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Abstract. Gauge functions significantly generalize the notion of a norm, and gauge optimization,
as defined by Freund (1987), seeks the element of a convex set that is minimal with respect to a
gauge function. This conceptually simple problem can be used to model a remarkable array of useful
problems, including a special case of conic optimization, and related problems that arise in machine
learning and signal processing. The gauge structure of these problems allows for a special kind of
duality framework. This paper explores the duality framework proposed by Freund, and proposes
a particular form of the problem that exposes some useful properties of the gauge optimization
framework (such as the variational properties of its value function), and yet maintains most of the
generality of the abstract form of gauge optimization.
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1. Introduction. One approach to solving linear inverse problems is to optimize
a regularization function over the set of admissible deviations between the observations
and the forward model. Although regularization functions come in a wide range
of forms depending on the particular application, they often share some common
properties. The aim of this paper is to describe the class of gauge optimization
problems, which neatly captures a wide variety of regularization formulations that
arise in fields such as machine learning and signal processing. We explore the duality
and variational properties particular to this problem class, and consider some possible
applications to relevant problems.

All of the problems that we consider can be expressed as

(P) minimize
x∈X

κ(x) subject to x ∈ C,

where X is a finite-dimensional Euclidean space, C ⊆ X is a closed convex set, and
κ : X → R ∪ {+∞} is a gauge function, i.e., a nonnegative, positively homogeneous
convex function that vanishes at the origin. (We assume that 0 /∈ C, since otherwise
the origin is trivially a solution of the problem.) This class of problems admits a
duality relationship that is different from Lagrange duality, and is founded on the
gauge structure of its objective. Indeed, Freund (1987) defines the dual counterpart

(D) minimize
y∈X

κ◦(y) subject to y ∈ C′,

where the set

(1.1) C′ = { y | 〈y, x〉 ≥ 1 for all x ∈ C }

is the antipolar of C (in contrast to the better-known polar of a convex set), and the
polar κ◦ is the function that best satisfies the Cauchy-Schwartz-like inequality

(1.2) 〈x, y〉 ≤ κ(x)κ◦(y), ∀x ∈ dom κ, ∀y ∈ dom κ◦.
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It follows directly from this inequality and the definition of C′ that all primal-dual
feasible pairs (x, y) satisfy the weak-duality relationship

(1.3) 1 ≤ κ(x)κ◦(y), ∀x ∈ C, ∀y ∈ C′.

This duality relationship stands in contrast to the more usual Lagrange framework,
where the primal and dual objective values bound each other in an additive sense.

1.1. A roadmap. Freund’s analysis of gauge duality is mainly concerned with
specialized linear and quadratic problems that fit into the gauge framework, and with
the pair of abstract problems (P) and (D).

Our treatment in this paper considers the particular formulation of (P) given by

(Pρ) minimize
x∈X

κ(x) subject to ρ(b−Ax) ≤ σ,

where ρ is also a gauge. Typical applications might use ρ to measure the mismatch
between the model Ax and the measurements b, and in that case, it is natural to
assume that ρ vanishes only at the origin, which implies that Ax = b if σ = 0. This
formulation is only very slightly less general than (P) because any closed convex set can
be represented as {x | ρ(b− x) ≤ 1 } for some vector b and gauge ρ; cf. §2.2. However,
it is sufficiently concrete that it allows us to develop a toolkit for computing gauge
duals for a wide range of existing problems. (Conic side constraints and a linear map
in the objective can be easily accommodated; this is covered in §7.)

The special structure of the functions in the gauge program (Pρ) leads to a duality
framework that is analogous to the classical Lagrange-duality framework. The gauge
dual program of (Pρ) is

(Dρ) minimize
y∈X

κ◦(A∗y) subject to 〈y, b〉 − σρ◦(y) ≥ 1,

which bears a striking similarity to the Lagrange dual problem

(DL) maximize
y∈X

〈y, b〉 − σρ◦(y) subject to κ◦(A∗y) ≤ 1.

Note that the objective and constraints between the two duals play different roles.
(These two duals are derived in §4 under suitable assumptions.) A significant practical
difference between these two formulations is when ρ is a simple Euclidean norm and
κ is a more complicated function (such as one described by Example 1.2 below).
The result is that the Lagrange dual optimizes a “simple” objective function over a
potentially “complicated” constraint; in contrast, the situation is reversed in the gauge
optimization formulation.

We develop in §3 an antipolar calculus for computing the antipolars of sets
such as {x | ρ(b−Ax) ≤ σ }, which corresponds to the constraint in our canonical
formulation (Pρ). This calculus is applied in §4 to derive the gauge dual (Dρ).

The formal properties of the polar and antipolar operations are described in §§2–3.
In §5 we develop conditions sufficient for strong duality, i.e., for there to exist a
primal-dual pair that satisfies (1.3) with equality. Our derivation parts with the
“ray-like” assumption used by Freund, and in certain cases further relaxes the required
assumptions by leveraging connections with established results from Fenchel duality.
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1.2. Examples. The following examples illustrate the versatility of the gauge
optimization formulation.

Example 1.1 (Norms and minimum-length solutions). Norms are special cases
of gauge functions that are finite everywhere, symmetric, and zero only at the origin.
(Semi-norms drop the last requirement, and allow the function to be zero at other
points.) Let κ(x) = ‖x‖ be any norm, and C = {x | Ax = b } describe the solutions
to an underdetermined linear system. Then (P) yields a minimum-length solution to
the linear system Ax = b. In this case, ρ is any function such that ρ−1(0) = { 0 }, and
σ = 0. The polar κ◦ = ‖ · ‖D is the norm dual to ‖ · ‖, and C′ = {A∗y | 〈b, y〉 ≥ 1 }; cf.
Corollary 4.2. The corresponding gauge dual (D) is then

minimize
y∈X

‖A∗y‖D subject to 〈b, y〉 ≥ 1.

Example 1.2 (Sparse optimization and atomic norms). In his thesis, van den Berg
(2009) describes a framework for sparse optimization based on the formulation where κ
is a gauge, and the function ρ is differentiable away from the origin. The nonnegative
regularization parameter σ influences the degree to which the linear model Ax fits the
observations b. This problem is specialized by van den Berg and Friedlander (2011) to
the particular case in which ρ is the 2-norm. In that case, C = {x | ‖Ax− b‖2 ≤ σ }
and

C′ = {A∗y | 〈b, y〉 − σ‖y‖2 ≥ 1 } ;

cf. Corollary 4.1. Teuber, Steidl, and Chan (2013) consider a related case where the
misfit between the model and the observations is measured by the Kullback-Leibler
divergence.

Chandrasekaran, Recht, Parrilo, and Willsky (2012) describe how to construct
regularizers that generalize the notion of sparsity in linear inverse problems. In
particular, they define the gauge

(1.4) ‖x‖A := inf {λ ≥ 0 | x ∈ λ convA}

over the convex hull of a set of canonical atoms in the set A. If 0 ∈ int convA
and A is bounded and symmetric, i.e., A = −A, then the definition (1.4) yields
a norm. For example, if A consists of the set of unit n-vectors that contain a
single nonzero element, then (1.4) is the 1-norm; if A consists of the set of rank-1
matrices with unit spectral norm, then (1.4) is the Schatten 1-norm. The polar
κ◦(y) = sup { 〈y, a〉 | a ∈ conv({0} ∪ A) } is the support function of the closure of
conv({0} ∪ A). Jaggi (2013) catalogs various sets of atoms that yield commonly used
gauges in machine learning.

Example 1.3 (Conic gauge optimization). Let K be a closed convex cone, and
let K∗ denote its dual. Then if c ∈ K∗, the conic optimization problem

(1.5) minimize
x

〈c, x〉 subject to Ax = b, x ∈ K

has a nonnegative objective value for all feasible points, and can be formulated as a
gauge optimization problem by defining

(1.6) κ(x) = 〈c, x〉+ δK(x) and C = {x | Ax = b } ,

where δK is the indicator function on the set K. This is a generalization of the
nonnegative LP discussed by Freund, and we refer to it as conic gauge optimization.
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The generalization captures some important problem classes, such as trace minimization
of positive semidefinite matrices, which arises in the phase-retrieval problem (Candes,
Strohmer, and Voroninski, 2012).

A concrete example of this general formulation is the semidefinite programming
(SDP) relaxation of the max-cut problem studied by Goemans and Williamson (1995).
Let G = (V,E) be an undirected graph, and D = diag

(
(dv)v∈V

)
, where dv denotes

the degree of vertex v ∈ V. The max-cut problem can be formulated as

maximize
x

1
4 〈D −A, xx

T 〉 subject to x ∈ {−1, 1}V ,

where A denotes the adjacency matrix associated with G. The SDP relaxation for this
problem is derived by “lifting” xxT into a positive semidefinite matrix:

maximize
X

1
4 〈D −A,X〉 subject to diagX = e, X < 0,

where e is the vector of all ones. The constraint diagX = e implies that 〈D,X〉 =∑
v∈V dv = 2|E| is constant. Thus, the optimal value is equal to

(1.7) |E| − 1
4 ·min

X
{ 〈D +A,X〉 | diagX = e, X < 0 }

and the solution can be obtained by solving this latter problem. Note that D +A is
positive semidefinite because it has nonnegative diagonal and is diagonally dominant.
(In fact, it is possible to reduce the problem in linear time to one where D + A is
positive definite by identifying its bipartite connected components.) Thus, (1.7) falls
into the class of conic gauge problems defined by (1.5).

Example 1.4 (Submodular functions). Let V = { 1, . . . , n }, and consider the
set-function f : 2V → R, where f(∅) = 0. The Lovàsz (1983) extension f̂ : Rn → R of
f is given by

f̂(x) =
n∑
k=1

xjk

[
f({ j1, . . . , jk })− f({ j1, . . . , jk−1 })

]
,

where xj1
≥ xj2

≥ · · · ≥ xjn
are the sorted elements of x. Clearly, the extension is

positively homogeneous and vanishes at the origin. As shown by Lovász, the extension
is convex if and only if f is submodular, i.e.,

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for all A,B ⊂ V ;

see also (Bach, 2011, Proposition 2.3). If f is additionally non-decreasing, i.e.,

A,B ⊂ V and A ⊂ B =⇒ f(A) ≤ f(B),

then the extension is nonnegative. Thus, the extension f̂ of a submodular and non-
decreasing set function is a gauge. Bach (2011) surveys the properties of submodular
functions and their application in machine learning.

2. Background and notation. In this section we review known facts about
polar sets, gauges and their polars, and introduce results that are useful for our
subsequent analysis. We mainly follow Rockafellar (1970): see §14 in that text for a
discussion of polarity operations on convex sets, and §15 for a discussion of gauges
and the corresponding polarity operations.
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We use the following notation throughout. For a closed convex set D, D∞ denotes
the recession cone of D (Auslender and Teboulle, 2003, Definition 2.1.2), riD and clD
denote, respectively, the relative interior and the closure of D. The indicator function
of D is denoted by δD.

For a gauge κ : X → R∪{∞}, its domain is denoted by dom κ = {x | κ(x) <∞},
and its epigraph is denoted by epiκ = { (x, µ) | κ(x) ≤ µ }. A function is called closed
if its epigraph is closed, which is equivalent to the function being lower semi-continuous
(Rockafellar, 1970, Theorem 7.1). Let clκ denote the gauge whose epigraph is cl epiκ,
which is the largest lower semi-continuous function smaller than κ (Rockafellar, 1970,
p. 52). Finally, for any x ∈ dom κ, the subdifferential of κ at x is denoted ∂κ(x) =
{ y | κ(u)− κ(x) ≥ 〈y, u− x〉, ∀u }.

We make the following blanket assumptions throughout. Let C denote a nonempty
closed convex set that does not contain the origin; let D denote a nonempty convex set
that may or may not contain the origin, depending on the context. The gauge function
ρ : X → R ∪ {∞}, used in (Pρ), is closed; when σ = 0, we additionally assume that
ρ−1(0) = { 0 }.

2.1. Polar sets. The polar D◦ of a nonempty closed convex set D is defined by

D◦ := { y | 〈x, y〉 ≤ 1, ∀x ∈ D } ,

which is necessarily closed convex, and contains the origin. The bipolar theorem states
that if D is closed, then it contains the origin if and only if D = D◦◦ (Rockafellar,
1970, Theorem 14.5).

When D = K is a closed convex cone, the polar is equivalently given by

K◦ := { y | 〈x, y〉 ≤ 0, ∀x ∈ K} .

The positive polar cone (also known as the dual cone) of D is given by

D∗ := { y | 〈x, y〉 ≥ 0, ∀x ∈ D } .

The polar and positive polar are related via the closure of the conic hull, i.e.,

D∗ = (cl coneD)∗ = −(cl coneD)◦, where coneD =
⋃
λ≥0

λD.

2.2. Gauge functions. All gauges can be represented in the form of a Minkowski
function γD of some nonempty convex set D, i.e.,

(2.1) κ(x) = γD(x) := inf {λ ≥ 0 | x ∈ λD } .

In particular, one can always choose D = {x | κ(x) ≤ 1 }, and the above representation
holds. The polar κ◦ of the gauge κ is defined as

κ◦(y) := inf {µ > 0 | 〈x, y〉 ≤ µκ(x), ∀x } ,

which gives the inequality (1.2). Because κ is a proper convex function, one can also
define its convex conjugate:

(2.2) κ∗(y) := sup
x
{ 〈x, y〉 − κ(x) } .

It is well known that κ∗ is a proper closed convex function (Rockafellar, 1970, The-
orem 12.2). The following proposition collects properties that relate the polar and
conjugate of a gauge.
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Proposition 2.1.
(i) κ◦ is a closed gauge function;
(ii) κ◦◦ = clκ = κ∗∗;
(iii) κ◦(y) = supx { 〈x, y〉 | κ(x) ≤ 1 } for all y;
(iv) κ∗(y) = δκ◦(·)≤1(y) for all y;
(v) dom κ◦ = X if κ is closed and κ−1(0) = { 0 }.

Proof. The first two items are proved in Theorems 15.1 and 12.2 of Rockafellar
(1970). Item (iii) follows directly from the definition (2.2) of the polar gauge. Item
(iv) follows by applying Theorem 15.3 of Rockafellar (1970) with g(t) = t, and κ∗∗
in place of f in that theorem, and noting that κ∗∗∗ = κ∗ and κ∗∗◦ = κ◦◦◦ = κ◦. To
prove item (v), note that the assumptions together with Proposition 3.1.3 of Auslender
and Teboulle (2003) show that 0 ∈ int dom κ∗. This together with item (iv) and the
positive homogeneity of κ◦ shows that dom κ◦ = X .

In some interesting applications, the objective in (P) is the composition κ ◦ A,
where κ is a gauge and A is a linear map. Clearly, κ ◦ A is also a gauge. The next
result gives the polar of this composition.

Proposition 2.2. Let A be a linear map. Suppose that either
(i) epiκ is polyhedral; or
(ii) ri dom κ ∩ rangeA 6= ∅.

Then

(κ ◦A)◦(y) = inf
u
{κ◦(u) | A∗u = y } .

Moreover, the infimum is attained when the value is finite.

Proof. Since κ ◦A is a gauge, we have from Proposition 2.1(iii) that

(κ ◦A)◦(y) = sup
x
{ 〈y, x〉 | κ(Ax) ≤ 1 } = − inf

x
{ 〈−y, x〉+ δD(Ax) } ,

where D = {x | κ(x) ≤ 1 }. Since κ is positively homogeneous, we have dom κ =⋃
λ≥0 λD. Hence, ri dom κ =

⋃
λ>0 λ riD from Rockafellar (1970, p. 50). Thus,

assumption (ii) implies that riD ∩ rangeA 6= ∅. On the other hand, assumption (i)
implies that D is polyhedral. Using these and Rockafellar (1970, Corollary 31.2.1), we
conclude that

(κ ◦A)◦(y) = − sup
u
{−(〈−y, ·〉)∗(−A∗u)− (δD)∗(u) }

= − sup
u
{−κ◦(u) | A∗u = y } ,

where the second equality follows from the definition of conjugate functions and
Proposition 2.1(iii). Moreover, the supremum is attained when finite, again by
Rockafellar (1970, Theorem 31.1). This completes the proof.

Suppose that a gauge is given as the Minkowski function of a nonempty convex
set that may not necessarily contain the origin. The following proposition summarizes
some properties concerning this representation.

Proposition 2.3. Suppose that D is a nonempty convex set. Then
(i) (γD)◦ = γD◦ ;
(ii) γD = γconv({0}∪D);
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(iii) γD is closed if conv({0} ∪ D) is closed.
(iv) If κ = γD, D is closed, and 0 ∈ D, then D is the unique closed convex set

containing the origin such that κ = γD; indeed, D = {x | κ(x) ≤ 1 }.

Proof. Item (i) is proved in Rockafellar (1970, Theorem 15.1). Item (ii) follows
directly from the definition. To prove (iii), we first notice from item (ii) that we may
assume without loss of generality that D contains the origin. Notice also that γD is
closed if and only if γD = γ∗∗D . Moreover, γ∗∗D = γD◦◦ = γclD, where the first equality
follows from Proposition 2.1(ii) and item (i), while the second equality follows from the
bipolar theorem. Thus, γD is closed if and only if γD = γclD. The latter holds when
D = clD. Finally, the conclusion in item (iv) was stated on Rockafellar (1970, p. 128);
indeed, the relation D = {x | κ(x) ≤ 1 } can be verified directly from definition.

From Proposition 2.1(iv) and Proposition 2.3(iv), it is not hard to prove the
following formula on the polar of the sum of two gauges of independent variables.

Proposition 2.4. Let κ1 and κ2 be gauges. Then κ(x1, x2) := κ1(x1) + κ2(x2) is
a gauge, and its polar is given by

κ◦(y1, y2) = max {κ◦1(y1), κ◦2(y2) } .

Proof. It is clear that κ is a gauge. Moreover,

κ∗(y1, y2) = κ∗1(y1) + κ∗2(y2) = δD1×D2
(y1, y2),

where Di = {x | κ◦i (x) ≤ 1 } for i = 1, 2; the first equality follows from the definition of
the convex conjugate and the fact that y1 and y2 are decoupled, and the second equality
follows from Proposition 2.1(iv). This together with Proposition 2.3(iv) implies that

κ◦(y1, y2) = inf {λ ≥ 0 | y1 ∈ λD1, y2 ∈ λD2 }
= max { inf {λ ≥ 0 | y1 ∈ λD1 } , inf {λ ≥ 0 | y2 ∈ λD2 } }
= max { γD1

(y1), γD2
(y2) } = max {κ◦1(y1), κ◦2(y2) } .

This completes the proof.
The following corollary is immediate from Proposition 2.2 and Proposition 2.4.

Corollary 2.5. Let κ1 and κ2 be gauges. Suppose that either
(i) epiκ1 and epiκ2 are polyhedral; or
(ii) ri dom κ1 ∩ ri dom κ2 6= ∅.

Then the polar of κ := κ1 + κ2 is

(2.3) κ◦(y) = inf
u1,u2

{max {κ◦1(u1), κ◦2(u2) } | u1 + u2 = y } .

Moreover, the infimum is attained when finite.

Proof. Apply Proposition 2.2 with Ax = (x, x) and the gauge κ1(x1) + κ2(x2),
whose polar is given by Proposition 2.4.

For a nonempty convex set D, the support function is defined as

σD(y) = sup
x∈D
〈x, y〉.

It is easy to check that if D contains the origin, then the support function is a (closed)
gauge function. Indeed, we have the following relationship between support and
Minkowski functions; see Rockafellar (1970, Corollary 15.1.2).
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Proposition 2.6. Let D be a closed convex set that contains the origin. Then
γ◦D = σD and σ◦D = γD.

2.3. Antipolar sets. The antipolar C′, defined by (1.1), is nonempty as a conse-
quence of the separation theorem. Freund’s 1987 derivations are largely based on the
following definition of a ray-like set. (As Freund mentions, the terms antipolar and
ray-like are not universally used.)

Definition 2.7. A set D is ray-like if for any x, y ∈ D,

x+ αy ∈ D for all α ≥ 0.

It is easy to check that the antipolar C′ of a (not necessarily ray-like) set C must be
ray-like.

The following result is analogous to the bipolar theorem for antipolar operations;
see McLinden (1978, p.176) and Freund (1987, Lemma 3).

Theorem 2.8 (Bi-antipolar theorem). C = C′′ if and only if C is ray-like.

The following proposition, stated by McLinden (1978, p.176), is not hard to show
using the above theorem.

Proposition 2.9. C′′ =
⋃
λ≥1 λC.

The next lemma relates the positive polar of a convex set, its antipolar and the
recession cone of its antipolar.

Lemma 2.10. cl cone(C′) = C∗ = (C′)∞.

Proof. It is evident that cl cone(C′) ⊆ C∗. To show the converse inclusion, take
any x ∈ C∗ and fix an x0 ∈ C

′. Then for any τ > 0, we have

〈c, x+ τx0〉 ≥ τ〈c, x0〉 ≥ τ for all c ∈ C,

which shows that x + τx0 ∈ cone C′. Taking the limit as τ goes to 0 shows that
x ∈ cl cone(C′). This proves the first equality.

Next we show the second equality, and begin with the observation that C∗ ⊆ (C′)∞.
Conversely, suppose that x ∈ (C′)∞ and fix any x0 ∈ C

′. Then, by Auslender and
Teboulle (2003, Proposition 2.1.5), x0 + τx ∈ C′ for all τ > 0. Hence, for any c ∈ C,

1
τ
〈c, x0〉+ 〈c, x〉 = 1

τ
〈c, x0 + τx〉 ≥ 1

τ
.

Since this is true for all τ > 0, we must have 〈c, x〉 ≥ 0. Since c ∈ C is arbitrary, we
conclude that x ∈ C∗.

3. Antipolar calculus. In general, it may not always be easy to obtain an
explicit formula for the Minkowski function of a given closed convex set D. Hence, we
derive some elements of an antipolar calculus that allows us to express the antipolar of
a more complicated set in terms of the antipolars of its constituents. These rules are
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Table 3.1
The main rules of the antipolar calculus; the required assumptions are made explicit in the

specific references.

Result Reference

(AC)′ = (A∗)−1C′ Proposition 3.3
(A−1C)′ = cl(A∗C′) Corollaries 3.4 and 3.5
(C1 ∪ C2)′ = C′1 ∩ C

′
2 Proposition 3.6

(C1 ∩ C2)′ = cl conv(C′1 ∪ C
′
2) Proposition 3.7

useful for writing down the explicit gauge duals of problems such as (Pρ). Table 3.1
summarizes the main elements of the calculus.

As a first step, the following formula gives an expression for the antipolar of a set
defined via a gauge. The formula follows directly from the definition of polar functions.

Proposition 3.1. Let C = {x | ρ(b− x) ≤ σ } with 0 < σ < ρ(b). Then

C′ = { y | 〈b, y〉 − σρ◦(y) ≥ 1 } .

Proof. Note that y ∈ C′ is equivalent to 〈x, y〉 ≥ 1 for all x ∈ C. Thus, for all x
such that ρ(b− x) ≤ σ,

〈x− b, y〉 ≥ 1− 〈b, y〉 ⇐⇒ 〈b− x, y〉 ≤ 〈b, y〉 − 1 ⇐⇒ σρ◦(y) ≤ 〈b, y〉 − 1,

where the last equivalence follows from Proposition 2.1(iii). This completes the proof.

Proposition 3.1 is very general since any closed convex set D containing the origin
can be represented in the form of {x | ρ(x) ≤ 1 }, where ρ(x) = inf {λ ≥ 0 | x ∈ λD };
cf. (2.1). The following corollary demonstrates the generality of the last result.

Corollary 3.2. Let C = {x | x ∈ b+K} for some closed convex cone K and a
vector b /∈ −K. Then

C′ = { y ∈ K∗ | 〈b, y〉 ≥ 1 } .

Proof. Apply Proposition 3.1 with ρ(x) = δ−K(x), the indicator function of the
cone −K, and notice that in this case, ρ◦(y) = δK∗(y).

Note that Proposition 3.1 excludes the potentially important case σ = 0; however,
Corollary 3.2 can instead be applied by defining K = ρ−1(0) = { 0 }.

3.1. Linear transformations. We now consider the antipolar of the image of
C under a linear map A.

Proposition 3.3. It holds that

(AC)′ = (A∗)−1C′.

Furthermore, if cl(AC) does not contain the origin, then both sets above are
nonempty.
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Proof. Note that y ∈ (AC)′ is equivalent to

〈y,Ac〉 = 〈A∗y, c〉 ≥ 1 for all c ∈ C.

The last relation is equivalent to A∗y ∈ C′. Hence, we have (AC)′ = (A∗)−1C′.
Furthermore, the assumption cl(AC) does not contain the origin implies that (AC)′ is
nonempty. This completes the proof.

As a corollary, we get the following result concerning the pre-image of C.

Corollary 3.4. Suppose that A−1C 6= ∅. Then

(A−1C)′ = cl(A∗C′),

and both sets are nonempty.

Proof. First, it is clear that cl(A∗C′) is nonempty. Moreover, since C does not
contain the origin, A−1C is also a closed convex set that does not contain the origin.
Hence, (A−1C)′ is also nonempty.

We next show that cl(A∗C′) does not contain the origin. Suppose that y ∈ A∗C′
so that y = A∗u for some u ∈ C′. Then for any x ∈ A−1C, we have Ax ∈ C and thus

〈x, y〉 = 〈x,A∗u〉 = 〈Ax, u〉 ≥ 1,

which shows that y ∈ (A−1C)′. Thus, we have A∗C′ ⊆ (A−1C)′ and consequently that
cl(ATC) ⊆ (A−1C)′. Since the set A−1C is nonempty, (A−1C)′ does not contain the
origin. Hence, it follows that cl(A∗C′) also does not contain the origin.

Now apply Proposition 3.3 with A∗ in place of A, and C′ in place of C, to obtain

(A∗C′)′ = A−1C′′.

Taking the antipolar on both sides of the above relation, we arrive at

(3.1) (A∗C′)′′ = (A−1C′′)′.

Since C′ is ray-like, it follows that cl(A∗C′) is also ray-like. Since cl(A∗C′) does not
contain the origin, we conclude that (A∗C′)′′ = cl(A∗C′). Moreover, we have

(
A−1C′′

)′ =
( ⋃
λ≥1

λA−1C

)′
=
(
A−1C

)′
,

where the first equality follows from Proposition 2.9, and the second equality can be
verified directly from definition. The conclusion now follows from the above discussion
and (3.1).

We have the following further corollary.

Corollary 3.5. Suppose that A−1C 6= ∅, and either C is polyhedral or ri C ∩
rangeA 6= ∅. Then (A−1C)′ is nonempty and(

A−1C
)′ = A∗C′.

Proof. We will show that A∗C′ is closed under the assumption of this corollary.
Then the conclusion follows immediately from Corollary 3.4.
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Abrams’s theorem (Berman, 1973, Lemma 3.1) asserts that A∗C′ is closed if and
only if C′ + kerA∗ is closed. We will thus establish the closedness of the latter set.

Suppose that C is a polyhedral. Then it is routine to show that C′ is also a
polyhedral and thus C′ + kerA∗ is closed. Hence, the conclusion of the corollary holds
under this assumption.

Finally, suppose that ri C ∩ rangeA 6= ∅. From Auslender and Teboulle (2003,
Theorem 2.2.1) and the bipolar theorem, we have cl dom(σC′) = [(C′)∞]◦, where (C′)∞
is the recession cone of C′, which turns out to be just C∗ by Lemma 2.10. From this
and the bipolar theorem, we see further that

cl dom(σC′) = [C∗]◦ = − cl cone C,

and hence ri dom σC′ = − ri cone C, thanks to Rockafellar (1970, Theorem 6.3). Further-
more, the assumption that ri C ∩ rangeA 6= ∅ is equivalent to ri cone C ∩ rangeA 6= ∅,
since ri cone C =

⋃
λ>0 λ ri C; see Rockafellar (1970, p. 50). Thus, the assumption

ri C ∩ rangeA 6= ∅ together with Rockafellar (1970, Theorem 23.8) imply that

C′ + kerA∗ = ∂σC′(0) +NrangeA(0) = ∂(σC′ + δrangeA)(0).

In particular, C′ + kerA∗ is closed.

3.2. Unions and intersections. Other important set operations are union and
intersection, which we discuss here. Ruys and Weddepohl (1979, Appendix A.1) outline
additional rules.

Proposition 3.6. Let C1 and C2 be nonempty closed convex sets. Then

(C1 ∪ C2)′ = C′1 ∩ C
′
2.

If 0 /∈ cl conv(C1 ∪ C2), then the sets above are nonempty.

Proof. Note that y ∈ (C1 ∪ C2)′ is equivalent to 〈y, x〉 ≥ 1 for all x ∈ C1 as well
as x ∈ C2. This is equivalent to y ∈ C′1 ∩ C

′
2. Moreover, if we assume further that

0 /∈ cl conv(C1 ∪ C2), then (C1 ∪ C2)′ = [cl conv(C1 ∪ C2)]′ is nonempty. This completes
the proof.

We now consider the antipolar of intersections. Note that it is necessary to assume
that both C1 and C2 are ray-like, which was missing from Ruys and Weddepohl (1979,
Property A.5). (The necessity of this assumption is demonstrated by Example 3.1,
which follows the proposition.)

Proposition 3.7. Let C1 and C2 be nonempty ray-like closed convex sets not
containing the origin. Suppose further that C1 ∩ C2 6= ∅. Then

(C1 ∩ C2)′ = cl conv(C′1 ∪ C
′
2),

and both sets are nonempty.

Proof. First, it is clear that cl conv(C′1 ∪ C
′
2) is nonempty. Moreover, since C1 ∩ C2

does not contain the origin, (C1 ∩ C2)′ is also nonempty.
We first show that cl conv(C′1 ∪ C

′
2) does not contain the origin. To this end, let

y ∈ C′1∪C
′
2. For any x ∈ C1∩C2, we have 〈y, x〉 ≥ 1, which shows that C′1∪C

′
2 ⊆ (C1∩C2)′,

and hence cl conv(C′1 ∪ C
′
2) ⊆ (C1 ∩ C2)′. Since C1 ∩ C2 is nonempty, (C1 ∩ C2)′ does
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not contain the origin. Consequently, cl conv(C′1 ∪ C
′
2) does not contain the origin, as

claimed.
Now apply Proposition 3.6, with C′1 in place of C1 and C′2 in place of C2, to obtain

(C′1 ∪ C
′
2)′ = C′′1 ∩ C

′′
2 = C1 ∩ C2.

Taking antipolar on both sides, we obtain further that

(C1 ∩ C2)′ = (C′1 ∪ C
′
2)′′ = [cl conv(C′1 ∪ C

′
2)]′′ = cl conv(C′1 ∪ C

′
2),

where the second equality follows from the definition of antipolar, and the third equality
follows from the observation that cl conv(C′1 ∪ C

′
2) is a nonempty ray-like closed convex

set not containing the origin. This completes the proof.
The following counter-example shows that the requirement that C1 and C2 are

ray-like cannot be removed from Proposition 3.7.
Example 3.1 (Set intersection and the ray-like property). Consider the sets

C1 = { (x1, x2) | 1− x1 ≤ x2 ≤ x1 − 1 } and C2 = { (x1, x2) | x1 = 1 } .

Define H1 = { (x1, x2) | x1 + x2 ≥ 1 } and H2 = { (x1, x2) | x1 − x2 ≥ 1 } so that
C1 = H1 ∩H2. Clearly the set C2 is not ray-like, while the sets C1, H1, and H2 are.
Moreover, all four sets do not contain the origin. Furthermore, C1 ∩ C2 is the singleton
{ (1, 0) }, and hence a direct computation shows that (C1 ∩ C2)′ = { (y1, y2) | y1 ≥ 1 }.

Next, we have directly from definition that C′2 = { (y1, 0) | y1 ≥ 1 }. On the other
hand, note that H1 = L−1

1 I, where L1(x1, x2) = x1+x2 and I = {u | u ≥ 1 }. Thus, by
Corollary 3.5, H ′1 = { (y1, y1) | y1 ≥ 1 }. Similarly, H ′2 = { (y1,−y1) | y1 ≥ 1 }. Since
H1 and H2 are ray-like, we obtain from Proposition 3.7 that

C′1 = (H1 ∩H2)′ = cl conv(H ′1 ∪H
′
2),

which contains C′2. Thus,

cl conv(C′1 ∪ C
′
2) = C′1 ( { (y1, y2) | y1 ≥ 1 } = (C1 ∩ C2)′.

4. Duality derivations. We derive in this section the gauge and Lagrange duals
of the primal problem (Pρ). Let

(4.1) C = {x | ρ(b−Ax) ≤ σ } ,

where ρ is a closed gauge and 0 ≤ σ < ρ(b), denote the constraint set. We generally
do not assume that ρ−1(0) = { 0 }, though we must do so in the case in which σ = 0.

4.1. The gauge dual. We consider two approaches for deriving the gauge dual
of (Pρ). The first uses explicitly the abstract definition of the gauge dual (D). The
second approach redefines the objective function to also contain an indicator for the
nonlinear gauge ρ where C is simply affine. This alternative approach is instructive,
because it illustrates the modeling choices that are available when working with gauge
functions.

4.1.1. First approach. The following combines Corollary 3.5 with Proposi-
tion 3.1, and gives an explicit expression for the antipolar of C when σ > 0.
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Corollary 4.1. Suppose that C is given by (4.1), where σ ∈ (0, ρ(b)). If C is
polyhedral, or ri {u | ρ(b− u) ≤ σ } ∩ rangeA 6= ∅, then

C′ = {A∗y | 〈b, y〉 − σρ◦(y) ≥ 1 } .

As an aside, we consider the special case σ = 0. The following result follows from
Corollaries 3.5 and 3.2, and allows for the case in which ρ−1(0) is not trivially { 0 }.

Corollary 4.2. Suppose that C = {x | Ax− b ∈ K} for some closed convex cone
K and b /∈ −K. If C is polyhedral, or (b+ riK) ∩ rangeA 6= ∅, then

C′ = {A∗y ∈ K∗ | 〈b, y〉 ≥ 1 } .

To obtain an explicit representation of the gauge dual problem, we assume that

(4.2) C is polyhedral, or ri {u | ρ(b− u) ≤ σ } ∩ rangeA 6= ∅.

We rely on the antipolar calculus developed in §3. Consider separately the cases σ > 0
and σ = 0.

Case 1: σ > 0. Apply Corollary 4.1 to derive the antipolar set

(4.3) C′ = {A∗y | 〈b, y〉 − σρ◦(y) ≥ 1 } .

Case 2: σ = 0. Here we need to assume that ρ−1(0) = { 0 }, and in that case,
C = {x | Ax = b }. We can now apply Corollary 4.2 with K = { 0 } and obtain

(4.4) C′ = {A∗y | 〈b, y〉 ≥ 1 } .

Since ρ−1(0) = { 0 } and ρ is closed, we conclude from Proposition 2.1(v) that dom ρ◦ =
X . Hence, (4.4) can be seen as a special case of (4.3) with σ = 0.

These two cases can be combined, and we see that when (4.2) holds, the gauge
dual problem (D) for (Pρ) can be expressed as (Dρ). If the assumptions (4.2) are not
satisfied, then in view of Corollary 3.4, it still holds that (D) is equivalent to

minimize
u,y

κ◦(u) subject to u ∈ cl {A∗y | 〈y, b〉 − σρ◦(y) ≥ 1 } .

This optimal value can in general be less than or equal to that of (Dρ).
4.1.2. Second approach. This approach does not rely on assumptions (4.2).

Define the function ξ(x, r, τ) := κ(x) + δepi ρ(r, τ), which is a gauge because epi ρ is a
cone. Then (Pρ) can be equivalently reformulated as

(4.5) minimize
x,r,τ

ξ(x, r, τ) subject to Ax+ r = b, τ = σ.

Invoke Proposition 2.4 to establish that

ξ◦(z, y, α) = max {κ◦(z), δ(epi ρ)◦(y, α) }
= κ◦(z) + δ(epi ρ)◦(y, α)
= κ◦(z) + δepi(ρ◦)(y,−α).

As Freund (1987, Section 2) shows for gauge programs with linear constraints, the
gauge dual is given by

minimize
y,α

ξ◦(A∗y, y, α) subject to 〈y, b〉+ σα ≥ 1,
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which can be rewritten as

minimize
y,α

κ◦(A∗y) subject to 〈y, b〉+ σα ≥ 1 and ρ◦(y) ≤ −α.

(The gauge dual for problems with linear constraints also follows directly from Corol-
lary 4.2 with K = { 0 }.) Further simplification leads to the gauge dual program (Dρ).

Note that the transformation used to derive (4.5) is very flexible. For example,
if (Pρ) contained the additional conic constraint x ∈ K, then ξ could be defined to
contain an additional term given by the indicator of K.

Even though this approach does not require the assumptions (4.2) used in §4.1,
and thus appears to apply more generally, it is important to keep in mind we have
yet to impose conditions that imply strong duality. In fact, as we show in §5, the
assumptions required there imply (4.2).

4.2. Lagrange duality. To derive the Lagrange dual of (Pρ), we reformulate it
by introducing an artificial “residual” variable r, which leads to

(4.6) minimize
x,r

κ(x) subject to Ax+ r = b and ρ(r) ≤ σ.

Define the Lagrangian function

L(x, r, y, λ) = κ(x) + 〈y, b−Ax− r〉+ λ
(
ρ(r)− σ

)
=
(
〈y, b〉 − λσ

)
−
(
〈A∗y, x〉 − κ(x)

)
−
(
〈y, r〉 − λρ(r)

)
.

The Lagrange dual problem is given by

maximize
y,λ

inf
x,r

L(x, r, y, λ) subject to λ ≥ 0.

Consider the (concave) dual function

`(y, λ) = inf
x,r

L(x, r, y, λ)

= inf
x,r

{(
〈y, b〉 − λσ

)
−
(
〈A∗y, x〉 − κ(x)

)
−
(
〈y, r〉 − λρ(r)

)}
=
(
〈y, b〉 − λσ

)
− sup

x

{
〈A∗y, x〉 − κ(x)

}
− sup

r

{
〈y, r〉 − λρ(r)

}
=
(
〈y, b〉 − λσ

)
− δκ◦(·)≤1(A∗y)− δρ◦(·)≤·(y, λ),

where the first conjugate on the right-hand side follows from Proposition 2.1(iv), while
the last conjugate follows from (Rockafellar and Wets, 1998, Theorem 11.21). The
Lagrange dual problem is obtained by maximizing `, i.e.,

(4.7) maximize
y,λ

〈y, b〉 − λσ subject to κ◦(A∗y) ≤ 1, ρ◦(y) ≤ λ.

This last expression can be simplified by maximizing over λ ≥ 0, which leads to (DL).
Strictly speaking, the Lagrangian primal-dual pair of programs that we have

derived is given by (4.6) and (4.7), but it is easily verifiable that this pair is equivalent
to (P) and (DL) in the sense that the respective optimal values are the same and that
solutions to either pair readily lead to solutions for the other. For that reason, without
loss of generality, we refer to (DL) as the Lagrange dual to the primal problem (P).
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5. Strong duality. Freund’s 1987 analysis of the gauge dual pair is mainly based
on the classical separation theorem. It relies on the ray-like property of the constraint
set C. Our study of the gauge dual pairs allows us to relax the ray-like assumption. By
establishing connections with the Fenchel duality framework, we can develop strong
duality conditions that are analogous to those required for Lagrange duality theory.

5.1. Preliminaries. Our main tool of analysis is the antigauge function

g(y) := sup {α ≥ 0 | y ∈ αC ′ } ,

of C′, modeled after a similar definition stated by McLinden (1978). This function was
used by Freund to relate his gauge duality theory to the duality theory of Gwinner
(1985). The following result collects some useful properties of the antigauge function.

Lemma 5.1. The following properties hold for the function g:
(i) dom g = cone C′ 6= ∅, on which g is finite;
(ii) the supremum in the definition of g is attained for any y ∈ dom g;
(iii) y ∈ C′ if and only if g(y) ≥ 1;
(iv) g is positively homogeneous;
(v) y ∈ C′ implies that y ∈ g(y)C′.

Proof. It is clear that if y /∈ cone C′, then g(y) = −∞. On the other hand, if
y ∈ cone C′, then for any fixed c ∈ C, we have 〈c, y〉 ≥ α〈c, w〉 ≥ α whenever y = αw
for some w ∈ C′ and α ≥ 0. This implies that 0 ≤ g(y) ≤ 〈c, y〉 <∞, i.e., y ∈ dom g
and g(y) is finite.

To see that the supremum is attained, first notice that for any nonzero y ∈ dom g,
there exists α > 0 and w ∈ C′ so that y = αw. This shows that one can restrict
attention to any maximizing sequence with inf αt ≥ α. Then, along this maximizing
sequence, there exists wt ∈ C′ with wt = y/αt. Since {αt} is uniformly bounded
away from zero, the sequence {wt} is bounded and hence one can obtain a convergent
subsequence. The attainment of the supremum now follows from a standard argument.
On the other hand, if y = 0, the supremum is clearly attained.

To prove (iii), we note first that y ∈ C′ clearly implies that g(y) ≥ 1. On the other
hand, if g(y) ≥ 1, then y = g(y)w = w + (g(y) − 1)w for some w ∈ C′. Since C′ is
ray-like, we conclude that y ∈ C′.

Positive homogeneity follows directly from definition.
Finally, if y ∈ C′, then g(y) ≥ 1 > 0 and so g( y

g(y) ) = 1 by positive homogeneity.
The result (v) now follows from (iii).

The next lemma gives an alternative representation of the function g. The case
when C is ray-like was discussed in McLinden (1978, Corollary 14B).

Lemma 5.2. For any y, we have infc∈C〈c, y〉 ≥ g(y). Moreover,

(5.1) inf
c∈C
〈c, y〉


= g(y) if y ∈ dom g,

= 0 if y ∈ (cl dom g)\(dom g),
< 0 if y /∈ cl dom g.

If, in addition, C is ray-like, then infc∈C〈c, y〉 = g(y) = −∞ for all y /∈ cl dom g.

Proof. For any y /∈ dom g, the inequality infc∈C〈c, y〉 ≥ g(y) = −∞ holds trivially.
On the other hand, if y ∈ dom g = cone C′, then for any fixed c ∈ C, we have
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〈c, y〉 ≥ α〈c, w〉 ≥ α whenever y = αw for some α ≥ 0 and w ∈ C′, from which the
inequality follows.

We now prove (5.1). Suppose that y ∈ (cl dom g)\(dom g). It then follows from
Lemma 2.10 that cl dom g = C∗ and so infc∈C〈c, y〉 ≥ 0. If infc∈C〈c, y〉 ≥ λ > 0, then
it follows from definition that y ∈ λC′ ⊆ cone C′ = dom g in view of Lemma 5.1(i), a
contradiction. Hence, we must have infc∈C〈c, y〉 = 0.

Suppose now that y ∈ dom g. Then g(y) ≥ 0. If λ := infc∈C〈c, y〉 = 0, then
equality holds. On the other hand, if λ > 0, then 〈c, yλ 〉 ≥ 1 for all c ∈ C, meaning that
y
λ ∈ C

′. Using properties (iii) and (iv) of g in Lemma 5.1, we conclude that g(y) ≥ λ.
Thus, infc∈C〈c, y〉 = g(y).

Next, suppose that y /∈ cl dom g. If infc∈C〈c, y〉 ≥ 0, then y ∈ C∗ = cl cone C′ =
cl dom g, where the equalities follow from Lemma 2.10 and Lemma 5.1(i). This is a
contradiction. Thus, 〈c, y〉 < 0 for some c ∈ C, or equivalently, infc∈C〈c, y〉 < 0.

Finally, suppose in addition that C is ray-like. Consider any y /∈ cl dom g. This
implies that g(y) = −∞. Moreover, it follows from the above discussion that 〈c, y〉 < 0
for some c ∈ C. Since the set C is ray-like, we immediately have infc∈C〈c, y〉 = −∞ =
g(y). Hence, equality also holds in this case.

5.2. From Fenchel to gauge duality. We now draw a link between Fenchel
and gauge duality. The Fenchel dual to (P) is given by

(5.2) maximize
y

−σC(−y) subject to κ◦(y) ≤ 1,

where we use Proposition 2.1(iv) for the conjugate of κ. Let vp, vg, and vf , respectively,
denote the optimal values of (P), (D) and (5.2). The following result relates their
optimal values and dual solutions.

Theorem 5.3 (Weak duality). Suppose that dom κ◦ ∩ C′ 6= ∅. Then

vp ≥ vf = 1/vg > 0

Furthermore,
(i) if y∗ solves (5.2), then y∗ ∈ cone C′ and y∗/vf solves (D);
(ii) if y∗ solves (D) and vg > 0, then vfy

∗ solves (5.2).

Proof. The fact that vp ≥ vf follows from standard Fenchel duality theory. We
now show that vf = 1/vg.

To this end, note that

(5.3) − σC(−y) = − sup
c∈C
〈c,−y〉 = inf

c∈C
〈c, y〉.

Since dom κ◦ ∩ C′ 6= ∅, there exists y0 such that κ◦(y0) ≤ 1 and y0 ∈ τC
′ for some

τ > 0. In particular, we have

(5.4) vf ≥ inf
c∈C
〈c, y0〉 ≥ τ > 0.
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Moreover, using (5.3) and the definition of vf , we have

vf = sup
y
{−σC(−y) | κ◦(y) ≤ 1 }

(i)= sup
y
{−σC(−y) | κ◦(y) ≤ 1, y ∈ dom g }

(ii)= sup
y
{ g(y) | κ◦(y) ≤ 1 } ,

(5.5)

where equality (i) follows from the fact that infc∈C〈c, y〉 ≤ 0 when y /∈ dom g by
Lemma 5.2, and the positivity of vf from (5.4); while equality (ii) holds because of
Lemma 5.2.

Furthermore,

vf = sup
y,λ
{λ | κ◦(y) ≤ 1, g(y) ≥ λ } = sup

y,λ
{λ | κ◦(y) ≤ 1, g(y) ≥ λ, λ > 0 } ,

where the second equality follows from (5.4). From this, we have further that

vf = sup
y,λ
{λ | κ◦(y/λ) ≤ 1/λ, g(y/λ) ≥ 1, 1/λ > 0 }

= sup
y,µ
{ 1/µ | κ◦(µy) ≤ µ, g(µy) ≥ 1, µ > 0 } .

Inverting both sides of this equation gives

(5.6)

1/vf = inf
y,µ
{µ | κ◦(µy) ≤ µ, g(µy) ≥ 1, µ > 0 }

= inf
w,µ
{µ | κ◦(w) ≤ µ, g(w) ≥ 1, µ > 0 }

(i)= inf
w,µ
{µ | κ◦(w) ≤ µ, w ∈ C′, µ > 0 }

= inf
w,µ
{µ | κ◦(w) ≤ µ, w ∈ C′ }

= inf
w
{κ◦(w) | w ∈ C′ } = vg,

where equality (i) follows from Lemma 5.1(iii). This proves vf = 1/vg.
We now prove item (i). Assume that y∗ solves (5.2). Then vf is nonzero (by (5.4))

and finite, and so is vg = 1/vf . Then we see immediately from (5.6) that y∗ ∈ coneC ′
because g(y∗) = vf > 0, and y∗/vf solves (D). We now prove item (ii). Note that if
y∗ solves (D) and vg > 0, then κ◦(y∗) > 0. One can then observe similarly from (5.6)
that y∗/vg = vfy

∗ solves (5.2). This completes the proof.
Fenchel duality theory allows us to use Theorem 5.3 to obtain several sufficient

conditions that guarantee strong duality, i.e., vpvg = 1, and the attainment of the
gauge dual problem (D). For example, applying Rockafellar (1970, Theorem 31.1))
yields the following corollary.

Corollary 5.4 (Strong duality I). Suppose that dom κ◦ ∩ C′ 6= ∅ and ri dom κ ∩
ri C 6= ∅. Then vpvg = 1 and the gauge dual (D) attains its optimal value.

Proof. From ri dom κ∩ ri C 6= ∅ and (Rockafellar, 1970, Theorem 31.1), we see that
vp = vf and vf is attained. The conclusion of the corollary now follows immediately
from Theorem 5.3.
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We would also like to guarantee primal attainment. Note that the gauge dual of
the gauge dual problem (D) (i.e., the bidual of (P)) is given by

(5.7) minimize
x

κ◦◦(x) subject to x ∈ C′′,

which is not the same as (P) unless C is ray-like and κ is closed; see Theorem 2.8
and Proposition 2.1(ii). However, we show in the next proposition that (5.7) and (P)
always have the same optimal value when κ is closed (even if C is not ray-like), and
that if the optimal value is attained in one problem, it is also attained in the other.

Proposition 5.5. Suppose that κ is closed. Then the optimal values of (P) and
(5.7) are the same. Moreover, if the optimal value is attained in one problem, it is
also attained in the other.

Proof. From Proposition 2.9, we see that (5.7) is equivalent to

minimize
λ,x

λκ(x) subject to x ∈ C, λ ≥ 1,

which clearly gives the same optimal value as (P). This proves the first conclusion.
The second conclusion now also follows immediately.

Hence, we obtain the following corollary, which generalizes Freund (1987, Theo-
rem 2A) by dropping the ray-like assumption on C.

Corollary 5.6 (Strong duality II). Suppose that κ is closed, and that ri dom κ ∩
ri C 6= ∅ and ri dom κ◦ ∩ ri C′ 6= ∅. Then vpvg = 1 and both values are attained.

Proof. The conclusion follows from Corollary 5.4, Proposition 5.5, the fact that
κ = κ◦◦ for closed gauge functions, and the observation that ri dom κ ∩ ri C 6= ∅ if and
only if ri dom κ ∩ ri C′′ 6= ∅, since ri C′′ =

⋃
λ>1 λ ri C (see Rockafellar (1970, p. 50))

and dom κ is a cone.
Before closing this section, we specialize Theorem 5.3 to study the relationship

between the Lagrange (DL) and gauge (Dρ) duals. We let vl denote the optimal value
of (DL).

Corollary 5.7. Suppose that C is given by (4.1), where σ ∈ [0, ρ(b)), assump-
tion (4.2) holds, and dom κ◦ ∩ C′ 6= ∅. Then vl = vf > 0. Moreover,
(i) if y∗ solves (DL), then y

∗/vl solves (Dρ);
(ii) if y∗ solves (Dρ) and vg > 0, then vly

∗ solves (DL).

Proof. Recall from Lemma 5.2 that for any y ∈ dom g, we have g(y) = infc∈C〈c, y〉.
Following a similar derivation in §4.2, we can show that supy=A∗u{〈b, u〉 − σρ

◦(u)} is
a Lagrange dual problem of infc∈C〈c, y〉. Due to assumption (4.2), it holds that

(5.8) g(y) = inf
c∈C
〈c, y〉 = sup

y=A∗u
{〈b, u〉 − σρ◦(u)}

and the supremum is attained, a consequence of Rockafellar (1970, Corollary 28.2.2).
On the other hand, for any y /∈ dom g, we have from weak duality that

(5.9) sup
y=A∗u

{〈b, u〉 − σρ◦(u)} ≤ inf
c∈C
〈c, y〉 ≤ 0,

because infc∈C〈c, y〉 ≤ 0 when y /∈ dom g, by Lemma 5.2.
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Since dom κ◦ ∩ C′ 6= ∅, we can plug (5.8) into (5.5) and obtain

0 < vf = sup { 〈b, u〉 − σρ◦(u) | κ◦(A∗u) ≤ 1, A∗u ∈ dom g }
= sup { 〈b, u〉 − σρ◦(u) | κ◦(A∗u) ≤ 1 } = vl,

where the second equality follows from (5.9) and the positivity of vf . This completes
the first part of the proof. In particular, the Fenchel dual problem (5.2) has the same
optimal value as the Lagrange dual problem (DL), and y

∗ = A∗u∗ solves (5.2) if and
only if u∗ solves (DL). Moreover, since assumption 4.2 holds, §4.1 shows that (D) is
equivalent to (Dρ). The conclusion now follows from these and Theorem 5.3.

We next state a strong duality result concerning the primal-dual gauge pair (Pρ)
and (Dρ).

Corollary 5.8. Suppose that C is given by (4.1), where σ ∈ [0, ρ(b)) and define
D = {u | ρ(b− u) ≤ σ }. Suppose also that κ is closed,

(5.10) ri dom κ ∩A−1 riD 6= ∅ and ri dom κ◦ ∩A∗ riD′ 6= ∅.

Then the optimal values of (Pρ) and (Dρ) are attained, and their product is 1.

Proof. Since A−1 riD 6= ∅, A satisfies the assumption in (4.2). Then §4.1 shows
that (D) is equivalent to (Dρ). Moreover, from Rockafellar (1970, Theorem 6.6,
Theorem 6.7), we see that ri C = A−1 riD and ri C′ = A∗ riD′. The conclusion now
follows from Corollary 5.6.

This last result also holds if C were polyhedral; in that case, the assumptions
(5.10) could be replaced with ri dom κ ∩ C 6= ∅ and ri dom κ◦ ∩ C′ 6= ∅.

6. Variational properties of the gauge value function. Thus far, our anal-
ysis has focused on the relationship between the optimal values of the primal-dual
pair (Pρ) and (Dρ). As with Lagrange duality, however, there is also a fruitful view of
dual solutions as providing sensitivity information on the primal optimal value. Here
we provide a corresponding variational analysis of the gauge optimal-value function
with respect to perturbations in b and σ.

Sensitivity information is captured in the subdifferential of the value function

(6.1) v(b, σ) = inf
x

f(x, b, σ),

with

f(x, b, σ) = κ(x) + δepi ρ(b−Ax, σ).

Interestingly, both f and v are gauges. Following the discussion in Aravkin, Burke,
and Friedlander (2013, Section 4), we start by computing the conjugate of f , which
can be done as follows:

f∗(z, y, τ) = sup
x,b,σ
{ 〈z, x〉+ 〈y, b〉+ τσ − κ(x)− δepi ρ(b−Ax, σ) }

= sup
x,w,σ

{ 〈z +A∗y, x〉 − κ(x) + 〈y, w〉+ τσ − δepi ρ(w, σ) }

= κ∗(z +A∗y) + δ∗epi ρ(y, τ).
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Use Proposition 2.1(iv) and the definition of support function and convex conjugate
to further transform this as

f∗(z, y, τ) = δκ◦(·)≤1(z +A∗y) + σepi ρ(y, τ)
(i)= δκ◦(·)≤1(z +A∗y) + δ(epi ρ)◦(y, τ)
(ii)= δκ◦(·)≤1(z +A∗y) + δepi(ρ◦)(y,−τ)
= δκ◦(·)≤1(z +A∗y) + δρ◦(·)≤·(y,−τ),

where equality (i) follows from Proposition 2.6 and Proposition 2.3(i), and equality (ii)
follows from the definition of the polar of gauges; see also Rockafellar (1970, p. 137).
Combining this with the definition of the value function v(b, σ),

v∗(y, τ) = f∗(0, y, τ) = δκ◦(·)≤1(A∗y) + δρ◦(·)≤·(y,−τ).(6.2)

In view of Rockafellar and Wets (1998, Theorem 11.39), under a suitable constraint
qualification, the set of subgradients of v is nonempty and is given by

∂v(b, σ) = argmax
y,τ

{ 〈b, y〉+ στ − v∗(u, τ) }

= argmax
y,τ

{ 〈b, y〉+ στ | κ◦(A∗y) ≤ 1, ρ◦(y) ≤ −τ }

=
{

(y,−ρ◦(y))
∣∣∣∣ y ∈ argmax

y
{ 〈b, y〉 − σρ◦(y) | κ◦(A∗y) ≤ 1 }

}
,

(6.3)

in terms of the solution set of (DL) and the corresponding function value of ρ◦(y).
We state formally this result, which is a consequence of the above discussion and
Corollary 5.7.

Proposition 6.1. For fixed (b, σ),

dom f(·, b, σ) 6= ∅ ⇐⇒ 0 ∈ Adom κ− [ρ(b− ·) ≤ σ],

and hence

(b, σ) ∈ int dom v ⇐⇒ 0 ∈ int(Adom κ− [ρ(b− ·) < σ])

If (b, σ) ∈ int dom v and v(b, σ) > 0, then ∂v(b, σ) 6= ∅ with

∂v(b, σ) =
{

(y,−ρ◦(y))
∣∣∣∣ y ∈ argmax

y
{ 〈b, y〉 − σρ◦(y) | κ◦(A∗y) ≤ 1 }

}
=
{
v(b, σ) · (y,−ρ◦(y))

∣∣∣∣ y ∈ argmax
y

{κ◦(A∗y) | 〈b, y〉 − σρ◦(y) ≥ 1 }
}
.

Proof. It is routine to verify the properties of the domain of f(·, b, σ) and the
interior of the domain of v. Suppose that (b, σ) ∈ int dom v. Then the value function
is continuous at (b, σ) and hence ∂v(b, σ) 6= ∅. The first expression of ∂v(b, σ) follows
directly from Rockafellar and Wets (1998, Theorem 11.39) and the discussions preceding
this proposition.

We next derive the second expression of ∂v(b, σ). Since (b, σ) ∈ int dom v implies
0 ∈ int(Adom κ− [ρ(b− ·) < σ]), the linear map A satisfies assumption 4.2. Moreover,
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(b, σ) ∈ int dom v also implies that v(b, σ) equals the optimal value of the Lagrange dual
problem (DL), another consequence of Rockafellar and Wets (1998, Theorem 11.39).
Furthermore, v(b, σ) being finite and nonzero together with the definition of (DL) and
(4.3) implies that dom κ◦ ∩ C′ 6= ∅. The second expression of ∂v(b, σ) now follows from
these three observations and Corollary 5.7.

7. Extensions. The following examples illustrate how to extend the canonical
formulation (Pρ) to accommodate related problems. It also provides an illustration of
the techniques that can be used to pose problems in gauge form and how to derive
their corresponding gauge duals.

7.1. Composition and conic side constraints. A useful generalization of (Pρ)
is to allow the gauge objective to be composed with a linear map, and for the addition
of conic side constraints, i.e.,

(7.1) minimize
x

κ(Dx) subject to ρ(b−Ax) ≤ σ, x ∈ K,

where D is a linear map and K is a convex cone. The composite objective can be used
to capture, for example, problems such as weighted basis pursuit (e.g., Candés, Wakin,
and Boyd (2008); Friedlander, Mansour, Saab, and Yilmaz (2012)), or together with
the conic constraint, problems such as nonnegative total variation (Krishnan, Lin, and
Yip, 2007).

One way to fit (7.1) into the gauge framework is to introduce additional variables,
and lift both the cone K and the epigraph epi ρ into the objective by means of their
indicator functions: use the function f(x, s, r, τ) := δK(x) + κ(s) + δepi ρ(r, τ) to define
the equivalent gauge optimization problem

minimize
x,s,r,τ

f(x, s, r, τ) subject to Dx = s, Ax+ r = b, τ = σ.

As with §4.1, observe that f is a sum of gauges on disjoint variables. Thus, we invoke
Proposition 2.4 to deduce the polar of the above objective:

f◦(u, z, y, α) = max { δ◦K(u), κ◦(z), δ◦epi ρ(y, α) }
= max { δK◦(u), κ◦(z), δepi ρ◦(y,−α) }
= δK∗(−u) + κ◦(z) + δepi ρ◦(y,−α).

We now use Corollary 4.2, with K = { 0 }, to deduce the antipolar constraint set, and
arrive at the gauge program

minimize
y,z,α

δK∗(D
∗z −A∗y) + κ◦(z) + δepi ρ◦(y,−α) subject to 〈b, y〉+ σα ≥ 1.

Bringing the indicator functions down to the constraints leads to

minimize
y,z,α

κ◦(z) subject to 〈y, b〉+ σα ≥ 1, ρ◦(y) ≤ −α, D∗z −A∗y ∈ K∗,

which can be further simplified by eliminating α, which yields the gauge dual problem

(7.2) minimize
y,z

κ◦(z) subject to 〈y, b〉 − σρ◦(y) ≥ 1, D∗z −A∗y ∈ K∗.

Note that the canonical dual gauge problem (Dρ) is recovered if D = I and K = X .
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7.2. Nonnegative conic optimization. Conic optimization subsumes a large
class of convex optimization problems that ranges from linear, to second-order, to
semidefinite programming, among others. Problem (1.5) gives the general statement
of a conic program; the additional requirement that c ∈ K∗ is sufficient to guarantee
that the objective in (1.6) is a gauge. (More generally, it is evident that any function
of the form γD + δK is a gauge if D is a non-empty convex set and K is a convex cone.)

We can easily accommodate a generalization of (1.6) by embedding it within the
formulation defined by (1.5), and define

(7.3) minimize
x

〈c, x〉+ δK(x) subject to ρ(b−Ax) ≤ σ,

with c ∈ K∗, as the conic gauge optimization problem. The following result describes
its gauge dual.

Proposition 7.1. Suppose that K ⊂ X is a convex cone and c ∈ K∗. Then the
gauge

κ(x) = 〈c, x〉+ δK(x)

has the polar

κ◦(u) = inf {α ≥ 0 | αc ∈ K∗ + u } .

If K is closed and c ∈ intK∗, then κ has compact level sets, and dom κ◦ = X .

Proof. To derive the polar of κ, use Proposition 2.1 to obtain

κ◦(u) = sup
x
{ 〈u, x〉 | κ(x) ≤ 1 }

(i)= sup
x
{ 〈u, x〉 | 〈c, x〉 ≤ 1, x ∈ K}

(ii)= inf {α ≥ 0 | (αc− u) ∈ K∗ } ,

where (ii) follows from strong duality between the conic program (i) and its dual (ii),
which is guaranteed because the assumptions guarantee that Slater’s condition holds
(Rockafellar, 1970, Corollary 28.2.2).

To prove compactness of the level sets of κ, let γ := infx { 〈c, x〉 | ‖x‖ = 1, x ∈ K}.
Because K is closed and c ∈ intK∗, compactness of the feasible set in the infimum
implies that the infimum is attained and that γ > 0. Thus, for any x ∈ K\{ 0 }, 〈c, x〉 ≥
γ‖x‖ > 0 and, consequently, that {x ∈ X | κ(x) ≤ α } = {x ∈ K | 〈c, x〉 ≤ α } ⊂
{x ∈ X | ‖x‖ ≤ α/γ }. This guarantees that the level sets of κ are bounded, which
establishes the compactness of its level sets. From this and Proposition 2.1(iii), we see
that κ◦(y) is finite for any y ∈ X .

This last result on the polar of the conic gauge objective, together with Corollary 4.1
allows us to derive the gauge dual of (7.3). As a concrete example of the application
of Proposition 7.1 to conic gauge programming, consider the SDP

(7.4) minimize
X

〈C,X〉 subject to AX = b, X � 0,

where C � 0, and A : Sn → R
m is a linear map from symmetric n-by-n matrices to

m-vectors. Define the gauge objective κ(X) = 〈C,X〉+ δ·�0(X), set σ = 0, and let
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ρ = ‖ · ‖, i.e., the constraint set is C = {X | AX = b }. Proposition 7.1, with K equal
to the (self-dual) semidefinite cone, gives the gauge polar:

κ◦(U) = inf {α ≥ 0 | αC � U } = inf {α ≥ 0 | C−
1
2UC−

1
2 � αI } .

In particular,

κ◦(U) = λmax (U,C) if U � 0,

where λmax (U,C) is the largest generalized eigenvalue corresponding to the eigenvalue
problem Ux = λCx. Together with Corollary 4.2, which gives the antipolar of C, and
Theorem 5.3, which asserts that the optimal dual value is positive, the gauge dual
problem can then be written as

minimize
y

λmax(A∗y, C) subject to 〈b, y〉 ≥ 1.

To make this example even more specific, consider the case C = I. In that case, (7.4)
is the problem of minimizing the trace of a positive semidefinite matrix X that satisfies
a set of linear constraints. This problem arises, for example, in the phase-retrieval
problem (Candes et al., 2012); the above gauge dual is a maximum eigenvalue problem
subject to a single linear constraint.

8. Discussion. Our focus in this paper has been mainly on the duality aspects
of gauge optimization. The structure particular to gauge optimization allows for an
alternative to the usual Lagrange duality, and this may be useful for providing new
avenues of exploration for modeling and algorithm developments. Depending on the
particular application, it may prove computationally convenient or more efficient to
use existing algorithms to solve the gauge dual rather than the Lagrange dual problem.
For example, some variation of the projected subgradient method might be used to
exploit the relative simplicity of the gauge dual constraints in (Dρ). As with methods
that solve the Lagrange dual problem, some procedure would be needed to recover
the primal solution. Although this is difficult to do in general, for specific problems
it is possible to develop a primal-from-dual recovery procedure via the optimality
conditions.

More generally, an important question left unanswered is whether there exists a
class of algorithms that can leverage this special structure. We are intrigued by the
possibility of developing a primal-dual algorithm specific to the primal-dual gauge
pair.

The sensitivity analysis presented in §6 relied on existing results from Lagrange
duality. We would prefer, however, to develop a line of analysis that is self-contained
and based entirely on gauge duality theory and some form of “gauge multipliers”.
Because the value function (6.1) is a gauge, it is conceivable that sensitivity analysis
could be carried out based on studying the polar

v◦(y, τ) = inf {µ ≥ 0 | (y, τ) ∈ µD } = κ◦(A∗y) + δρ◦(·)≤·(y,−τ)

of the value function, where D = { (y, τ) | κ◦(A∗y) ≤ 1, ρ◦(y) ≤ −τ }, which is a
consequence of Proposition 2.1(iv) and (6.2). This approach would be in contrast to
the usual sensitivity analysis, which is based on studying a certain (convex) value
function and its conjugate.
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