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Abstract

A new method for solving sequences of quadratic programs (QPs) is presented. For each
new QP in the sequence, the method utilizes hot-starts that employ information computed by
an active-set QP solver during the solution of the first QP. This avoids the computation and
factorization of the full matrices for all but the first problem in the sequence. The proposed
algorithm can be seen as an extension of the iterative refinement procedure for linear systems
to QP problems, coupled with the application of an accelerated linear solver method that em-
ploys hot-started QP solves as preconditioners. Local convergence results are presented. The
practical performance of the proposed method is demonstrated on a sequence of QPs arising
in nonlinear model predictive control and during the solution of a set of randomly generated
nonlinear optimization problems using sequential quadratic programming. The results show a
significant reduction in the computation time for large problems with dense constraint matrices,
as well as in the number of matrix-vector products.

Keywords: nonlinear programming – quadratic programming – active set – hot starts – it-
erative linear solver – preconditioner – sequential quadratic programming – nonlinear model
predictive control

1 Introduction

We are concerned with the solution of quadratic programs (QPs) of the form

min
d∈Rn

1
2d

TWd+ gTd (1a)

s.t. Ad+ c = 0 (1b)

d ≥ `, (1c)

where the Hessian matrix W ∈ Rn×n is positive definite, g ∈ Rn is a gradient vector, and the
solution d ∈ Rn is subject to equality constraints with matrix A ∈ Rm×n and vector c ∈ Rm as well
as lower bounds ` ∈ Rn. We assume that A has full row rank.
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The main contribution of this paper is a novel QP algorithm that exploits information already
computed during the solution of a “reference QP”

min
d∈Rn

1
2d

T W̃d+ g̃Td (2a)

s.t. Ãd+ c̃ = 0 (2b)

d ≥ ˜̀ (2c)

in order to solve a new QP (1), where W̃ ≈ W and Ã ≈ A. Here, we assume that the reference
QP (2) has been solved by a generic active-set QP solver that is capable of hot-starts. Akin to the
iterative refinement procedure for linear equations, iterates converging to the optimal solution of
the new QP (1) are generated by repeatedly solving (2) with different vector data g̃, c̃, and ˜̀. In
order to improve convergence speed, an accelerated linear solver method, such as SQMR [16], is
applied when the active set stops changing, and the reference QP (2) then acts as a preconditioner
for the linear solver method. The method is shown to converge locally if strict complementarity
holds and the gradients of the active constraints are linearly independent.

The advantage of the proposed algorithm is that the factorization of the KKT matrix, which is
required in the active-set QP solver and involves submatrices of W̃ and Ã, can be reused for solving
(1). This is beneficial in particular if multiple instances of (1) need to be solved. In contrast, if
the active-set solver were to be applied to solve (1) directly, a new factorization would have to be
computed from scratch for each new instance with different W and A.

An additional benefit of the new QP solver is that it requires only matrix-vector products with
W , A, and AT during the solution of (1). This can lead to significant computational savings
if the computation of the full matrices W and A is expensive; e.g, if the objective (1a) or the
constraints (1b) involve the numerical solution of differential equations.

1.1 Motivation

This research is motivated by a number of applications where a successive resolution of QPs with
similar data is required.

One example is Nonlinear Model-Predictive Control (NMPC), a numerical approach for opti-
mally controlling a dynamic process (such as a chemical plant or a vehicle) in real-time. Here, at a
given point t in time, an optimal control action is computed as the solution of a QP that is obtained
from the linearization of differential equations describing the process. The initial conditions and
exogenous system parameters are chosen according to the actual or estimated state of the system
at time t. After a small time interval ∆t, a new control action is computed, now using the initial
conditions and system parameter values corresponding to t + ∆t. If ∆t is small and the state of
the system has not changed very much, the QPs solved at t and t+ ∆t are similar.

The Sequential Quadratic Programming (SQP) method for solving nonlinear programs (NLPs)
represents another example. Consider an NLP of the form

min
x∈Rn

f(x) (3a)

s.t. c(x) = 0 (3b)

x ≥ 0, (3c)

where the objective function f : Rn −→ R and the constraint function c : Rn −→ Rm with m ≤ n
are sufficiently smooth functions (i.e., continuously differentiable). In a generic SQP method, the
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step dk at an iterate xk is obtained as the optimal solution of the QP

min
d∈Rn

1
2d

TWkd+ gTk d (4a)

s.t. Akd+ ck = 0 (4b)

d ≥ `k (4c)

with `k := −xk, where gk = ∇f(xk) is the gradient of the objective function, ck = c(xk) is
the residual of the constraints, Ak = ∇c(xk)T is the Jacobian of the constraints, and Wk is (an
approximation of) the Hessian of the Lagrangian function at xk for given multiplier estimates
λk for the equality constraints. Here, all vector and matrix data depend on the iterate xk, and,
consequently, are different at each iterate of the method. However, if the iterates are close to each
other, these quantities can be expected not to change very much. This is, for example, the case,
when the SQP algorithm is close to convergence.

Furthermore, suppose that we are interested in solving a sequence of NLPs (3) that differ only
slightly in f(x) or c(x). If the optimal solution of the new NLP is close to the optimal solution of the
previous one, the SQP method might require only a small number of iterations. The corresponding
QPs are similar not only to each other, but also across the different nonlinear problems. In this
setting, it may be beneficial to solve the QPs arising during the SQP algorithm with the algorithm
proposed in this paper, where the QP from the last SQP iteration of the first NLP is taken as the
reference QP (2). This can be seen as a procedure for solving a sequence of similar NLPs using
hot-starts.

The solution of a sequence of closely related NLPs or QPs is also required during the execution
of a branch-and-bound search for a Mixed-Integer Nonlinear Program (MINLP). Here, each node
of the enumeration tree requires the solution of an NLP or QP relaxation, with different bound
constraints. Moreover, during diving heuristics (see, e.g., [21] and references therein) or strong-
branching (see, e.g., [1, 21]), a succession of similar NLPs or QPs has to be solved.

Structure of the Article. The remainder of this paper is organized as follows. Section 2 dis-
cusses aspects of active-set QP solvers that are relevant in the current context. In Section 3.1, we
briefly review the iterative refinement procedure for solving a linear system of equations. Reinter-
preting this technique in the context of equality-constrained optimization in Section 3.2, we make
the connection to the use of hot-started reference QPs (2), which is then generalized in Section 3.3
to handle inequality constraints. An accelerated version is presented in Section 4 where the solution
of the reference QP (2) is used as a preconditioner within an iterative linear solver method. In
Section 5.1, we explore the performance of the new QP solver in the context of an optimal control
application. Section 5.2 examines the performance of the new method within an SQP framework
applied to sequences randomly generated NLPs with perturbed data. Final remarks are made in
Section 6.

Notation. Given a vector (or vector-valued function) x ∈ Rn, we denote by x(i) the i-th com-
ponent of this vector. Given a set S ⊆ {1, . . . , n}, we denote by xS the vector composed from
elements x(i) with indices i ∈ S, and SC denotes the complement of S in {1, . . . , n}. To simplify
the notation, we write (x, y) for the concatenation (xT , yT )T of two vectors x and y.

2 Active-Set Solvers for Quadratic Programming

The QP algorithm proposed in this paper utilizes repeated solutions of the reference QP (2) where

the matrix data W̃ and Ã remains constant, and only the vector data g̃, c̃, and ˜̀changes. The key
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observation is that an active-set QP solver can often perform these repeated solutions much faster
than in the case when W̃ and Ã vary.

2.1 Hot Starts vs. Warm Starts

A typical active-set QP solver for (2) maintains a guess A of the set of variable bounds (2c) that

are active at the optimal solution d∗, i.e., of A∗ = {j : d
(j)
∗ = ˜̀(j)}. We denote by F = AC the set

of free variables.
An iterate of the QP solver is computed from the solution of the linear system

W̃FF W̃FA (ÃF )T 0

W̃AF W̃AA (ÃA)T −I
ÃF ÃA 0 0
0 −I 0 0




dF

dA

λ
µA

 = −


g̃F

g̃A

c̃˜̀A
. (5)

Here, W̃FA denotes the submatrix of W̃ with rows corresponding to F and columns corresponding
to A (similarly for W̃FF , W̃AF , and W̃AA), and ÃF is the submatrix of Ã with the columns
corresponding to A (similarly for ÃA). If dF ≥ ˜̀F and µA ≥ 0, the current iterate is optimal.
Otherwise, A is updated, usually by adding or removing one variable.

Observing that dA = ˜̀A, the above linear system can be reduced to[
W̃FF (ÃF )T

ÃF 0

](
dF

λ

)
= −

(
g̃F + W̃FA ˜̀A
c̃+ ÃA ˜̀A

)
, (6)

and the multipliers corresponding to the bound constraints are computed from the second block
equation in (5),

µA = g̃A + W̃AFdF + W̃AA ˜̀A + (ÃA)Tλ. (7)

Therefore, during each iteration of the active-set QP algorithm, a linear system of the form (6)
has to be solved. Different methods use different techniques to solve this linear system (e.g., null
space methods [13, 14], Schur complement methods [3, 17, 18]), all of which involve a factorization

of matrices constructed from ÃF and W̃FF . To avoid large computational costs, the factorization
is not computed from scratch in each iteration of the QP solver; instead, since typically only one
element enters or leaves the active set A, the factorization is updated in an efficient manner.

In this article, we say that an active-set QP solver performs a warm start if it uses the optimal
active set A from a previously solved QP as the starting guess for a new QP and the internal matrix
factorization to solve (6) is computed from scratch. In contrast to this, we say that a hot start is
performed if, in addition to the active set, the internal factorization corresponding to the optimal
solution of the previous QP is reused. This can only be done if the matrix data Ã and W̃ remains
the same, and only the vector data g̃, c̃, and ˜̀ changes. In this case, if the new optimal active set
is similar to the one from the previous QP (e.g., because g̃, c̃, and ˜̀have not changed much), only
a few iterations of the QP solver are required, and the solution for the new QP can be obtained
very quickly.

A practical QP solver has to be able to handle degeneracy, i.e., situations in which ÃF does not
have full row rank. For this purpose, instead of constructing (5) with the set A = {j : d(j) = ˜̀(j)},
where d is the current QP solver iterate, it is common to use a working set W chosen as a maximal
subset of A so that Ã(WC) has full row rank. For simplicity, however, we largely assume in this
paper that ÃF has full row rank.
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2.2 Parametric QP Solvers

Hot-starting capabilities vary between different active-set QP algorithms. For example, a primal
QP solver maintains feasibility of its iterates in each iteration and may have to restore feasibility
first when c̃ or ˜̀ change. Depending on the particular method, this may require a significant
amount of work. In our proposed method, we require the solution of QPs where all of the vector
data changes, i.e., both primal and dual feasibility are destroyed.

In this context, an active-set parametric QP solver (see, e.g., [4, 10, 11]) is a suitable method. It
traces optimal solutions on a homotopy path between the two QP instances. Suppose that QP (2)
has been solved, with optimal solution d̃ and multipliers λ̃, µ̃, and that we now want to solve a QP
with new vector data g, c, and ` but the same matrix data. We then consider the one-parameter
family of QP problems

min
d∈Rn

1
2d

T W̃d+ (τg + (1− τ)g̃)Td

s.t. Ãd+ τc+ (1− τ)c̃ = 0

d ≥ τ`+ (1− τ)˜̀,
parametrized by τ ∈ [0, 1]. It can be shown that the optimal primal-dual solutions z(τ) =
(d(τ), λ(τ), µ(τ)) are piecewise affine-linear in τ [4]. The sets of active and inactive bound con-
straints, A and F , are constant on each affine-linear segment. Starting with the known solution
z(0) = (d̃, λ̃, µ̃), the parametric active-set algorithm generates z(τ) by performing a sequence of
pivoting steps that move from the beginning of one segment to the next. At τ = 1, the desired
optimal solution for the new vector data is obtained.

3 Iterative Refinement

In this section, we review the iterative refinement method for linear systems and transfer the idea
first to equality-constrained QPs, then to inequality-constrained QPs.

3.1 Iterative Refinement for Systems of Linear Equations

Before addressing the solution of optimization problems in Section 3.2, we first review iterative
refinement for approximately solving a system of linear equations

Mx+ b = 0. (8)

We assume that a factorization of a reference matrix M̃ is available, that operations with M̃−1 can
hence be carried out, and that M̃ is not too different from M .

After initializing x0 = 0, we repeat for i = 0, 1, 2, . . .

pi = −M̃−1(Mxi − b) (9a)

xi+1 = xi + pi, (9b)

until xi+1 is deemed to be a sufficiently good solution. After eliminating pi and rearranging terms,
we see that the recurrence (9) satisfies the fixed-point iteration

xi+1 = (I − M̃−1M)xi − M̃−1b. (10)
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This can also be written as

xi+1 − x∗ = (I − M̃−1M)(xi − x∗), (11)

where x∗ solves (8). Therefore xi converges to x∗ if∥∥∥I − M̃−1M∥∥∥ < 1 (12)

for some norm ‖ · ‖. For later reference, we note that we can rewrite equation (10) as

M̃xi+1 = (M̃ −M)xi − b. (13)

3.2 Equality-Constrained Problems

We first discuss how the iterative refinement scheme can be applied to QPs with equality constraints
only, i.e., problem (1) where (1c) is absent. In this case, the first-order optimality conditions of the
QP can be stated as [

W AT

A 0

](
d
λ

)
= −

(
g
c

)
. (14)

Here, and in the remainder of this paper we assume that W is positive definite, so that the solution
of (14) is a global solution of the QP. Choosing M and b in (8) appropriately, the iterative refinement
procedure (9) applied to (14) becomes[

W̃ ÃT

Ã 0

](
pi
pλi

)
= −

(
g
c

)
−
(
Wdi +ATλi

Adi

)
(15)

with iterates

di+1 = di + pi, (16a)

λi+1 = λi + pλi . (16b)

The linear system (15) states the first-order optimality conditions for the QP

min
p

1
2p
T W̃p+

(
g +Wdi +ATλi

)T
p (17a)

s.t. Ãp+ (c+Adi) = 0. (17b)

Therefore, pi can be obtained equivalently as the optimal solution of this QP, and pλi are the optimal
multipliers for (17b). In summary, the iterative refinement procedure consists of generating iterates
using the update (16), where the steps are computed as the solution of the QP (17).

We stress that the matrix data in (17), i.e., W̃ and Ã, remains unchanged over the iterations i,
and only the vector data in the objective gradient and constraint right-hand side of this reference
QP vary. Therefore, a QP solver capable of hot-starts will often be able to compute solutions for
each QP (17) very rapidly, once an initial solution (requiring an internal factorization of matrices

involving W̃ and Ã) has been computed for i = 0 (see Section 2).
In order to obtain a geometric interpretation of QP (17), we note that, analogously to (13),

(15) and (16) can be rearranged to give[
W̃ ÃT

Ã 0

](
di+1

λi+1

)
= −

(
g
c

)
−
(

(W − W̃ )di + (A− Ã)Tλi
(A− Ã)di

)
, (18)
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d(1)

d(2)

d∗

d0

d(1)

d(2)

d∗

di

Figure 1: Geometric interpretation of iterative refinement QP

Algorithm 1 Solving QP (1) using hot-starts for QP (20) based on iterative refinement

1: Given: Initial iterate (d0, λ0, µ0) with d0 ≥ `.
2: for i = 0, 1, 2, . . . do
3: Solve QP (20).
4: Let pi be the optimal solution of QP (20) and set di+1 = di + pi.
5: Let pλi be the optimal multipliers for (20b) and set λi+1 = λi + pλi .
6: Let µi+1 be the optimal multipliers for (20c).
7: end for

or, expressed as a QP,

min
d

1
2d

T W̃d+
(
g + (W − W̃ )di + (A− Ã)Tλi

)T
d (19a)

s.t. Ãd+ (c+ (A− Ã)di) = 0, (19b)

where the optimal multipliers for (19b) are the new iterates λi+1. Here the objective gradient and
constraint right-hand side are modified to compensate the error in the matrices.

This correction is depicted in Figure 1. Here, the lines and contours represent the constraints
and objective; those of the original problem (1) are indicated by dashes, and the solid lines represent
(19). In the left plot, which corresponds to the first iteration i = 0, the solution d0 for (19) is away

from the desired solution d∗. As the iteration progresses, the terms involving W − W̃ and A − Ã
act as corrections for the positions of the objective and constraints of the QP (19), so that, as
demonstrated in the right plot, the iterates di approach d∗.

3.3 Inequality-Constrained Problems

To handle the general class of QPs (1), we augment QP (17) with bound constraints that ensure
that the iterative refinement iterates (16a) always satisfy the original bound constraints (1c); the
resulting method is formally stated as Algorithm 1.

The iterates (di, λi, µi) now include the bound multipliers µi corresponding to (1c). The optimal
solution of

min
p

1
2p
T W̃p+

(
g +Wdi +ATλi

)T
p (20a)

s.t. Ãp+ (c+Adi) = 0 (20b)

di + p ≥ ` (20c)
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provides the step pi, the optimal multipliers for (20b) provide the step pλi , and the iterates di+1

and λi+1 are updated according to (16).
The iterates for the bound multipliers µi+1 are updated in a different manner; they are simply

set to the optimal multipliers corresponding to (20c) and, in contrast to λi, do not appear in the
QP gradient (20a). In fact, the updates for the di and λi iterates can be performed without the
knowledge of the µi iterates, and the algorithm can be executed without explicitly tracking µi. To
see that this is reasonable, suppose for the moment that the active set A∗ at the optimal solution
of the original QP (1) is known, and that we apply the procedure in Section 3.2 directly to the
equality-constrained QP with the original equality constraints and active bound constraints,

min
d∈Rn

1
2d

TWd+ gTd (21a)

s.t. Ad+ c = 0 (21b)

dA∗ = `A∗ . (21c)

Then, the multiplier iterates λi in (16b) consist of the multipliers for the original constraints (1b),
λorig, and the multipliers for the active bound constraints (1c), µA∗ ; i.e., λi = (λorigi , µA∗i ). For the
extended QP (21), the term involving λi in the right-hand side of (18) then becomes([

A
I

]
−
[
Ã
I

])T (
λorigi

µA∗i

)
= (A− Ã)Tλorigi .

Therefore, the bound multipliers µA∗i are not needed in order to compute the new iterate. Conse-
quently, if the active set of (20) has settled to the optimal active set A∗, it is not necessary to track
the bound multipliers explicitly in order to execute the algorithm proposed in the previous section.
Our algorithm uses this update strategy also when the active set of (20) may not have settled yet.

In a practical setting, a suitable termination criterion is required. In this paper, we use the
semi-smooth function

Φ(d, λ) =

∥∥∥∥( min{d− l, g +Wd+ATλ}
Ad+ c

)∥∥∥∥
2

. (22)

It is easy to verify that Φ(d∗, λ∗) = 0 if and only if (d∗, λ∗) is optimal. Note that an explicit
knowledge of the bound multipliers µ is again not required. We may also use Φ(d, λ) as a means
to monitor whether Algorithm 1 is diverging or cycling.

Before proving the main theorem of this section, we provide a lemma discussing local properties
of the iterates under some regularity assumptions. Here and throughout the rest of the paper we
define the active set for a given vector d ∈ Rn as A(d) := {j : d(j) = `(j)}, and the corresponding
set of free variables as F(d) := A(d)C .

Lemma 1 Suppose that W̃ and W are positive definite and that QP (20) is feasible for each i (so
that Algorithm 1 is well-defined). Further assume that (d∗, λ∗, µ∗) is the unique optimal primal-dual
solution of QP (1) with active set A∗ = A(d∗), that strict complementarity holds, and that ÃF∗

and AF∗ have full row rank.
Then there exists ε > 0 and c1 > 0 so that for all i with (di, λi) ∈ Bε := {(d, λ) | ‖(d, λ) −

(d∗, λ∗)‖ ≤ ε} we have A(di+1) = A∗ and ‖(di+1, λi+1) − (d∗, λ∗)‖ ≤ c1‖(di, λi) − (d∗, λ∗)‖, if
(di+1, λi+1) is obtained from the updates in Steps 4 and 5 of Algorithm 1.
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Proof. First note that (d∗, λ∗, µ∗) satisfies the KKT conditions for (1)

g +Wd∗ +ATλ∗ − µ∗ = 0 (23a)

c+Ad∗ = 0 (23b)

µ∗ ≥ 0 (23c)

d∗ ≥ ` (23d)

µT∗ (d∗ − `) = 0. (23e)

Considering QP (20), and following arguments similar to the derivation of (19), one can show that
di+1 is the solution of

min
d

1
2d

T W̃d+
(
g + (W − W̃ )di + (A− Ã)Tλi

)T
d (24a)

s.t. Ãd+ (c+ (A− Ã)di) = 0 (24b)

d ≥ `, (24c)

and (λi+1, µi+1) are the corresponding optimal multipliers. The KKT conditions for this QP are
given as

W̃di+1 + g + (W − W̃ )di + (A− Ã)Tλi + ÃTλi+1 − µi+1 = 0 (25a)

Ãdi+1 + c+ (A− Ã)di = 0 (25b)

µi+1 ≥ 0 (25c)

di+1 ≥ ` (25d)

(µi+1)
T (di+1 − `) = 0. (25e)

Suppose for the moment that di = d∗ and λi = λ∗, and substitute (23a) and (23b) into (25a) and
(25b). Rearranging terms one can verify that then (di+1, λi+1, µi+1) = (d∗, λ∗, µ∗) satisfies the KKT
conditions (25) and is therefore the optimal solution of (24). Since (24c) and (1c) are identical, the
active set for (24) is A∗.

Because of the full row rank of ÃF∗ , the linear independence constraint qualification (LICQ)

holds at the solution of (24) if (di, λi) = (d∗, λ∗). Since strict complementarity also holds and W̃ is
positive definite by assumption, standard sensitivity results hold (see, e.g., [12]), and there exists
ε > 0 so that for (di, λi) ∈ Bε (i.e., the gradient in (24a) and the constant term in (24b) vary
sufficiently little), the active set of (24) does not change and is identical to that of QP (1). Hence
A(di+1) = A∗.

Let (di, λi) ∈ Bε. Noting that (µi+1)
F∗ = 0 and dA∗i+1 = dA∗∗ , substituting again (23a) and (23b)

into (25a) and (25b), and rearranging terms, it can be seen that
W̃F∗F∗ W̃F∗A∗ (ÃF∗)T 0

W̃A∗F∗ W̃A∗A∗ (ÃA∗)T −I
ÃF∗ ÃA∗ 0 0

0 −I 0 0




dF∗
i+1 − dF∗

∗
dA∗
i+1 − dA∗

∗
λi+1 − λ∗

(µi+1)A∗ − (µ∗)
A∗

 = −


ĝF∗
i

ĝA∗
i

(A− Ã)T (di − d∗)
0

, (26)

where ĝi = (W − W̃ )(di − d∗) + (A − Ã)T (λi − λ∗). Since W̃ is positive definite and ÃF∗ has
full row rank, the matrix K̃A in this linear system is non-singular. The claim then follows with
c1 = ‖I−K̃−1A KA‖, whereKA is the matrix in (26) with W̃ and Ã replaced byW and A, respectively.
�

9



The next theorem shows that Algorithm 1 has desirable convergence properties. In particu-
lar, the method cannot converge to spurious solutions, and local convergence is guaranteed under
regularity assumptions if the matrix data is not too different.

Theorem 1 Suppose that W̃ and W are positive definite and that QP (20) is feasible for each i.
Then the following statements hold true for the sequence (di, λi, µi) generated by Algorithm 1.

i) If (di, λi) converges to (d∗, λ∗), then d∗ is the unique optimal solution of QP (1), and λ∗ are
optimal multipliers.

ii) Suppose that the assumptions of Lemma 1 hold, and that in addition

c2 :=

∥∥∥∥∥∥I −
[
W̃F∗F∗ (ÃF∗)T

ÃF∗ 0

]−1 [
WF∗F∗ (AF∗)T

AF∗ 0

]∥∥∥∥∥∥ < 1. (27)

Then, if (di, λi) is sufficiently close to (d∗, λ∗), the sequence generated by Algorithm 1 converges
to (d∗, λ∗, µ∗).

Proof. To i): Recall that the iterates satisfy the optimality condition (25) of the QP (24). Because
(di, λi) converges to (d∗, λ∗), we have that µi is bounded. Consequently, there is a subsequence µij
that converges to µ∗. Taking the limit in (25) as ij → ∞, we see that the limit point satisfies the
optimality conditions (23). Hence, d∗ is an optimal solution of QP (1) with optimal multipliers λ∗
and µ∗. Uniqueness of d∗ follows from the positive-definiteness of W .

To ii): Let ε > 0 and c1 > 0 be the constants from Lemma 1. Set ε̃ = ε/max{1, c1} and let
(di, λi) ∈ Bε̃ ⊆ Bε. Then A(di+1) = A∗ and (di+1, λi+1) ∈ Bc1ε̃ ⊆ Bε by Lemma 1. Applying this
argument a second time, it follows A(di+2) = A∗.

Therefore, (26) holds with i replaced by i+1, and dA∗i+2 = dA∗i+1 = dA∗∗ . Because then dA∗i+2−dA∗∗ =

dA∗i+1 − dA∗∗ = 0, (26) can be reduced to[
W̃F∗F∗ (ÃF∗)T

ÃF∗ 0

](
dF∗i+2 − dF∗∗
λi+2 − λ∗

)
= −

([
WF∗F∗ (AF∗)T

AF∗ 0

]
−
[
W̃F∗F∗ (ÃF∗)T

ÃF∗ 0

])(
dF∗i+1 − dF∗∗
λi+1 − λ∗

)
.

Using (27) we obtain ‖(di+2, λi+2) − (d∗, λ∗)‖ ≤ c2‖(di+1, λi+1) − (d∗, λ∗)‖. Because c2 < 1, also
the new iterate (di+2, λi+2) lies in Bε. Repeating this argument, we see that (dj , λj) ∈ Bε for all
j ≥ i+ 1, and we obtain (dj , λj)→ (d∗, λ∗). �

4 Acceleration By Preconditioned Linear Solver

Let us assume for the moment that the optimal active set A∗ is known. In that case, we seek the
solution of the linear system[

WFF (AF )T

AF 0

]
︸ ︷︷ ︸

=:M

(
dF

λ

)
= −

(
g +WFA `A

c+AA `A

)
(28)

with A = A∗, F = AC , and set dA = `A (see also (6)). The disadvantage of the fixed-point iteration
(9), which is the basis of the algorithm proposed so far, lies in its potentially slow linear convergence
rate. To speed up the convergence, we may use some accelerated iterative linear solver method,
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such as, for example, GMRES [23], LSQR [22], LSMR [15], or SQMR [16]. Note that these methods
converge independent of some contraction condition (cf. (12)), but for good practical performance,
they require the application of a preconditioner. In our case, the preconditioner replaces W and A
in (28) by W̃ and Ã, respectively, and its application requires the solution of[

W̃FF (ÃF )T

ÃF 0

](
zFj
zλj

)
=

(
rj
sj

)
(29)

during iteration j of the iterative linear solver. In our context, the precise definition of the right-
hand side rj and sj is not important; these vectors are defined by the specific iterative linear solver
method. The solution (zFj , z

λ
j ) provides preconditioned quantities required by the particular linear

solver. As before we make the key observation that the solution of (29) can be obtained equivalently
by solving the QP

min
z

1
2z
T W̃z − rTj zF (30a)

s.t. Ãz − sj = 0 (30b)

zA = 0. (30c)

However, the optimal active set A∗ is not known in advance. In our algorithm, we start the
iterative linear solver for (28) if the active set no longer changes in Algorithm 1 because we might
have found the optimal active set. Still, it is important to detect non-optimal active sets. For this
purpose, we modify the previous QP, and instead solve

min
z

1
2z
T W̃z − rTj zF +

(
gA +WAF d̄Fj +WAA`A + (AA)T λ̄j

)T
zA (31a)

s.t. Ãz − sj = 0 (31b)

zA ≥ 0 (31c)

to obtain the preconditioned quantities zF and zλ for the iterative linear solver. Here, (d̄Fj , λ̄j)
are the iterates of the linear solver for the system (28). Note that this QP can be solved using
a hot-start for the reference QP (2). If zA 6= 0, we take this as an indication that too many
variables might have been considered active. Theorem 2 below shows this strategy indeed prevents
convergence to a point with incorrect active set.

Algorithm 2 details the overall method. In an outer loop (indexed by i), the algorithm applies
the iterative refinement steps (Steps 4 and 25) in the same way as in Algorithm 1. Recall that the
iterates µi for the bound multipliers are not required to execute the algorithm and are omitted here
for simplicity. During this procedure, the method keeps track of the active set Ai. If the active
set is identical in two consecutive iterations and the most recent step was an iterative refinement
step (i.e., ref flag = true), the algorithm starts the accelerated iterative linear solver (in an inner
loop, Steps 10–23) from the current outer iterate in order to solve (28) for the current active set.
Here, applications of the preconditioner are performed by solving the QP (30). The iterative linear
solver method is interrupted if either zA 6= 0 (indicating that the active set might be too large) or
if the inner iterate violates the (ignored) bounds on the free variables (indicating that the active
set might be too small). In either case, the algorithm reverts to the outer iterative refinement
procedure from the most recent feasible iterate of the inner iterative linear solver method. Note
that the details of the iterative linear solver computations in Steps 11 and 16 are left vague, since
they depend on the particular method. For concreteness, Appendix A provides an explicit version
of Algorithm 2 for the SQMR linear solver method.

11



Algorithm 2 (iQP) Solving QP (1) using hot-starts for QPs (20) and (31), accelerated version

1: Given: Initial iterates d0 ≥ ` and λ0.
2: Initialize: A−1 = {l | d(l)0 = `(l)} and ref flag← false.
3: for i = 0, 1, 2, . . . do
4: Solve QP (20) to obtain optimal solution pi with optimal multipliers pλi .

5: Determine the active set Ai = { l | d(l)i + p
(l)
i = `(l)}.

6: if Ai = Ai−1 and ref flag = true then
7: Set ref flag← false.
8: Fix active set A ← Ai and F ← AC .
9: Initialize iterative linear solver for solving (28) with iterate (d̄F0 , λ̄0)← (dFi , λi).

10: for j = 0, 1, 2, . . . do
11: Perform iterative linear solver computations up to application of preconditioner.
12: Apply preconditioner by solving QP (31).
13: if zAj 6= 0 in optimal solution of QP (31) then

14: Update outer iterate (dFi+1, d
A
i+1, λi+1)← (d̄Fj , `

A, λ̄j); break.
15: end if
16: Continue to perform iterative linear solver computations to obtain (d̄Fj+1, λ̄j+1).

17: if d̄Fj+1 6≥ `F then

18: Update outer iterate (dFi+1, d
A
i+1, λi+1)← (d̄Fj , `

A, λ̄j); break.
19: end if
20: if (d̄Fj+1, λ̄j+1) solves (28) then

21: Return optimal solution (d∗, λ̄j+1) with dF∗ = d̄Fj+1 and dA∗ = `A.
22: end if
23: end for
24: else
25: Update di+1 = di + pi and λi+1 = λi + pλi .
26: Set ref flag← true.
27: end if
28: if (di+1, λi+1) solves (1) then
29: Return optimal solution (di+1, λi+1).
30: end if
31: end for

The flag ref flag is included for two reasons: First, it ensures that at least one iterative
refinement step is taken between two executions of the iterative linear solver. In this way, the
initial iterate in the second execution is different from the final iterate in the first execution. This
prevents cycling in case the iterative linear solver is interrupted in its first iteration without taking
any step.

Secondly, if Ai = Ai−1 and the most recent iteration was an iterative refinement step (Step 25),
it is guaranteed that pAi

i = 0. This is desirable if pi from (20) happens to be identical to the solution
z of the preconditioning QP (31) in the first iteration of the iterative linear solver methods. This
is the case for SQMR, and therefore a renewed solution of the iterative refinement QP in Step 12
of the first SQMR iteration can then be skipped.

Finally, we note that, if the iterative linear solver is interrupted before having taken a step in
outer iteration i, we have (di+1, λi+1) = (di, λi) and the iterative refinement QP solution (pi, p

λ
i )

can be used in the next iteration i+ 1 without solving QP (20) again.
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Before stating the convergence properties of this method, we make the following assumptions
on the iterative linear solver.

Assumptions 1 Assume that the iterative linear solver in the inner loop of Algorithm 2 (Steps 9–
12, 16, and 23) has the following properties:

i) If the iterates generated by the linear solver method converge and the matrix in (29) is nonsin-
gular, the limit point of the iterates satisfies the linear system (28) and the quantities zFj , zλj ,
rj, and sj in the preconditioning system (29) converge to zero.

ii) If the matrices in (28) and (29) are nonsingular, the iterates generated by the linear solver
converge to the solution of (28) from any starting point.

iii) If the matrices in (28) and (29) are nonsingular, there exists a constant c3 > 0 so that

max

{∥∥zFj ∥∥, ∥∥zλj ∥∥,∥∥rj∥∥, ∥∥sj∥∥,∥∥∥∥(d̄Fjλ̄j
)
−
(
d̄F∗
λ̄∗

)∥∥∥∥} ≤ c3

∥∥∥∥(d̄F0λ̄0
)
−
(
d̄F∗
λ̄∗

)∥∥∥∥ (32)

for all d̄F0 and λ̄0, and for all j, where (d̄F∗ , λ̄∗) is the solution of (28).

We point out that the LSQR [22] and LSMR [15] solvers satisfy these assumptions, as proved in
[15].

In the description of the algorithm, we implicitly assumed that the matrices in (28) and (29) are
nonsingular. However, it is possible that the solution of (20) is degenerate and that the gradients
of the active constraints are linearly dependent. In this case, the active set A identified in Step 5
leads to a preconditioning system (29) with a singular matrix because AF does not have full row
rank. Nevertheless, as mentioned at the end of Section 2.1, usually active-set QP solvers maintain
a “working set” W of linearly independent constraints that identify the optimal solution. Using
this working set in place of the active set A in Step 5, we are guaranteed to always obtain a
nonsingular preconditioning system (29) if F =WC . In addition, if we assume that the QP solver
returns the same working set whenever the active set has not changed during a hot-start for (20),
Algorithm 2 will still detect when the active set remains unchanged and enter the inner loop in
Step 6. Therefore, the nonsingularity Assumption 1i) is not restrictive if we consistently replace A
by a working set.

The following theorem shows that Algorithm 2 cannot converge to spurious solutions and that
local convergence is guaranteed under certain regularity assumptions.

Theorem 2 Suppose that Assumption 1 holds, that W̃ and W are positive definite, that QP (20)
and QP (31) are always feasible (so that Algorithm 2 is well-defined), and that the matrix in (29)
is nonsingular whenever the preconditioning QP (31) is solved in Step 12. Furthermore assume
that the algorithm does not terminate at an optimal solution in Step 21 or Step 29.

i) If Step 25 is executed infinitely many times and the sequence (di, λi) converges to some limit
point (d∗, λ∗), then d∗ is the unique optimal solution of QP (1).

ii) If Step 25 is executed finitely many times, the algorithm eventually stays in the inner iterative
linear solver loop (Steps 10–23) for some active set A. If the corresponding sequence of iterative
linear solver iterates (d̄Fj , λ̄j) converges to some limit point (d̄F∗ , λ̄∗), then d∗ defined by dF∗ = d̄F∗
and dA∗ = `A is the unique optimal solution of QP (1) with corresponding optimal multipliers
λ∗ = λ̄∗.
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iii) Suppose that (d∗, λ∗, µ∗) is the unique optimal primal-dual solution of QP (1) with active set
A∗ = A(d∗), that strict complementarity holds, and that ÃF∗ and AF∗ have full row rank.
Then, if (d0, λ0) is sufficiently close to (d∗, λ∗), Algorithm 2 eventually remains in the inner
iterative linear solver loop with active set A = A∗, and the inner iterates (d̄Fj , λ̄j) converge to

(dF∗∗ , λ∗).

Proof. To i): If Algorithm 2 executes the iterative refinement update in Steps 4 and 25 infinitely
many times, we can argue as in the proof of Theorem 1i) that the limit point (d∗, λ∗) satisfies the
optimality conditions for QP (1).

To ii): If Step 25 is executed only a finite number of times, the algorithm eventually performs
only iterative linear solver iterations in the inner j-loop with some fixed active set A. Because
Step 18 is not reached, the test in Step 17 is not true, and therefore d̄Fj ≥ `F for all j, so that in

the limit d̄F∗ ≥ `F and hence by construction d∗ ≥ `. Similarly, because Step 14 is not reached, we
have zAj = 0 for all j.

Furthermore, the preconditioning QP (31) is solved in each iteration, and its optimality condi-
tions imply

W̃FF W̃FA (ÃF )T 0

W̃AF W̃AA (ÃA)T −I
ÃF ÃA 0 0
0 −I 0 0




zFj
zAj
zλj
µAj

 =


rj

−
(
gA +WAF d̄Fj +WAA`A + (AA)T λ̄j

)
sj
0

, (33)

where µAj ≥ 0 are the multipliers for the bound constraints (31c). Because we assume that the

iterates converge, it follows from Assumption 1i) that (zFj , z
λ
j ) and residuals (rj , sj) converge to

zero, and the optimality conditions above become in the limit
W̃FF W̃FA (ÃF )T 0

W̃AF W̃AA (ÃA)T −I
ÃF ÃA 0 0
0 −I 0 0




0
0
0
µA∗

 =


0

−
(
gA +WAF d̄F∗ +WAA`A + (AA)T λ̄∗

)
0
0

 (34)

with µA∗ ≥ 0.
Finally, because we assume that the iterates converge, it follows from Assumption 1i) that

(d̄F∗ , λ̄∗) satisfy (28). Together with (34) this implies that the optimality conditions (23) for QP (1)
are satisfied by (d∗, λ̄∗).

To iii): Note that (d̄F∗ , λ̄∗) = (dF∗∗ , λ∗) is the solution of (28). Due to strict complementarity,
we have d̄F∗ > `F∗ , and from Assumption 1iii) we then have that d̄Fj ≥ `F∗k for all j if (d̄F0 , λ̄0) is

sufficiently close to (d̄F∗ , λ̄∗). Similarly, µA∗∗ = gA∗ +WA∗F∗dF∗∗ +WA∗A∗`A∗ + (AA∗)Tλ∗ > 0.

Because W̃ is positive definite and ÃF has full row rank, the matrix in (33) is nonsingular.
Therefore, we then have from (33) and (32) that µA∗j > 0 for all j if (d̄F0 , λ̄0) is sufficiently close

to (d̄F∗ , λ̄∗), and due to complementarity, zA∗j = 0 for such j. In summary, we conclude that
Algorithm 2 remains in the inner iterative linear solver loop if it is invoked at an iterate (di, λi) ∈ Bε1
for a sufficiently small ε1 > 0 in Step 9, because then the conditions in Steps 13 and 17 will never
be met.

Let ε > 0 and c1 > 0 be the constants from Lemma 1. Set ε2 = min{ε, ε1}/max{1, c1} and
let (d0, λ0) ∈ Bε2 ⊆ Bε. Then A(d1) = A∗ and (d1, λ1) ∈ Bc1ε2 ⊆ Bε by Lemma 1. Applying this
argument a second time, it follows A(d2) = A∗. As a consequence, Algorithm 2 will enter the inner
loop with active set A∗ at the iterate (d1, λ1) ∈ Bc1ε2 ⊆ Bε1 . As shown in the previous paragraph,
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the method will then remain in the inner loop, and from Assumption 1ii) it follows that (d̄Fj , λ̄j)

converges to (dF∗∗ , λ∗). �

We point out that, in contrast to Theorem 1ii), Theorem 2iii) does not require a contraction
condition (27).

5 Numerical Results

To examine the practical performance of the proposed approach, a prototype implementation of
Algorithm 2, which we will refer to as iQP (inexact QP solver), was created in Matlab R2012b.
SQMR [16] was chosen as the iterative linear solver for the inner loop, because it exploits the
symmetry of the matrix and allows indefinite preconditioners. For completeness, the detailed
description of Algorithm 2 using SQMR is provided in Appendix A. We note that SQMR does
not have theoretical convergence guarantees; in our implementation, SQMR is simply restarted
if it breaks down, but this fall-back was triggered in our experiments very rarely. The QPs (20)
and (31) were solved using the open-source active-set parametric QP solver qpOASES [10, 11]. All
experiments were performed on an 8-core Intel-i7 3.4GHz 64bit Linux server with 32GB RAM.
Matlab was set to use only a single computational thread.

We present two sets of numerical experiments. In Section 5.1, Algorithm 2 is used to solve
a sequence of QPs that arise in certain nonlinear model predictive control (NMPC) applications.
In Section 5.2, a sequence of randomly perturbed quadratically-constrained quadratic programs
(QCQPs) is solved.

The goal of these experiments is two-fold. First, we explore the reliability of the new QP method
in practice, given that convergence is not guaranteed. Second, we compare the performance of the
new iterative iQP method implementing Algorithm 2 (as the hot-start approach) with that of a
standard active set solver, qpOASES (as the warm-start approach). Because qpOASES uses dense
linear algebra in its current implementation, our experiments are carried out for problems with
dense matrix data.

Whether the new method requires overall less computation time for the solution of a new QP
depends on a number of factors. The warm start approach requires the factorization of the KKT
matrix in (6); this costs roughly O((nF )3) floating-point operations for dense matrices, where nF is
the number of free variables. In addition, for each iteration of the active-set QP solver, in which one
variable leaves or enters the active set, the linear system (6) is solved twice, and the factorization of
the KKT matrix is updated for a new active set; this requires roughly O((nF )2) operations. On the
other hand, the hot-start approach does not require a factorization with work O((nF )3), but the
number of solves of the linear system (6) increases because a small number of reference QPs have
to be solved per iQP iteration, each of which might require several active-set changes, particularly
in the first iQP iterations. Therefore, whether the new approach requires less computational effort
depends on the number of iQP iterations and the relative cost of factorizing the KKT matrix in (6)
and the solution of the corresponding linear system.

In some applications, the computation of the matrices A and W in (1) dominate the computa-
tional time. This is, for example, the case when the constraints involve the integration of differential
equations, as in the NMPC context (see Section 5.1.3). In that case, the effort for evaluating the
entire A matrix might be equivalent to computing n products of A (or m products of AT ) with a
vector. Therefore, we also report the number of matrix-vector products involving both A · v and
AT · v in our statistics. If this count is significantly smaller than n or m over the entire execution
of an iQP run, a large reduction in overall computation time can be expected.
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Symbol Value Unit

g (0, 0, 9.81)T m/s2

k 0.1 N/m
lr 0.55 m
m 0.45 kg

Symbol Value Unit

xe (7.5, 0, 0)T m
wv 0.25 –
wx 25 –
wu 0.01 –

Symbol Value Unit

wsl 0.1 –
xmin
1 −0.5 m
xmax
1 8 m
xmin
3 −10 m

Table 1: Parameter values for the chain of point masses model (35).

5.1 QPs from Nonlinear Model-Predictive Control

In this section, we investigate the performance of iQP on a sequence of QPs from a nonlinear model
predictive control (NMPC) application.

5.1.1 Chain of Point Masses Problem

Our NMPC case study involves a motion control problem for a chain of NPM free point masses,
indexed by 1 ≤ i ≤ NPM, that are connected by springs and subject to gravity. An additional
point mass, indexed by 0, is fixed at the origin. Point mass positions at time t are denoted by
xi(t) = (xi,x(t), xi,y(t), xi,z(t)) ∈ R3 and velocities by vi(t) ∈ R3. Starting with initial conditions
xi(0) = (7.5i/NPM, 0, 0)T , vi(0) = (0, 0, 0)T , the point masses are accelerated by gravity and the
chain’s springs expand. The dynamic model is free of friction such that, once accelerated by gravity,
it does not return to rest without appropriate application of external forces. The velocity vNPM

(t)
of the final point mass may be controlled through u(t) = (ux(t), uy(t), uz(t)) ∈ R3. The goal of the
controller is to determine velocities u(t) for the final point mass that bring the chain to rest. This
optimal control problem can be written as

min
x(·),u(·)

∫ T

0
wv

NPM∑
i=1

‖vi(t)‖22 + wx‖xNPM
(t)− xe‖22 + wu‖u(t)‖22 + wsl‖usl(t)‖22 dt (35a)

s.t. ẋi(t) = vi(t) t ∈ [0, T ], 1 ≤ i < NPM (35b)

v̇i(t) = (Fi+1(t)− Fi(t)) ·NPM/m− g t ∈ [0, T ], 1 ≤ i < NPM (35c)

ẋNPM
(t) = u(t) t ∈ [0, T ] (35d)

x(0) = x̂0 (35e)

u(t) ∈ [−1, 1]3 t ∈ [0, T ] (35f)

xlow1 ≤ x1(t) ≤ xhigh1 , xlow3 − usl(t) ≤ x3(t) t ∈ [0, T ], (35g)

usl(t) ≥ 0, t ∈ [0, T ]. (35h)

We denote by Fi(t) the forces Fi(t) :=
(
xi(t) − xi−1(t)

)
· k
(
n − lr/‖xi(t) − xi−1(t)‖2

)
. The slack

variables usl(t) penalizes violation of the lower bound on x3(t). Characteristics and weights are
given in Table 1. This problem has been considered in similar form in, e.g., [19].

5.1.2 Nonlinear Model-Predictive Control

To simplify the notation, we rewrite (35b)–(35e) as

ẏ(t) = D(y(t), u(t)), t ∈ [0, T ], y(0) = ŷ0. (36)

In the online NMPC setting, one considers a sequence of sample times τk, indexed by k. The state
ŷ0(τ

k) of a physical system is monitored (sampled) at τk. Following the idea of real-time iterations
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[9], the optimal control answer is computed as the solution of a feedback QP, see Section 5.1.3.
From this solution, the initial optimal control action u∗(τk) is applied to the system. After the
feedback interval ∆τ has elapsed, the system state ŷ0(τ

k+1) is remeasured at τk+1 = τk + ∆τ and
the feedback QP is resolved with the new value of ŷ0. Hence, the number of NMPC samples is
equal to NQP, the number of QPs solved.

In order to simulate the change of the point masses process from one sample time τk to the next
τk+1 in our experiments, the forward problem (35b)–(35d) is solved, starting in the previous initial
value ŷ0(τ

k) and applying the most recent feedback control uk0 for the duration of the sampling
interval. The state at the end of this simulation is then taken as the (unperturbed) initial conditions
ŷ0(τ

k+1) for the next sample.

5.1.3 Feedback QP Problem

The feedback QP is obtained from the optimal control problem (35) by discretizing the ordinary
differential equation (ODE) (35b)–(35d) and linearizing the resulting NLP. In our experiment, we
follow the direct multiple shooting approach [6, 20]. To this end, we choose an equidistant time
discretization 0 = t0 < t1 < . . . < tNMS−1 < tNMS

= T of the prediction horizon [0, T ] into NMS

shooting intervals [tj , tj+1], 0 ≤ j < NMS. We introduce control parameters uj ∈ R3 for a piecewise
constant control discretization, u(t) |t∈[tj ,tj+1)= uj for 0 ≤ j < NMS. In addition, we apply the
multiple shooting state parametrization

ẏ(t) = D(y(t), uj), t ∈ [tj , tj+1], y(tj) = sj (37)

that decouples the forward problem (36) into NMS initial value problems. In order to ensure
consistency of the optimal solution, we introduce the additional matching conditions

y(tj+1; tj , sj , uj)− sj+1 = 0, 0 ≤ j < NMS. (38)

Herein, y(tj+1; tj , sj , uj) denotes the solution of (37) on [tj , tj+1] evaluated in tj+1 when started
with initial value sj , applying the control uj . Inequality path constraints (35g) are enforced on the
shooting grid {tj}0≤j≤NMS

, resulting in constraints of the form

0 ≤ rj(sj , uj), 0 ≤ j ≤ NMS. (39)

We set uNMS
= uNMS−1 for simplicity of notation in (39). In summary, this discretization and

parametrization transforms problem (35) into a discrete-time control problem that is a finite-
dimensional NLP.

The linearization of this NLP about a reference point (s̄, ū) is

min
sj ,uj

NMS∑
j=0

1
2z
T
j Wjzj + gTj zj (40a)

s.t. sj+1 = Djsj + Ejuj + fj 0 ≤ j < NMS (40b)

s0 = ŷ0 (40c)

uj ∈ [0, 1]3 0 ≤ j ≤ NMS (40d)

0 ≤ Pjsj +Qjuj + pj 0 ≤ j ≤ NMS, (40e)

with the block Gauß-Newton Hessian approximations Wj , the gradient of the objective parts gj ,
constraint matrices Dj = ∇sy(tj+1; tj , s̄j , ūj), Ej = ∇uy(tj+1; tj , s̄j , ūj), Pj = ∇srj(s̄j , ūj), and
Qj = ∇urj(s̄j , ūj), and constraint vectors fj = y(tj+1; tj , s̄j , ūj) and pj = rj(s̄j , ūj). Therein, the
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“expensive” matrices Dj , Ej , and Wj are usually dense and require the numerical computation of
sensitivities of the solution of the initial value problem (37) with respect to all independent variables
sj and uj , and capture the ODE dynamics of the process. Typically, computing the sensitivity of

y(tj+1; tj , sj , uj) with respect to a single variable s
(i)
j or u

(i)
j is about as time-consuming as a

forward integration [2]. As a consequence, the computation of the constraint Jacobians Dj , Ej ,
and the Hessian (approximation) Wj can become the computational bottleneck and can take up
more than 90 percent of the CPU time [19]. To address this, [5] proposed an NMPC algorithm
named “Mode C” that solves a single QP (24), i.e., it performs one iteration of Algorithm 1. The
iQP approach proposed in this article improves over this idea by employing a preconditioner and
performing multiple iterations to compute an improved solution.

5.1.4 Results

We consider the NMPC scenario for chains with NPM ∈ {6, 8, 10, 12, 14} point masses, and for a
prediction horizon of T = 8 seconds discretized into NMS ∈ {15, 20} intervals. We give feedback
every ∆τ = T/NMS ∈ {0.5333, 0.4} seconds, and run this scenario for τmax = 30 seconds, computing
NQP = dτmaxNMS/T e ∈ {57, 76} samples. This duration and sampling rate was sufficient for
the NMPC controller to successfully settle the system in all investigated scenarios. The resulting
dimensions are listed in Table 2, where ny is the number of state variables, nu = 3+(NPM−1) is the
number of control and slack variables, and n and m are the number of QP variables and constraints.
We obtain the reference QP as the linearlization (40) at the steady state of the system, which is
obtained by setting u(t) ≡ 0 and y(t) ≡ ŷ0 such that the chain is at rest, satisfying D(ŷ0, 0) ≡ 0.

In Table 2, we report the performance of the iQP algorithm on the ten QP sequences. All QPs
were solved successfully by iQP, with the exception of one QP in the NMS = 20, NPM = 6 series.
The metric for this experiment is the number of matrix-vector products with the constraint matrix
A in (1) and its transpose, which are computationally expensive because these involve the sensitivity
matrices Dj and Ej and require computations by the ODE solver. The minimum, maximum, and
mean of the total number of products required by iQP during the solution of the QPs (20) and (31)
is compared with the equivalent number of matrix-vector products that are necessary to compute
the entries of the almost block-diagonal matrix Ak. Here we assume that each of the NMS blocks
in A can be obtained by ny products of the transpose of the sensitivity matrices with unit vectors.
As can be seen, iQP reduces this effort by a factor of up to 2.4 on average.

As the physical system settles and gets closer to the desired steady-state solution, the differ-
ences between the QPs from one sample time to the next become smaller, and iQP requires fewer
iterations. This can be seen in Figure 2, which illustrates the diminishing number of active set
changes and matrix-vector products over the QP sequence for a typical case.

5.2 Solving Sequences of Similar NLPs with SQP

As briefly discussed in the introduction, a sequence of QPs with similar data also arises when the
SQP algorithm is applied to a sequence of similar NLPs. In this section, we consider the sequential
solution of quadratically-constrained quadratic problems, which we will refer to as QCQP(t) with
t = 0, 1, 2, . . ., of the form

min
x∈Rn

1
2x

TH0x+ (qt0)
Tx+ rt0 (41a)

s.t. 1
2x

THjx+ (qtj)
Tx+ rtj ≤ 0 for all j = 1, . . . ,m (41b)

x ≥ 0. (41c)
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Dimensions Sizes QPs Matrix-Vector Products
NMS NPM ny nu n m Total Success Min Mean Max Full Ak

15 6 33 8 656 575 57 57 16 29.8 128 33
15 8 45 10 880 787 57 57 20 33.5 130 45
15 10 57 12 1,104 999 57 57 24 36.9 102 57
15 12 69 14 1,328 1,211 57 57 32 38.2 90 69
15 14 81 16 1,522 1,423 57 57 28 35.8 74 81

20 6 33 8 861 765 76 75 16 32.4 148 33
20 8 45 10 1,155 1,047 76 76 16 30.0 112 45
20 10 57 12 1,449 1,329 76 76 24 34.8 124 57
20 12 69 14 1,743 1,611 76 76 24 33.0 104 69
20 14 81 16 1,977 1,893 76 76 24 33.8 108 81

Table 2: iQP statistics for the NMPC case study.
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Figure 2: Number of matrix-vector products and active set changes over the course of 57 solved
QPs for the NPM = 6, NMS = 15 chain simulation.
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5.2.1 Experimental Setup

For a chosen problem size of n variables and m constraints, the base (or reference) problem, indexed
by t = 0, is generated using the following steps.

1. Choose optimal solution values x∗ ∼ U(−1, 1)n, λ∗ ∼ U(0, 1)m, and µ∗ ∼ U(0, 1)n, where
U(a, b) is the uniform distribution on the interval [a, b].

2. Adapt the solution so that the first κx variable bounds and the first κc inequality constraints
are active: Reset the first κx elements in x∗, the last n − κx elements in µ∗, and the last
m− κc elements in λ∗ to zero.

Here, 0 ≤ κc ≤ m and 0 ≤ κx ≤ n denote the number of variable bound constraints (41b)
and inequality constraints (41c) that are active at the optimal solution. For our experiments,
we choose κc = d1/3me and κx = d1/3ne.

3. For j = 0, . . . ,m, generate random symmetric positive definite matrices Hj (j = 0, . . . ,m)
of dimension n × n with condition number 1000. For our experiments, we use the Matlab
function sprandsym(n,.2,1e-3,1).

4. For j = 1, . . . ,m, choose q0j ∼ U(−1, 1)n and set r0j := −
(
1
2x

T
∗Hjx∗ + (q0j )

Tx∗

)
. Add a

uniform random number from U(0, 1) to each of the last m − κc elements in r0j to make the
corresponding constraints inactive.

5. Set q00 := −
(

(H0 + λ
(j)
∗ Hj)x∗ +

∑m
j=1 λ

(j)
∗ q

0
j − µ∗

)
and r00 = −

(
1
2x

T
∗H0x∗ + (q00)Tx∗

)
.

It can easily be verified that then x∗ is the optimal solution of (41) for t = 0, and that λ∗ and µ∗
are the corresponding multipliers. By construction, strict complementarity holds, and the objective
and constraint functions are convex. Note that this problem can be reformulated into the standard
form (3) by introducing slack variables.

From the QCQP(0) data, we generate the nearby problem instance QCQP(t) by perturbing
each entry in the problem data qtj and rtj via

(qtj)
(i) ∼ N

(
(q0j )

(i), σ2
)
, rtj ∼ N

(
r0j , σ

2
)
, i = 1, . . . , n and j = 0, 1, . . . ,m. (42)

Here, N (µ, σ2) denotes the normal distribution with mean µ and variance σ2, and σ > 0 is a fixed
parameter controlling the size of the perturbation.

These QCQPs are solved using the MATLAB implementation “p-sqp”, developed by Frank E.
Curtis, of the S`1QP method proposed in [7] with minor modifications. Here, at an SQP iterate
(xk, λk), the search direction for the line search is obtained as the optimal solution of the `1QP

min
d,p,s

ρk ∇f(xk)
Td+ 1

2d
TWkd+ eT p (43a)

s.t. ∇c(xk)Td+ c(xk) + s− p = 0 (43b)

xk + d ≥ 0 (43c)

s, p ≥ 0, (43d)

where e = (1, . . . , 1)T , ρk ≥ 0 is the current value of the (inverse of the) penalty parameter, and

Wk = ρk∇2f(xk) +
∑m

j=1 λ
(j)
k ∇2c(j)(xk). Due to the convexity assumption, Wk is always positive

definite, because (ρk, λk) remains non-negative and non-zero throughout the optimization. The
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Size of perturbation σ
0.01 0.05 0.1 0.2

Successfully solved QCQPs 99.3% 99.3% 97.7% 42.9%
Average number of iQP iterations 4.9 8.5 12.5 20.6
Average change in active set for (41b) 5.3% 19.0% 25.7% 32.4%
Average change in active set for (41c) 3.4% 9.5% 13.8% 19.2%

Table 3: Statistical observations for QCQP experiments

details of the SQP method are not relevant here; the interested reader is referred to [7]. We only
point out that the `1QP (43) is always feasible by construction. Therefore, for these problems, the
assumptions pertaining to feasibility of the QPs (1), (20) and (31) and the positive definiteness of
their Hessian matrices made for Theorems 1 and 2 are satisfied in each SQP iteration.

In our experimental setup, we initially solve QCQP(0) with the SQP method using a standard
active-set QP solver (qpOASES in our context), and then “fix” the QP (43) corresponding to the
instance QCQP(0) at the returned solution x∗ and λ∗ as the reference QP (2), i.e., A0 and W0 are
chosen to be the matrices corresponding to x∗ and λ∗. The internal state of the QP solver is also
stored. We then apply the S`1QP algorithm to the perturbed QCQP(t) problems with t = 1, 2, 3, . . .,
using x∗ and λ∗ as initial iterates. The termination tolerance for the S`1QP algorithm is set to
10−6.

The QPs (43) are solved using our iQP implementation of Algorithm 2. At the beginning of
each SQP run, the QP solver for (2) is restored to the internal state corresponding to (x∗, λ∗), and
subsequently only hot-starts are used for any solution of (20) and (31) required for Algorithm 2.
In each SQP iteration k, Algorithm 2 is terminated when the residual function (22) satisfies

Φk((d, s, p), λ) ≤ min{10−8, 10−5εk}, (44)

where εk is the current KKT error for QCQP(t). This tight tolerance is necessary because the con-
vergence analysis for S`1QP method in [7] assumes the exact solution of (43), and p-sqp frequently
fails to converge if less accurate solutions are returned. The experiments below show that even
such highly accurate solutions are obtained by Algorithm 2 with a reasonable amount of work. If
Algorithm 2 fails to satisfy condition (44) within 100 iQP iterations in some SQP iteration k, the
SQP algorithm is terminated with an error message.

5.2.2 Results

The detailed results of our numerical experiments are reported in Appendix B. A total of 64
combinations of sizes and perturbation levels σ were considered: The numbers of variables were
chosen as n ∈ {50, 200, 500, 1000}, and the numbers m of inequality constraints took the values
20%n, 50%n, 80%n, and 150%n. The perturbations were chosen as σ ∈ {0.01, 0.05, 0.1, 0.2}. For
each such combination, one QCQP(0) was generated, and then 10 perturbed instances were solved
(only 3 perturbed instances for n = 1000 due to the excessive computation times). The values
reported in Appendix B are the averages over those 10 (or 3) runs.

The SQP algorithm was run twice on each instance, once with the standard active-set QP solver
qpOASES and once with the new method iQP to solve the step computation QP (43). Except for
eight out of about 600 successfully solved instances, the number of SQP iterations was identical for
both QP solvers.
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Figure 3: Relative performance of qpOASES vs. iQP. For a given number of constraints m, number
of variables n and perturbation σ, the graphs show the ratio r = metricqpOASES/metriciQP, where
“metric” is the average CPU time or number of matrix-vector products.

Table 3 presents a summary of the performance of iQP. It is noteworthy that iQP, despite the
lack of a convergence guarantee, is able to solve most of the arising QPs and exhibits a considerable
level of reliability except when the problem perturbation becomes large. Furthermore, the number
of iQP iterations is on average only between 5 and 20 per QP, even though the level of accuracy is
rather tight (the right-hand side in (44) is between 10−8 and 10−11). We also observe that the sets
of inequality constraints (41b) and variable bounds (41c) that are active at the optimal solution
of the reference QCQP(0) and the perturbed QCQP(t) are significantly different, showing that the
problem perturbations are non-trivial.

Figures 3(a) and 3(b) compare the performance of qpOASES and iQP in terms of CPU time. As
the problem size increases, the new method becomes increasingly faster compared to the standard
approach; for n = 1000, we see a reduction of up to two orders of magnitude in CPU time. However,
we point out that in this experiment all matrices in (1) are dense, and the balance is likely to shift
in favor of qpOASES if sparse linear algebra methods can be used.

We also compare the number of matrix-vector products involving ∇c(xk) and ∇c(xk)T required
by the algorithm. This is relevant if the evaluation of the constraint Jacobians are the bottleneck of
the computation; for example, when the constraints involve the numerical integration of differential
equations. Figures 3(c) and 3(d) show a significant improvement, with a reduction of up to more
than one order of magnitude for the large instances. Here, the number of matrix-vector products
is obtained by counting the products with both ∇c(xk) and ∇c(xk)T during an iQP run. For
the qpOASES case, we consider m matrix-vector products with ∇c(xk) to be equivalent to the
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iQP iteration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
Q
P

it
e
ra

ti
o
n 0 13 6 5± 5 2± 1 2 0+ 0 0 0 0 0 0 0 0

1 6 2 0+ 0 0 0 0 0 0 0 0 0 0 0
2 1 0+ 0 0 0 0 0 0 0 0 0 0

3–7 1 0+ 0 0 0 0 0 0 0 0

Table 4: Number of qpOASES pivots in an iQP iteration within the given SQP iteration. The
superscript + (±) indicates that the inner SQMR loop in Algorithm 2 was started (started and
immediately terminated) in an iteration.

computation of the full matrix ∇c(xk), since all matrix elements can be obtained by products of
∇c(xk) with the m unit vectors.

Finally, to see the progression over an entire SQP run, we report one typical case in more detail.
Table 4 lists the total number of pivots taken by qpOASES when solving the QPs (20) or QP (31)
for each iQP iteration over the course of the SQP algorithm. Most pivots are taken in the first iQP
iteration of the first SQP iteration, indicating that the active set changes significantly compared
to the reference QP. In the later iQP iterations, in which SQMR updates are performed, no pivots
are required because then the active set remains constant.

6 Conclusions

We proposed a new QP algorithm that uses hot-starts of an active-set QP solver for a previously
solved reference QP in order to accelerate the solution of a similar QP. The numerical study showed
that this approach can reduce the computational effort when a sequence of similar QPs or NLPs is
solved. Our approach has two advantages.

First, when the computation of the constraint matrix of the QP requires expensive calculations,
such as the integration of differential equations, the evaluation of the full constraint matrix can
be avoided, and only matrix-vector products (obtained using adjoint calculations or automatic
differentiation techniques) are required. This benefit was demonstrated on a nonlinear model-
predictive control example.

Secondly, as shown for a set of randomly perturbed NLPs, speedup can be obtained when,
for each new SQP iteration, the factorization of the KKT matrix inside an active-set QP solver is
replaced by a sequence of hot-starts. This observations was made for instances with dense matrices.
It remains subject of future research whether this advantage is also observed when sparse linear
algebra techniques can be used. Furthermore, we postulate that additional computation time could
be saved if the SQP algorithm is designed to handle inexact QP solutions so that our method could
be terminated after fewer iterations. A candidate of such an algorithm has been proposed in [8].

The proposed algorithm is proven to converge if it is started sufficiently close to a non-degenerate
QP solution. The method may diverge or cycle, however, as is the case with any iterative refinement
procedure for linear systems. One premise of the present work is that a black-box QP solver can
be used in this framework, and that this QP solver is responsible for handling the update of the
active set. It appears difficult or impossible to design a globally convergent variant of the proposed
algorithm without explicitly managing the active set. Nevertheless, the numerical results show that
the method is robust to moderate changes of the QP data. In a practical setting, one could attempt
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to solve a QP with the proposed method, and, if cycling or divergence is observed, the QP could
be solved with a regular active-set QP solver. This new QP solution may then be used as the new
reference QP.
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A Detailed Description of Algorithm (2) for SQMR

Algorithm 3 Solving QP (1) using hot-starts for QPs (20) and (31), accelerated by SQMR

1: Given: Initial iterates d0 ≥ ` and λ0.
2: Initialize: A−1 = {l | d(l)0 = `(l)} and ref flag← false.
3: for i = 0, 1, 2, . . . do
4: Solve QP (20) to obtain optimal solution pi with optimal multipliers pλi .

5: Determine the active set Ai = { l | d(l)i + p
(l)
i = `(l)}.

6: if Ai = Ai−1 and ref flag = true then
7: Set ref flag← false.
8: Fix active set A ← Ai and F ← AC .

9: Initialize SQMR with

(
r0
s0

)
=

(
−
(
g +Wdi +ATλi

)F
c+Adi

)
, t =

(
pFi
pλi

)
, q0 = t, τ0 = ‖t‖, θ0 = 0,

ρ0 =

(
r0
s0

)T
q0,

(
p̄F0
p̄λ0

)
= 0, and

(
d̄F0
λ̄0

)
= 0.

10: for j = 0, 1, 2, . . . do

11: Compute t̃ =Mqj , σj = qTj t̃, αj = ρj/σj ,

(
rj+1

sj+1

)
=

(
rj
sj

)
− αj t̃.

12: Apply preconditioner by solving QP (31) to obtain zj+1 and zλj+1.

13: if zAj+1 6= 0 in optimal solution of QP (31) then

14: Update outer iterate (dFi+1, d
A
i+1, λi+1)← (d̄Fj+1, `

A, λ̄j+1); break.
15: end if

16: Compute: t =

(
zFj+1

zλj+1

)
, θj+1 = ‖t‖2/τj , γj+1 = 1/

√
1 + θ2j+1, and τj+1 = τjθj+1γj+1.

17: Compute:

(
p̄Fj+1

p̄λj+1

)
= γ2j+1θ

2
j

(
p̄Fj
p̄λj

)
+ γ2j+1αjqj .

18: Update:

(
d̄Fj+1

λ̄j+1

)
=

(
d̄Fj
λ̄j

)
+

(
p̄Fj+1

p̄λj+1

)
and d̄Aj+1 = `A.

19: if d̄Fj+1 6≥ `F then

20: Update outer iterate (dFi+1, d
A
i+1, λi+1)← (d̄Fj+1, `

A, λ̄j+1); break.
21: end if
22: if (d̄Fj+1, λ̄j+1) solves (28) then

23: Return optimal solution (d∗, λ̄j+1) with dF∗ = d̄Fj+1 and dA∗ = `A.
24: end if

25: Compute: ρj+1 =

(
rj+1

sj+1

)T
t, βj+1 = ρj+1/ρj , qj+1 = t+ βj+1qj .

26: end for
27: else
28: Update di+1 = di + pi and λi+1 = λi + pλi .
29: Set ref flag← true.
30: end if
31: if (di+1, λi+1) solves (1) then
32: Return optimal solution (di+1, λi+1).
33: end if
34: end for
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B Details of Numerical Experiment for Random QCQPs

For a QCQP of a specified size and perturbation, the following table lists these quantities: average
number of SQP iterations; the number of successfully solved instances, average CPU time (in
seconds), and qpOASES pivots for the qpOASES experiments; the number of successfully solved
QPs, average CPU time (in seconds), iQP iterations, qpOASES pivots, and matrix-vector products
encountered in total during the iQP experiments.

Problem SQP qpOASES iQP
n m σ it X CPUs #piv X CPUs it #piv #mvp

50 10 0.01 8.2 10 0.2 11.9 10 0.4 44.9 56.6 75.3
50 10 0.05 9.5 10 0.3 20.5 10 0.6 84.8 109.4 150.4
50 10 0.1 10.0 10 0.3 26.2 10 0.8 119.6 158.7 215.0
50 10 0.2 10.5 10 0.3 35.5 7 1.1 180.1 275.3 319.1

50 25 0.01 7.7 10 0.2 9.3 10 0.4 37.4 46.1 61.3
50 25 0.05 8.4 10 0.2 15.1 10 0.5 65.8 81.6 115.5
50 25 0.1 9.2 10 0.2 20.3 10 0.6 99.0 124.0 179.0
50 25 0.2 9.2 10 0.2 29.1 10 1.0 162.5 234.9 293.8

50 40 0.01 8.0 10 0.2 9.5 10 0.4 39.3 48.0 64.6
50 40 0.05 8.5 10 0.2 19.0 10 0.5 71.7 93.8 126.2
50 40 0.1 8.6 10 0.3 29.5 10 0.7 108.2 153.3 195.3
50 40 0.2 9.1 10 0.3 44.3 2 1.1 200.5 314.5 368.0

50 75 0.01 7.8 10 0.3 12.0 10 0.4 43.5 55.9 73.2
50 75 0.05 8.0 10 0.3 32.4 10 0.6 80.7 127.8 142.9
50 75 0.1 9.1 10 0.4 50.9 8 0.9 150.5 267.2 268.1
50 75 0.2 9.4 7 0.4 76.0 0 – – – –

200 40 0.01 9.0 10 1.6 15.5 10 0.7 42.7 58.1 69.3
200 40 0.05 9.7 10 1.6 37.5 10 0.9 75.1 118.1 130.5
200 40 0.1 10.2 10 1.6 54.3 10 1.0 111.0 183.5 197.8
200 40 0.2 10.6 10 1.6 82.4 10 1.4 180.8 354.4 324.8

200 100 0.01 9.0 10 2.1 15.8 10 0.8 43.2 58.6 70.2
200 100 0.05 10.0 10 2.3 38.0 9 1.1 78.9 122.2 137.8
200 100 0.1 10.0 10 2.3 57.8 10 1.3 115.6 197.0 206.7
200 100 0.2 10.0 10 2.3 88.6 10 2.2 210.3 458.1 378.0

200 160 0.01 9.0 10 3.4 16.5 10 1.2 42.9 59.5 69.5
200 160 0.05 10.0 10 3.8 51.7 10 1.7 83.0 139.7 145.8
200 160 0.1 10.0 10 3.9 83.8 10 1.7 124.6 244.5 224.3
200 160 0.2 10.0 10 3.8 121.9 6 2.8 259.8 684.8 457.7

200 300 0.01 9.0 10 14.4 37.8 10 1.7 46.8 86.2 76.8
200 300 0.05 10.0 10 16.5 119.1 10 2.5 102.3 256.5 179.8
200 300 0.1 10.0 10 16.8 182.4 10 3.4 168.6 492.3 300.2
200 300 0.2 10.9 10 18.7 255.2 0 – – – –

500 100 0.01 9.1 10 47.5 21.3 10 3.1 43.7 64.6 71.1
500 100 0.05 10.0 10 49.2 59.5 10 4.1 74.5 139.8 128.5
500 100 0.1 11.0 10 54.6 94.4 10 5.0 109.4 229.5 192.1
500 100 0.2 11.1 10 54.1 156.4 10 6.5 185.5 493.3 329.0

500 250 0.01 10.0 10 59.9 32.6 10 6.7 44.2 77.8 70.0
500 250 0.05 10.2 10 60.0 96.0 10 8.1 80.3 190.1 138.0

Continued on next page
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Problem SQP qpOASES iQP
n m σ it X CPUs #piv X CPUs it #piv #mvp

500 250 0.1 11.0 10 68.8 146.7 10 9.2 122.1 317.6 216.7
500 250 0.2 11.0 10 70.4 203.8 10 12.6 219.0 664.5 391.0

500 400 0.01 10.0 10 96.2 45.0 10 10.4 45.6 91.2 72.4
500 400 0.05 11.0 10 109.5 160.6 10 13.1 90.2 272.2 156.8
500 400 0.1 11.0 10 112.9 233.0 10 15.1 136.6 456.6 242.0
500 400 0.2 11.0 10 114.0 307.8 10 22.3 270.7 1044.8 478.9

500 750 0.01 10.0 10 349.2 129.8 10 20.8 52.2 186.7 84.8
500 750 0.05 11.0 10 393.3 422.2 10 32.5 112.8 612.7 195.0
500 750 0.1 11.0 10 399.8 557.8 10 43.7 171.0 976.1 302.6
500 750 0.2 11.0 10 404.9 687.1 0 – – – –

1000 200 0.01 10.0 3 2099.5 34.7 3 21.8 43.7 79.0 68.3
1000 200 0.05 11.0 3 2456.9 124.3 3 27.0 80.7 214.0 139.7
1000 200 0.1 11.0 3 2942.1 191.0 3 30.4 106.0 329.3 185.7
1000 200 0.2 12.0 3 3176.1 296.0 3 43.7 187.3 671.3 333.0

1000 500 0.01 10.0 3 1448.3 66.3 3 49.6 45.3 113.7 71.7
1000 500 0.05 11.0 3 1991.9 230.0 3 62.7 81.7 343.7 138.7
1000 500 0.1 11.6 3 2431.3 328.0 2 73.9 122.0 518.0 215.0
1000 500 0.2 12.6 3 2774.5 434.7 2 98.8 228.0 1029.0 407.0

1000 800 0.01 10.0 3 1313.7 102.3 3 75.8 46.3 149.7 73.3
1000 800 0.05 11.2 3 1801.5 357.3 3 110.8 89.7 495.7 152.7
1000 800 0.1 12.0 3 2069.0 500.3 3 133.4 145.0 792.0 254.3
1000 800 0.2 12.6 2 2447.8 660.5 3 179.4 275.0 1666.0 473.0

1000 1500 0.01 11.0 3 3637.3 307.0 2 181.7 56.5 380.5 90.0
1000 1500 0.05 12.0 3 4082.9 866.0 3 284.2 115.3 1132.3 200.0
1000 1500 0.1 12.3 3 4459.8 1119.0 3 347.6 179.0 1655.0 317.7
1000 1500 0.2 12.2 3 4547.8 1331.3 1 556.4 334.0 3225.0 578.0
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