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Conic separation of finite sets

I. The homogeneous case.
ANNABELLA ASTORINO! - MANLIO GAUDIOSO? - ALBERTO SEEGER?

Abstract. This work addresses the issue of separating two finite sets in R™ by means
of a suitable revolution cone

[(z,y,8) ={z €R" : 5|z — z|| — y" (z — 2) = O}.

The specific challenge at hand is to determine the aperture coefficient s, the axis v,
and the apex z of the cone. These parameters have to be selected in such a way
as to meet certain optimal separation criteria. Part I of this work focusses on the
homogeneous case in which the apex of the revolution cone is the origin of the space.
The homogeneous case deserves a separated treatment, not just because of its intrinsic
interest, but also because it helps to built up the general theory. Part II of this work
concerns the non-homogeneous case in which the apex of the cone can move in some
admissible region. The non-homogeneous case is structurally more involved and leads
to challenging nonconvex nonsmooth optimization problems.

Mathematics Subject Classification: 90C25, 90C26.
Key words: Conical separation, revolution cone, convex optimization, DC - optimization,
proximal point techniques, classification.

1 Introduction

In ordinary parlance, distinguishing between two finite groups of elements sharing a common envi-
ronment is usually called discrimination or separation. These words are employed also in a technical
fashion in a number of areas of applied mathematics. There is a broad literature devoted to the
problem of separating two finite sets A C R™ and B C R™ by means of a suitable hyperplane

{reR":yTx — c=0}.

The affine separation problem has a long history that goes more than a century back. If a separating
hyperplane does not exist, then one may resort to a nonlinear separating hypersurface. Spherical
and ellipsoidal separating hypersurfaces have been studied in depth in the last decade [2, 4, 14, 16].
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There is a half-century old work by Mangasarian [19] that briefly mentions the case of separation
by means of a quadratic hypersurface of the form

{z eR": 2" Mz 4+ yTz — c = 0}.

The theory of quadratic separation has been further developed by Falk and Karlov [10]. One

can also consider polyhedral hypersurfaces [3, 12] or more sophisticated hypersurfaces as those

mentioned in [18], but, of course, this burdens the analysis and the overall computational effort.
This paper addresses the issue of separating A and B by means of a revolution cone

I(z,y,s) ={z e R" : s ||z — z|| — yl(z—2) = 0}, (1)

which is a manageable and easily visualizable mathematical object. Each parameter involved in
the description of (1) has a clear geometric interpretation:

- The vector z, called the apex of the cone, is sought on some set Z C R"™. The choice of Z
depends on the concrete application under consideration.

- The vector y, called the azis of the cone, is sought on the unit sphere S,, of R"™.

- The scalar s € [0,1] is called aperture coefficient. Note that arccoss corresponds to the
half-aperture angle of the cone.

We are using the expression “revolution cone” in a less restrictive manner than most authors:
we are not requiring its convexity, nor having its apex at the origin. It helps to view (1) as the
translation of a revolution cone with apex at the origin:

I'(z,y,s) = 2+ T(0,y,s).

The convex envelope of T'(0, y, s) is a closed convex cone in the usual sense of convex analysis.
The exact formulation of the conic separation problem is described next. One is given a
nonempty set Z C R™ and two mutually disjoint finite subsets of the Euclidean space R", say

A={ar,...,a,} and B={by,...,b;}.

For avoiding trivialities one assumes that n > 2, card(A) = p > 2, and card(B) = ¢ > 2. The Conic
Separation problem reads as follows:

Find a triplet (2,y,s) € Z x S, x [0,1] such that
(€S) { ACA(y5) = {x R : f(z,2,y,5) <0},
B C B(sy,5) i= {z € R : f(z,%,9,5) 2 O},

where f : R3"*1 5 R is the continuous function given by
T
f(m7z7y78) = SH]:_Z” -y ($—Z)
In other words, one must find a solution (z,y,s) € Z xS, x [0, 1] to the nonlinear inequality system

{ flai,z,y,8) <0 foralli e N, :={1,...,p},

(2)
f(bj,z,y,s) >0 forall j € N,:={1,...,q}.



The data sets A and B do not play a symmetric role. Indeed, the a;’s are to be captured by
a convex set, whereas the b;’s are to be captured by a nonconvex set. Except for a recent paper
by Kasimbeyli [17], separation through revolution cones has not been considered until today. The
paper [17] takes place in an infinite dimensional normed space and it is so different in spirit from our
work that is hard to extract a meaningful parallelism. Separation of two nonconvex sets by means
of a general convex cone with apex at the origin is a theme that has been considered by recent
scholarship; see, for instance, Henig [15] and Pappalardo and collaborators [9, 20, 23]. However, all
these contributions differ substantially from the present work.

In general, one does not know in advance whether the CS problem is solvable or not. The data
sets A and B are usually derived experimentally or through a certain random device.

Definition 1.1. The pair (A, B) is conically separable if the solution set
F(A,B) ={(z,y,8) € Z xS, x [0,1] : (2,y,s) satisfies (2)}

is nonempty. If (z,y,s) belongs to F(A,B), then I'(z,y,s) is called a separator. One adds the
adjective strict if none of the inequalities in (2) is active.

Affine separability, spherical separability, and quadratic separability are defined similarly by
using the appropriate type of separation hypersurface. An hyperplane is a particular instance of a
revolution cone. To see this, just take s = 0. Hence, affine separability implies conic separability.
The converse statement is not true of course.

A situation of special interest occurs when Z = {0}, that is to say, when one forces the revolution
cone to have its apex at the origin. This paper focusses on this particular situation and leaves to
the companion paper [5] the analysis of the case in which the apex of the cone is allowed to move
in a certain admissible region.

2 The homogeneous conic separation problem

As mentioned in the introductory section, this paper concentrates on the so-called Homogeneous
Conic Separation problem:

Find a pair (y,s) € S, x [0,1] such that
(HCS) A C Ag(y, s) :== A0, y, ),
B C By(y,s) := B(0,y,s).
So, the HCS problem is about finding a solution (y, s) € S,, x [0, 1] to the linear inequality system
{ lail|s —aly <0 forallieN, 3
I b]Ty >0 forall j €N,

If (y, s) is a solution to the HCS problem, then
FO(?/? S) = F(O,y,S) = {‘T €ER":s HQ’JH - yT‘T = 0}

is called a homogeneous separator. One adds the adjective strict if none of the inequalities in (3) is
active. The set
G(A,B) ={(y,s) € S, x[0,1] : (y, s) satisfies (3)}

is compact, but nonconvex in general.



Lemma 2.1. If the total sample AU B spans R™, then G(A, B) is path-connected.
Proof. Let (yo, so) and (y1,s1) be two different points in G(A, B). So, for each k € {1,2}, one has

lyull = 1, s > 0,
laillsk < al yi for all © € Ny,
[bjllsk > bjye  forall j € N,

We claim that yy and y; are not opposite vectors. Suppose to the contrary that y; = —yp. In such
a case, one gets
0 < [laillso < afyo @
0 < [laills1 < af'y1 = —af yo
for all 7 € N, and
1651150 > b7 9o
T T (5)
1b5]ls1 > bj y1 = —=bjyo
for all j € N;. From (4) one sees that the a;’s are orthogonal to yo and that sp = s; = 0.
Substituting the later information into (5) one deduces that also the b;’s are orthogonal to yo.
Hence, A U B is contained in an homogeneous hyperplane, contradicting the assumption of the
lemma. Since the claim is true, the line segment [yo,y1] does not contains the vector 0, and,
therefore, one can set

(1 —t)yo +tyr (1 —1t)so +ts1
(1 —t)yo + tyr]l’ (1 =t)yo + ty]]

for all ¢ € [0,1]. One has constructed in this way a pair of continuous functions y : [0, 1] — R™ and
s : [0,1] — R such that
(¥(0),5(0)) = (0, 50);

) =
(y(1),8(1)) = (y1,51), (6)
(y(t),s(t)) € G(A,B) for all t € [0,1].

This proves the path-connectedness of G(A, B). O

y(t) = s(t) =

Remark 2.2. While dealing with the HCS problem, there is no loss of generality in assuming that
L :=span{ai,...,ap,b1,...,by}

is equal to the whole space R™. Otherwise, one views A and B as subsets of the linear space L,
and, accordingly, one tries to separate them by means of an homogeneous revolution cone in L.

Theorem 2.3. Suppose that the a;’s and the b;’s are nonzero vectors. Then

(a) A strict homogeneous separator exists if and only if the polytopes

- aq Gp } —_ { b1 bq }
Z4=CO4 7. and Zf=c0q0,—, ..., ——
{HalH’ ayll b Clloall” T bl

do not intersect.

(b) An homogeneous separator exists if and only if 0 does not belong to the interior of the
Minkowski difference
EA—Ezg:{u—v:ueEA,veEg}. (7)



Proof. We start by introducing the functions ¥ 4 : R” — R and ®5 : R” — R given by

aly b;“'Fy
Ua(y) = min Y d ®uy) = iy
AW) =i e 24 ®s0) = pax w

We introduce also the nonnegative function CDE :R™ — R given by

@55 (y) = max{0, P5(y)}.
A strict homogeneous separator exists if and only if the system
laills —aly <0 forallieN,

{ 1bjlls = bTy >0 for all j € N,

holds for some (y,s) € S, x [0, 1], that is to say,
I(y,s) € Sp x [0,1] sit. Ppy) < s < Va(y).
The above line can be rewritten as
Jy €S, st (Taq—f)(y) > 0. (8)

But

Uy — & = min 27
(Uq—2%5)(y) min a7y,

where W is the convex compact set introduced in (7). Hence, (8) amounts to saying that 0 ¢ W,
ie.,, 24 and EE do not intersect. Similarly, the existence of an homogeneous separator is equivalent
to the condition

Jy €Sy st (Vyq—0f)(y) >0,

which in turn is equivalent to saying that 0 does not belong to the interior of W. O
Remark 2.4. Many authors have developed algorithms to compute the gap
gap(Py, Py) = min{||ju —v|| : u € P1,v € P}

between two arbitrary polytopes P; and P». As a by-product, these algorithms check whether the
polytopes intersect or not. A detailed treatment of this topic can be found, for instance, in [13].

Remark 2.5. As a direct consequence of Theorem 2.3 one sees that the existence of a strict homo-
geneous separator implies the pointedness of the polyhedral cone

P
cone(A) = {Zaiai t01 >0, ,0p > O}
=1

generated by the a;’s. Such observation is of course consistent with geometric intuition.

We next identify two special solutions to the HCS problem. The definition below focusses the
attention on the angular size of the separator, but other selection criteria are also possible.



Definition 2.6. If (y., s«) solves the minimization problem

minimize s
(y,8) € G(A,B),

respectively the mazimization problem

(y,s) € G(A, B), (10)

{ mazrimize s

then To(y«, s«) is called a largest angle homogeneous separator, respectively a smallest angle homo-
geneous separator.

The above terminology has a clear geometric justification: to minimize (respectively, maximize)
the coefficient s amounts to render the half-aperture angle of the homogeneous separator as large
(respectively, small) as possible. A largest angle homogeneous separator, say I'o(yx, s«), is better
than an arbitrary homogeneous separator I'y(y, s) in the following sense: if one adds to A a random
point ap41 with spherically symmetric probability distribution, then I'g(ys, s«) has higher chances
than I'g(y, s) to remain a separator for the new pair (AU {ap4+1}, B). In other words, I'o(yx, s«) is
more stable than I'y(y, s) with respect to a certain type of perturbation in A. Similarly, a smallest
angle homogeneous separator of (A, B) has better chances to remain a separator for a perturbed
pair of the type (A, BU {bg+1}).

Proposition 2.7. Suppose that AU B spans R"™ and that G(A,B) is nonempty. Then for any
aperture coefficient s in the interval

[Smins Smax] 1= min s, max §
(y,8)€EG(A,B)  (y,5)EG(A,B)
there exists an axis § € Sy, such that T'y(y, 8) is an homogeneous separator.

Proof. Since G(A, B) is nonempty, the extremal problems (9) and (10) are both solvable. Let
(Yo, s0) be a solution to (9) and (y1,s1) be a solution to (10). Obviously, sg = Smin and $1 = Smax.
Since G(A, B) is path-connected by Lemma 2.1, there are continuous functions y : [0,1] — R™ and
s : [0, 1] — R satistying (6). The intermediate value theorem applied to the function s(-) ensures the
existence of ¢ € [0,1] such that s(f) = 5. For completing the proof it suffices to take § = y(¢). O

As mentioned a few lines above, if G(A, B) is nonempty, then (9) and (10) are both solvable.
However, these optimization problems may have more than one solution.

Example 2.8. For the data sets

A<{[F- == {07 [ 1)

one gets two largest angle homogeneous separators, namely

{xE]R2: [m%—i—m’%]l/?—m—m:o},
{x€R2: [m%+mg]1/2—m1+z2:0}.

These separators have of course the same half-aperture angle, but not the same axis.



Example 2.9. For the data sets

0 0 0 -1 -2
A= O, [-1],]1 , B= 0f,]0
1 0 0 0 0

one gets countable many smallest angle homogeneous separators, namely
{z € R®: (cost)xy + 0xa + (sint)zy = 0}
with ¢ € [0, 7/2]. These hyperplanes are also largest angle homogeneous separators.

In general, a smallest angle homogeneous separator cannot be strict because it contains at least
one the a;’s. By contrast, a largest angle homogeneous separator can be strict or not.

3 Computing a smallest angle homogeneous separator

If there is an homogeneous separator with positive aperture coefficient, then the smallest angle
homogeneous separator is unique and can be found by solving a convex optimization problem.
This is, in essence, what the next theorem asserts.

Theorem 3.1. Suppose that (A, B) admits an homogeneous separator with positive aperture coef-
ficient. Then

(a) (A,B) has exactly one smallest angle homogeneous separator.

(b) Furthermore, the pair (y«, sx) that describes the smallest angle homogeneous separator is equal
to the unique solution to the convex optimization problem

maximize s

(y,s) e R" xR

lyll <1 (11)
—aly + |la;]|s <0 foralli €N,

b;‘-Fy — ||bjlls <0 for all j € N,.

Proof. Written in full extent, the variational problem (10) reads

( . .
maximize s

(y,5) e R" xR

lyll =1

0<s<1

—al'y +||a;|s <0 forallieN,
by — |lbjlls <0 forall j € N,.

(12)

\

Let G,(A, B) and G.(A, B) be the solution sets to (11) and (12), respectively. We claim that
Go(A.B) C C.(A.B). (13)

We assume without loss of generality that the a;’s are nonzero vectors. One can easily check that
Go(A, B) is nonempty, compact, and convex. Pick any (yo,s,) € Go(A,B). In particular, s, is



the optimal value of (11). Since (A, B) admits an homogeneous separator with positive aperture
coefficient and the feasible set of (11) contains the feasible set of (12), one has

0 < 84 < 8o, (14)
where s, denotes the optimal value of (12). Since

latlso < aiyo < llarll lyoll < llasl],

one has s, < 1. It is also clear that y, # 0. If ||ys|| < 1, then (||yo|| ™ %o, [|yo] 's0) is a feasible pair
for (11) with ||y ~'se > o, contradicting the maximality of s,. Hence, |y,| = 1. We have shown
in this way that (yo,se) is feasible for (12). In particular, s¢ < s.. In view of (14), one deduces
that s, = s, and that (s, S,) is an optimal solution to (12). This completes the proof of (13). The
reverse inclusion to (13) being obvious, one gets finally G,(A, B) = G.(A,B). This common set
must be a singleton. Indeed, if (y1,s1) and (y2, s2) were two distinct elements in Go(A, B), then
the midpoint (1/2)(y1,s1) + (1/2)(y2, s2) would also be in G,(A, B). In particular, one would have

11/2) (w1 + w2) || = [lyall = lly2ll = 1,

a clear impossibility. O

Theorem 3.1 settles the question concerning the uniqueness and the practical computation of
the smallest angle homogeneous separator. The numerical resolution of the convex optimization
problem (11) offers no difficulty.

3.1 Dual interpretation of the smallest angle homogeneous separator

By applying the Fenchel-Rockafellar duality theorem to the convex optimization problem (11) one
obtains a dual characterization for the smallest angle homogeneous separator. What the next
theorem says is that (11) is nothing but a least norm problem over the convex polyhedron

C={ueR": (u,-1)€Q},
where (@) is the polyhedral convex cone generated by the vectors

(a1, =llaal]), - - (ap, =llapll); (=01, [1b2]]); - - (=g, [1bg]l)- (15)

Theorem 3.2. Suppose that (A, B) admits an homogeneous separator with positive aperture coef-
ficient. Let T'(yx, s«) be the smallest angle homogeneous separator. Then

s = min u] (16)
and yy = ||us]| " us with u, denoting the unique solution to (16).
Proof. By Theorem 3.1 one knows that
sy = max —c(y,s), 17
nax, (y,s) (17)

where P is the polyhedral convex cone in R” x R given by (3) and ¢ : R™ x R — R U {oo} is the
lower-semicontinuous convex function given by

(. 9) —s if |yl <1
c(y,s) =
Y oo it ||yl > 1.



The effective domain of ¢ is the set dom(c) = {(y,s) € R™ x R : ||y|| < 1}. The intersection
P intfdom(c)] = {(y,5) € P+ |1yl < 1}

is nonempty because it contains the point (y,s) = (0,0). Under such a constraint qualification
condition one can apply [24, Theorem 31.4] and write

Sy = min d(u,r), 18
(W)EQ( ) (18)

where @ is the dual cone of P, i.e.,
Q={(u,7) €eR" xR :uly+rs>0forall (y,s) € P},
and d : R" x R — R U {00} is the Legendre-Fenchel conjugate of ¢, i.e.,

d(u,7) = sup {uTy +rs—c(y,s)}.
(y,s)ER™ xR

Clearly, @ is the polyhedral convex cone generated by the vectors in (15) and
|lu|| if r=-1
d(uv T) = .
oo if r# —1.
By substituting this information into (18) one gets
s = min{|Jul| : v € R" s.t. (u,—1) € Q},

proving in this way (16). Now, let u, be the unique solution to (16) and let r, = —1. Since
(yx, S«) solves the primal problem (17) and (u., r«) solves the dual problem (18), the orthogonality
condition

u*Ty>k + 75, =0

is in force (cf.[24, Theorem 31.4]). One gets in this way

Uy Yo = 85 = [Jus]- (19)
But, on the other hand, one knows that

Iyl =1, s« >0. (20)
The combination of (19) and (20) yields yx = |||~ . O

We now briefly explain how to solve in practice the least norm problem (16). Observe that
u € C' if and only if there exist nonnegative scalars aq,...,ap, 31, .., 3, such that

p
(u,=1) =Y i (a5, — Haz\|+ZBJ by 116511)-
=1

Hence, finding the least norm element of C' amounts to solve

2
‘Z’f:l aqa; — 320 ﬁjij
a1 20,...,0, >0
B120,...,8,=0
>oimt llailloi = 3251 116511 8 = 1.

.
minimize

(21)




In others words, one must minimize a positive semidefinite quadratic form on the nonnegative
orthant of RP¢ intersected with a non-homogenous hyperplane. The cost function of (21) is in fact
the quadratic form associated to the Gramian matrix of the vectors {ay,...,ap, —b1,...,—b;}. The
convex optimization problem (21) is quite simple, but one must be aware that p and ¢ are usually
large integers, and therefore the minimization process takes place in a high dimensional space. In
order to reduce the dimension of the underlying space it is convenient to drop the data points in
AU B that are redundant. There are special techniques for detecting redundancy, but we shall not
indulge on this matter.

4 Computing a largest angle homogeneous separator

Computing a largest angle homogeneous separator is a more difficult task because one has to solve
a nonconvex optimization problem. The variational problem (9) reads as follows:

minimize s

(y,s) e R" xR

lyl=1,0<s<1 (22)
—aly +|la;]|s <0 for alli € N,

b;fry —|Ibjlls <0 for all j € N,.

One assumes without loss of generality that the a;’s and the b;’s are nonzero vectors. We keep the
inequality s < 1, which is implicit in the constraint involving the a;’s, because it is needed in a
relaxed version of (22) that we are going to examine.

If one changes the normalization condition [|y|| = 1 by the convex constraint [|y|| < 1, then one
ends up with a convex optimization problem. Unfortunately, such convexification mechanism is
here inappropriate because the optimal value of the convexified problem is always equal to 0 and
the feasible point (0,0) is optimal.

The problem (22) has a nonempty feasible region exactly when (A, B) is homogeneously conically
separable, but this is not always the case in practice. Thus, in view to apply homogeneous conical
separability to classification problems, it is useful to shift the attention to a “relaxed” optimization
problem which is always feasible and such that an optimal solution provides

- either a good quality (large half-aperture angle) separator in case the pair (A4, B) is homoge-
neously conically separable,

- or a large-angle-nearly-separating cone otherwise.

Following a rather standard way of reasoning in classification theory, such a goal can be achieved
by introducing an appropriate classification error function and by constructing an optimization
problem whose objective function accounts for both maximization of the half-aperture angle and
minimization of the classification error. Thus one resorts to the formulation

h* = min {h(y,S) : (ya 5) € Qv HyH = 1}7 (23)
where © = R" x [0,1] and
2 q
h(y,s) = s+ max{0,—a]'y + lla;|ls} + Y max{0,b]y — ||b;s}.
i=1 Jj=1

Here v > 0 is a parameter expressing the tradeoff between the two objectives previously mentioned.

10



Proposition 4.1. The optimal value of (23) can be rewritten as
he = min {h(y.s) : (4,5) € 2, [ly] > 1}. (24)
Furthermore, one of the following two situations occurs:

(a) hie = 0. This happens exactly when A and B can be separated by a homogeneous hyperplane.
The optimal solutions to (24) are then of the form (y,0) with y being orthogonal to a homo-
geneous hyperplane that separates A and B. An optimal solution to (23) is obtained simply
by normalizing .

(b) hy > 0. In this case the minimization problems (23) and (24) have the same solution set. In
other words, any solution (y,S) to (24) is such that ||y|| = 1.

Proof. The proof of the proposition is straightforward. It is essentially a matter of exploiting the
fact that A : R™ x R — R is sublinear and nonnegative on §2. The details are omitted. O

Proposition 4.1 allows us to operate on the minimization problem (24) instead of on (23). We
describe next the two approaches we have adopted to numerically treat the problem (24). In the
sequel we write the inequality constraint ||y|| > 1 in the equivalent form ||y||? > 1.

4.1 The DC approach

The first approach is based on penalization of the nonconvex constraint ||y[|? > 1, that is to say,
one considers the penalized problem

minimize h(y,s) + pmax{0,1 — ||y||*} (25)
(y,5) € Q,
where p > 0 is a penalty parameter. In fact, (25) can be rewritten in the equivalent form
minimize h(y, s) + pmax{0, [ly[|* — 1} — p(|lyl* — 1) (26)
(y,s) € Q,

where the cost function is of the DC (Difference of Convex) type. Indeed, the cost function of (26)
is the difference g1 — g of the convex functions

g1(y,s) = hly,s)+ pmax{0, [ly|* - 1}
92(y,8) = p(lyl*-1).

Beware that g1 is nonsmooth because h is polyhedral. Once the penalized problem has been put
into the above form, algorithms for DC programming can be applied; see Section 4.3 for technical
details.

4.2 The proximal point-linearized problem approach

The second approach we propose to deal with problem (24) is based on linearization of the norm
constraint and introduction of both a proximal point and a feasibility restoration mechanism. We

11



rewrite first problem (24) in the equivalent form of a differentiable nonlinear program by introducing
auxiliary nonnegative variables v;’s and w;’s (grouped in vectors v € R and w € RY, respectively):

P q
hy = min 75‘{'2%’4‘2“}]’

i=1 j=1
v; >0 ’iGNp
vi > —aly + |lai||s €Ny
Wj >0 jENq
w; > by — [|bjls J €Ny
lylI? =1
0<s<1.

(27)

Note that (27) would be a linear program were it not for the presence of the nonconvex constraint
ly||> > 1. We open a parenthesis and say a few words on the Karush-Kuhn-Tucker (KKT) multiplier
associated to this bothersome constraint. The KKT system for a (local) solution (g, v, w, §) to the

problem (27) consists in stationarity conditions

p q
oy + Zaiai — Zﬂjbj = 0
i=1 j=1

o +pp = 1

Bi+&= 1 jeNg

p q
7+Zai”az"| —Zﬁjﬂbju —A+n= 0,
i=1 j=1

together with complementary slackness conditions

Vil = 0 7€ Np
@& = 0 jeN,
(@i +a]g— |lais)ai = 0 i€N,
(@; =] g+ 0198, = 0 jeN,
o(lgl2—1) = 0
sA= 0
n(=5+1)= 0,
for suitable nonnegativity multipliers
c>0,A>0,7>0
a; >0, p; 20 i€N,

One has the following proposition.

Proposition 4.2. Let (y,v,w,3) be a feasible point for (27) satisfying the KKT system (28)-(37)

with multipliers as in (38). Then the cost term
P q
Ci=5+ Y Ui+ Y w;
i=1 j=1
is equal to 0 if and only if o = 0.

12



Proof. Suppose that ¢ = 0. Then § =0, v = 0, and w = 0. The combination of (34) and (35) yields
then
T
P q
Zaiai — Zﬂjbj y = 0.
i=1 j=1

The above equality and (28) imply that o||7||* = 0. Hence, 0 = 0. Conversely, suppose that o = 0.

From (28) one gets
P q
Z ;g — Zﬁjbj =0.
i=1 j=1

By combining the above equality with (34)-(35) one obtains
p q
KS = Z ;0; + Z ijj > 0, (39)
i=1 j=1
where
p q
we= Y alasll = Y0 Byl
i=1 j=1

If ks were positive, then both x and s would be positive. In such a case, the condition (45) yields
A = 0, contradicting the satisfaction of (31). Hence, k5 = 0. This and (39) lead to

p q
Z Q;0; + Z Bju?j =0.
i=1 j=1

The above equality, together with (29), (30), (32) and (33), imply that v = 0 and w = 0. To
complete the proof one needs to show that s = 0. If 5 were different from 0, then A = 0 by (36). In
such a case, (31) would imply that x < 0, contradicting (39). O

Remark 4.3. If ¢ = 0, then also h, = 0 and one is in the situation described by Proposition4.1(a). In
particular, (g/]|7|l,0) is a solution to the original problem (23) and ¢ is orthogonal to a homogeneous
hyperplane that separates A and B.

We now return to the main flow of the presentation. To each feasible solution (g, s) to (24),
with A(y,s) > 0, we associate a proximal point-linearized problem
minimize h(y, s) + zolly — g’
(Py) yly=1 (40)
0<s<1,
where o is a positive “proximity” parameter. One can view the equality constraint in (40) as a

linearized version of the normalization constraint ||y||*> = 1. The problem Pj is not only convex,
but it can be equivalently written as a special type of quadratic program:

([ minimize ys+ Y L, v + Z?zl w; + %QHy — 7|2
v; >0 i €N,
v 2 —aTy + ails ieN,
(9Qy) w; >0 JeNg
wj > bly — ||bslls J€Ng
yly=1
0<s<1

13



The feasible set of Qj is a convex polyhedron and the cost function is a sum of a linear function
and a nonnegative quadratic form. The KKT system for the quadratic program Qj consists of
stationarity conditions

P q
oly—g)—og—» ciai+y Bibj= 0 (41)
i=1 j=1
o+ = 1 i€ Np
Bi+&= 1 ieNy
P q
v+ Y aillasll =Y Billbll = A+n=0 (42)
i=1 j=1
and complementarity slackness conditions
Uiy = 0 1€ Np
wj §j = 0 je€ Nq
(v; + aly —|lail|s)o; = 0 i €N, (43)
(wj = bjy +[bsll$)8;= 0 jeN, (44)
sA= 0 (45)
n(—s+1)= 0 (46)
for suitable multipliers
cER, A>0,7>0
a; >0, p; >0 ieN, (47)

Note that the multiplier o associated to the equality constraint g7y = 1 is unrestricted in sign.
The following proposition holds:

Proposition 4.4. Suppose that (3,7, w,3) is feasible point for Qy. Then the following conditions
are equivalent:

(a) (y,v,w,5) is a solution to Q.
(b) (g,v,w,3) satisfies the system (41)-(46) with multipliers as in (47).
(c) (g,v,w,38) satisfies the system (28)-(37) with multipliers as in (38).

Proof. The equivalence (a) < (b) is a standard result concerning the minimization of a convex
function on a convex polyhedron: satisfaction of the associated KKT system is necessary and
sufficient for optimality. Clearly (c)=-(b), so we concentrate on the reverse implication. Suppose
that (b) holds. By comparing the systems (41)-(46) and (28)-(37), one observes that all one needs
to prove is nonnegativity of the multiplier o. The satisfaction of (41) at y = y, together with the

fact that 77 = 1, implies
p q
o+ Z aia%pgj — Z B]bfgj =0.
i=1 j=1
By combining the above equality and the relations (43) and (44), one obtains

p q
o= Z oV + Z ijj — SK, (48)
i=1 j=1

14



where £ is as in the proof of Proposition4.2. But, thanks to (42) and (45), one has
=5k =3(y=A+n) =3s(y+n) = 0.

This and (48) show that o > 0. O

4.2.1 Proximal-feasibility restoration

We now explain our prozimal-feasibility restoration approach to solve problem (24). The method
is based on two distinct phases:

e Phase I. Given a current aperture coefficient § € [0,1] and a current axis g € S, we find a
solution (7, 5) to the convex program Py.

e Phase II. We project ¢ onto S, in order to produce a new axis "% and adjust § in order

to produce a new aperture coefficient s"V. To be more precise, we compute

gnew — g/”g” and gnew — S(gﬂ@W))
where s(-) is a function whose evaluation
= in h 49
s(y) = arg min h(y, s) (49)

at an argument y requires to solve a univariate nonsmooth convex problem. The part is
handled with the Univariate Minimization Algorithm (UMA) described in Section4.2.2.

In practice, the convex program Py is solved by using its quadratic representation Q. However,
in order to simplify the notation, we keep its original formulation. On the other hand, considering
that 0 is a lower bound for the cost function of Py, we assume that, for a given optimality threshold
€ > 0, the initial cost function value is above such threshold.

The detailed presentation of the proximal-feasibility restoration algorithm is as follows:

e Step 0. Initialization. An optimality parameter € > 0 is given, together with an initial point

(y©,59)) such that ||y @ = 1, s© = sx©), and h(y?,s®) > . A distance parameter
§ > 0 is also given. Set o = 2¢/6%. Set the iteration counter k = 0.

e Step 1. Solving the Proximal Point-Linearized Problem. Solve the problem P, and let
(5 B+1), 5(*k+1)) be the optimal solution. If

’ﬁ““J—MMHS& (50)

then STOP.
e Step 2. Projection and calculation of a new feasible point. Set

y(k-‘rl) _ g(k—l—l)/Hg(k—i-l)H

and calculate s(F+1) = s(y(k+1)) by calling the UMA. Set kK = k + 1 and return to Step 1.

In the following proposition we prove termination of the algorithm.

Proposition 4.5. The termination criterion (50) is satisfied within a finite number of iterations.
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Proof. The point (y*), s()) is feasible for P, and therefore
L (g(kﬂ) §<k+1>) + 1, Hg(kﬂ) _ y<k)H2 < p®)
) 2 —_ )
where h(¥) .= p (y(k), s(k)) . So, if the stopping test (50) is not satisfied, then
1
h (g<k+1>,§(k+1>) < h® = g8 = h® —e. (51)
Note that (y®*))75*+1) = 1 ensures ||§ **+Y|| > 1. So, from (51) one gets

R <y(k+1),8(k:+1)) _ (y(k—i—l)?S(y(k—s—l)))

~(k+1) s(k+1
] ST N kD) =1p (kD) (kD)
h<\|g(k+1)||’”g(k+1)”> = = h(y # )

< h (g(k-ﬁ-l)’ §(k+1)> _

The combination of (51) and the above inequality ensures that h**1 < h(¥) — ¢ that is, at each
iteration the reduction in the objective function is at least €. The thesis follows from the fact that
0 is a lower bound for the sequence {h(*)}en. O

Remark 4.6. The algorithm terminates when the stopping criterion at Step 1 is met. Observe that
satisfaction of such test, taking into account condition (41), implies

p q
oK)y (k) +Za£k)ai _ Zﬁg('k)bj _ QHg(lﬁ-l) _y(k)H < od, (52)
i=1 j=1

where o®) > 0, ozl(k) > 0, and ﬁj(k) > 0 are multipliers associated to the solution to Py(k). Note that

(52) can be viewed as an approximate satisfaction at y*¥) of the condition (28) for problem (27).

4.2.2 The Univariate Minimization Algorithm

Now we describe how to solve the univariate minimization problem (49) once y = § has been fixed.
The problem at hand is that of minimizing

P q
s € (0,1 @(s) :=ys+ Y _max{0, —¢; + [laills} + > _ max{0,d; — ||b;|s},
i=1 j=1

where ¢; := al'y and d;j == bjTg. The univariate function ¢ is convex and piecewise affine. A matter
of computation shows that the subdifferential Op(s) of ¢ at s is the collection of points of the form

v+ Y e+ > allail = Y0 bl = Yo Bl

1€l (s) 1€lp(s) JjeJ(s) J€Jo(s)
with
I.(s) = {ieNp:—c¢+ |ais>0},
In(s) = {ieNp:—ci+ |la|s =0},
J(s) = {eNyid;— bl >0},
Jols) = {5 €Ngid;— [Ibjlls = 0},

[0,1] for all i € Iy(s),
[0,1] for all j € Jo(s).

m m
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Hence, the right- and left-derivatives of ¢ at s are given respectively by

Pi(s) = 1) = v+ D> il = D bl

i€l (s)UIp(s) jeEJT(s)
P(s) = —@(s=1) =+ Y fall = >yl
€It (s) jeJ(s)UJo(s)

) = v+ Y lall = DD iyl

€Ny, ¢;<0 j€ENg, d;j>0
L) = v+ Y el = DD bl
i€Np, ¢;<la;]| JENg, dj=|bl

All these derivatives are easy to evaluate numerically. Parenthetically, observe that ¢, (0) > 0
ensures s(y) = 0, while ¢’ (1) <0 ensures s(y) = 1.
The Univariate Minimization Algorithm for calculating s(y) reads as follows:

o Step 0. Testing the extreme points. If either ¢/, (0) > 0 or ¢’ (1) <0, then set s(y) =0 or 1,
respectively, and terminate. Else select an accuracy parameter € > 0 and set [ =0, r = 1.

e Step 1. Locate the midpoint. Select s = (I 4 r)/2 and calculate ¢/, (s).

o Step 2. Bisection. If ¢/ (s) > 0,set [ =1landr =s. Elseset [ =sandr=r. If r =1 <,
then set s(y) = s and STOP. Else, return to Step 1.

4.3 Numerical experiments with real-life data

In our numerical experiments we have applied the largest angle homogeneous separator model (23),
along the guidelines described in Sections 4.1 and 4.2. In particular, we have run two codes, im-
plementing, respectively, the DC approach (DCA code) and the proximal point-linearized problem
approach (Proximal code).

The DCA code is based on the DCA method [1] for solving the Difference of Convex problem
stated in (26). DCA requires, at each iteration, to compute a solution to a convex program. To
this aim we have used the subroutine NCVX (cf. [11]), which implements a bundle type approach
enabling the resolution of nonsmooth optimization problems, be them convex or nonconvex. The
Proximal code requires at each iteration solution of a convex quadratic problem. Again, we have
used the subroutine NCVX to such purpose. Parenthetically, we mention that NCVX has been
recently re-implemented in MATLAB and satisfactory results on machine learning problems are
reported in [6].

As for the parameter setting, we have used a grid of possible values to preliminary tune the
parameters v, p in the DC program (26) and the parameters 7, in the proximal point-linearized
problem. This has been done for each dataset.

Once the parameters have been fixed, we have adopted for each test problem the standard
ten-fold cross validation protocol, which consists in splitting the dataset of interest into ten equally
sized pieces. Nine of them are in turn used as training set and the remaining one as testing set.
By correctness, as usual in classification literature, we intend the total percentage of well classified
points (of both A and B) when the algorithm stops. Of course, what we report is the average of
such test correctness taken over the ten different experiments in the cross validation framework.
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We note, however, that the correctness measure is not coincident with the adopted error function,
even though, of course, a good correlation between them is expected.

We remark that both algorithms we have tested are of the local optimization type. Consequently,
we have implemented a multi-start approach. In fact, for each dataset we have run the code
considering the starting points (y(®,s()) = (zxe;,0.5) (with i € {1,...,n}), where ¢; is the ith
unit vector and n is the dimension of the sample space. We have also tested the starting point
(£1,,/n,0.5) where 1,, is the vector of ones in R™.

We have considered the following test problems drawn from the binary classification literature
(cf. Table 1), where we indicate the dimension of the sample space and the total number of sample
points.

Dataset Dimension Points
Cancer 9 699
Diagnostic 30 569
Heart 13 297
Pima 8 769
Tonosphere 34 351
Sonar 60 208
Galaxy 14 4192
g50c 50 550
gl0n 10 550

Table 1: Datasets

The first six datasets are taken from the UCI Machine Learning Repository [21], Galaxy is the
dataset used in galaxy discrimination with neural networks [22], while the last two test problems
are described in [8].

In Tables 2 and 3 we report the numerical results in terms of average percentage of testing
correctness. We have selected, for each dataset, the best results we have obtained corresponding
to the different tested starting points. The best result for each dataset has been underlined.

In particular, in Table2, to provide a useful reference, we compare our results with those
obtained by using the LIBSVM package [7], a well established program library for Support Vector
Machine (SVM) based classification. We have considered both linear kernel (Linear) and the best
result obtained by applying two different kernels, polynomial or RBF (Kernel). Experimentations
of all tested algorithms have been performed with no dataset preprocessing (normalization, scaling,
ete).

Dataset LIBSVM Conical-SEP
Linear | Kernel || DCA | Proximal

Cancer 95.54 95.33 87.14 87.14
Diagnostic 95.95 96.48 | 97.19 96.84
Heart 85.19 82.82 77.33 77.00
Pima, 76.30 75.78 || 60.13 64.16
Tonosphere 87.14 94.86 91.43 89.71
Sonar 78.81 87.48 77.14 77.62
Galaxy 94.78 | 96.11 | 93.10 87.28
g50c 95.27 94.36 || 96.08 96.12
¢10n 98.91 93.82 90.52 91.64

Table 2: Homogeneous conical separation versus SVM with and without kernel

Moreover, in Table 3 we compare conical separation with spherical separation approaches: the
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FC (Fixed Center) and UMC (Unconstrained Moving Center) codes [2], that implement, respec-
tively, the fixed and the moving center spherical separation with no margin consideration.

Dataset SPSEP Conical-SEP
FC UMC || DCA | Proximal
Cancer 97.00 | 95.71 || 87.14 87.14
Diagnostic || 84.03 | 89.82 || 97.19 96.84
Heart 75.00 | 80.33 || 77.33 77.00
Pima 69.35 | 68.70 || 60.13 64.16
Tonosphere || 51.14 | 72.00 || 91.43 89.71
Sonar 59.52 | 69.05 || 77.14 77.62
Galaxy 80.19 | 93.79 || 93.10 87.28
g50c 67.76 | 72.96 || 96.08 96.12
g10n 54.02 | 81.04 || 90.52 91.64

Table 3: Homogeneous conical separation versus spherical separation

Our experimentation shows that conical separability provides interesting results on some of the
tested datasets. It can be considered yet another useful tool for approaching practical classification
problems.

5 The most robust homogeneous separator

A classical method for separating the sets A and B in a robust way is to find the widest strip of
“no man’s land” which can be placed between both sets. One defines the most robust separating
hyperplane as the hyperplane that is equidistant from both sides of that strip, see Figure 1.

A ec A A ec A
oe B oe B

(a) (b)
Figure 1: (a) A separating hyperplane. (b) A robust separating hyperplane.
Inspired by this classical idea, we introduce a robustness concept for homogeneous separators

and explain how to compute a most robust homogeneous separator. We assume that G(A, B) is
nonempty and consider the multivalued map G : R = R given by

Gly)={seR: (y,s) € G(A,B)}.
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The graph of G is equal to the compact set G(.A, B). Hence, the effective domain

D(G) ={y e R": G(y) # 0}
is a compact set. The conic no man’s land associated to the axis y € D(G) is the region
R(y) = {z € R" : smin(®) lz] < 5"z < smax(y) 2]},
where

Smin(y) = min{s: s € G(y)} and spax(y) = max{s:s € G(y)}.

Since Spin @ D(G) — R and spax : D(G) — R are continuous functions on a compact set, the
maximization problem
{ maximize (Smax — Smin) () (53)

y € D(G)

admits at least one solution. The problem (53) is about finding a conic no man’s land with largest
possible “angular width”.

Definition 5.1. A solution y to (53) is called a robust axis. One says that I'o(y,s) is a most
robust homogeneous separator if the axis i is robust and

¢ on 2l - arcslomn(5)]) -

The special choice (54) ensures that I'g(y, §) divides the region R(y) into two conic portions of
equal aperture. Figure 2 illustrates the distinction between robustness and non-robustness.
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Figure 2: (a) An homogeneous separator. (b) The most robust homogeneous separator.

With the helps of the functions ¥4 and @g one can can be reformulated (53) in a simpler
manner. In fact, one has:

Theorem 5.2. Suppose that the a;’s and the b;’s are nonzero vectors and that G(A, B) is nonempty.
Then
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(a) The problem (53) has the same optimal value and solution set as

{ mazimize (V4 — ®%)(y)

Iyl = 1. (58)

(b) If (A, B) admits a strict homogeneous separator, then the most robust homogeneous separator
is unique. In fact, its axis is the unique solution to the convex optimization problem

mazimize (¥ 4 — @) (y) (56)
lyll < 1.
Proof. The problem (53) is clearly equivalent to
maximize s1 — Sg
(y,80,51) €S, x [0,1] x [0,1] (57)

Pi(y) < so < Valy)
Dp(y) < s1 < VA(y).

Since s1 — sg is to be maximized, one can add the constraint s; > sy and rewrite (57) as

,

maximize s1 — Sg
lyll =1
0<sp<s1<1
®5(y) < so

51 < Wa(y).

The constraint s; < 1 is superfluous because ¥ 4 is majorized by 1 on the unit sphere S,,. So, after
simplification one gets

maximize s1 — Sg

lyll =1

5 (y) < s0 < s1 < Waly).

This leads to (55) and completes the proof of (a). The existence of a strict homogeneous separator
implies that (U4 —®%)(§) > 0 for some § € S,,. We claim that (55) and (56) have the same solution
set. By a convexity argument, the common solution set is then a singleton. Let y, be a solution to
(56). Hence,

(WA —P5)(ys) > (Pu—P3)(5) > O,

and therefore y, # 0. If ||y«|| < 1, then 9. = ||y«]|~1y« is a unit vector such that
(T —5)(G) = Iyl 7H(Ta = P5)(ys) > (P — ) (),

contradicting the optimality of y.. Hence, ||y«|| = 1. This proves our claim and completes the proof
of the theorem. O

The next theorem provides a dual characterization for the most robust homogeneous separator.
In essence, what this result says is that the axis of the most robust homogeneous separator can be
found by solving a least norm problem on a certain polytope.
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Theorem 5.3. Suppose that the a;’s and the b;’s are nonzero vectors and that (A, B) admits a
strict homogeneous separator. Then

max (s — Smi = min{||z|| : x € B4 — Ef 58
e (G) (Smax min) (Y) {Ul=ll A B} (58)
Furthermore, the axis of the most robust homogeneous separator is given by y = ||Z||~'Z with T

denoting the least norm element of the polytope Z 4 — EE.

Proof. Let ¢ be the maximum on the right-hand side of (58). By Theorem 5.2(b) one has

§ = max(Vy — df = max minz’y, 59
||y||§1( 5)() Iyl <1 zew (59)

where W =Z 4 — Ezg. Thanks to the Kneser minimax theorem one can exchange the order of the
maximum and the minimum in (59). Hence,

§ = min max 27y = min |z
2EW ||yl <1 zEW

For proving the second part of the theorem we exploit the fact that

(V4= 25) () = ||7] (60)

The equality (60) can be rewritten as
=T = : T~ - _T —
m + — =0.
(x - minz y) (HxH T y)

Due to (61), both terms in the above sum are nonnegative. Since their sum is equal to zero, each
term must be equal to zero. In particular, 7 = ||Z|| and therefore § = ||z ~'Z. O

As mentioned in Remark 2.4, there is an extensive literature dealing the problem of estimating
the gap between two polytopes. In fact, finding the least norm element of = 4 — EE is not a difficult
matter. One just need to solve the quadratic minimization problem

. . b\ |2

minimize ‘Zle aiHZ—:” — (Bo()—i- 2321 ﬁj”T;”) H

a1>0,...,0p 20,80 20,8 >0,...,8 >0 (62)
Do =1, Z?:o Bj=1.

By getting rid of the variable £y one gets a reduced problem

‘ 2

D .G N4 by
S i — i iy
01 20,0 >0, >0, ;>0

p _ q
dim1 i =1, Zj:l Bj <1,

but somehow it is simpler to work with the original model (62). Note that (62) concerns the
minimization of a positive semidefinite quadratic form over the Cartesian product of two standard
simplices.

minimize
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