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Abstract. The alternating direction method of multipliers (ADMM) is now widely used in many

fields, and its convergence was proved when two blocks of variables are alternatively updated. It is

strongly desirable and practically valuable to extend ADMM directly to the case of a multi-block

convex minimization problem where its objective function is the sum of more than two separable

convex functions. However, the convergence of this extension has been missing for a long time

— neither affirmatively proved convergence nor counter example showing its failure of convergence

is known in the literature. In this paper we answer this long-standing open question: the direct

extension of ADMM is not necessarily convergent. We present an example showing its failure of

convergence, and a sufficient condition ensuring its convergence.

Keywords. Alternating direction method of multipliers, Convergence analysis, Convex program-

ming, Sparse optimization, Low-rank Optimization, Image processing, Statistical learning, Computer

vision

1 Introduction

We consider the convex minimization model with linear constraints and an objective function which

is the sum of three functions without coupled variables:

min θ1(x1) + θ2(x2) + θ3(x3)

s.t. A1x1 +A2x2 +A3x3 = b,

x1 ∈ X1, x2 ∈ X2, x3 ∈ X3,

(1.1)

where Ai ∈ ℜp×ni (i = 1, 2, 3), b ∈ ℜp, Xi ⊂ ℜni (i = 1, 2, 3) are closed convex sets; and θi : ℜni → ℜ
(i = 1, 2, 3) are closed convex but not necessarily smooth functions. The solution set of (1.1) is

assumed to be nonempty. The abstract model (1.1) captures many applications in diversifying areas

— e.g. see the image alignment problem in [18], the robust principal component analysis model

with noisy and incomplete data in [20], the latent variable Gaussian graphical model selection in
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[4, 17] and the quadratic discriminant analysis model in [16]. Our discussion is inspired by the

scenario where each function θi may have some specific properties and it deserves to explore them

in algorithmic design. This is often encountered in some sparse and low-rank optimization models,

such as the just-mentioned applications of (1.1). We thus do not consider the generic treatment that

the sum of three functions is regarded as one general function and advantageous properties of each

individual θi are ignored or not fully used.

The alternating direction method of multipliers (ADMM) was originally proposed in [9] (see also

[3, 7]), and it is now a benchmark for the following convex minimization model analogous to (1.1)

but with only two blocks of functions and variables:

min θ1(x1) + θ2(x2)

s.t. A1x1 +A2x2 = b,

x1 ∈ X1, x2 ∈ X2 .

(1.2)

Let

LA(x1, x2, λ) = θ1(x1) + θ2(x2)− λT
(
A1x1 +A2x2 − b

)
+

β

2

∥∥A1x1 +A2x2 − b
∥∥2 (1.3)

be the augmented Lagrangian function of (1.2) with λ ∈ ℜp the Lagrange multiplier and β > 0 a

penalty parameter. Then, the iterative scheme of ADMM for (1.2) is

(ADMM)


xk+1
1 = Argmin{LA(x1, x

k
2, λ

k) |x1 ∈ X1}, (1.4a)

xk+1
2 = Argmin{LA(x

k+1
1 , x2, λ

k) |x2 ∈ X2}, (1.4b)

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 − b). (1.4c)

The iterative scheme of ADMM embeds a Gaussian-Seidel decomposition into each iteration of the

augmented Lagrangian method in [14, 19]; thus the functions θ1 and θ2 are treated individually and

so easier subproblems could be generated. This feature is very advantageous for a broad spectrum of

application such as partial differential equations, mechanics, image processing, statistical learning,

computer vision, and so on. In fact, ADMM has recently witnessed a “renaissance” in many appli-

cation domains after a long period without too much attention. We refer to [2, 5, 8] for some review

papers on ADMM.

With the same philosophy as ADMM to take advantage of each θi’s properties individually, it is

natural to extend the original ADMM (1.4) for (1.2) directly to (1.1) and obtain the scheme

(Extended ADMM)



xk+1
1 = Argmin{LA(x1, x

k
2, x

k
3, λ

k) |x1 ∈ X1}, (1.5a)

xk+1
2 = Argmin{LA(x

k+1
1 , x2, x

k
3, λ

k) |x2 ∈ X2}, (1.5b)

xk+1
3 = Argmin{LA(x

k+1
3 , xk+1

2 , x3, λ
k) |x3 ∈ X3}, (1.5c)

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b), (1.5d)

where

LA(x1, x2, x3, λ) =

3∑
i=1

θi(xi)− λT
(
A1x1 +A2x2 +A3x3 − b

)
+

β

2

∥∥A1x1 +A2x2 +A3x3 − b
∥∥2 (1.6)

is the augmented Lagrangian function of (1.1). This direct extension of ADMM is strongly desired

and practically used by many users, see e.g. [18, 20]. The convergence of (1.5), however, has been

ambiguous for a long time — there is neither affirmative convergence proof nor counter example
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showing its failure of convergence in the literature. This convergence ambiguity has inspired an

active research topic in developing such algorithms that are some slightly twisted versions of (1.5)

but with provable convergence and competitive numerical efficiency and iteration simplicity, see e.g.

[11, 12, 15]. Since the extended ADMM scheme (1.5) does work well for some applications (e.g.

[18, 20]), users have the inclination to imagine that this scheme seems convergent even though they

are perplexed by the rigorous proof. In the literature, there is even very little hint for the difficulty

in the convergence proof for (1.5), see [5] for an insightful explanation.

The main purpose of this paper is to answer this long-standing open question negatively: The

extended ADMM scheme (1.5) is not necessarily convergent. We will give an example (and a strategy

for constructing such an example) to demonstrate its failure of convergence, and show that the

convergence of (1.5) can be guaranteed when any two coefficient matrices in (1.1) are orthogonal.

2 A Sufficient Condition Ensuring the Convergence of (1.5)

We first study a condition that can ensure the convergence for the direct extension of ADMM (1.5).

Our methodology of constructing a counter example to show the failure of convergence for (1.5) is

also clear via this study.

Our claim is that the convergence of (1.5) is guaranteed when any two coefficient matrices in

(1.1) are orthogonal. We thus will discuss the cases: AT
1 A2 = 0, AT

2 A3 = 0 and AT
1 A3 = 0.

This new condition does not impose any strong convexity on the objective function in (1.1), and it

simply requires to check the orthogonality of the coefficient matrices. So, it is more checkable than

conditions in the literature such as the one in [10] which requires strong convexity on all functions

in the objective and restricts the choice of the penalty parameter β into a specific range; and the

one in [15] which requires to attach a sufficiently small shrinkage factor to the Lagrange-multiplier

updating step (1.5d) such that a certain error-bound condition is satisfied.

2.1 Case 1: AT
1A2 = 0 or AT

2A3 = 0

We remark that if two coefficient matrices of (1.1) in consecutive order are orthogonal, i.e., AT
1 A2 = 0

or AT
2 A3 = 0, then the direct extension of ADMM (1.5) reduces to a special case of the original

ADMM (1.4). Thus the convergence of (1.5) under this condition is implied by well known results

in ADMM literature.
To see this, let us first assume AT

1 A2 = 0. According to the first-order optimality conditions of
the minimization problems in (1.5), we have xk+1

i ∈ Xi (i = 1, 2, 3) and
θ1(x1)− θ1(x

k+1
1 ) + (x1 − xk+1

1 )T {−AT
1 [λ

k − β(A1x
k+1
1 +A2x

k
2 +A3x

k
3 − b)]} ≥ 0, ∀x1 ∈ X1, (2.1a)

θ2(x2)− θ2(x
k+1
2 ) + (x2 − xk+1

2 )T {−AT
2 [λ

k − β(A1x
k+1
1 +A2x

k+1
2 +A3x

k
3 − b)]} ≥ 0, ∀x2 ∈ X2, (2.1b)

θ3(z)− θ3(x
k+1
3 ) + (x3 − xk+1

3 )T {−AT
3 [λ

k − β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b)]} ≥ 0, ∀x3 ∈ X3. (2.1c)

Then, because of AT
1 A2 = 0, it follows from (2.1) that

θ1(x1)− θ1(x
k+1
1 ) + (x1 − xk+1

1 )T {−AT
1 [λ

k − β(A1x
k+1
1 +A3x

k
3 − b)]} ≥ 0, ∀x1 ∈ X1, (2.2a)

θ2(x2)− θ2(x
k+1
2 ) + (x2 − xk+1

2 )T {−AT
2 [λ

k − β(A2x
k+1
2 +A3x

k
3 − b)]} ≥ 0, ∀x2 ∈ X2, (2.2b)

θ3(x3)− θ3(x
k+1
3 ) + (x3 − xk+1

3 )T {−AT
3 [λ

k − β(A1x
k+1
1 +A2x

k+1 +A3x
k
2 − b)]} ≥ 0, ∀x3 ∈ X3, (2.2c)

3



which is also the first-order optimality condition of the scheme
(xk+1

1 , xk+1
2 ) = Argmin

{
θ1(x1) + θ2(x2)− (λk)T (A1x1 +A2x2)

+β
2 ∥A1x1 +A2x2 +A3x

k
3 − b∥2

∣∣∣∣ x1 ∈ X1,

x2 ∈ X2

}
, (2.3a)

xk+1
3 = Argmin{θ3(x3)− (λk)TA3x3 +

β
2 ∥A1x

k+1
1 +A2x

k+1
2 +A3x3 − b∥2|x3 ∈ X3, }, (2.3b)

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b). (2.3c)

Clearly, (2.3) is a specific application of the original ADMM (1.4) to (1.1) by regarding (x1, x2) as

one variable, [A1, A2] as one matrix and θ1(x1) + θ2(x2) as one function. Note in (2.3), both xk1 and

xk2 are not required to generate the (k+1)-th iteration under the orthogonality condition AT
1 A2 = 0.

Existing convergence results for the original ADMM such as those in [6, 13] thus hold for the special

case of (1.5) with the orthogonality condition AT
1 A2 = 0.

Similar discussion can be carried out under the orthogonality condition AT
2 A3 = 0.

2.2 Case 2: AT
1A3 = 0

In the last subsection, we have discussed the cases where two consecutive coefficient matrices are

orthogonal. Now, we pay more attention to the case where AT
1 A3 = 0 and show that it can also

ensure the convergence of (1.5).

To prepare for the proof, we need to make something clear. First, note the update order of (1.5)

at each iteration is x1 → x2 → x3 → λ and then it repeats cyclically. We thus can rewrite (1.5) in

the form 

xk+1
2 = Argmin{LA(x

k+1
1 , x2, x

k
3, λ

k) |x2 ∈ X2}, (2.4a)

xk+1
3 = Argmin{LA(x

k+1
1 , xk+1

2 , x3, λ
k) |x3 ∈ X3}, (2.4b)

λk+1 = λk − β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b), (2.4c)

xk+2
1 = Argmin{LA(x1, x

k+1
2 , xk+1

3 , λk+1) |x1 ∈ X1}. (2.4d)

According to (2.4), there is a update for the variable λ between the updates for x3 and x1. Thus,

the case AT
1 A3 = 0 requires discussion different from that in the last subsection. We will focus on

this representation of (1.5) within this subsection.

Second, it worths to mention that the variable x2 is not involved in the iteration of (2.4), meaning

the scheme (2.4) generating a new iterate only based on (xk+1
1 , xk3, λ

k). We thus follow the terminology

in [2] to call x2 an intermediate variable; and correspondingly call (x1, x3, λ) essential variables

because they are really necessary to execute the iteration of (2.4). Accordingly, we use the notations

wk = (xk+1
1 , xk2, x

k
3, λ

k), uk = wk \λk = (xk+1
1 , xk2, x

k
3), v

k = wk \xk2 = (xk+1
1 , xk3, λ

k), v = w\x2 =

(x1, x3, λ), V = X1 ×X3 ×ℜp and

V∗ := {v∗ = (x∗1, x
∗
3, λ

∗) |w∗ = (x∗1, x
∗
2, x

∗
3, λ

∗) ∈ Ω∗}.

Note the first element in wk, uk or vk is xk+1
1 rather than xk1.

Third, it is useful to characterize the model (1.1) by a variational inequality. More specifically,

finding a saddle point of the Lagrange function of (1.1) is equivalent to solving the variational

inequality problem: Finding w∗ ∈ Ω such that

VI(Ω, F, θ) : θ(u)− θ(u∗) + (w − w∗)TF (w∗) ≥ 0, ∀w ∈ Ω, (2.5a)
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where

u =

 x1
x2
x3

 , w =


x1
x2
x3
λ

 , θ(u) = θ1(x1) + θ2(x2) + θ3(x3), (2.5b)

and

F (w) =


−AT

1 λ

−AT
2 λ

−AT
3 λ

A1x1 +A2x2 +A3x3 − b

 . (2.5c)

Obviously, the mapping F (·) defined in (2.5c) is monotone because it is affine with a skew-symmetric

matrix.
Last, let us take a deeper look at the output of (2.4) and investigate some of its properties. In

fact, deriving the first-order optimality condition of the minimization problems in (2.4) and rewriting
(2.4c) appropriately, we obtain

θ2(x2)− θ2(x
k+1
2 ) + (x2 − xk+1

2 )T {−AT
2 [λ

k − β(A1x
k+1
1 +A2x

k+1
2 +A3x

k
3 − b)]} ≥ 0, ∀x2 ∈ X2, (2.6a)

θ3(x3)− θ3(x
k+1
3 ) + (x3 − xk+1

3 )T {−AT
3 [λ

k − β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b)]} ≥ 0, ∀x3 ∈ X3, (2.6b)

(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b) +

1

β
(λk+1 − λk) = 0, (2.6c)

θ1(x1)− θ1(x
k+2
1 ) + (x1 − xk+2

1 )T {−AT
1 [λ

k+1 − β(A1x
k+2
1 +A2x

k+1
2 +A3x

k+1
3 − b)]} ≥ 0, ∀x1 ∈ X1. (2.6d)

Then, substituting (2.6c) in (2.6a) (2.6b) and (2.6d) and using AT
1 A3 = 0, we get

θ2(x2)− θ2(x
k+1
2 ) + (x2 − xk+1

2 )T {−AT
2 λ

k+1 + βAT
2 A3(x

k
3 − xk+1

3 )} ≥ 0, ∀x2 ∈ X2, (2.7a)

θ3(x3)− θ3(x
k+1
3 ) + (x3 − xk+1

3 )T {−AT
3 λ

k+1} ≥ 0, ∀x3 ∈ X3, (2.7b)

(A1x
k+2
1 +A2x

k+1
2 +A3x

k+1
3 − b) +A1(x

k+1
1 − xk+2

1 )− 1

β
(λk − λk+1) = 0, (2.7c)

θ1(x1)− θ1(x
k+2
1 ) + (x1 − xk+2

1 )T {−AT
1 λ

k+1 − βAT
1 A1(x

k+1
1 − xk+2

1 ) +AT
1 (λ

k − λk+1)} ≥ 0, ∀x1 ∈ X1. (2.7d)

With the definitions of θ, F , Ω, uk and vk, we can rewrite (2.7) as a compact form. We summarize

it in the next lemma and omit its proof as it is just a compact reformulation of (2.7).

Lemma 2.1. Let wk+1 = (xk+2
1 , xk+1

2 , xk+1
3 , λk+1) be generated by (2.4) from given vk = (xk+1

1 , xk3, λ
k).

Then we have

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)T {F (wk+1) +Q(vk − vk+1)} ≥ 0, ∀w ∈ Ω, (2.8)

where

Q =


−βAT

1 A1 0 AT
1

0 βAT
2 A3 0

0 0 0

A1 0 − I
β

 . (2.9)

Note the assertion (2.8) is useful for quantifying the accuracy of wk+1 to a solution point of

VI(Ω, F, θ), because of the variational inequality reformulation (2.5) of (1.1).

Now, we are ready to prove the convergence for the direct extension of ADMM under the condition

AT
1 A3 = 0. We first refine the assertion (2.8) under this additional condition.
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Lemma 2.2. Let wk+1 = (xk+2
1 , xk+1

2 , xk+1
3 , λk+1) be generated by (2.4) from given vk = (xk+1

1 , xk3, λ
k).

If AT
1 A3 = 0, then we have

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)T {F (wk+1) + βPA3(x
k
3 − xk+1

3 )}
≥ (v − vk+1)TH(vk − vk+1), ∀w ∈ Ω, (2.10)

where

P =


AT

1

AT
2

AT
3

0

 , v =

 x1

x3

λ

 and H =


βAT

1 A1 0 −AT
1

0 βAT
3 A3 0

−A1 0 1
β I

 . (2.11)

Proof. Since AT
1 A3 = 0, the following is an identity:
x1 − xk+2

1

x2 − xk+1
2

x3 − xk+1
3

λ− λk+1


T


βAT
1 A1 βAT

1 A3 −AT
1

0 0 0

0 βAT
3 A3 0

−A1 0 1
β I


 xk+1

1 − xk+2
1

xk3 − xk+1
3

λ− λk+1



=

 x1 − xk+2
1

x3 − xk+1
3

λ− λk+1


T


βAT
1 A1 0 −AT

1

0 βAT
3 A3 0

−A1 0 1
β I


 xk+1

1 − xk+2
1

xk3 − xk+1
3

λk − λk+1

 .

Adding the above identity to the both sides of (2.8) and using the notations of v and H, we obtain

wk+1 ∈ Ω, θ(u)− θ(uk+1) + (w − wk+1)T {F (wk+1) +Q0(v
k − vk+1)}

≥ (v − vk+1)TH(vk − vk+1), ∀w ∈ Ω, (2.12)

where (see Q in (2.9))

Q0 = Q+


βAT

1 A1 βAT
1 A3 −AT

1

0 0 0

0 βAT
3 A3 0

−A1 0 1
β I

 =


0 βAT

1 A3 0

0 βAT
2 A3 0

0 βAT
3 A3 0

0 0 0

 .

By using the structures of the matrices Q0 and P (see (2.11)), and the vector v, we have

(w − wk+1)TQ0(v
k − vk+1) = (w − wk+1)TβPA3(x

k
3 − xk+1

3 ).

The assertion (2.10) is proved. 2

Let us define two auxiliary sequences which will only serve for simplifying our notation in con-

vergence analysis:

w̃k =


x̃k1
x̃k2
x̃k3
λ̃k

 =


xk+2
1

xk+1
2

xk+1
3

λk+1 − βA3(x
k
3 − xk+1

3 )

 and ũk =

 x̃k1
x̃k2
x̃k3

 , (2.13)

where {xk+2
1 , xk+1

2 , xk+1
3 , λk+1} is generated by (2.4).

In the next lemma, we establish an important inequality based on the assertion in Lemma 2.2,

which will play a vital role in convergence analysis.
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Lemma 2.3. Let wk+1 = (xk+2
1 , xk+1

2 , xk+1
3 , λk+1) be generated by (2.4) from given vk = (xk+1

1 , xk3, λ
k).

If AT
1 A3 = 0, we have w̃k ∈ Ω and

θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ 1

2

(
∥v − vk+1∥2H − ∥v − vk∥2H

)
+

1

2
∥vk − vk+1∥2H , ∀w ∈ Ω,(2.14)

where w̃k and ũk are defined in (2.13).

Proof. According to the definition of w̃k, (2.10) can be rewritten as

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ β(A1x
k+2
1 +A2x

k+1
2 +A3x

k+1
3 − b)TA3(x

k
3 − xk+1

3 )

+(v − vk+1)TH(vk − vk+1), ∀w ∈ Ω, (2.15)

Setting x3 = xk3 in (2.7b), we obtain

θ3(x
k
3)− θ3(x

k+1
3 ) + (xk3 − xk+1

3 )T {−AT
3 λ

k+1} ≥ 0. (2.16)

Note that (2.7b) is also true for the (k − 1)th iteration. Thus, it holds that

θ3(x3)− θ3(x
k
3) + (x3 − xk3)

T {−AT
3 λ

k} ≥ 0.

Setting x3 = xk+1
3 in the last inequality, we obtain

θ3(x
k+1
3 )− θ3(x

k
3) + (xk+1

3 − xk3)
T {−AT

3 λ
k} ≥ 0, (2.17)

which together with (2.16) yields that

(λk − λk+1)TA3(x
k
3 − xk+1

3 ) ≥ 0, ∀k ≥ 0. (2.18)

By using the fact λk − λk+1 = β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b) and the assumption AT

1 A3 = 0, we

get immdeiately that

β(A1x
k+2
1 +A2x

k+1
2 +A3x

k+1
3 − b)TA3(x

k
3 − xk+1

3 ) ≥ 0, (2.19)

and hence

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w̃k) ≥ (v − vk+1)TH(vk − vk+1), ∀w ∈ Ω. (2.20)

By substituting the identity

(v − vk+1)TH(vk − vk+1) =
1

2

(
∥v − vk+1∥2H − ∥v − vk∥2H

)
+

1

2
∥vk − vk+1∥2H

into the right-hand side of (2.20), we obtain (2.14). 2

Now, we are able to establish the contraction property with respect to the solution set of

VI(Ω, F, θ) for the sequence {vk} generated by (2.4), from which the convergence of (2.4) can be

easily established.

Theorem 2.4. Assume AT
1 A3 = 0 for the model (1.1). Let {xk+1

1 , xk2, x
k
3, λ

k} be the sequence gen-

erated by the direct extension of ADMM (2.4). Then, we have:

7



(i) The sequence {vk := (xk+1
1 , xk3, λ

k)} is contractive with respective to the solution of VI(Ω, F, θ),

i.e.,

∥vk+1 − v∗∥2H ≤ ∥vk − v∗∥2H − ∥vk − vk+1∥2H . (2.21)

(ii) If the matrices [A1, A2] and A3 are assumed to be full column rank, then the sequence {wk}
converges to a KKT point of the model (1.1).

Proof. (i) The first assertion is straightforward based on (2.14). Setting w = w∗ in (2.14), we get

1

2

(
∥vk − v∗∥2H − ∥vk+1 − v∗∥2H

)
− 1

2
∥vk − vk+1∥2H ≥ θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w̃k).

From the monotonicity of F and (2.5), it follows that

θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w̃k) ≥ θ(ũk)− θ(u∗) + (w̃k − w∗)TF (w∗) ≥ 0,

and thus (2.21) is proved. Clearly, (2.21) indicates that the sequence {vk} is contractive with respect

to the solution set of VI(Ω, F, θ), see e.g. [1].

(ii) To prove (ii), by the inequality (2.21), it follows that the sequences {A1x
k+1
1 − 1

βλ
k} and

{A3x
k
3} are both bounded. Since A3 has full column rank, we deduce that {xk3} is bounded. Note

that

A1x
k+1
1 +A2x

k
2 = A1x

k+1
1 − 1

β
λk − (A1x

k
1 −

1

β
λk−1)−A3x

k
3 + b. (2.22)

Hence, {A1x
k+1
1 + A2x

k
2} is bounded. Together with the assumption that [A1, A2] has full column

rank, we conclude that the sequences {xk+1
1 }, {xk2} and {λk} are all bounded. Therefore, there exists

a subsequence {xnk+2
1 , xnk+1

2 , xnk+1
3 , λnk+1} that converges to a limit point, say (x∞1 , x∞2 , x∞3 , λ∞).

Moreover, from (2.21), we see immediately that

∞∑
k=1

∥vk − vk+1∥2H < +∞, (2.23)

which shows

lim
k→∞

H(vk − vk+1) = 0, (2.24)

and thus

lim
k→∞

Q(vk − vk+1) = 0. (2.25)

Then, by taking the limits on the both sides of (2.8), using (2.25), one can immediately write

w∞ ∈ Ω, θ(u)− θ(u∞) + (w − w∞)TF (w∞) ≥ 0, ∀w ∈ Ω, (2.26)

which means w∞ = (x∞1 , x∞2 , x∞3 , λ∞) is a KKT point of (1.1). Hence, the inequality (2.21) is also

valid if (x∗1, x
∗
2, x

∗
3, λ

∗) is replaced by (x∞1 , x∞2 , x∞3 , λ∞). Then it holds that

∥vk+1 − v∞∥2H ≤ ∥vk − v∞∥2H , (2.27)

which implies that

lim
k→∞

A1(x
k+1
1 − x∞1 )− 1

β
(λk − λ∞) = 0, lim

k→∞
A3(x

k
3 − x∞3 ) = 0. (2.28)
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By taking limits to (2.22), using (2.28) and the assumptions, we know

lim
k→∞

xk+1
1 = x∞1 , lim

k→∞
xk2 = x∞2 , lim

k→∞
xk3 = x∞3 , lim

k→∞
λk = λ∞. (2.29)

which completes the proof of this theorem. 2

Inspired by [13], we can also establish a worst-case convergence rate measured by the iteration

complexity in ergodic sense for the direct extension of ADMM (2.4). This is summarized in the

following theorem.

Theorem 2.5. Assume AT
1 A3 = 0 for the model (1.1). Let {(xk1, xk2, xk3, λk)} be the sequence gener-

ated by the direct extension of ADMM (2.4) and w̃k be defined in (2.13). After t iterations of (2.4),

we take

w̃t =
1

t+ 1

t∑
k=0

w̃k. (2.30)

Then, w̃ ∈ W and it satisfies

θ(ũt)− θ(u) + (w̃t − w)TF (w) ≤ 1

2(t+ 1)
∥v − v0∥2H , ∀w ∈ Ω. (2.31)

Proof. By the monotonicity of F and (2.14), it follows that

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)TF (w) +
1

2
∥v − vk∥2H ≥ 1

2
∥v − vk+1∥2H , ∀w ∈ Ω. (2.32)

Together with the convexity of X1, X2 and X3, (2.30) implies that w̃t ∈ Ω. Summing the inequality

(2.32) over k = 0, 1, . . . , t, we obtain

(t+ 1)θ(u)−
t∑

k=0

θ(ũk) +
(
(t+ 1)w −

t∑
k=0

w̃k
)T

F (w) +
1

2
∥v − v0∥2H ≥ 0, ∀w ∈ Ω.

Use the notation of w̃t, it can be written as

1

t+ 1

t∑
k=0

θ(ũk)− θ(u) + (w̃t − w)TF (w) ≤ 1

2(t+ 1)
∥v − v0∥2H , ∀w ∈ Ω. (2.33)

Since θ(u) is convex and

ũt =
1

t+ 1

t∑
k=0

ũk,

we have that

θ(ũt) ≤
1

t+ 1

t∑
k=0

θ(ũk).

Substituting it into (2.33), the assertion of this theorem follows directly. 2

Remark 2.6. For an arbitrarily given compact set D ⊂ Ω, let d = sup{∥v−v0∥2H} | v = w\x2, w ∈ D},
where v0 = (x11, x

0
3, λ

0). Then, after t iterations of the extended ADMM (2.4) , the point w̃t defined

in (2.30) satisfies

sup{θ(ũt)− θ(u) + (w̃t − w)TF (w)} ≤ d

2(t+ 1)
, (2.34)

which, according to the definition (2.5), means w̃t is an approximate solution of VI(Ω, F, θ) with an

accuracy of O(1/t). Thus a worst-case O(1/t) convergence rate in ergodic sense is established for

the direct extension of ADMM (2.4).
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3 An Example Showing the Failure of Convergence of (1.5)

In the last section, we have shown that if it is additionally assumed that any two coefficient matrices

in (1.1) be orthogonal, then the direct extension of ADMM is convergent in any order. In this section,

we give an example to show the failure of convergence when (1.5) is applied to solve (1.1) without

such an orthogonality assumption.

More specifically, we consider the following linear homogenous equation with three variables:

x1A1 + x2A2 + x3A3 = 0, (3.1)

where Ai ∈ ℜ3 (i = 1, 2, 3) are all column vectors and [A1, A2, A3] is assumed to be nonsingular;

and xi ∈ ℜ (i = 1, 2, 3). The unique solution of (3.1) is thus x1 = x2 = x3 = 0. Clearly, (3.1) is a

special case of (1.1) where the objective function is zero, b is the zero vector in ℜ3 and Xi = ℜ for

i = 1, 2, 3. The direct extension of ADMM (1.5) is thus applicable, and the corresponding optimal

Lagrange multiplier is 0.

3.1 The Iterative Scheme of (1.5) for (3.1)

Now, we elucidate the iterative scheme when the direct extension of ADMM (1.5) is applied to solve

the linear equation (3.1). In fact, as we will show, it can be represented as a matrix recursion.

Specifying the scheme (1.5) in general setting with β = 1 by the particular setting in (3.1), we

obtain 

−AT
1 λ

k +AT
1 (A1x

k+1
1 +A2x

k
2 +A3x

k
3 ) = 0, (3.2a)

−AT
2 λ

k +AT
2 (A1x

k+1
1 +A2x

k+1
2 +A3x

k
3 ) = 0, (3.2b)

−AT
3 λ

k +AT
3 (A1x

k+1
1 +A2x

k+1
2 +A3x

k+1
3 ) = 0, (3.2c)

(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 ) + λk+1 − λk = 0. (3.2d)

It follows from the first equation in (3.2) that

xk+1
1 =

1

AT
1 A1

(
−AT

1 A2x
k
2 −AT

1 A3x
k
3 +AT

1 λ
k
)
. (3.3)

Substituting (3.3) into (3.2b), (3.2c) and (3.2d), we obtain a reformulation of (3.2) AT
2 A2 0 01×3

AT
3 A2 AT

3 A3 01×3

A2 A3 I3×3


 xk+1

2

xk+1
3

λk+1



=


 0 −AT

2 A3 AT
2

0 0 AT
3

03×1 03×1 I3×3

− 1

AT
1 A1

 AT
2 A1

AT
3 A1

A1

(
−AT

1 A2,−AT
1 A3, A

T
1

)
 xk2

xk3

λk

 . (3.4)

Let

L =

 AT
2 A2 0 01×3

AT
3 A2 AT

3 A3 01×3

A2 A3 I3×3

 (3.5)
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and

R =

 0 −AT
2 A3 AT

2

0 0 AT
3

03×1 03×1 I3×3

− 1

AT
1 A1

 AT
2 A1

AT
3 A1

A1

(
−AT

1 A2,−AT
1 A3, A

T
1

)
. (3.6)

Then the iterative formula (3.4) can be rewritten in the following matrix recursion context: xk+1
2

xk+1
3

λk+1

 = M

 xk2

xk3

λk

 = · · · = Mk+1

 x02

x03

λ0

 (3.7)

with

M = L−1R. (3.8)

Note for R defined in (3.6), we have

R

 0

0

A1

 = 0.

Thus, as will be seen in the next subsection, 0 is an eigenvalue of the matrix M .

3.2 A Concrete Example Showing the Divergence of (1.5)

Now we are ready to construct a concrete example to show the divergence when the direct extension

of ADMM (1.5) is applied to solve the model (3.1).

Our previous analysis in Section 2 has shown that the scheme (1.5) is convergent whenever any

two coefficient matrices are orthogonal. Thus, to show the failure of convergence of (1.5) for (3.1),

the columns A1, A2 and A3 in (3.1) should be chosen such that any two of them are not orthogonal.

Moreover, notice that the sequence generated by (3.7) is divergent if ρ(M) > 1. We thus construct

the matrix A as follows:

A = (A1, A2, A3) =

 1 1 1

1 1 2

1 2 2

 . (3.9)

Given this matrix A, the system of linear equations (3.4) can be specified as

6 0 0 0 0

7 9 0 0 0

1 1 1 0 0

1 2 0 1 0

2 2 0 0 1





xk+1
2

xk+1
3

λk+1
1

λk+1
2

λk+1
3



=





0 −7 1 1 2

0 0 1 2 2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


− 1

3



4

5

1

1

1


(
−4,−5, 1, 1, 1

)




xk2

xk3

λk
1

λk
2

λk
3


.
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Note with the specification in (3.9), the matrices L in (3.5) and R in (3.6) reduce to

L =



6 0 0 0 0

7 9 0 0 0

1 1 1 0 0

1 2 0 1 0

2 2 0 0 1


and R =

1

3



16 −1 −1 −1 2

20 25 −2 1 1

4 5 2 −1 −1

4 5 −1 2 −1

4 5 −1 −1 2


.

Thus we have

M = L−1R =
1

162



144 −9 −9 −9 18

8 157 −5 13 −8

64 122 122 −58 −64

56 −35 −35 91 −56

−88 −26 −26 −62 88


.

By direct computation, we know that M admits the following eigenvalue decomposition

M = VDiag(d)V −1, (3.10)

where

d =


0.9836 + 0.2984i

0.9836− 0.2984i

0.8744 + 0.2310i

0.8744− 0.2310i

0


and

V =


0.1314 + 0.2661i 0.1314− 0.2661i 0.1314− 0.2661i 0.1314 + 0.2661i 0

0.0664− 0.2718i 0.0664 + 0.2718i 0.0664 + 0.2718i 0.0664− 0.2718i 0

−0.2847− 0.4437i −0.2847 + 0.4437i 0.2847− 0.4437i 0.2847 + 0.4437i 0.5774

0.5694 0.5694 −0.5694 −0.5694 0.5774

−0.4270 + 0.2218i −0.4270− 0.2218i 0.4270 + 0.2218i 0.4270− 0.2218i 0.5774

 ,

An important fact regarding d defined above is that

|d1| = |d2| > 1,

which offers us the opportunity to construct a divergent sequence {xk2, xk3, λk
1, λ

k
2, λ

k
3}. In fact, let us

choose the initial point (x02, x
0
3, λ

0
1, λ

0
2, λ

0
3)

T as V (:, 1) + V (:, 2). It is clear that the vector V (:, 2) is

the complex conjugate of the vector V (:, 1); thus the starting point is real. Then, since

V


1

1

0

0

0

 =


x02
x03
λ0
1

λ0
2

λ0
3

 ,
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we know from (3.7) and (3.10) that
xk+1
2

xk+1
3

λk+1
1

λk+1
2

λk+1
3

 = VDiag(d k+1)V −1


x02
x03
λ0
1

λ0
2

λ0
3



= VDiag(d k+1)


1

1

0

0

0



= V


( 0.9836 + 0.2984i )k+1

( 0.9836− 0.2984i )k+1

0

0

0

 ,

which is definitely divergent and there is no way to converge to the solution point of (3.1).

4 Conclusions

We showed by an example that the direct extension of the alternating direction method of multiplier

(ADMM) is not necessarily convergent for solving a multi-block convex minimization model with

linear constraints and an objective function which is the sum of more than two convex functions

without coupled variables; a long-standing open problem is thus answered. Based on our strategy

for constructing this example, it is easy to find more such examples. The negative answer to this

open problem thus verifies the rationale of algorithmic design in our recent work such as [11, 12],

where it was suggested to combine some correction steps with the output of the direct extension of

ADMM in order to produce a splitting algorithm with rigorous convergence under mild assumptions

for multi-block convex minimization models. We also studied a condition that can guarantee the

convergence of the direct extension of ADMM. This condition is significantly different from those

in the literature which often require strong convexity on the objective functions and/or restrictive

choices for the penalty parameter. Instead, the new condition simply depends on the orthogonality

of the given coefficient matrices in the model and poses no restriction on how to choose the penalty

parameter in algorithmic implementation.

Our analysis focused on the model (1.1) where there are three convex functions in its objective,

because this case represents a wide range of applications and it is easier to demonstrate our main

idea with this special case. The analysis can be easily extended to the more general multi-block case

of convex minimization model where there are m > 3 convex functions in its objective. Moreover,

based on our strategy of constructing the example showing the divergence of (1.5), it is easy to show

that the direct extension of ADMM with some given value of the penalty parameter is still divergent

even if the functions θi in (1.1) are all further assumed to be strongly convex. We omit the detail of

these extensions for succinctness.
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