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Abstract

We generalize the notions of user equilibrium and system optimum to non-
atomic congestion games with stochastic demands. We establish upper bounds
on the price of anarchy for three different settings of link cost functions and
demand distributions, namely, (a) affine cost functions and general distribu-
tions, (b) polynomial cost functions and general positive-valued distributions,
and (c) polynomial cost functions and the normal distributions. All the up-
per bounds are tight in some special cases, including the case of deterministic
demands.

Keywords: price of anarchy, user equilibrium, system optimum, stochastic
demand

1. Introduction

Nonatomic congestion games illustrate non-cooperative situations involv-
ing large populations of players competing for a finite set of resources (Chau
and Sim, 2003). Routing problem in transportation networks is a very im-
portant application of non-atomic congestion games. The price of anarchy
(PoA), first introduced by Koutsoupias and Papadimitriou (1999) on a load-
balancing game, is one of the main measures of system degradation due to
lack of coordination. Roughgarden and Tardos (2004) studied the PoA for
non-atomic congestion games as the worst-case performance of the user equi-
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librium (UE) in terms of system optimality achieved at the system optimum
(SO), where the UE (Wardrop, 1952) describes a steady state of travelers’
selfish routing while the SO demonstrates the optimal usage of traffic re-
sources as a result of a well-coordinated action on the whole network.

Quantitative study on the PoA enables us to deem certain outcomes of
a game optimal or approximately optimal and to make known the factor in-
fluencing the inefficiency of the UE, and further contributes to mechanism
design for congestion games. Roughgarden and Tardos (2002) bounded the
PoA when the link cost functions are separable, semi-convex and differen-
tiable. The PoA was proved dependent only on the class of the cost functions,
independent of the network topology. In particular, the PoA with affine cost
functions is tightly bounded by 4/3.

The main developments in the research on PoA were extensions to net-
works with a broader range of cost functions. Chau and Sim (2003) general-
ized Roughgarden and Tardos’ results to the cases with symmetric cost func-
tions. Correa et al. (2004) gave a new proof of the upper bound of the PoA
with cost functions that are non-convex, non-differentiable, and even discon-
tinuous. Perakis (2007) extended the work to asymmetric cost functions and
bounded the PoA by two parameters of asymmetry and nonlinearity. Sheffi
(1985) introduced the notion of stochastic user equilibrium (SUE), which de-
scribes the travelers’ selfish routing decisions on their subjective perceived
travel costs by involving stochastic cost functions. The PoA on logit-based
SUE was bounded by Guo et al. (2010) on the basis of Sheffi’s model.

Another line of developments in the PoA study is to improve the setting
of the traffic demand to better reflect reality. Chau and Sim (2003) presented
a weaker upper bound on the PoA with elastic demands. Although study on
the PoA with stochastic demands is still quite new, efforts have been spent
on modelling UE and SO involving demand uncertainty. It was assumed that
the objective of selfish travelers was to choose the route that minimizes the
mean travel cost (Sumalee and Xu, 2011) or weighted sum of the mean and
the variance of the travel cost (Sumalee and Xu, 2011; Bell and Cassir, 2002)
with risk-neutral and risk-averse travelers, respectively. A travel time bud-
get (TTB) was also considered in the equilibrium condition on the basis of
reliability (Lo et al., 2006; Shao et al., 2006). However, to deduce the distri-
butions of the path and link flows, all these studies rely on some assumptions,
such as that all the path flows follow the same type of distribution as the
demand and have the same variance (or standard deviation) to mean ratio
(Sumalee and Xu, 2011; Shao et al., 2006; Zhou and Chen, 2008), and that
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all the path flows are independent (Clark and Watling, 2005; Sumalee and
Xu, 2011; Shao et al., 2006; Zhou and Chen, 2008). Apparently, these as-
sumptions are open to questions for the relationship between the path flows
and demand, not only because of lack of empirical data support but also they
violate the demand feasibility constraint even in simple networks. In order to
have a better reliable result on the PoA, we need to relax the aforementioned
assumptions and establish a new equilibrium condition.

In this paper we present an analytical method to determine distributions
of the path and link flows under a given demand distribution and, from a
practical perspective, describe travelers’ behaviors by route choice probabil-
ities. We generalize the deterministic UE condition to a stochastic version
with risk-neutral travelers. For our new model we establish upper bounds
on the PoA, which are found to depend on cost functions and demand dis-
tributions. All these upper bounds are shown to be tight in some special
cases.

The remainder of the paper is organized as follows. Section 2 introduces
generalized notions of user equilibrium (UE) and system optimum (SO) under
demand uncertainty, formulates the equilibrium condition as a variational in-
equality problem and discusses existence and uniqueness of the equilibrium.
Section 3 studies the PoA with affine cost functions and polynomial cost
functions respectively. For polynomial cost functions, we first present an
upper bound on the PoA for any general positive-valued demand distribu-
tion. Then we improve the upper bound when the demand distribution is
specifically normal. In Section 4 we compare the upper bounds established
in Section 3 and discuss connections with existing results in the literature.
Conclusions are drawn in Section 5.

2. Model with stochastic demand

2.1. The route choice model

Consider a general network G = (N,E), where N and E denote the set
of nodes and edges, receptively. A subset of nodes forms a set of origin-
destination (O-D) pairs, denoted by I. We call an O-D pair i ∈ I a com-
modity. Parallel edges are allowed and a node can be in multiple O-D pairs.
Denote by Pi the set of all possible paths connecting an O-D pair i ∈ I.

Day-to-day variability of the traffic demand is considered as the source
of the uncertainty in this study. We assume that the demand distributions
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are given and publicly known, which is based on the fact that a traveler, es-
pecially a commuter, has knowledge of the probabilities of possible demand
levels from his or her own experiences, although the actual current demand
level is unknowable. A similar assumption can be found in the model of de-
terministic demands, which states that travelers have perfect knowledge of
the fixed demand in the network (Wardrop, 1952). The demands of different
O-D pairs are assumed to be independent. We adopt the following nota-
tion in our study, where capital letters and lower cases letters are used to
express random variables and, if applicable, the corresponding mean values,
respectively.

D: vector of traffic demands with component Di ∈ R as the demand be-
tween O-D pair i ∈ I;

d: vector of mean traffic demands with compoent di ∈ R as the mean
demand between O-D pair i ∈ I;

σ2
i : variance of Di;
θi: coefficient of demand variation, i.e., θi = σi/di;
θ: maximum coefficient of demand variation, i.e., θ = maxi∈I{θi};
θ: minimum coefficient of demand variation, i.e., θ = mini∈I{θi};
F i
k: traffic flow on path k ∈ Pi, F i

k ∈ R;
f ik: mean flow on path k ∈ Pi, f ik ∈ R;
F: vector of path flows, i.e., F = (F i

k : k ∈ Pi, i ∈ I);
f : vector of mean path flows, i.e., f = (f ik : k ∈ Pi, i ∈ I);
Ve: traffic flow on edge e ∈ E, Ve ∈ R;
ve: mean traffic flow on edge e ∈ E, ve ∈ R;
V: vector of link flows, i.e., V = (Ve : e ∈ E);
v: vector of mean link flows, i.e., v = (ve : e ∈ E);

δik,e: link-path incidence indicator, which is 1 if link e is included in path
k ∈ Pi and 0 otherwise, e ∈ E, i ∈ I;

δie: link-commodity incidence indicator, i.e., δie = maxk∈Pi
δik,e;

ne: number of O-D pairs that use link e ∈ E in their paths, i.e., ne =∑
i∈I δ

i
e;

n: n = maxe∈E{ne}. Hence n ≤ |I|.

Given stochastic demand vector D = (Di : i ∈ I), a multi-commodity
flow F = (F i

k : k ∈ Pi, i ∈ I) is said to be feasible if∑
k∈Pi

F i
k = Di, ∀ i ∈ I. (1)
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It is clear that the flow on each link is the sum of flows on all the paths that
include the link:

Ve =
∑
i∈I

∑
k∈Pi

δik,eF
i
k, ∀ e ∈ E. (2)

In a non-atomic congestion game, there are an infinite number of players,
each controlling a negligible fraction of the overall traffic. The cost, denoted
by ce(·): R+ → R+, of traveling through edge e ∈ E is a nondecreasing
function of the total flow on it, which is also called a (link) cost function.
The path cost is simply the sum of the costs of those links that are included
in the path, i.e.,

cik(F) =
∑
e∈E

δik,ece(Ve), ∀ k ∈ Pi, ∀ i ∈ I.

We denote any instance of a non-atomic congestion game by a triple (G,D, c),
where G is the underlying network, D and c are the vectors of demands and
(link) cost functions, respectively.

Note that pure strategies and mixed strategies are regarded as the same
in the deterministic UE model (Roughgarden and Tardos, 2002), as flow
assignments according to mixed strategies can be obtained via pure strategies
according to flow proportions. This is based on the assumption that all the
other players’ behaviors are known when one player makes a route choice.
However, this assumption becomes no longer valid under stochastic demands
and it is unrealistic to distinguish individual traffic of the same O-D pair at
an equilibrium according to different routes taken. Thus it is necessary for
us to consider mixed strategies since it is reasonable to assume that all the
players of the same O-D pair play the same strategies at an equilibrium in
such an environment with incomplete information (Myerson, 1998; Ashlagi
et al., 2006).

For any O-D pair i ∈ I, let pik be the probability that path k ∈ Pi is
chosen. Let

Ω = {p = (pik ≥ 0 : k ∈ Pi, i ∈ I) :
∑
k∈Pi

pik = 1, i ∈ I}.

Then Ω is the set of vectors of route choice probabilities across all the paths
with a dimension of

∑
i∈I |Pi|. In order to describe the traffic assignment

under stochastic demand, we adopt the route choice model to simulate trav-
elers’ path choice behaviors, which has been widely used in stochastic routing
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problems (Sheffi, 1985; Clark and Watling, 2005). It needs to be noted that
the route choice probabilities in Sheffi’s model are used to describe the rout-
ing trend among all the travelers, which are estimated by the flow fractions
on each path, and the routing choice of a specific traveler is still a pure
strategy, determined by his or her own estimation of the travel cost. On the
other hand, the routing choice probabilities in this study are in fact mixed
strategies undertaken by travelers. The traffic assignment under stochastic
demands is determined by the routing choice probabilities. The path and link
flows are random variables related to the random demands and the routing
choice probabilities, which consequently induce the random path and link
travel costs.

In what follows we show that the distributions of link flows can be identi-
fied by the demand distributions and the routing choice probabilities. Since
each traveler between any O-D pair i ∈ I controls a negligible amount of traf-
fic, ∆di, the number of travelers on path k ∈ Pi after demand Di is realized
at Di = y is

mi
k =

F i
k|Di = y

∆di
, ∀ k ∈ Pi. (3)

Since the routing choice on path k ∈ Pi for every such traveler is a Bernoulli
event with success probability pik, the conditional number mi

k of travelers
follows a multinomial distribution with the mean and variance as follows:

E[mi
k] = mip

i
k, ∀ k ∈ Pi,

Var[mi
k] = mip

i
k(1− pik), ∀ k ∈ Pi,

where mi = y/(∆di). Therefore, it follows from (3) that

E[F i
k|Di = y] = ∆dimip

i
k = ypik,

Var[F i
k|Di = y] = (∆di)

2Var[mi
k] = ∆diyp

i
k(1− pik),

for any k ∈ Pi. The variance above vanishes as ∆di → 0, which implies

(F i
k|Di = y) ∼= pik · y, ∀ k ∈ Pi, ∀ i ∈ I.

Therefore, the path flows are determined once the demands are realized. The
distributions of path flows then follows from the total probability theorem as
follows:

F i
k
∼= pik ·Di, ∀ k ∈ Pi, ∀ i ∈ I. (4)
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Similarly we can obtain the distributions of random link flows with the link-
path conservation (2) .

Remark. It is commonly assumed in the literature (Clark and Watling,
2005; Sumalee and Xu, 2011; Shao et al., 2006; Zhou and Chen, 2008) that
all path flows {F i

k : k ∈ Pi, i ∈ I} are independent, which apparently violates
the flow feasibility constraints (1). On the other hand, if we only assume
that {Di : i ∈ I} are independent, then (4) implies that, for any i, i′ ∈ I and
any k ∈ Pi, k′ ∈ Pi′ , path flows F i

k and F i′

k′ are independent of each other.

2.2. Equilibrium under stochastic demand (UE-SD)

As discussed in the previous section, under stochastic traffic demands
we assume that risk-neutral travelers between the same O-D pair will use
the same strategy at a steady state. We define our equilibrium condition
such that travelers cannot improve their expected travel costs by unilaterally
changing their routing choice strategies.

Definition 1 (UE-SD condition). Given a transportation game (G,D, c),
vector p ∈ Ω of routing choice probabilities is said to be a user equilibrium
(UE-SD) if and only if

E[cik(F)] ≤ E[ci`(F)], ∀ k, ` ∈ Pi, i ∈ I with pik > 0. (5)

From the definition we see that, at UE-SD, all the paths with positive
probabilities for the same O-D pair have the equal and minimum expected
travel cost. When all travelers play mixed strategies according to the UE-SD
condition, the expected travel costs are guaranteed to be at minimum. To
solve the equilibrium problem, let us reformulate the UE-SD condition into
a variational inequality (VI).

Proposition 1. Given a transportation game (G,D, c), let p∗ ∈ Ω be a
vector of routing choice probabilities. Then p∗ is a UE-SD if and only if
it satisfies the following VI condition: for any vector p of routing choice
probabilities,

(f − f∗)TE [c(F∗)] ≥ 0, (6)

where F∗ is the vector of path flows corresponding to p∗, and f∗ and f are,
respectively, the vector of the mean path flow corresponding to p∗ and p.
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Proof. Since demand di > 0 for every i ∈ I, according to (4) we can write
the UE-SD condition (5) as follows:

E[cik(F)] ≤ E[ci`(F)], ∀ k, ` ∈ Pi, i ∈ I with f ik > 0. (7)

Let πi = min`∈Pi
E[ci`(F)] for any i ∈ I, then (7) is equivalent to{
f ik(E[cik(F)]− πi) = 0,

f ik ≥ 0,
∀ k ∈ Pi, ∀ i ∈ I.

Let p∗, F∗ and f∗ be the vectors of strategies and the corresponding path
flows, mean path flows at the UE-SD, respectively. Then∑

i∈I

∑
k∈Pi

(f ik)
∗(E[cik(F

∗)]− πi) = 0.

For any feasible f = (f ik ≥ 0 : k ∈ Pi, i ∈ I), we also have∑
i∈I

∑
k∈Pi

f ik(E[cik(F
∗)]− πi) ≥ 0.

Thus ∑
i∈I

∑
k∈Pi

(f ik)
∗(E[cik(F

∗)]− πi) ≤
∑
i∈I

∑
k∈Pi

f ik(E[cik(F
∗)]− πi). (8)

From the feasibility condition (1) we have
∑

k∈Pi
f ik =

∑
k∈Pi

(f ik)
∗ = di for

every i ∈ I. Hence ∑
i∈I

∑
k∈Pi

(f ik)
∗πi =

∑
i∈I

∑
k∈Pi

f ikπi,

which together with (8) implies (6):∑
i∈I

∑
k∈Pi

(f ik)
∗E[cik(F

∗)] ≤
∑
i∈I

∑
k∈Pi

f ikE[cik(F
∗)].

On the other hand, observe that as the first order optimality condition,
the solution of VI problem (6) also solves the following LP problem:

min fTE[c(F∗)]

s.t.
∑
k∈Pi

f ik = di, i ∈ I,

f ik ≥ 0, k ∈ Pi, i ∈ I,
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the duality of which is

max λTd
s.t. λi ≤ E[cik(F

∗)], k ∈ Pi, i ∈ I.
Therefore, we have the following complementary slackness conditions:

(E[cik(F
∗)]− λi)f ik = 0, k ∈ Pi, i ∈ I,

which imply (5).

An equivalence between the UE-SD condition and a minimization prob-
lem can also be established if the link cost functions are linear, which is
stated as in the following proposition.

Proposition 2. Given a transportation game (G,D, c) with cost functions
c linear, let p∗ ∈ Ω be a vector of routing choice probabilities. Then p∗ is a
UE-SD if and only if it solves the following minimization problem

min
p∈Ω

Z(p) ≡
∑
e∈E

∫ ve

0

ce(x)dx, (9)

where ve =
∑

i∈I
∑

k∈Pi
δik,ep

i
kdi.

Proof. We prove this proposition by verifying the equivalence between VI
problem (6) and minimization problem (9). Note that, since the link cost
function ce(x) is continuously differentiable and non-decreasing, function∫ ve

0
ce(x)dx is convex (with respect to ve) for any e ∈ E, which together

with the fact that convexity is invariant under affine maps implies that the
objective function Z(p) in (9) is convex, which together with the fact that
the feasible region Ω is convex and compact implies in turn that is a convex
optimization problem. Therefore, it is necessary and sufficient for p∗ to sat-
isfy the first order optimality condition of (9) (Bertsekas, 1999, Proposition
2.1.2):

(p− p∗)T∇Z(p∗) ≥ 0. (10)

Since
∂Z(p)

∂pik
=
∑
e∈E

ce(ve)
∂ve
∂pik

=
∑
e∈E

ce(ve)(δ
i
k,edi) = cik(f)di,

which together with (f ik)
∗

= (pik)
∗
di due to (4) implies that condition (10) is

equivalent to
(f − f∗)Tc(f∗) ≥ 0,

which is equivalent to (6) when the link cost functions are linear.
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In general, when link cost functions are nonlinear, we rewrite the UE-SD
equivalent condition (6) in the following form by substituting f ik = pikdi and
(f ik)

∗ = (pik)
∗di:

(p− p∗)TS(p∗) ≥ 0, p ∈ Ω (11)

where S(p∗) is a vector with the same dimension as E[c(F)], obtained by
replacing element E[cik(F)] in vector E[c(F)] with E[cik(F)]di for every k ∈
Pi, i ∈ I.

Proposition 2 establishes that the VI condition for a UE-SD is just a
restatement of the first order necessary and sufficient condition of a convex
minimization problem, if the cost functions c are linear. We use the more
general VI condition (11) to establish the following general conditions for a
UE-SD to exist and to be unique.

Proposition 3 (Existence and uniqueness of the UE-SD). Let (G,D, c) be
a transportation game. Then: (a) the game admits at least one UE-SD if the
link cost functions are continuous. Furthermore, (b) the UE-SD is unique if
∇S(p) is positive definite.

Proof. (a) The existence of a solution p∗ ∈ Ω to (11) is implied by the
continuity of S(p) and compactness of Ω. (b) The uniqueness is implied by
the positive definiteness of the Jacobian matrix of S(p) (see Nagurney, 1998,
Proposition 1.5 and Theorem 1.8).

NB: When the link cost functions are affine and strictly monotone, then
∇S(p) is positive definite.

2.3. System optimum under stochastic demand (SO-SD)

At a system optimum (SO-SD), traffic is coordinated by a central au-
thority according to mixed strategies. It should be noted in the case of
coordination that traffic is assigned according to route choice probabilities
rather than by traffic proportions. This is due to the fact that demand is
cumulative over the time period, while traffic allocation needs to be made
once a traffic flow arrives the route entrance. The central authority has to
implement traffic coordination without full knowledge of the actual demand.
The objective of for the coordinator is to minimize the expectation of the
total travel cost at an SO-SD. This gives rise to our following definition.
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Definition 2 (SO-SD condition). Given a transportation game (G,D, c)
with stochastic demands, a vector p ∈ Ω of routing choice probabilities is
said to be an SO-SD strategy if it solves the following minimization problem

min
p∈Ω

T (p) ≡ E

[∑
e∈E

ce(Ve)Ve

]
, (12)

where Ve is a function of p given by (2) and (4).

3. Price of anarchy

In this section we investigate the price of anarchy (PoA) to be defined
below based on the model presented in the preceding section with the ex-
pected total cost T (·) defined in the network by (12) as the social (system)
objective function. Given an instance (G,D, c) of the transportation game
with stochastic demands, the corresponding PoA is defined as the worst-case
ratio between expect total costs at UE-SD and at SO-SD:

PoA(G,D, c) := max

{
T (p)

T (q)
: p,q ∈ Ω,p is UE-SD and q is SO-SD

}
.

Let I be the set of all instances of the transportation game with stochastic
demands, then the PoA of the problem of transportation game with stochas-
tic demands is defined as

PoA(I) := max
(G,D,c)∈I

PoA(G,D, c).

Note that even for deterministic demands (i.e., D is particularly determin-
istic), the PoA is already unbounded if the link cost functions c are unre-
stricted (Roughgarden and Tardos, 2002). In this study, we will establish
upper bounds of the PoA for a fixed set C of link cost functions, namely, the
set of affine cost functions and that of polynomial cost functions.

3.1. Affine cost functions

Let us first consider affine link cost functions, i.e.,

ce(x) = aex+ be, where ae, be ≥ 0, e ∈ E. (13)
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Given demand distributions D, the means {ve} and variances {σ2
e} of the link

flows can be derived from the link-path conservation equation (2) as follows:
ve =

∑
i∈I
∑

k∈Pi
δik,ep

i
kdi,

σ2
e = Var

[∑
i∈I, k∈Pi

δik,ep
i
kDi

]
= Var

[∑
i∈I δ

i
ep
i
eDi

]
=
∑

i∈I δ
i
e(p

i
e)

2σ2
i ,

(14)

where
pie =

∑
k∈Pi

δik,ep
i
k (15)

and the last equality is obtained from the independence of the demands of
different O-D pairs. Let Ω0 ⊆ Ω be the set of those p ∈ Ω that additionally
satisfy (14) and (15). According to Proposition 2, the (unique) UE-SD with
affine cost functions is the same as the optimal solution to the following
problem:

min
p∈Ω0

∑
e∈E

(ae
2
v2
e + beve

)
. (16)

On the other hand, the (unique) SO-SD strategy solves the following problem:

min
p∈Ω0

∑
e∈E

(
ae(v

2
e + σ2

e) + beve
)
. (17)

Before proceeding, let us consider the following problem with α > 0 constant:

min
p∈Ω0

H(v) =
∑
e∈E

(
α · aev2

e + beve
)
. (18)

Lemma 4. Given any instance (G,D, c) of the transportation game with
affine link cost functions c. Routing choice strategy p ∈ Ω is a UE-SD if and
only if it is an optimal solution to problem (18) for instance (G, D̄, c) with
D̄ = D/(2α).

Proof. First note that both problem (16) for (G,D, c) and problem (18) for
instance (G,D/(2α), c) have the same feasible region Ω0 as p only plays a
role of linking {ve} and {σ2

e} with {di} and {σ2
i } in (14) (i.e., Ω0 = Ω0(D) =

Ω0(D̄)). On the other hand, since v̄e = ve/(2α), we have

H(v̄) =
1

2α

∑
e∈E

(ae
2
v2
e + beve

)
.

In other words, the objectives of the two problems differ only by a constant
1/(2α). Therefore, they have the same optimal solution.
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Lemma 4 provides us with a parametric (α) function H(·) to quantify a
UE-SD. Let us start with a lower bound.

Lemma 5. Let (G,D, c) be a transportation game with stochastic demands
and affine link costs (13). Let p∗ be the optimal solution to convex program
(18) for (G,D, c) and v∗ be the corresponding vector of the mean link flows.
Then for any p ∈ Ω, the corresponding vector vβ of the mean link flows for
(G, βD, c) for some fixed β > 1 satisfies the following inequality:

H(vβ) ≥ H(v∗) + (β − 1)
∑
e∈E

v∗eh
′
e(v
∗
e), (19)

where he(x) = α · aex2 + bex and h′e(·) is the derivative of he(·) for e ∈ E.

Proof. Since he(·) is convex, we have a lower bound on the linear approxi-
mation at the point v∗e

he(ve) ≥ he(v
∗
e) + (ve − v∗e)h′e(v∗e), ∀ e ∈ E,

which leads to
H(v) ≥ H(v∗) +

∑
e∈E

(ve − v∗e)h′e(v∗e). (20)

Since p∗ is optimal for convex program (18), the first order optimality con-
dition gives

(p− p∗)T∇p∗H(v∗) ≥ 0. (21)

On the other hand, since v∗ and vβ/β are the corresponding vectors of the
mean link flows for (the same) game (G,D, c), respectively to strategies p∗

and p, from relations (14) we obtain, for any e ∈ E, v∗e =
∑

i∈I k∈Pi
δik,e(p

i
k)
∗di

and ve/β =
∑

i∈I k∈Pi
δik,ep

i
kdi. Hence

(p− p∗)T∇p∗H(v∗) =
∑
i∈I

∑
k∈Pi

(
pik − (pik)

∗) ∂H(v∗)

∂(pik)
∗

=
∑
i∈I

∑
k∈Pi

[
(pik − (pik)

∗)
∑
e∈E

∂H(v∗)

∂v∗e
· ∂v∗e
∂(pik)

∗

]

=
∑
e∈E

[
∂H(v∗)

∂v∗e
·
∑
i∈I

∑
k∈Pi

(pik − (pik)
∗)δik,edi

]

=
∑
e∈E

∂H(v∗)

∂v∗e
·
(
ve
β
− v∗e

)
,
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which together with (21) implies∑
e∈E

h′e(v
∗
e)ve ≥ β

∑
e∈E

h′e(v
∗
e)v
∗
e ,

which together with (20) implies (19).

The following lemma establishes two functions of the mean link flows to
bound the expected total cost of the entire network.

Lemma 6. Let (G,D, c) be a transportation game with stochastic demands
and affine link costs (13). Let p ∈ Ω be any feasible routing choice strategy.
Then the expected total cost T (p) is bounded from both below and above as
follows (see Section 2.1 for notation):

∑
e∈E

((
1 +

θ2

n

)
aev

2
e + beve

)
≤ T (p) ≤

∑
e∈E

(
(1 + θ̄2)aev

2
e + beve

)
.

Proof. Noticing that θi = σi/di, from (14) we bound σ2
e from above:

σ2
e =

∑
i∈I

δie(p
i
e)

2θ2
i d

2
i ≤

(
max
i∈I
{θi}

)2∑
i∈I

δie(p
i
edi)

2

≤ θ
2

( ∑
i∈I, k∈Pi

δik,ep
i
kdi

)2

= θ
2
v2
e , (22)

and bound σ2
e from below:

σ2
e ≥

(
min
i∈I
{θi}

)2∑
i∈I

δie(p
i
edi)

2 ≥ θ2

ne

(∑
i∈I

δiep
i
edi

)2

=
θ2

ne

( ∑
i∈I, k∈Pi

δik,ep
i
kdi

)2

≥ θ2

n
v2
e , (23)

where the second inequality in (23) follows from Cauchy-Schwarz inequality.
Combination of the upper and lower bounds (22) and (23) leads directly to
the desired inequalities in the lemma.

Now we are ready to present our first main result.
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Theorem 7. Let (G,D, c) be a transportation game with stochastic demands
and affine link costs (13). Then

PoA(G,D, c) ≤ 4(1 + θ̄2)(n+ θ2)

(3n+ 4θ2)
.

Proof. Fix α = 1 + θ2/n in the definition of H(v) in (18). Let p ∈ Ω be the
UE-SD strategy for (G,D, c) and v be the vector of the corresponding mean
link flows. According to Lemma 4, p is also the optimal solution to convex
program (18) for (G,D/(2α), c), for which the vector of the corresponding
mean link flows is v/(2α).

Let p∗ ∈ Ω be the SO-SD strategy for (G,D, c) and v∗ be the vector of
the corresponding mean link flows. By applying Lemma 5 with β = 2α, we
have v∗ = vβ and

H(v∗) ≥ H
( v

2α

)
+ (2α− 1)

∑
e∈E

( ve
2α

)
h′e

( ve
2α

)
=

∑
e∈E

(
αae

v2
e

4α2
+ be

ve
2α

)
+

2α− 1

2α

∑
e∈E

(aev
2
e + beve)

≥ 1

4α2

∑
e∈E

(
αaev

2
e + beve

)
+

2α− 1

2α2

∑
e∈E

(
αaev

2
e + beve

)
=

4α− 1

4α2
H(v). (24)

Now applying Lemma 6 and noticing α ≤ 1 + θ̄2, we obtain

PoA(G,D, c) =
T (p)

T (p∗)
≤
∑

e∈E
(
(1 + θ̄2)aev

2
e + beve

)∑
e∈E (αae(v∗e)

2 + bev∗e)

≤ 1 + θ̄2

α

∑
e∈E(αaev

2
e + beve)∑

e∈E(αae(v∗e)
2 + bev∗e)

=
1 + θ̄2

α

H(v)

H(v∗)

≤ 1 + θ̄2

α

4α2

4α− 1
=

4(1 + θ̄2)(n+ θ2)

(3n+ 4θ2)
,

where the last inequality follows from inequality (24).

Remarks. To some extent the upper bound on PoA in Theorem 7 is tight
as demonstrated in the following example, where all coefficients of variation
of demand distributions are equal and each link is in at most one path of
each O-D pair.
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Example 1. Consider a single commodity network as shown in Figure 1, in
which the stochastic demand X has a mean of d and variance of σ2. Denote
θ = σ/d as the coefficient of variation. The link cost on the upper link is a
constant of the mean demand and that on the lower link is the traffic amount.

ts

c2(x) = x

c1(x) = d

Figure 1: Two-link network

Since the expected travel cost on the lower link is always no more than
that on the upper link, strategy pT = (0, 1)T to choose the lower link with
probability 1 is a UE-SD. The expected total cost T (p) = E[X2] = (1+θ2)d2.
Let p∗ = (p∗1, p

∗
2)T be the SO-SD strategy. Solving (17) we get{

p∗1 = 1− 1/ (2(1 + θ2)) ,

p∗2 = 1/ (2(1 + θ2)) ,

from which we obtain T (p∗) = (4θ2 + 3)d2/(4(1 + θ2)). Thus the value of
PoA is

T (p)

T (p∗)
=

4(1 + θ2)2

3 + 4θ2
,

which matches the upper bound in Theorem 7 with n = 1 and θ = θ = θ.

3.2. Polynomial cost functions and positive-valued distributions

Now let us consider polynomial link cost functions of

ce(x) =
m∑
j=0

bejx
j, bej ≥ 0, j = 0, 1, . . . ,m; e ∈ E. (25)

Assume the traffic demand follows a positive-valued distribution and has
finite m-th moment. Define the following parameters

θ
(m)
i =

E[Dm
i ]

dmi
, ∀ i ∈ I, (26)
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to denote the ratio of the m-th moment of the demand to the mean demand
to the power of m. Denote θ

(m)
= maxi∈I

{
θ

(m)
i

}
. The following lemma

establishes two inequalities between the m-th moment of Ve and vme for every
e ∈ E.

Lemma 8. For any transportation game (G,D, c) in which D is a vector of
positive-valued distributions, we have

vme ≤ E[V m
e ] ≤ θ

(m) · vme , e ∈ E.

Proof. The first inequality in the lemma follows from Jensen’s Inequality.
Next we prove the second inequality. For any two nonnegative integers s, t ∈
Z+ satisfing s+ t = m,

E[Dm
i ] = E[Ds

iD
t
i ] = E[Ds

i ]E[Dt
i ] + Cov(Ds

i , D
t
i), i ∈ I.

Since Di is a positive random variable, Cov(Ds
i , D

t
i) ≥ 0 (see, e.g., Schmidt

(2003)). Thus
E[Dm

i ] ≥ E[Ds
i ]E[Dt

i ], i ∈ I,
which leads to

E [Dm
i ]

E[Di]m
≥ E[Ds

i ]

E[Di]s
E[Dt

i ]

E[Di]t
, i ∈ I.

With definition (26) we have

θ
(m)
i ≥ θ

(s)
i · θ

(t)
i , i ∈ I. (27)

For any e ∈ E, denote Sm = {s = (si : i ∈ I) ∈ Z|I|+ :
∑

i∈I si = m}.
Then with (15) the m-th moment of the link flow can be written as

E[V m
e ] = E

[(∑
i∈I

pieDi

)m]
= E

[∑
s∈Sm

m!∏
i∈I si!

∏
i∈I

(pieDi)
si

]

=
∑
s∈Sm

m!∏
i∈I si!

∏
i∈I

E
[
(pieDi)

si
]

=
∑
s∈Sm

m!∏
i∈I si!

∏
i∈I

θ
(si)
i (piedi)

si ,

where the third equality is due to the independence among demands of dif-
ferent O-D pairs, which together with (due to (27))

max
i∈I

{
θ

(m)
i

}
≥
∏
i∈I

θ
(si)
i , s ∈ Sm
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implies that

E[V m
e ] ≤ max

i∈I

{
θ

(m)
i

} ∑
s∈Sm

m!∏
i∈I si!

∏
i∈I

(piedi)
si

= θ
(m)

i

(∑
i∈I

piedi

)m

= θ
(m)

i vme ,

completing our proof of the lemma.

As shown in (Roughgarden, 2005), the PoA in any deterministic model is
bounded by the anarchy value, which depends only on the class of the (link)
cost functions. We extend this approach to stochastic models.

Definition 3. Let c(x) =
∑m

j=0 bjx
j with all bj ≥ 0 and D be a vector of

positive random variables. Define:{
t(x) =

∑m
j=0 bjθ

(j)
xj,

t(x) =
∑m

j=0 bjx
j;

and

{
s(x) =

∑m
j=0 bjθ

(j+1)
xj+1,

s(x) =
∑m

j=0 bjx
j+1.

The derivative of s(x) is s′(x) =
∑m

j=0(j + 1)bjx
j. Since t(x) and s′(x) are

both functions with domain x ∈ (0,+∞) and range (b0,+∞), there exists a
value λ(x) > 0, for any x > 0, such that s′(λ(x)x) = t(x). Define

µ(x) = s(λ(x)x)/s(x),

φ(x) = xt(x)/s(x),

η(x) = xt(x)/s(x),

with the understanding 0/0 = 1.

Definition 4. Let c(x) =
∑m

j=0 bjx
j with all bj ≥ 0 and D be a vector of

positive random variables, such that

min
x>0
{µ(x) + φ(x)− η(x)λ(x)} > 0. (28)

Define
γ(c,D) = sup

x>0
[µ(x) + φ(x)− η(x)λ(x)]−1,

and
γ(C,D) = sup

c∈C
γ(c,D),

where C is a subset of positive polynomial cost functions that satisfy (28).
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For link cost functions (25), we define as in Definition 3 the corresponding
functions te(ve), te(ve), se(ve), and se(ve). Then it follows from Lemma 8 that

se(ve) ≤ E[ce(Ve)Ve] ≤ se(ve), ∀ e ∈ E, (29)

te(ve) ≤ E[ce(Ve)] ≤ te(ve), ∀ e ∈ E. (30)

Next lemma provides a weaker version of the UE-SD condition with only
the mean link flows.

Lemma 9. Given a transportation game (G,D, c) with polynomial (link)
cost functions (25) and positive demand distributions. Let p∗ be a UE-SD.
Then for an arbitrary strategy p, we have∑

e∈E

ve te(v
∗
e) ≥

∑
e∈E

v∗e te(v
∗
e),

where v∗ and v are the mean link flows corresponding to p∗ and p, respec-
tively.

Proof. The lemma can be proved by applying (30) into VI problem (6).

As in Definition 3, we obtain λe(·) > 0 for each e ∈ E. Then we have a
lower bound of the expected total cost at the SO-SD in the following lemma.

Lemma 10. Given a transportation game (G,D, c) with polynomial link cost
functions (25) and positive demand distributions. Let v and v∗ ∈ R|E| be the
vectors of mean flows at the UE-SD and the SO-SD respectively. Then,∑

e∈E

se(v
∗
e) ≥

∑
e∈E

(se(λe(ve)ve) + (v∗e − λe(ve)ve)te(ve)).

Proof. Since s′e(λe(ve)ve) = te(ve) for any e ∈ E, with convexity of se(·) we
obtain

se(v
∗
e) ≥ se(λe(ve)ve) + (v∗e − λe(ve)ve)s′e(λe(ve)ve)

= se(λe(ve)ve) + (v∗e − λe(ve)ve)te(ve).

Summing over all e ∈ E proves the lemma.
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Proposition 11. Let (G,D, c) be a transportation game with D positive
demand distributions and c ∈ C with C a set of positive polynomial cost
functions as in (25). Let µe(·), φe(·) and ηe(·) be defined as in Definition 3
for each ce(·), such that (28) is satisfied. Then

PoA(G,D, c) ≤ γ(C,D).

Proof. Let p,p∗ ∈ Ω be respectively the UE-SD and SO-SD strategies, with
v and v∗ as the corresponding mean link flows. Then

T (p∗) =
∑
e∈E

E [ce(V
∗
e )V ∗e ] ≥

∑
e∈E

se(v
∗
e) (⇐ (29))

≥
∑
e∈E

(
se(λe(ve)ve) + (v∗e − λe(ve)ve)te(ve)

)
(⇐ Lemma 10)

=
∑
e∈E

(
se(λe(ve)ve) + v∗ete(ve)− λe(ve)vete(ve)

)
≥
∑
e∈E

(
se(λe(ve)ve) + vete(ve)− λe(ve)vete(ve)

)
. (⇐ Lemma 9)

Rewriting the last line of above leads to

T (p∗) ≥
∑
e∈E

(µe(ve) + φe(ve)− ηe(ve)λe(ve)) se(ve)

≥ 1

γ(C,D)

∑
e∈E

se(ve) ≥
1

γ(C,D)

∑
e∈E

E [ce(Ve)Ve],

which implies the proposition.

The above proposition upper bounds the PoA by γ(C,D). Next we show
how to compute the γ value. Let Cm be the set of polynomial functions with
nonnegative coefficients and degree at most m ∈ Z+. Let C̃m be the subset
of Cm consisting of only one term, namely C̃m = {bxj : b ≥ 0, j = 0, . . . ,m}.
The following lemma shows the PoA with cost functions in Cm is bounded
by γ(C̃m,D).

Lemma 12. Let Im = {(G,D, c) : c ∈ Cm}. Then

sup
(G,D,c)∈Im

PoA(G,D, c) ≤ γ(C̃m,D)
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Proof. An arbitrary instance (G,D, c) with link cost functions in Cm can be

transformed into an equivalent instance with link cost functions in C̃m by
replacing any edge e ∈ E with link cost ce(x) =

∑m
j=0 bejx

j with a directed
path consisting of m+ 1 links with the j-th link processing the cost c̃e,j(x) =
bejx

j−1.

Remark. A similar lemma can be found in (Roughgarden, 2005) for cal-
culating the anarchy value of polynomial cost functions in the deterministic
models.

Theorem 13. Let D be a vector of positive-valued random variables and
satisfy

θ
(m)

< (m+ 1)(1/m)m/(m+1), m ∈ Z+. (31)

Then

γ(C̃m,D) = max
0≤j≤m

 1

θ
(j+1)

− j

j + 1

θ
(j)

θ
(j+1)

(
θ

(j)

j + 1

)1/j−1

. (32)

Proof. For any ce(·) ∈ C̃m with ce(x) = bejx
j, we have

te(ve) = bejθ
(j)
vje, te(ve) = bejv

j
e,

se(ve) = bejθ
(j+1)

vje, se(ve) = bejv
j+1
e ,

s′e(ve) = bej(j + 1)vje,

from which we obtain

λe(ve) = (θ
(j)
/(j + 1))1/j,

µe(ve) =
1

θ
(j+1)

(
θ

(j)

j + 1

)1+1/j

,

φe(ve) = 1/θ
(j+1)

,

ηe(ve) = θ
(j)
/θ

(j+1)
,

which are all independent of ve. If condition (28) is satisfied, then we have

γ(ce,D) =(µe(ve) + φe(ve)− ηe(ve)λe(ve))−1

=

 1

θ
(j+1)

− j

j + 1

θ
(j)

θ
(j+1)

(
θ

(j)

j + 1

)1/j−1

,
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which implies (32). On the other hand, condition (28) requires that, for any
j = 1, . . . ,m,

1

θ
(j+1)

− j

j + 1

θ
(j)

θ
(j+1)

(
θ

(j)

j + 1

)1/j
> 0,

which is equivalent to

θ
(j)
< (j + 1)(1/j)j/(j+1), ∀ j = 1, . . . ,m. (33)

It is routine to check that (j + 1)(1/j)j/(j+1) is decreasing in j, while θ
(j)

is
increasing in j according to (27). Therefore, (33) is implied by (31).

The applicability of Theorem 13 depends on satisfaction of (31). Let us
consider some practical values of m in (31): m = 2, 3, 4, as the highest power
of a link cost function is seldom greater than 4 and usually the first four
moments are studied in practice. Table 1 lists the applicable ranges of these
values.

Degree Variability

m = 2 θ
(2)
< 1.889

m = 3 θ
(3)
< 1.754

m = 4 θ
(4)
< 1.649

Table 1: Applicable ranges of variability

Consider for example the uniform distribution U [a, b] in Table 1. The
results of the upper bounds on b/a, denoted by [b/a]max, are displayed in
Table 2 for normalized a = 1. As can seen, for link cost functions with the

Degree [b/a]max

m = 2 +∞
m = 3 14.241
m = 4 3.556

Table 2: Applicable uniform distribution U [1, b]

degree at most m = 2, our upper bound on the PoA (32) is applicable for
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any positive-valued uniform distributions. For the cases m = 3, 4, our upper
bounds on the PoA are applicable to the uniform distributed demands with
b/a no more than 14.241 and 3.556, respectively.

Remark. The upper bound of the PoA in Theorem 13 is a generalization
of that provided by (Roughgarden and Tardos, 2002) for deterministic models
and the bound is tight when the demands return to being deterministic. In

fact, substituting θ
(j)

= 1 for every integer 0 ≤ j ≤ m in (32), the upper
bound becomes

γ(C̃m,D) =
(
1−m(m+ 1)−(m+1)/m

)−1
,

which matches the tight upper bound of the PoA in deterministic models.

3.3. Polynomial cost functions and normal distributions

In this section, we still work on polynomial link cost functions (25), but
with demands following the normal distributions, which are widely used in
the literature to simulate traffic demands, especially for a large mean or
relatively small variance, although negative tails are contained (Clark and
Watling, 2005; Asakura and Kashiwadani, 1991).

Note that any path flow follows a normal distribution since it is a fraction
of a normal distribution. Also any link flow follows a normal distribution as
it is the sum of some independent random variables of normal distributions,
i.e., Ve ∼ N(ve, σ

2
e) for e ∈ E, with ve and σ2

e satisfying (14). The m-th
moment of the link flow on e ∈ E can be written as a function of the mean
and variance of the link flow

E[V m
e ] =

m∑
r=0, r=even

(
m

r

)
(σe)

r(ve)
m−r(r − 1)!!, ∀ e ∈ E, (34)

where m ∈ N is the power degree, (r − 1)!! is the double factorial of r − 1,
i.e., (r − 1)!! = (r − 1)(r − 3) · · · 1 (if r is even) with the understanding that

(−1)!! = 1, and

(
m

r

)
= m!/((m− r)!r!) is a binomial coefficient. Our next

lemma bounds the m-th moment of the link flow with functions of the mean
link flow. Let

`m =
m∑

r=0, r=even

(
m

r

)(
θ2

n

)r/2
(r − 1)!!.
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Lemma 14. Given a transportation game (G,D, c) with D satisfying normal
distributions, we have

`mv
m
e ≤ E[V m

e ] ≤ θ
(m)
vme , ∀ e ∈ E.

Proof. Applying inequalities (23) in (34), we obtain

E[V m
e ] ≥

m∑
r=0, r=even

(
m

r

)(
θ2

n

)r/2
(ve)

m(r − 1)!!, e ∈ E.

On the other hand, observe that

θ
(m)
i =

m∑
r=0, r=even

(
m

r

)
(θi)

r(r − 1)!!, ∀ i ∈ I,

which implies

θ
(m)

=
m∑

r=0, r=even

(
m

r

)
(θ)r(r − 1)!!,

which together with (22) implies the second inequality in the lemma.

Compared with Lemma 8, the upper bound on E[V m
e ] in Lemma 14 re-

mains the same, while the lower bound is improved since `m > 1. For poly-
nomial link cost functions (25), we will still use te and se to upper bound the
expected link flow functions and expected link total cost. However, in order
to establish the corresponding lower bounds, we use the following two new
functions t̃e and s̃e based on Lemma 14 to replace te and se for any e ∈ E:

t̃e(ve) =
m∑
j=0

bej`jv
j
e, and s̃e(ve) =

m∑
j=0

bej`j+1v
j+1
e

As usual, we use s̃′e(·) to denote the derivative of s̃e(·).
It is straightforward to check that, with positive-valued demand distri-

butions replaced by the normal distributions and, correspondingly, with te
and se replaced by t̃e and s̃e in Section 3.2, Lemma 9, Lemma 10 and Propo-
sition 11, and hence Lemma 12 still hold. More importantly, with the new
functions of t̃e and s̃e for dealing with normal distributions, the value of γ(C̃m)
in Lemma 12 will be different for normal demand distributions as shown in
the following new theorem, as compared with Theorem 13.
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Theorem 15. Let D be a vector of the normal distributions and satisfy

min
1≤j≤m

`j − θ
(j)
j

(j + 1)

(
θ

(j)

`j+1(j + 1)

)1/j > 0. (35)

Then

γ(C̃m,D) = max
0≤j≤m

 `j

θ
(j+1)

− θ
(j)
j

θ
(j+1)

(j + 1)

(
θ

(j)

`j+1(j + 1)

)1/j−1

. (36)

Proof. With te and se replaced by t̃e and s̃e, we have

λe =
(
θ

(j)
/(`j+1(j + 1))

)1/j

,

µe =
(
θ

(j)
/`j+1(j + 1)

)1/j

· θ(j)
/(θ

(j+1)
(j + 1)),

φe = `j/θ
(j+1)

,

ηe = θ
(j)
/θ

(j+1)
.

Hence

µe + φe − ηeλe =
`j

θ
(j+1)

− θ
(j)
j

θ
(j+1)

(j + 1)

(
θ

(j)

`j+1(j + 1)

)1/j

.

The remaining proof is very much the same as that for Theorem 13.

As in Section 3.2, let us use numerical examples to illustrate the appli-
cability of Theorem 15 due to condition (35). For simplicity, let θ = θ = θ.
Figure 2 illustrates the maximum applicable θ with a given n for polynomial
cost functions with highest degree m = 2, 3, 4. With an increasing n, the
applicable region of θ narrows down dramatically at the beginning and then
remains almost constant when n becomes greater than 5. If n = 1, the appli-
cable θ can go to infinity for m = 2, 3, 4. If n = 2, the θ can go up to infinity
for m = 2, 3 and 0.77 for m = 4. If n = 5, the applicable regions of θ are less
than 1.476, 0.670 and 0.394 for m = 2, 3, 4, respectively.

The next example shows the tightness of the upper bound.
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m = 4

Figure 2: Maximum applicable θ for normal distributions

Example 2. Consider the two-link network in Figure 3. Assume the single
demand follows the Normal Distribution D ∼ N(d, σ2).

ts

c2(x) = xj

c1(x) = E[Dj]

Figure 3: Two-link network

Define gj =
∑j

r=0, r=even

(
j

r

)
θr(r − 1)!!, where as before it is understood

that (−1)!! = 1. Then E[Dj] = gjd
j. As the expected total cost on the lower

link is never greater than the upper link, strategy pT = (0, 1)T is a UE-SD.
We can calculate

T (p) = E[Dj+1] = gj+1d
j+1.

Let p∗ = (p∗1, p
∗
2)T be the the SO-SD strategy, which minimizes the expected

total cost
T (p∗) = p∗1gjd

j+1 + (p∗2)j+1gj+1d
j+1.
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Hence p∗1 = 1− [gj/(gj+1(j+ 1))]1/j and p∗2 = [gj/(gj+1(j+ 1))]1/j, which lead
to

T (p∗) =

(
1− j

j + 1

(
gj

gj+1(j + 1)

)1/j)
gjd

j+1.

Thus

PoA =

(
gj
gj+1

− gjj

gj+1(j + 1)

(
gj

gj+1(j + 1)

)1/j)−1

.

Therefore, the upper bound in (36) is tight in the following two cases:

• When n = 1 and θ = θ, we have θ
(j)

= `j = gj. The lower bound in
Example 2 matches our upper bound.

• When m = 1, the upper bound matches the upper bound of the PoA
with linear cost function established in Section 3.1. So it is tight when
θ = θ.

4. Discussion

In our study with polynomial cost functions, we have established in The-
orem 13 and 15 two upper bounds on the PoA for two different demand
settings, namely, positive-valued distributions and the normal distributions.
Based on the tightness analysis, the upper bound for normal distributions is
tight in a more general case as compared with that for general positive-valued
distributions. In the study for the normal distributions, we used two addition
parameters, n and θ, and the corresponding upper bound on the PoA returns
to the same as that for general positive-valued distributions when n→∞ or
θ → 0.

Next we use a numerical example of polynomial link cost functions with
m = 2 and demands of the normal distributions to compare the upper bounds
of the PoA with different values of n, as shown in Figure 4. For simplicity, we
consider the case that all the O-D pairs have a common coefficient of demand
variation. From Theorem 15, the PoA is bounded by γ(C̃2,D

′), where D′ is
the vector of demands with θ = θ = θ.
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Figure 4: PoA comparison when m = 2

As we can see, the upper bound is significantly better when the value of
n is small. As the upper bound of PoA with n = 1 is tight, the difference
between the upper bound and lower bound is small when the demand varia-
tion is small (e.g., when θ < 0.5). The curve for n → ∞ also illustrates the
PoA with general positive-valued distributions.

The value θ of the maximum variation of the demands is of vital impor-
tance in all the upper bounds. They increase as it goes up and are all tight
when it reduces to zero and hence the demands return to be deterministic.
Therefore, our study generalizes the upper bounds obtained by Roughgar-
den (2005) for deterministic demands. On the other hand, with deterministic
demands, the PoA with affine cost functions is bounded by 4/3, which indi-
cates that the UE is quite close to the system optimum. However, Example 1
shows that the PoA can be unbounded as θ increases. Therefore, there is
a fundamental difference between models of deterministic and stochastic de-
mands.

Furthermore, as can been seen from (14), the variance of each link flow
is affected by the number n of O-D pairs whose paths share the link, and
thus the variance depends on the network topology. The upper bounds we
have obtained with affine and polynomial cost functions for demands of the
normal distributions also contain parameter n. Consequently, unlike in the
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case of deterministic demands studied by (Roughgarden and Tardos, 2002),
the network topology in general will affect the PoA for stochastic demands.
However, such an influence of the network topology is limited since we also
have an upper bound without n as shown in Figure 4 (n→∞).

5. Conclusions

In this study, we have presented a general equilibrium model for traffic
games that take variation of the traffic demands into account. The notion
of mixed strategies is adopted in our models of user equilibrium and system
optimum for stochastic demands to describe the travelers’ and coordinator’s
behaviors in a stochastic environment. The user equilibrium condition is re-
formulated as a VI problem, which enables us to address the issue of existence
and uniqueness of the equilibrium.

The PoA is bounded with affine and more general polynomial link cost
functions respectively. For affine link cost functions, a tight upper bound
is established for general demand distributions. For general polynomial link
cost functions, we bounded the PoA for two settings of the demand distri-
butions, general positive-valued distributions and the normal distributions.
We have also demonstrated the tightness of the upper bounds under various
special cases and presented numerical comparison among them.

We feel that the following issues are interesting to address and to extend
our work in the future. Firstly, as the expectation of the travel costs and
total cost are approximated by simple functions of the mean flows in this
study, there is room for generalization. Secondly, to improve the general
upper bounds on the PoA, it would help to reformulate the user equilibrium
condition into another optimization problem. Thirdly, consider other specific
demand distributions, such as the log-normal distributions, to improve the
general upper bound on the PoA.
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