether the spectrahedron SA is
contained in SB. Using a PMI formulation of the containment problem, we first deduce a
sufficient semidefinite hierarchy and prove the convergence of the hierarchy (Theorem 3.3).
Afterwards, we state a second, in fact highly related, approach based on a quantified
semidefinite program; see Subsection 3.3.

3.1. An optimization approach to decide containment of spectrahedra. Clearly,
SA is contained in SB if and only if A(x) � 0 implies the positive semidefiniteness of B(x).
By definition, B(x) � 0 for arbitrary but fixed x ∈ Rn is equivalent to the nonnegativity
of the polynomial zTB(x)z in the variables z = (z1, . . . , zl). Thus, SA is contained in
SB if and only if the infimum µ of the degree 3 polynomial zTB(x)z in (x, z) over the
spectrahedron SA×Rl is nonnegative. Imposing a normalization condition on z, we arrive
at the following formulation.

Proposition 3.1. Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be linear pencils with SA 6= ∅,
and let gr(z) = zT z − r2, gR(z) = R2 − zT z for arbitrary but fixed 0 < r ≤ R. For the
polynomial optimization problem

µ = inf zTB(x)z

s.t. GA(x, z) := diag(A(x), gr(z), gR(z)) � 0
(3.1)

the following implications are true,

µ > 0 ⇒ SA ⊆ intSB,

µ = 0 ⇒ SA ⊆ SB,

µ < 0 ⇔ ∃x ∈ SA : B(x) � 0.

If the pencil B(x) is reduced in the sense of Proposition 2.1, µ = 0 implies that the
spectrahedra touch at the boundary.

A natural choice of the parameters r and R is to set both to 1. In this case, the optimal
value of the optimization problem equals the smallest eigenvalue of any matrix in the set
{B(x) : x ∈ SA}. Other choices result in an optimal value that is scaled by R2 in the
case µ < 0 and by r2 in the case µ > 0. As our numerical computations in Section 5
show, the problem, or, more precisely, its relaxation defined in Section 3.2 is numerically
ill-conditioned if we chose r = R and becomes more tractable for r < R.

In applications, it is advisable to use reduced pencils. The reduced pencil can be com-
puted by the methods in [11] and makes the numerical computations described below
better conditioned. Not only do we expect a strictly positive objective value whenever
SA ⊆ intSB, the reduced pencil is also of smaller size.
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Proof (of Proposition 3.1). Denote by T = Tr,R(0) = {z ∈ Rl : r2 ≤ zT z ≤ R2} the
annulus defined by the constraints gr(z) ≥ 0, gR(z) ≥ 0.

We first observe that the existence of an x ∈ SA and z ∈ Rl with zTB(x)z < 0 implies
the existence of a point z′ := R · z

‖z‖ ∈ T with ‖z′‖ = R and z′TB(x)z′ < 0, and thus

(x, z′) lies in the product of the spectrahedron SA and the annulus T.
If µ ≥ 0, then clearly SA ⊆ SB. To deduce the case µ > 0, observe that the boundary

∂SB of SB is contained in the set

{x ∈ Rn : B(x) � 0, zTB(x)z = 0 for some z ∈ T} .

Hence, if the boundaries of SA and SB contain a common point x̄, then there exists some
z̄ such that the objective value of (x̄, z̄) is zero. �

3.2. Derivation of the hierarchy using moment relaxation methods. Using the
framework of moment relaxations for PMIs introduced in Section 2.2, we consider the
following semidefinite hierarchy as a relaxation to problem (3.1), providing a semidefinite
hierarchy for the containment question. Let y be a real-valued sequence indexed by [x, z],
the monomial basis of R[x, z] = R[x1, . . . , xn, z1, . . . , zl]. For t ≥ 2, we obtain the t-th
relaxation of the polynomial optimization problem (3.1)

µmom(t) = inf Ly(z
TB(x)z)

s.t. Mt(y) � 0

Mt−1(GAy) � 0.

(3.2)

As described in Subsection 2.2, we only use the monomial basis of degree up to t − 1
in the last constraint so that only moments coming from variables of degree 2t or lower
appear in the whole optimization problem. Note that t = 2 is the initial relaxation order,
as defined in Section 2.2. By increasing t, additional constraints are added, which implies
the following corollary.

Corollary 3.2. The sequence µmom(t) for t ≥ 2 is monotone non-decreasing. If for some
t∗ the condition µmom(t∗) ≥ 0 is satisfied, then SA ⊆ SB.

That is, for any t, the condition µmom(t) ≥ 0 provides a sufficient criterion for the
containment SA ⊆ SB. In the case when the inner spectrahedron SA is bounded, the
sequence of relaxations is not only monotone non-decreasing, but also converges to the
optimal value of the original polynomial optimization problem (3.1), as the next theorem
shows.

Theorem 3.3. Let A(x) ∈ Sk[x] be a linear pencil such that the spectrahedron SA is
bounded. Then the optimal value of the moment relaxation (3.2) converges from below
to the optimal value of the polynomial optimization problem (3.1), i.e., µmom(t) ↑ µ as
t→∞.

Proof. By Proposition 2.4, it suffices to show that there exists an sos-polynomial s(x, z) ∈
R[x, z] and an sos-matrix S(x, z) ∈ Sk+2[x, z] defining a polynomial p(x, z) = s(x, z) +
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〈S(x, z), GA(x, z)〉 such that the level set {(x, z) ∈ Rn+l : p(x, z) ≥ 0} is compact. Define
the quadratic module

MA = {t(x) + 〈A(x), T (x)〉 : t(x) ∈ R[x] sos-polynomial, T (x) ∈ Sk[x] sos-matrix} .
As shown in [26, Corollary 2.2.6], the boundedness of SA is equivalent to the fact that
the quadratic module MA is Archimedean, i.e., there exists a positive integer N ∈ N such
that N − xTx ∈MA. Thus, by the definition of the quadratic module MA, there exists an
sos-polynomial t(x) ∈ R[x] and an sos-matrix T (x) ∈ Sk[x] such that

N − xTx = t(x) + 〈T (x), A(x)〉 .
Define s(x, z) = t(x) and S(x, z) = diag(T (x), 0, 1). Both have the sos-property. Indeed,
if T (x) = U(x)U(x)T is an sos-decomposition of T (x), then S(x, z) = diag(T (x), 0, 1) =
diag(U(x), 0, 1) diag(U(x)T , 0, 1) is one of S(x, z). We get

p(x, z) = N − xTx+R2 − zT z = s(x, z) + 〈S(x, z), GA(x, z)〉 .
Since this polynomial defines the ball of radius N+R2 centered at the origin, BN+R2(0) ⊂
Rn+l, the level set is compact. �

Remark 3.4. Computing a certificate N from the proof of the theorem can again be done
by the polynomial semidefinite program (3.1) and its relaxation (3.2). We have a deeper
look on this in Section 5.3. In fact, the program stated there computes the circumradius
of the spectrahedron SA, if it is centrally symmetric with respect to the origin.

If the optimal value of the polynomial reformulation (3.1) equals zero, it might lead to
numerical issues in the relaxation (3.2) as it requires the computation of an exact value via
semidefinite programming. From a geometric point of view this occurs only in somewhat
degenerate cases: the spectrahedra touch at the boundary or the determinantal variety of
B(x) intersects the interior of the spectrahedron SA; if the pencil B(x) is reduced in the
sense of Proposition 2.1, the latter case is not possible.

3.3. An alternative formulation. A crucial point in the polynomial optimization ap-
proach (3.1) is the introduction of additional variables z = (z1, . . . , zl) already in the
original, unrelaxed polynomial formulation (see Proposition 3.1). An alternative approach
would be to start from the following quantified semidefinite program without additional
variables,

µ = sup λ

s.t. B(x)− λIl � 0 ∀x ∈ SA .
(3.3)

By a result on robust polynomial semidefinite programming by Hol and Scherer [36]
this class of problems can be solved by an approach based on sum-of-squares matrix
polynomials, leading to a hierarchy of the form

λsos(t) = sup λ

s.t. B(x)− λIl − (〈Si,j(x), A(x)〉)li,j=1 sos-matrix

S(x) = (Si,j(x))li,j=1 ∈ Skl[x] sos-matrix.

(3.4)
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where S(x) has l × l blocks of size k × k with entries of degree at most 2t ≥ 0. Using
Theorem 1 and Corollary 1 from [36], we can state the subsequent convergence statement
for the sos-relaxation. The proof of this theorem is very similar to the one of Theorem 3.3.

Theorem 3.5. Let A(x) ∈ Sk[x] be a linear pencil such that the spectrahedron SA is
bounded. Then the optimal value of the sos-relaxation (3.4) converges from below to the
optimal value of the quantified semidefinite optimization problem (3.3), i.e., λsos(t) ↑ µ as
t→∞.

While in the quantified semidefinite program no additional variables z = (z1, . . . , zl)
are needed, the number of unknowns of the relaxation grows not only in the number of
variables n and the relaxation order t, i.e., half the degree of the entries in S(x), but also
in the size of both the outer pencil l and the inner pencil k. To be more precise, using
the approach of Hol and Scherer, the number of unknowns in the SDP coming from the
sos-relaxation is generically

1 +
1

2

(
n+ t

t

)
·
[
k2l2

(
n+ t

t

)
+ l2

(
n+ t

t

)
+ kl + l

]
−ml(l + 1),

where m denotes the number of affine equation constraints arising in the sos-formulation;
see [36, Section 5]. In our main approach there are

1

2

(
n+ l + t

t

)[(
n+ l + t

t

)
− 1

]
variables. In certain situations with small t (i.e., t ∈ {0, 1}), the sos-approach may lead
to SDPs with a simpler structure than our main approach. We study this in detail in
Section 5.

4. Positivity of matrix maps and the hierarchy for containment

In this section, we first review the containment criterion based on complete positivity
of operators that was studied in [17, 25]. We then prove that the sufficient criteria coming
from our hierarchy of relaxations are at least as strong as the complete positivity criterion
by showing that feasibility of the complete positivity criterion implies µ ≥ 0 in the initial
relaxation step of the semidefinite hierarchy (3.2). From this relation, we get that in some
cases already the initial relaxation step gives an exact answer to the containment problem;
see Corollaries 4.11 and 4.12.

For the convenience of the reader, we first collect the relevant connections between the
containment problem and (complete) positivity of maps between matrix spaces; see State-
ments 4.2–4.6. Theorem 4.8 gives our main result concerning the containment criterion
from [17, 25] and the semidefinite hierarchy.

4.1. (Completely) positive maps. Besides providing a (numerical) answer to the con-
tainment question, the semidefinite hierarchy (3.2) is useful to detect positivity of linear
maps between (subspaces of) matrix spaces.

The concepts discussed in this subsection can be defined in a much more general setting,
using the language of operator theory. See, e.g., [34] for an introduction to positive and
completely positive maps on C∗-algebras.
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Definition 4.1. Given two linear subspaces A ⊆ Rk×k and B ⊆ Rl×l, a linear map
Φ : A → B is called positive if every positive semidefinite matrix in A is mapped to a
positive semidefinite matrix in B, i.e., Φ(A ∩ S+

k ) ⊆ B ∩ S+
l .

The map Φ is called d-positive if the map Φd : Rd×d⊗A → Rd×d⊗B, M⊗A 7→M⊗Φ(A)
is positive, i.e. (Φ(Aij))

d
i,j=1 ∈ Bd×d ∩ S+

dl for (Aij)
d
i,j=1 ∈ Ad×d ∩ S+

dk.
Finally, Φ is called completely positive if Φd is positive for all positive integers d.

Naturally, every d-positive map is e-positive for all positive integers e ≤ d. Provided
that A contains a positive definite matrix, complete positivity of Φ is equivalent to k-
positivity; see [34, Theorem 6.1]. Interestingly, in this situation every completely positive
map does have a completely positive extension to the full matrix space and can therefore
be represented by a positive semidefinite matrix. This is well known in the general setting
of C∗-algebras and persists in our real setting.

Proposition 4.2 ([34, Theorem 6.2.]). Let A ⊆ Rk×k be a linear subspace containing a
positive definite matrix, then each completely positive map Φ : A → Rl×l has an extension
to a completely positive map Φ̃ : Rk×k → Rl×l.

Moreover, complete positivity of the map Φ̃ is equivalent to positive semidefiniteness of
the matrix C = (Cij)

k
i,j=1 =

∑k
i,j=1(Eij⊗Φ̃(Eij)) ∈ Skl, where Eij denotes the k×k-matrix

with 1 in position (i, j) and zeros elsewhere.

A significant implication of Proposition 4.2 is the following. Given a linear subspace A
containing a positive definite matrix, a linear map Φ : A → Rl×l is completely positive
if and only if at least one of all possible extensions of Φ to the whole matrix space is
completely positive. The set of extensions is determined by linear equations, fixing some
(but not all) of the entries in the matrix C. Testing the partially indeterminate matrix C
for a positive semidefinite extension is a semidefinite feasibility problem (SDFP). Recall
from the Preliminaries 2.1 that while the computational complexity of solving SDFPs is
open, in practice it can be done efficiently by semidefinite programming. In Section 4.3
we apply this to containment of spectrahedra.

Surprisingly, positive maps on subspaces do not always have a positive extension to
the full space; see, e.g., [39, Example 3.16]. And even if they do, characterizations of
positive maps exist merely in low dimensions and in the setting of hermitian matrix
algebras [42, 43]. The structure of positive maps on higher dimensional spaces is not
completely understood [37, 38].

As we will see in this section, checking positivity of a map on subspaces is equiva-
lent to checking containment for spectrahedra. We can thus apply our hierarchy for the
containment question.

4.2. Equivalence of positive maps and containment. Given the linear pencilsA(x) ∈
Sk[x] and B(x) ∈ Sl[x], we call the linear pencil

(4.1) Â = 1⊕ A(x) = 1⊕ A0 +
n∑
p=1

xp(0⊕ Ap)
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the extended linear pencil of A(x), where ⊕ denotes the direct sum of matrices. Define
the corresponding linear subspaces

A = span(A0, A1, . . . , An) ⊆ Sk,

Â = span(1⊕ A0, 0⊕ A1, . . . , 0⊕ An) ⊆ Sk+1, and

B = span(B0, B1, . . . , Bn) ⊆ Sl.

For linearly independent A1, . . . , An, let Φ̂AB : Â → B be the linear map defined by

Φ̂AB(1⊕ A0) = B0 and ∀p ∈ {1, . . . , n} : Φ̂AB(0⊕ Ap) = Bp.

Note that since every linear combination 0 = λ0(1 ⊕ A0) +
∑n

p=1 λp(0 ⊕ Ap) for real
λ0, . . . , λn yields λ0 = 0, it suffices to assume the linear independence of the coefficient

matrices A1, . . . , An to ensure that Φ̂AB is well-defined. To obtain linear independence,
the lineality space can be treated separately, as described in the Preliminaries 2.1. Note
that the lineality space for the extended pencil is the same as for the actual pencil.

If additionally, A0, A1, . . . , An are linearly independent, we can retreat to the simpler
map ΦAB : A → B defined by

∀p ∈ {0, . . . , n} : ΦAB : Ap 7→ Bp.

Assumption 4.3. Let A0, . . . , An be linearly independent for statements concerning ΦAB

and let A1, . . . , An be linearly independent for statements concerning Φ̂AB.

In [17, Theorem 3.5] the authors state the relationship between d-positive maps and
the question of containment of (bounded) matricial positivity domains which for d = 1
contains the case of spectrahedra. The proof there is based on operator algebra. We give
a more streamlined proof concerning positive maps and spectrahedra.

Proposition 4.4. Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be linear pencils.

(1) If ΦAB or Φ̂AB is positive, then SA ⊆ SB.

(2) If SA 6= ∅, then SA ⊆ SB implies Φ̂AB is positive.
(3) If SA 6= ∅ and SA is bounded, then SA ⊆ SB implies ΦAB is positive.

Proof. To (1): Let ΦAB be positive and let x ∈ SA. Then A(x) � 0. By the positivity of
ΦAB, we have B(x) = ΦAB(A(x)) � 0, and thus x ∈ SB. There is no difference in the

proof if Φ̂AB is positive.

To (2): First note that A(x) � 0 if and only if the extended linear pencil Â(x) is positive

semidefinite. Hence SA = SÂ. Set Â(x0, x) := x0(1⊕A0)+
∑n

p=1 xp(0⊕Ap) and let x0 ∈ R
with Â(x0, x) ∈ Â ∩ S+

k+1. Then x0 ≥ 0.

Case x0 > 0. Then Â(1, x/x0) = 1
x0
Â(x0, x) � 0. Thus, x

x0
∈ SÂ = SA ⊆ SB and

B(x0, x) = x0B(1, x/x0) � 0. We get Φ̂AB(Â(x0, x)) = B(x0, x) ∈ B ∩ S+
l .

Case x0 = 0. By assumption, SA is nonempty, i.e., there exists a point x̄ ∈ SA. Then

A(0, x) � 0 together with the positive semidefiniteness of A(1, x̄) (or, equivalently, Â(1, x̄))
implies x̄+ tx ∈ SA ⊆ SB for all t ≥ 0. Thus x is a point of the recession cone of SA which
clearly is contained in the recession cone of SB. Consequently, 1

t
B(1, x̄) +B(0, x) � 0 for
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all t > 0. By closedness of the cone of positive semidefinite matrices, we get B(0, x) � 0.

Hence Φ̂AB(Â(x0, x)) = Φ̂AB(Â(0, x)) = B(0, x) � 0.

To (3): Let SA ⊆ SB and A(x0, x) = x0A0 +
∑n

p=1 xpAp ∈ A be positive semidefinite.

Case x0 ≤ 0. Since SA is nonempty, there exists x̄ ∈ Rn such that A(1, x̄) � 0, and hence

A(0, x+ |x0|x̄) = A(0, x) + A(0, |x0|x̄) � |x0|A0 + A(0, |x0|x̄) = |x0| · A(1, x̄) � 0.

For A(0, x+|x0|x̄) 6= 0, one has an improving ray of the spectrahedron SA, in contradiction
to the boundedness of SA. For A(0, x+ |x0|x̄) = 0, the linear independence of A0, . . . , An
implies x + |x0|x̄ = 0. But then x0A(1, x̄) = A(x0, x) � 0 together with x0 ≤ 0 and
A(1, x̄) � 0 implies either A(1, x̄) = 0, in contradiction to linear independence, or (x0, x) =
0. Clearly, ΦAB(0) = 0.
Case x0 > 0. Then x/x0 ∈ SA ⊆ SB. Thus, ΦAB(A(x0, x)) = B(x0, x) � 0. �

The assumptions in parts (2) and (3) of Proposition 4.4 can not be omitted in general,
as the next examples show.

Example 4.5. (1) Consider the two linear pencils

A(x) =

−3 + x1 + x2 0 0
0 −1 + x1 0
0 0 −1 + x2

 and B(x) =

−1 + x1 + x2 0 0
0 x1 0
0 0 x2


defining unbounded, nonempty polyhedra in R2. It is easy to see that the coefficient
matrices are linearly independent and SA does not contain the origin.

While SA is contained in SB, the linear map ΦAB is not positive. Indeed, the homo-
geneous pencil A(x0, x) evaluated at the point (x0, x1, x2) = (−1,−1/2,−1/2) is positive
definite while B(x0, x) is indefinite.

Therefore, the boundedness assumption in part (3) of Proposition 4.4 can not be omitted

in general. Using the extended linear pencil Â(x) = 1⊕A(x) instead of A(x), the resulting

constraint x0 ≥ 0 yields the positivity of Φ̂AB. In fact, Φ̂AB is completely positive, which
can be checked by the SDFP (4.3) as introduced in the next subsection.

(2) Consider the two linear pencils

A(x) =

[
x 1
1 0

]
and B(x) =

[
1 −x
−x 1

]
.

with linearly independent coefficient matrices. The corresponding spectrahedra are the
empty set, SA = ∅, and the interval SB = [−1, 1]. Thus SA ⊆ SB. However, the linear
map ΦAB is not positive, since the homogeneous pencil A(x0, x) is positive semidefinite
at (x0, x) = (0, 1) but B(0, 1) is not. Note that this holds for the extended pencil as well.
Thus nonemptyness of the inner spectrahedron can not be dropped. �

Remark 4.6. If our setting were changed from the case of linear subspaces to the case
of affine subspaces, with a natural adaption of the notion of positivity to affine maps,
Proposition 4.4 had a slightly easier formulation and proof: Let A(x) ∈ Sk[x] and B(x) ∈
Sl[x]. Define the affine subspaces Ā = 1

n
A0+lin(A1, . . . , An) and B̄ = 1

n
B0+lin(B1, . . . , Bn)
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for linearly independent A1, . . . , An. Then SA ⊆ SB if and only if the affine function
Φ̄AB : Ā → B̄ defined by 1

n
A0 + Ai 7→ 1

n
B0 +Bi for i = 1, . . . , n is positive.

Proof. First, let Φ̄AB be positive and let x ∈ SA. Since Φ̄AB is positive, we have B(x) =
Φ̄AB(A(x)) � 0, thus x ∈ SB. Conversely, let 1

n
A0 +

∑n
p=1 xpAp ∈ Ā ∩ S

+
k . Then nx ∈

SA ⊆ SB and hence Φ̄AB( 1
n
A0 +

∑n
p=1 xpAp) = 1

n
B0 +

∑n
p=1 xpBp � 0. �

4.3. Connection between complete positivity and containment criteria. Choos-
ing a basis of A, we get a representation of the operator map ΦAB and by applying
Proposition 4.4, we can use the hierarchy defined in the last section to test positivity of
ΦAB.

To keep the notation simple, we assume boundedness and nonemptyness of SA, and
only work with the map ΦAB. All statements can be given in the general case using the

map Φ̂AB. As seen before (see Section 4.1), every extension Φ̃AB of the linear map ΦAB

to the full matrix spaces corresponds to a matrix C = (Φ̃AB(Eij))
k
i,j=1 ∈ Skl perceiving C

as a symmetric block matrix consisting of k × k blocks Cij of size l × l. Since A0, . . . , An
and B0, . . . , Bn are generators of A and B, respectively, some entries of C are defined via
Bp =

∑k
i,j=1 a

p
ijCij for p = 0, . . . , n.

By Proposition 4.4, the polynomial optimization problem from Proposition 3.1 can be
translated to the problem

inf zTB(x)z

s.t. B(x) =
k∑

i,j=1

(A(x))ijCij

GA(x, z) � 0.

(4.2)

Moreover, (an extension of) ΦAB is completely positive if and only if the matrix C =
(Φ̃AB(Eij))

k
i,j=1 ∈ Skl is positive semidefinite, i.e., if and only if the SDFP

(4.3) C = (Cij)
k
i,j=1 � 0 and Bp =

k∑
i,j=1

apijCij for p = 0, . . . , n

has a solution. So checking if there exists a positive semidefinite C ∈ Skl, gives another
sufficient criterion for the containment question. This is the method described in [17, 25].

Proposition 4.7. [25, Theorem 4.3] If the SDFP (4.3) has a solution C � 0, then
SA ⊆ SB.

In terms of the linear pencils, the previous proposition states that the pencil B(x) =∑k
ij=1(A(x))ijCij is positive semidefinite if A(x) and C are positive semidefinite, rendering

the objective polynomial in (4.2) nonnegative on the set SA × Tr,R(0).
As we will see next, positive semidefiniteness of the matrix C is not only a sufficient

condition for containment and thus for the nonnegativity of the polynomial optimization
problem in Proposition 3.1, but also for its relaxations (3.2) and (3.4).

We show the following result:
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Theorem 4.8. Let SA 6= ∅. Then for the properties

(1’) Φ̂AB is completely positive,
(1) the SDFP (4.3) has a solution C � 0,

(2’) λsos(0) ≥ 0 (and thus λsos(t) ≥ 0 for all t ≥ 0),
(2) µmom(2) ≥ 0 (and thus µmom(t) ≥ 0 for all t ≥ 2),
(3) SA ⊆ SB,

(3’) Φ̂AB is positive,

we have the implications and equivalences

(1′)⇐= (1) ⇐⇒ (2′) =⇒ (2) =⇒ (3) ⇐⇒ (3′)

with the first implication an equivalence whenever Â contains a positive definite matrix.

If, in addition, SA is bounded, then Φ̂AB in (1’) and (3’) can be replaced by ΦAB.

Note that if the spectrahedron SA is bounded, then Theorem 3.3 implies a partial
converse of the implication (2) =⇒ (3). Namely, if ∅ 6= SA ⊆ SB and SA is bounded, then
µmom(t) ↑ µ ≥ 0 for t→∞.

Recalling Corollary 3.2 and Proposition 4.7, the remaining task is to prove (1) =⇒ (2)
and (1) ⇐⇒ (2′). The first is achieved in the following theorem. The proof of the second
statement is straightforward. Indeed, by an easy computation one can check that for t = 0
the sos-matrix S(x) is equal to (a permutation of) the matrix C coming from the SDFP
(4.3) applied to the extended pencil.

Theorem 4.9. If the SDFP (4.3) has a solution, then the infimum µmom(2) of the initial
relaxation in (3.2) is nonnegative.

Proof. Assume C � 0 is a solution to the SDFP. Define the matrix C ′ via (C ′st)i,j = (Cij)s,t,
i.e., a kl×kl block matrix consisting of l×l blocks of size k×k. Since it arises by permuting
rows and columns of C simultaneously, C ′ is positive semidefinite as well.

Since (3.1) is feasible, the SDP (3.2) is feasible as well. For any (x, z), the linearity of
Ly implies for the objective in (3.2) (see also (4.2))

Ly(z
TB(x)z) = Ly

(
zT

k∑
i,j=1

(A(x))ijCijz

)
= Ly

(
k∑

i,j=1

l∑
s,t=1

zszt(A(x))ij(Cij)s,t

)

=
k∑

i,j=1

l∑
s,t=1

Ly (zszt(A(x))ij) (Cij)s,t = 1T
(
Ly
(
zzT ⊗ A(x)

)
� C ′

)
1,

where � denotes the Hadamard product and 1 ∈ Rkl is the all-one vector.
In the Hadamard product, the first matrix is positive semidefinite as a principal subma-

trix of M1(GAy) = Ly
(
b1(x, z)b1(x, z)

T ⊗ diag(A(x), gr(z), gR(z))
)

and C ′ � 0 as stated
above. By the Schur product theorem (see [22, Theorem 7.5.3]), the Hadamard product of
the two matrices is positive semidefinite as well. Hence, Ly(z

TB(x)z) ≥ 0 for any feasible
y, and µmom(2) ≥ 0. �

Remark 4.10. a) Theorem 4.9 can be stated for the polynomial optimization prob-
lem (3.1) itself. The proof is the same without the linearization operator Ly.
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b) The reverse implication in Theorem 4.9 (and Theorem 4.8), i.e., (2) =⇒ (1), is not
always true. Example 5.2 serves as a counterexample.
c) In terms of positive linear maps (see Section 4.1), Theorem 4.9 states that k-positivity is
a sufficient condition for the initial relaxation step to certify containment. More generally,
one can ask about the exact relationship between the exactness of the t-th relaxation step
and (k + 2− t)-positivity of ΦAB.

As seen in the proof of the last theorem, we can always represent the objective func-
tion of the optimization problem (3.2) in terms of a submatrix of M1(Ay) and the ma-
trix C ′ (where the last one arises by permuting rows and columns of C simultaneously),
Ly(z

TB(x)z) = 1T
(
Ly
(
zzT ⊗ A(x)

)
� C ′

)
1. In fact, this expression is just the trace or,

equivalently, the scalar product of these two matrices, i.e.,

Ly(z
TB(x)z) = tr

(
Ly
(
zzT ⊗ A(x)

)
· C ′
)

=
〈
Ly
(
zzT ⊗ A(x)

)
, C ′
〉
.

Since Ly
(
zzT ⊗ A(x)

)
is a principal submatrix of M1(GAy) which is constrained to be pos-

itive semidefinite, the first entry in the scalar product is positive semidefinite. Therefore,
the question of whether the objective function is nonnegative on the feasible region reduces
to the question of which conditions on the matrix C (or C ′) guarantee the nonnegativity
of the scalar product on this set.

Using Theorem 4.9, we can extend the exactness results from [25] to the hierarchy (3.2),
i.e., in some cases already the initial relaxation is not only a sufficient condition but
also necessary for containment. More precisely, in these cases the equivalences (1) ⇐⇒
(2′) ⇐⇒ (2) ⇐⇒ (3) hold in Theorem 4.8. These results rely on the specific pencil
representation of the given spectrahedra. Before stating the results, we have to agree on
a consistent representation.

Every polyhedron P = {x ∈ Rn : b + Ax ≥ 0} has a natural representation as a
spectrahedron:

(4.4) P = PA =

x ∈ Rn : A(x) =

a1(x) 0 0

0
. . . 0

0 0 ak(x)

 � 0

 ,

where ai(x) abbreviates the i-th entry of the vector b + Ax. PA contains the origin if
and only if the inequalities can be scaled so that b = 1k, where 1k denotes the all-ones
vector in Rk. Hence, in this case, A(x) is monic, and it is called the normal form of the
polyhedron PA.

A centrally symmetric ellipsoid with axis-aligned semiaxes of lengths a1, . . . , an can be
written as the spectrahedron SA of the monic linear pencil

(4.5) A(x) = In+1 +
n∑
p=1

xp
ap

(Ep,n+1 + En+1,p).

We call (4.5) the normal form of the ellipsoid. Specifically, for the case of all semiaxes
having the same length ν := a1 = · · · = an, this gives the normal form of a ball with
radius ν.

We are now ready to state the exactness results in Corollaries 4.11 and 4.12.
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Corollary 4.11. Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be linear pencils. In the following
cases, the initial relaxation step (t = 2) in (3.2) certifies containment of SA in SB.

(1) if A(x) and B(x) are normal forms of ellipsoids (both centrally symmetric, axis-
aligned semiaxes),

(2) if A(x) and B(x) are normal forms of a ball and an H-polyhedron, respectively,
(3) if B(x) is the normal form of a polytope,

(4) if Â(x) (see (4.1)) is the extended form of a spectrahedron and B(x) is the normal
form of a polyhedron.

Proof. Follows directly from [25, Theorem 4.8] and Theorem 4.9. �

Statements (2) to (4) in the previous corollary can also be deduced from the point of
view of positive and completely positive maps introduced in Section 4.1. This follows from
a result in [3, Proposition 1.2.2] stating that positive maps into commutative C∗-algebras
are completely positive. The second exactness result states that the initial relaxation step
can always certify containment of a scaled situation.

Corollary 4.12. Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be monic linear pencils such that SA
is bounded. Then there exists ν > 0 such that the initial relaxation step certifies νSA ⊆ SB,
where νSA = {x ∈ Rn : Aν(x) := A(x

ν
) � 0} is the scaled spectrahedron.

Proof. This follows from [25, Proposition 6.2] and Theorem 4.9. �

5. Numerical experiments

While the complexity of the containment question for spectrahedra is co-NP-hard in
general, the relaxation techniques introduced in this paper give a practical way of certifying
containment. We implemented the hierarchy and applied it to several examples. The
criterion performs well already for relaxation orders as low as t = 2, 3, as we will witness
throughout this section.

We start by reviewing an example from [25] in Section 5.1, showing that the new
hierarchical relaxation indeed outperforms the complete positivity relaxation. We then
give an overview on the performance of the relaxation on some more examples.

In Section 5.2, we compare the results from the moment approach (3.2) to the alternative
sum-of-squares approach (3.4). To assess the performance of both algorithms, we compare
results as well as runtimes of the algorithms on randomly generated pencils of varying
sizes.

We use the example of computing the symmetric circumradius of a spectrahedron to
show how the relaxation can be simplified in the case when the outer spectrahedron can be
described as the positivity region of a single polynomial. This is discussed in Section 5.3.

For our computations, we modeled the hierarchy using high-level YALMIP [30, 31]
code. We used MOSEK 7 [2] as external solver for the optimization problems defined in
YALMIP. The Matlab version used was R2011b, running on a desktop computer with
Intel Core i3-2100 @ 3.10 GHz and 4 GB of RAM.

Throughout this section, we use the following notation. As before, integer n stands
for the number of variables in the pencils, k and l for the size of the pencil A(x) and
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ν SDFP (4.3) µmom(2) sec µmom(3) sec

0.7 feasible 0.0101 0.11 0.300 0.17
0.707 feasible 0.000151 0.1 0.293 0.16

1/
√

2 feasible 7.29·10−11 0.09 0.293 0.16
0.708 infeasible -0.000632 0.1 0.292 0.16
0.8 infeasible -0.0657 0.09 0.200 0.16
1 infeasible -0.207 0.1 9.78·10−09 0.19
1.1 infeasible -0.278 0.1 -0.100 0.16

Table 1. Disk νSA in disk SB for two different representations and various
radii ν of the inner disk as described in Example 5.1.

B(x), respectively. For monic pencils, we examine ν−scaled spectrahedra νSA as defined
in Corollary 4.12. We denote the (numerical) optimal value of the moment relaxation (3.2)
of order t by µmom(t), the (numerical) optimal value of the alternative relaxation (3.4) of
of order t by λsos(t) . In the tables, “sec“ states the time in seconds for setting up the
problem in YALMIP and solving it in MOSEK.

If not stated otherwise, the inner radius is set to r = 1 and outer radius to R = 2 in
relaxation (3.2).

5.1. Numerical computations. We review the example of containment of two disks
from [25]. The complete positivity criterion from that work certifies the containment only
if the disk on the inside is scaled small enough. Theorem 4.9 shows that any containment
certified by the complete positivity criterion is certified by the hierarchical relaxation. In
the following example we go one step further, showing that the latter performs strictly
better than the feasibility criterion already in small relaxation orders.

Example 5.1. Consider the monic linear pencils Aν(x) = I3+x1
1
ν
(E1,3+E3,1)+x2

1
ν
(E2,3+

E3,2) ∈ S3[x] with parameter ν > 0 and B(x) = I2+x1(E1,1−E2,2)+x2(E1,2+E2,1) ∈ S2[x].
The spectrahedra defined by the pencils are the disk of radius ν > 0 centered at the origin,
νSA = Bν(0), and the unit disk SB = B1(0), respectively. Clearly, νSA ⊆ SB if and only
if 0 < ν ≤ 1. In particular, for ν = 1, both pencils define the unit disk B1(0) = SA = SB.

In [25, Section 6.1] it is shown that the complete positivity criterion for the containment
problem νSA ⊆ SB is satisfied if 0 < ν ≤ 1

2

√
2. Remarkably, the performance of relax-

ation (3.2) depends on the choice of the parameters r and R. Table 1 contrasts the results
of the moment relaxation with parameters r = 1, R = 2 with the results of the complete
positivity criterion for the problem νSA ⊆ SB. Our numerical computations shows that
the semidefinite relaxation of order t = 2 certifies the same cases as the complete positivity
criterion. For t = 3 we have exactness of the criterion.

When choosing r = R = 1, the semidefinite relaxation (3.2) is exact already for re-
laxation order t = 2 and returns the same optimal values as for relaxation order t = 3.
This choice of parameters however leads to numerical problems in the solver occasionally.
Furthermore the example of the two disks is the only one we have found, where results for
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size objective value sec
n k l µmom(2) λsos(0) µmom(2) λsos(0)

3 4 3 0.293 0.293 0.12 0.81
6 7 4 0.134 0.134 1.46 0.77

10 11 5 0.106 -3.972 · 10−8 28.51 3.61
15 16 6 0.087 -0.118 588.57 65.47

Table 2. Computational test of containment of ball in elliptope as de-
scribed in Example 5.2.

orders t = 2 and t = 3 differ if r and R are chosen distinct. In all other examples, results
seem to be exact already for t = 2. Therefore we advise to use r = 1 and R = 2 in general
applications. �

In the next example, we examine the containment of a ball in an elliptope. The elliptope
is a nice example of a spectrahedron that is described by a pencil consisting of very sparse
matrices. While the pencil is of small size, it is occupied by a large number of variables.

Example 5.2. For this example, the pencil description of the ball is as in (4.5). The
elliptope (5.2) can be described as the positivity domain of a symmetric pencil with ones
on the diagonal and distinct variables in the remaining positions; see [6, Section 2.1.3].

As exhibited in Table 2, the ball of radius 1
2

in dimensions n = 3, 6, 10 and 15 is
contained in the elliptope of the respective dimension. The computational time grows in
the number of variables, but even dimensions as high as 15 are in the scope of desktop
computers if the size l of the pencil B(x) is moderate.

Interestingly, while the moment relaxation is slower than the sum-of-squares approach
in this example (for t = 0 and t = 2, respectively), the latter approach fails to be exact
in dimension n = 10, 15. When trying to compute the next relaxation step λsos(1) for
(n, k, l) = (10, 11, 5), we stopped the computation after about 15 hours. Note that the
SDFP (4.3) is solvable for (n, k, l) = (10, 11, 5) but not solvable for (n, k, l) = (15, 16, 6).
Thus, for (n, k, l) = (15, 16, 6), this example serves as a counterexample for the reverse
statement of Theorem 4.9 (or, equivalently, for the implication (2) =⇒ (1) in Theo-
rem 4.8). �

Example 5.3. Consider the linear map

Φ : S3 → S3, A 7→ 2

A11 + A22

A22 + A33

A33 + A11

− A.
Due to Choi [8], the map Φ is (1- and 2-)positive but not completely positive. Indeed, the
SDFP (4.3) is not feasible. Using hierarchy (3.2) (with r = R = 1), the initial relaxation
step is also not feasible but for t = 3 the relaxation yields a small positive value implying
positivity of Φ. �
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size objective value sec
no. n k l µmom(2) µmom(3) λsos(0) λsos(1) µmom(2) µmom(3) λsos(0) λsos(1)

1 2 4 4 0.330 0.330 0.330 0.330 0.26 2.49 0.29 2.04
2 2 6 4 1.459 1.459 1.459 1.459 0.16 2.95 0.34 9.98
3 2 4 6 -2.009 -2.009 -2.009 -2.009 0.38 31.03 0.42 10.61
4 2 6 6 -0.209 -0.209 -0.209 -0.209 0.36 31.53 0.72 76.23
5 3 4 4 0.156 0.156 0.156 0.156 0.20 6.35 0.30 3.83
6 3 6 4 0.332 0.332 0.332 0.332 0.22 8.86 0.34 24.52
7 3 4 6 -6.918 -6.906 -6.918 -6.918 0.82 117.3 0.45 28.3
8 3 6 6 0.028 0.028 0.028 0.028 0.66 84.71 0.71 207.84
9 4 4 4 -3.164 -3.164 -3.164 -3.164 1.33 32.64 0.97 10.19
10 4 6 4 0.593 0.593 0.593 0.593 0.32 27.88 0.35 66.39
11 4 4 6 -0.938 -0.938 -0.938 -0.938 1.21 326 0.45 64.41
12 4 6 6 -0.251 -0.251 -0.251 -0.251 1.43 317.08 0.81 567.07

Table 3. Computational test of containment of randomly generated spec-
trahedra as described in Example 5.4.

5.2. Randomly Generated Spectrahedra. We applied both hierarchical criteria, the
moment hierarchy (3.2) and the alternative sum-of-squares approach (3.4) to several in-
stances of linear pencils with random entries.

For the experiments in this section, we generate coefficient matrices A1, . . . , An by
assigning random numbers to the off-diagonal entries of the matrices. Numbers are drawn
from a uniform distribution on [−1, 1]. The generated matrices are sparse in the sense that
roughly 35% of the off-diagonal entries are nonzero. The matrix for the constant term,
A0, is generated in the same way, but features ones on the diagonal. This choice leads to
bounded spectrahedra in most cases, namely when the matrices A0, . . . , Ak are linearly
independent. Unbounded spectrahedra and spectrahedra without interior are discarded.

The pencil of the second spectrahedron SB is generated in the same way, except that
the diagonal entries of B0 are chosen larger. This has the effect that the corresponding
spectrahedra are scaled and the containment SA ⊆ SB is more likely to happen.

Example 5.4. We apply the hierarchies to a range of problems with varying dimensions
and pencil sizes as reported in Table 3. To illustrate the approach, we provide the pencils
for experiment no. 1 below.

A(x) =


1 0.2528x1 + 0.3441x2 0 0

0.2528x1 + 0.3441x2 1 0 −0.1314x1
0 0 1 0.7969x2
0 −0.1314x1 0.7969x2 1



B(x) =


2 0.8454 0 0

0.8454 2 −0.2489x1 − 0.4063x2 0
0 −0.2489x1 − 0.4063x2 2 0.3562x1
0 0 0.3562x1 2


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Figure 1. Spectrahedra of experiments no. 1–4 from Table 3. SA: light
grey, SB: dark grey.

Figure 2. Projections of the 4-dimensional spectrahedron no. 12 from Ta-
ble 3. SA: light grey, SB: dark grey. Projections to planes spanned by (x1, x2),
(x2, x3), (x3, x4) and (0.3x1 + x2, x3).

For this experiment with randomly generated matrices, the truth value of the contain-
ment question is unknown a priori. In the case of a positive objective value, our criterion
yields a certificate for the containment. For negative objective values, we inspected plots
of the spectrahedra to check appropriateness of the criterion. Plots of the spectrahedra
from the two-dimensional experiments no. 1–4 are shown in Figure 1.

In cases of higher dimension (n > 3), we examined projections of the spectrahedra. See
Figure 2 for projections of the spectrahedra from experiment no. 12 to different planes.
The small negative objective value reported in Table 3 suggests that there is only a small
overlap of SA over the boundary of SB. Indeed, the projections to the coordinate planes
suggest that SA is contained in SB. But when projecting to the plane spanned by 0.3x1+x2
and x3, we see that the spectrahedra are not contained.

In all cases we examined, the results from the criterion correspond with the expectations
we had from inspecting the plots. Remarkably, for the randomly generated spectrahedra,
the results of the relaxations match closely across different relaxation orders and across
the two approaches discussed. This suggests that the criteria perform well in generic cases.

Concerning running times, both approaches are comparable. As expected, running times
increase quickly with growing dimension n and with an increase in the dimension l of the
pencil B(x). This is due to the fact, that the number of linearization variables grows when
these parameters are increased, as discussed in Section 3.3.
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Remarkably, the number of linearization variables in the moment approach does not
depend on the size k of the pencil A(x). While the size of the matrix in the resulting
semidefinite program depends on k, the number of variables plays a more important role.
Indeed, the running times for the moment approach are not influenced much by an increase
in the size of the pencil A(x). As witnessed in Table 3, the running times for the moment
approach may even decrease slightly for larger k. Thus for problems with relatively large
k, the moment approach should be used, since it seems to be superior to the alternative
approach in this case. �

From the examples discussed here and in Section 5.1, it is not clear whether one of
the approaches (3.2) and (3.4) is globally better than the other. While the moment ap-
proach (3.2) outperforms the sos-approach in Example 5.2 for (n, k, l) = (10, 11, 5) and,
e.g., in the experiments no. 8, 12, the sos-approach (3.4) is significantly faster in the
experiments no. 7, 11.

5.3. Geometric radii. Let A(x) ∈ Sk[x] be a linear pencil and denote by B(ν, p;x) the
normal form (4.5) of the ball Bν(p) ⊆ Rn with radius ν > 0 centered at some point p ∈ Rn.
Consider the problem of determining whether the spectrahedron SA is contained in Bν(p).

As seen in Section 3.1, SA is contained in Bν(p) if and only if B(ν, p;x) is positive semi-
definite on SA. Since B(ν, p;x) � 0 is equivalent to the nonnegativity of the polynomial
ν2 − (x− p)T (x− p), the polynomial optimization problem (3.1) can be simplified to

min ν2 − (x− p)T (x− p)
s.t. A(x) � 0

Hence, SA ⊆ Bν(p) for fixed p with minimal possible ν > 0 if and only if

ν2 = max (x− p)T (x− p)
s.t. A(x) � 0.

(5.1)

If the spectrahedron SA is centrally symmetric, i.e., x ∈ SA implies −x ∈ SA, then by
choosing the origin p = 0 as the center of the ball this polynomial optimization problem
computes the circumradius of SA. In general, computing the circumradius is a min-max-
problem, as one has to compute the minimum of the above maximum over all p ∈ Rn.

This also gives a certificate for boundedness of SA. Indeed, SA is bounded if and only
if the program (5.1) has a finite value.

As in Section 3.2, using a moment relaxation, we can derive a semidefinite hierarchy for
the containment problem of a spectrahedron in the ball Bν(p). If the unique circumcenter
of SA is a priori known, then the hierarchy yields upper bounds for the circumradius of
the spectrahedron. Since the objective polynomial involves only monomials of degree 2,
the relaxation performs very well; see Table 4 for exemplary results on the elliptope. For
this case, the stated values of the initial relaxation are indeed optimal.

Lemma 5.5. For the elliptope in dimension n = k(k − 1)/2 for some integer k > 2 the
circumradius equals

√
n.

Proof. Since the origin is the only point of the elliptope which is invariant under the
switching symmetry [29], it is the center point of the smallest enclosing ball.
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SA n ν2(2) sec

elliptope 3 3.00 0.51
6 6.00 0.51

10 10.00 1.02
15 15.00 16.43

Table 4. Circumradius of the elliptope. Here ν2(2) denotes the numerical
optimal value of the moment relaxation of order t = 2.

Let x ∈ SA, where SA is the elliptope given by the linear pencil

(5.2) A(x) = In +
∑

1≤i<j≤k

xij(Ei,j + Ej,i).

Consider the 2 × 2 principal minors of A(x). Then 1 − x2i ≥ 0 for all i = 1, . . . , n.
Summing up yields n −

∑n
i=1 x

2
i ≥ 0, and hence x ∈ B√n(0). On the other hand, since

every principal submatrix of A(1) is an all-one-matrix, and hence the determinant (of
every principal minor) vanishes, we get 1 ∈ ∂SA. (Note that the linear pencil is reduced
in the sense of Proposition 2.1). Thus 1 ∈ ∂B√n(0) ∩ ∂SA, implying the claim. �

Note that the hierarchical approach provides an improvement over the solitary relax-
ation (“matricial radius”) studied by Helton, Klep, and McCullough [17].

Remark 5.6. As seen by a standard example in semidefinite programming (see, e.g., [1,
11]), there exists a spectrahedron whose elements have a coordinate of double-exponential
size in the number of variables and hence double-exponential distance (to the origin) in
the number of variables. Therefore we cannot in general expect to attain a certificate for
the boundedness of the spectrahedron that is polynomial in the input size.
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