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Abstract Directional sensors are gaining importance due to applications, in-
cluding surveillance, detection, and tracking. Such sensors have a limited field-
of-view and a discrete set of directions they can be pointed to. The Directional
Sensor Control problem (DSCP) consists in assigning a direction of view to
each sensor. The location of the targets is known with uncertainty given by a
joint a-priori Gaussian distribution, while sensor locations are known exactly.
In this paper we study exact and heuristic approaches for the DSCP with the
goal of maximizing information gain on the location of a given set of immo-
bile target objects. In particular, we propose an exact mixed integer convex
programming (MICP) formulation to be solved by a black-box MICP solver
and several meta-heuristic approaches based on local search. A computational
evaluation shows the very good performance of both methods.

Keywords mixed integer convex programming, metaheuristics, directional
sensors, Benders decomposition

1 Introduction

Directional sensors are a class of sensors that have limited field-of-view (FOV),
like surveillance cameras, infrared sensors, and ultrasound sensors. Directional
sensors are becoming increasingly popular due to a wide range of applications,
such as surveillance, detection, and tracking. Directional sensor control has
been studied before in various contexts, and has mainly focused on coverage
issues: see, e.g., [1,4,5] and the references therein. Here, we study the problem
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of controlling multiple 2D directional sensors for maximizing information gain
corresponding to multiple targets, as introduced in [10]. The problem can be
described as follows.

We are given a list of n target on a 2D plane. The location χj of each
target j is not known with precision, but is described instead by an a-priori
distribution N (aj , Aj). We are also given a list of m sensors. Each sensor i has
known location si and can be pointed into one of K possible directions. The
problem consists in choosing a direction for each sensor in order to maximize
the expected information gain. The choice of the expectation of the information
gain is motivated by the following:

– We want our choice to be optimal not for a single possible scenario, i.e., for
a single assignment of each target to a location according to its distribution,
but on average for all possible scenarios (hence the expectation), because
we have to decide the direction of the sensors once and for all.

– The measurements obtained by the sensors are affected by errors. In other
words, covering a given target with a single sensor is not enough to get
perfect information on the location of the target and so there is an incentive
on covering the same target with multiple sensors (the more noisy the
sensors, the more are needed to get the same information gain for a given
target). As such, for each scenario, we compute a posterior distribution of
each target and use the information gain as a quality measure.

Note that if there were only one scenario and no measuring error, we would
just direct sensors in order to cover as many targets as possible (basically a
set covering problem). If we had more scenarios (according to a given prior
distribution) but still perfect measures, then we would look for the best cov-
erage on average (still similar to a set covering problem). Since we have many
scenarios and measurement errors, then we use the expected information gain
as objective.

Let’s consider the computation of the information gain in more detail. If
a target j is within the field of view of sensor i, when sensor i is pointed in
direction ui, we get the measure zij :

zij = Hχj + ηij

where H is the observation model and ηij is the measurement noise, assumed
to be normally distributed according to the distribution N (0, R(si, ui, χj))
(R is the measurement error covariance matrix). No measurement is obtained
if the target is not within the FOV of the sensor. For a given scenario, the
measurements from all sensors are fused in order to obtain a global estimate for
each target, as a posterior distribution. Note that the posterior distribution
is not Gaussian in general, and computing it exactly is not tractable. For
this reason, it is approximated as Gaussian distribution N (yj , Pj), where the
parameters yj and Pj are computed as:

Pj =

(
A−1j +

∑
i

HT (R(si, ui, aj))
−1H

)−1



Exact and Heuristic Approaches for Directional Sensor Control 3

yj = Pj

(
Ajaj +

∑
i

HT (R(si, ui, aj))
−1zij

)
where the summations are done only over the sensors that generated a mea-
surement for target j.

Given a control vector u = (u1, . . . , um), the corresponding objective (based
on the information gain) is then:

E

 n∑
j=1

− log

(
det(Pj(u))

det(Aj)

)
For practical purposes, the expectation above can be approximated by Monte
Carlo methods. More precisely, we generate several samples from the joint
prior distribution of the target state, and we compute the average (over the
samples) objective value for a given control action.

The outline of the paper is as follows: Section 2 describes several meta-
heuristic approaches to the problem, while Section 3 presents two exact meth-
ods based on a mixed integer convex formulation. Section 4 reports the com-
putational experiments. Finally, conclusions and future research directions are
drawn in Section 5.

2 Heuristic Methods

Two simple greedy approaches for the problem have been proposed in [10].
While the computational results therein show that those greedy methods do
not find the optimal solution in general, the solution quality is often good and
can be further improved by adding a rollout procedure [2]. However, imple-
menting the rollout procedure is not straightforward, and the results are hard
to judge performance-wise, being implemented in MATLAB. It turns out that
with rollout computing times are comparable to those of our slowest exact
method, see Table 3, and that without any guarantee of optimality.

For these reasons, we opted for a different approach to heuristic solutions,
namely general purpose local search metaheuristics. In particular, we imple-
mented a random restart local search algorithm (RLS) and an iterated local
search algorithm (ILS) [9].

Both algorithms are built upon a standard local search (LS) algorithm,
based on a natural neighborhood. Given a solution u, encoded as a vector in
Zm and whose components are in the range {0, . . . ,K − 1}, the neighborhood
N (u) is defined as all solutions that can be obtained by changing the direction
of only one sensor: in other words, u′ ∈ N (u) if and only if it differs in at
most one component w.r.t. u. Clearly, the neighborhood has polynomial size,
containing exactly mK solutions for each center u.

The first metaheuristic that we tried is random restart local search (RLS).
The idea behind the algorithm is very simple: at each iteration the local search
procedure is called from a different random initial solution, and the process
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is iterated until some termination criterion is met. Despite its simplicity, RLS
is already a definite improvement over a pure local search approach, and it
is also trivially parallelizable, an added bonus given today’s computing archi-
tectures. On the other hand, it is well known that such a simple strategy is
not competitive with other (more sophisticated) metaheuristics as the search
space grows [9].

The second metaheuristic that we studied is iterated local search (ILS),
which is designed to overcome most of the issues of RLS, while retaining its
simplicity. The idea behind ILS is to perturb the current locally optimal so-
lution s∗ to get a new center t and call again the local search procedure from
there, obtaining a new local optimum t∗. If the new solution t meets an ac-
ceptance criterion, then t is chosen as the next starting point, otherwise it is
rejected and the procedure is repeated from s∗. Intuitively, ILS implements a
heuristic random walk on the set of locally optimal solutions of a given opti-
mization problem. A high level pseudocode for ILS is given in Algorithm 1.

Algorithm 1: Basic ILS procedure

s0 = GenerateRandomSolution ();1

s∗ = LocalSearch (s0);2

repeat3

s′ = Perturb (s∗, history);4

t = LocalSearch (s′);5

s∗ = AcceptanceCriterion (s∗, t, history);6

until termination condition ;7

Note that the perturbation mechanism and the acceptance criterion are in
general dependent on the history of the system: this allows for more effective
and elaborate strategies. The simplest, yet very common, acceptance criterion
is to accept the new solution t if and only if its objective value is better
than that of s. Other strategies include a pure random walk option, in which
the new solution t is always accepted, regardless of its cost, and a simulated
annealing [8,11] like acceptance criterion based on temperature, in which t
is always accepted if it is an improving solution, but is also accepted with a
given probability even if its objective value is worse (the probability is usually
dependent on the “temperature” of the system and on the difference between
the two objective values, with slightly worsening steps being more likely). Note
that the first two strategies do not make use of the history of the system, while
the third does.

3 Exact Methods

Our approach to solve the problem to proven optimality is to formulate it
as a (hopefully convex) mixed integer nonlinear program. While the descrip-
tion of the problem is highly nonlinear, it turns out that we can get rid of
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most nonlinearities (such as matrix inversions and conditional summations)
by an appropriate extended formulation and off-line computations. In partic-
ular, given S as the set of samples, we can write the model as

max
∑
s

∑
j

[
log(det(P js)) + log(det(Aj))

]
/|S| (1)

∑
k

uik = 1 ∀i (2)

P js = A−1j +
∑
i

∑
k

Rijksuik ∀j∀s (3)

uij ∈ {0, 1} ∀i∀k (4)

where

– P js is the inverse of the posterior covariance matrix of target j in scenario
s

– Rijks is the inverse of the measurement covariance matrix between sensor
i pointing in direction k and target j in scenario s if the target is within
the FOV in this case, or the null matrix otherwise.

– uik is a binary variable whose value is 1 if and only if sensor i is pointing
in direction k

Constraints (2) are typical assignment constraints, stating that each sensor
must point in exactly one direction, while constraints (3) define the value
of matrices P js. Note that in practice we cannot deal with matrix variables
within most solvers, but this is easily taken care of because we are dealing with
symmetric 2×2 matrices, and each of them can be encoded with 3 continuous
free variables. Finally, note that the only nonlinearities left are the log det(·)
terms in the objective function, and that, since log det(·) is concave in the
positive semidefinite cone, the problem can formulated as a mixed integer
convex program.

3.1 Generalized Benders decomposition

A closer look at the model in the previous section reveals a clearly decompos-
able structure: indeed, given an assignment of directions to sensors, the model
splits into |S| × |J | subproblems, whose only role is to compute a piece of the
(nonlinear) objective function. As such, the structure is amenable to a gener-
alized form of Benders decomposition. In particular, we can introduce for each
scenario s and target j an additional continuous variable θsj , representing the
subexpression

θsj = f(P js) = log(det(P js)) + log(det(Aj))

and define a Benders subproblem as the (feasibility) problem:{
f(P js) ≥ θ∗sj
P js = A−1j +

∑
i

∑
k Rijksu

∗
ik
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where (u∗, θ∗) is any solution of the so-called master problem, namely



max
[∑

s,j θsj

]
/|S|∑

k uik = 1

〈Benders cuts〉
uik ∈ {0, 1}
θsj free

It is worth noting that, given a solution (u∗, θ∗) of the master, the value of the
matrix P js is uniquely defined. As such, in this case Benders cuts turn out to be
simply outer approximation cuts of the nonlinear expression f(·), interpreted
here as a function of three variables (those representing the corresponding
symmetric 2× 2 matrix). After some algebraic manipulation, and with a little
abuse of notation, we get:

θsj ≤ f(P
∗
js) +∇f(P

∗
js)(P js − P

∗
js)

where

P
∗
js = A−1j +

∑
i

∑
k

Rijksu
∗
ik

4 Computational Experiments

We implemented our codes in C++, using IBM ILOG CPLEX 12.5.1 [6] as
black box MIP solver through the Cplex callable library APIs, and KNITRO
8.1 [13,3] as black box mixed integer nonlinear solver. All tests have been
performed on a standard desktop machine, equipped with an Intel i7-2600
CPU running at 3.40GHz and with 16GB of RAM.

We tested our algorithms on five random instances, characterized as:

– the number of sensors m ranges from 4 to 8
– each sensor is placed at a random integer point in the plane
– the number of targets n is equal to 9
– the prior Gaussian distribution of each target is randomly chosen (the

mean is again an integer point in the plane, while the covariance matrix is
randomly chosen with entries in [0, 1])

– the set of K = 10 directions is {0, π/5, . . . , 9π/5}
– the FOV of each sensor is π/5
– the observation model H is taken as the identity matrix
– for each instance we sampled S = 150 scenarios to approximate the infor-

mation gain expectation.

Instance characteristics are detailed in Table 1.
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4.1 Landscape analysis

In order to evaluate the suitability of metaheuristic approaches to our direc-
tional sensor problem, we performed a preliminary search landscape analy-
sis [12]. Intuitively, the search space of a combinatorial optimization problem
can be thought of as a multidimensional landscape with hills, valleys and
plateaus, and the performance of many metaheuristics algorithms is strongly
influenced by its topology, such as the distribution of local minima and land-
scape ruggedness. Among the (many) techniques for computing synthetic in-
dicators describing the properties of the search landscape, the fitness-distance
correlation (FDC) [7] has proved to be a useful tool to predict the suitabil-
ity of metaheuristic algorithms. Given a list L of |L| feasible solutions for an
instance of an optimization problem, each described by a pair (zi, di), where
zi is the objective value of the solution and di is the distance to the closest
global optimum, the FDC coefficient is simply defined as:

FCD(L) =
czd
sz · sd

where

czd =
1

|L|

|L|∑
i=1

(zi − z)(di − d)

z, d are the average solution value and distance and sz, sd are the corresponding
standard deviations. According to [7], values of the FDC coefficient greater
than 0.15 (for a minimization problem), indicate a strong correlation between
distance to optimum and objective value, suggesting that local-search based
heuristics (among others) should perform well.

For each instance in our testbed, we used the RLS algorithm (with aggres-
sive parameters) to sample a lot of feasible solutions and compute the FDC
coefficients. Detailed results are shown in Table 1, while scatter plots for the
bigger instances are given in Figure 1. Note that the distance function used is
the L1-norm of the difference between the two solution vectors, interpreted as
vectors in Zm. According to the table, the FDC coefficient is always between
0.27 and 0.67, suggesting a good performance of metaheuristic algorithms.

Table 1 Instance characteristics.

instance n m K S FDC

1 9 4 10 150 0.27
2 9 5 10 150 0.55
3 9 6 10 150 0.63
4 9 7 10 150 0.67
5 9 8 10 150 0.60
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Fig. 1 Fitness-distance correlation plots for selected instances.

4.2 Metaheuristics results

We compared three basic heuristic approaches to our problem:

– a pure local search approach approach (LS)
– random restart local search (RLS), accepting only improving solutions. The

method is given an iteration limit L = 50 and a no-improve limit of NL =
10.

– iterated local search (ILS), with iteration limit of L = 50. If no improve-
ment is obtained in the last NL = 10 iterations, then the method is
restarted from a new random solution.

All methods start from a randomly constructed solution.
In order to speed up computations on parallel architectures, we imple-

mented a multi-threaded objective function evaluator. Such evaluation is triv-
ially parallelizable, the contribution of each sample being independent of the
others. We used 4 threads in our code, to match the number of available cores.
Note that this is (positively) affecting all metaheuristics.

Table 2 reports average results for the instances in our testbed. Each al-
gorithm was run 10 times starting from a different random solution. Median
solution values and running times are reported. Column opt. reports the value
of the optimal solution, as obtained by the exact algorithms of the next sec-
tion. According to the table, both RLS and ILS are able to significantly improve
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upon the basic LS algorithm, while still being very fast on average (taking at
most a few seconds on the largest instance). As far as the comparison be-
tween RLS and ILS, there is no clear winner, and both of them perform very
satisfactorily, yielding the optimal solution in 4 out of 5 cases each.

4.3 Implementing Benders decomposition

Although the general Benders scheme is simple, there are quite a few design
choices that must be made to come up with an efficient implementation. The
first (and main) decision is how to implement the enumeration part. In par-
ticular, we have basically two options:

(a) [the original Benders method] keep the integrality requirement on the mas-
ter variables, and solve an MIP to proven optimality using a black box MIP
solver. If the optimal solution (u∗, θ∗) is not violated by any Benders cuts,
then it is optimal for the original problem. Otherwise, add a few violated
cuts to the master and repeat.

(b) [a modern branch-and-cut method] solve the master problem only once, but
separate Benders cuts throughout the tree. In particular, integer feasible
solution need always be checked.

Although common wisdom suggests that option (b) should be a superior
implementation, in practice this is not always the case. In addition, even if
option (b) eventually turns out to be faster than option (a), it may not be so
for the whole duration of the solving process. Indeed, the two approaches have
complementary strengths:

– option (a) can use the MIP solver as a black box, without the need to
disable dual reductions and messing with callbacks (that can disable key
features in some solvers). In addition, solving a MIP at each iteration has
a powerful restart strategy built in. On the other hand, solving a MIP at
each iteration can potentially waste a lot of effort, in particular at the end
of the process, where masters tend to be quite hard.

– option (b) never wastes any enumeration effort (a single tree is maintained).
However, at the very beginning the master formulation is usually a very
poor approximation of the real model and the very first branching decisions
(the most important ones) are not properly taken.

Table 2 Heuristics comparison.

Time (s) Objective
instance LS RLS ILS opt. LS RLS ILS

1 0.02 0.52 0.63 36.8854 36.1742 36.6552 36.8854
2 0.04 1.07 1.04 44.6929 43.4845 44.6929 44.6929
3 0.06 1.83 1.56 49.3872 48.0302 49.3872 49.3872
4 0.08 2.90 2.14 53.4560 51.8364 53.4560 53.4560
5 0.11 3.90 2.76 57.5305 56.3502 57.5305 57.3105
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Fig. 2 Comparison of old-style and new-style Benders implementations.

A comparison between the two methods on an instance from our testbed
is depicted in Figure 2.

While option (b) is clearly the winner in this case, the dual bound provided
by option (a) is strictly better for the first 100 seconds of computation (approx-
imately). The considerations above suggests that the branch-and-cut approach
may benefit from a warm-start phase, provided by an old-style Benders im-
plementation. Although such a simple idea is already quite an improvement
(preliminary tests showed that this hybrid approach easily outperforms both
options), it turns out that can we can devise an even more effective warm-start
phase, by exploiting the metaheuristics presented in Section 2. In particular,
we can use the randomized local search framework to sample many feasible so-
lutions of our problem, generate outer approximation cuts from them, and add
these cuts (as well as the best solution found) to the initial master formulation.
In the following, we will denote by BD the straightforward implementation of
option (b), and with HBD the version using this ad-hoc warm starting proce-
dure.

4.4 Exact methods results

We compared two exact methods:

– a black box nonlinear solver (namely, KNITRO), on the MINLP model
(1)-(4). We will refer to this method as NLP
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– the generalized Benders approach described in Section 3.1, using a state of
the art MIP solver (namely, IBM ILOG CPLEX) and its callback facilities.
We provide two implementations of the methods, BD and HBD

Detailed results are given in Table 3. According to the table, all meth-
ods are able to solve to optimality the instances in our testbed, but with
significantly different computing times. In particular, there is approximately
a factor of 2-3 between NLP and BD. Note, however, that while CPLEX is a
multi-threaded solver, KNITRO is not, so the difference between the two may
not imply a ranking between the two methods, but rather between the two
implementations. On the other hand, the improved Benders implementation,
HBD, is one order of magnitude faster than BD (and thus also than NLP), and
is the clear winner, solving the hardest instance in less the half an hour.

Table 3 Exact methods running times (in seconds).

instance NLP BD HBD

1 139.32 22.85 6.12
2 409.96 110.20 9.78
3 1637.55 398.66 26.03
4 9188.71 3660.68 144.38
5 31619.70 20937.65 1757.69

5 Conclusions

The accomplishments of this work can be summarized are as follows:

– to transform the DSCP, non-convex in its original form, into a mixed-
integer convex program

– to show that the landscape of the solution space is favorable to local search
based metaheuristics, and show computationally that two of them can find
consistently near optimal solutions in a matter of seconds

– to show that a black-box MINLP solver reliably solves the problem to
optimality

– to develop a parallel Benders decomposition approach that, when hybridized
and combined with the metaheuristic above, yields a very efficient solution
procedure.

Even with a relatively large number of samples running time are in the range
of minutes. In more complex and more general instances of the DSCP and
related problems the ideas presented here should provide provably optimal
solutions at a very reasonable computational effort.
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