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Abstract

The risk parity optimization problem aims to find such portfolios for which the contributions
of risk from all assets are equally weighted. Portfolios constructed using risk parity approach
are a compromise between two well-known diversification techniques: minimum variance opti-
mization approach and the equal weighting approach. In this paper, we discuss the problem
of finding portfolios that satisfy risk parity of either individual assets or groups of assets. We
describe the set of all risk parity solutions by using convex optimization techniques over orthants
and we show that this set may contain exponential number of solutions. We then propose an
alternative nonconvex least-square model whose set of optimal solutions includes all risk parity
solutions, and propose a modified formulation which aims at selecting the most desirable risk
parity solution (according to some criteria). When general bounds are considered, a risk par-
ity solution may not exist. The nonconvex least-square model then seeks a feasible portfolio
which is as close to risk parity as possible. Furthermore, we propose an alternating linearization
framework to solve this nonconvex model. Numerical experiments indicate the e↵ectiveness of
our technique in terms of both speed and accuracy.

Keywords: Asset allocation, risk parity, alternating direction method, alternating linearization
method.

1 Introduction

Portfolio construction has become a focus of many researchers in the past decades. One central
goal in portfolio construction is to manage the tradeo↵ between return and risk. Since 1950s,
many optimization models have appeared and they continue to play an important role in making
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investment decisions. However, some strategies resulting from optimal portfolio construction have
been observed to be ine�cient in practice. One of the the reasons is the lack of robustness of the
optimal portfolios with respect to input parameters. When estimated from historical information,
these parameters can be inaccurate predictors of future behavior of the security returns, and using
them optimal portfolio construction can lead to ine�cient portfolios.

One well-known example of an optimal portfolio construction strategy is the mean-variance
optimization model. Proposed by Markowitz, mean-variance approach has been regarded as a
fundamental framework in portfolio construction. It o↵ered the first quantitative insight into the
tradeo↵ between returns and risk. One persistent criticism of the mean-variance model has been its
sensitivity to inputs. Among others, research by Best and Grauer [2] has shown that slight changes
of input (especially in expected return estimate) often lead to dramatic changes in the optimal
portfolio composition.

In practice, some investors apply much simpler portfolio construction strategies and might su↵er
from their limitations as a consequence. One of these simpler approaches is the well-known “60/40”
strategy (60% equity, 40% bonds). This method usually has high expected portfolio return, but
the portfolio volatility may be dominated by the equity risk. Another simple method is the “1/n”
method, namely, portfolio construction with equal weights (EW) in all asset classes [6]. Equally-
weighted method can be seen as a diversification strategy. But the diversification is achieved only
at the capital allocation level and not in terms of risk contributions, simply because the approach
does not utilize any information on the assets’ volatility or their correlations.

In this paper, we investigate another portfolio strategy— the, so-called, risk parity approach.
The idea of risk parity is not new and can be regarded as a special type of diversification strategy.
Using volatility as the risk measure, the risk parity approach aims to create a portfolio with equal
risk contributions from each of the assets in the portfolio. The past few years have witnessed a
fair amount of risk parity research (for instance, [4, 5, 9]). Most of the work considers long-only
portfolios and solve a risk budgeting problem which aims to equalize the total risk contribution for
each asset. In this case, we demonstrate that a risk parity portfolio can be obtained from a solution
of a convex optimization problem.

If long-short portfolios are considered, multiple solutions may exist. We show that a convex
model still applies if the investor identifies in advance which assets should be shorted. In other
words, it is possible to obtain a unique risk parity solution if we know the orthant in which the
solution lies. However, if the orthant is not given, we show that there could be a combinatorially
large number of solutions that satisfy risk parity and these solutions can be identified through an
enumeration strategy. In practice, investors may consider adding general bounds on the individual
weights of the assets, in which case the total number of risk parity solutions may be small. Moreover,
if the bounds are su�ciently tight a risk parity solution satisfying such bounds may not exist at
all.

In this paper we propose a generalized risk parity model which allows for short sales and applies
to cases where risk parity solutions may not exist. Our model is similar to the model proposed in [9]
in that we minimize a function that measures deviation from risk parity. However, our formulation
has a simpler structure and allows for easier analysis and e�cient algorithmic approaches. As in
[9], the optimization model that we consider is not convex. Each risk parity solution is a global
optimum of the model. Moreover, no local optima exist on the interior of the feasible set; in other
words, all local optima of our proposed formulation occur due to the constraining of the feasible
set by bounds on the weights. In the case when the bounds are tight and no feasible risk parity

3



solution exists, then the global optimum is the solution which is ”closest” to the risk parity, in
the least-square sense. We develop an algorithmic framework based on alternating linearization
methods (ALMs) to solve our generalized model. The framework is simple and convergent to a
local optimum which is guaranteed to be a global optimum when no constraints are binding and
relies on solving a sequence of convex quadratic subproblems. Our formulation also easily extends
to the case of the multiple objectives - choosing the best risk parity solution according to some
additional criterion, when multiple solutions exist.

The rest of the paper is organized as follows. After a brief discussion of the Markowitz framework
in Section 2, we introduce the concept of risk parity and consider the convex log-barrier model as
well as the new least-square model. In Section 3, we propose a class of algorithmic methods based
on the ALM framework, to solve the least-square model. In Section 4, we discuss some extensions
based on the least-square model, where we aim to choose the best risk parity solution. We also
propose another extension of the risk parity problem to the case where we seek parity on risk
contributions of a group of assets rather than individual assets. Experiments and computational
results are discussed in Section 5, followed with conclusion remarks.

2 Risk parity problem

Numerous methods based on the famous Markowitz mean-variance framework have been proposed
to overcome its drawbacks while maintaining its advantages (see, for instance, [11]). In this paper,
we focus on risk based diversification strategies. Unlike the classic mean-variance approach, risk
based strategies do not incorporate expected returns into the formulation. Motivations for not using
expected returns in the portfolio construction include the di�culty of estimating these quantities
accurately, and the well documented sensitivity of the optimal weights to small changes in expected
returns. Since they do not rely on these parameters risk based strategies are considered to be more
robust than approaches using expected returns [9].

One prominent example of risk-based strategies in portfolio selection is the minimum variance
optimization approach. This approach aims to minimize the portfolio’s volatility and can be for-
mulated as a convex quadratic optimization problem. This problem can be solved e�ciently using
widely available optimization software and typically has a unique solution. Here we briefly introduce
the minimum variance optimization model to compare it to the risk parity approach.

Suppose we have n risky assets. Their covariance is given by a symmetric matrix ⌃ which
is assumed to be positive semidefinite. The following optimization problem minimizes the total
variance of a fully-invested long-only portfolio:

min
x

1
2x

T⌃x
s.t. x

i

� 0P
n

i=1 xi = 1,
(2.1)

where x = [x1, x2, ..., xn]T is the vector of the weights of n assets. The factor 1/2 in the objective is
introduced to simplify the optimality conditions and has no impact on the optimal portfolio. From
the first-order optimality conditions of the above problem we see that

⌃x� �� �e = 0, (2.2)

where e is an n-dimensional vector of all ones, � 2 Rn and � 2 R are the Lagrange multipliers corre-
sponding to the long-only and full investment constraints, respectively. Note that, complementary
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slackness conditions imply that if some x
i

is strictly larger than zero, then the corresponding �
i

must be zero. Combining this observation with (2.2), we obtain

(⌃x)
i

= �, 8i s.t. x
i

6= 0. (2.3)

From (2.3) we obtain:

✓
⌃xp
xT⌃x

◆

i

=

✓
⌃xp
xT⌃x

◆

j

, 8i, j s.t. x
i

, x
j

6= 0. (2.4)

Also, note that @�

@x

= ⌃xp
x

T⌃x

is the vector of marginal risk contributions for the assets in the

portfolio. Hence, finally we have

@�

@x
i

=
@�

@x
j

, 8i, j s.t.x
i

, x
j

> 0. (2.5)

The above condition implies that, as long as we invest in an asset, its marginal risk contribution
should be the same as that of all other assets with positive weights in the portfolio. As such,
minimum variance approach leads to portfolios with equal marginal risk contributions. In practice,
while dominating other strategies from the perspective of low volatility, the minimum variance
approach often leads to concentrated portfolios, i.e., encourages investors to concentrate on a small
number of assets with lower risk profiles and to give up diversification. This behavior is often
undesirable and this is exactly what risk parity optimization intends to overcome.

Risk parity portfolios can be motivated by considering Euler decomposition of a portfolio risk
measure into contributions from each asset in the portfolio.

Theorem 2.1. (Euler’s theorem) Let a continuous and di↵erentiable function f : Rn ! R be a
homogeneous function of degree one. Then

f(x) = x1 · @f

@x

1

+ x2 · @f

@x

2

+ ...+ x
n

· @f

@x

n

,

where f is a homogeneous function of degree one if for any constant c 2 R, f(cx) = c · f(x).

Simply put, a risk parity portfolio is a portfolio where the total contribution of each asset to
the total portfolio risk is equal. In this paper, we make the common choice of using volatility
�(x) = (xT⌃x)

1

2 as our risk measure. In this context, the risk parity problem aims to find any
portfolio that satisfies

x
i

· @�
@x

i

= x
j

· @�

@x
j

, 8i, j. (2.6)

We will refer to any solution of (2.6) as a risk parity solution. If the weight vector is normalized,
then (2.6) becomes the normalized risk parity problem

x
i

· @�

@x

i

= x
j

· @�

@x

j

, 8i, jP
n

i=1 xi = 1.
(2.7)

We will refer to any solutions to (2.7) as normalized risk parity solution. Note that one can easily
convert a solution of (2.6) into a solution of (2.7) through simple scaling, as long as the sum of the
asset weights is non-zero.
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We will also consider situations where risk parity solutions may not exist because of the presence
of additional restrictions on the portfolio weights. In such cases, we will look for portfolios that are
“close to risk parity” and for this purpose it will be important to quantify the deviation from risk
parity. We address these concerns in Section 2.3.

Let us assume for a moment that the correlation between any two assets is a constant, that is
⇢
ij

= ⇢, 8i, j. It can be shown that a closed form solution can be deduced with this assumption [9],
and such a solution coincides with the solution under minimum variance optimization approach.

This solution is given by the following identity: x
i

=
�

�1

iP
n

j=1

�

�1

j

. Some literature refers to this case

as the “naive risk parity” solution. When the correlations are not constant, a closed-form solution
for x does not exist in general and numerical approaches need to be applied.

2.1 Long-only risk parity via convex optimization

Next, we consider the problem of finding a long-only risk parity solution, i.e., finding a vector of
weights of n assets x = [x1, x2, ..., xn]T such that x

i

· @�

@x

i

= x
j

· @�

@x

j

, 8i, j and x � 0. In this case,

in turns out that solving an artifical optimization problem that incorporates a logarithmic barrier
term is equivalent to finding a risk parity solution:

min
x

1
2x

T⌃x� c
P

n

i=1 lnxi
s.t. x

i

> 0,
(2.8)

where ⌃ is the covariance matrix, c is an arbitrary positive constant. Our use of the logarithmic
barrier term in the objective function of (2.8) is motivated by a related formulation in [9] that
uses a constraint incorporating the sum of the logarithms. Other authors have also utilized the
logarithmic barrier function for solving the risk parity problem in independently developed studies
[8, 10].

Since ⌃ is positive semidefinite and the logarithm function is strictly concave, the objective
function of (2.8) is strictly convex. We observe that this convex optimization problem has a unique
solution at the point where the gradient of the objective function, ⌃x � cx�1 is zero (first-order
condition), where x�1 = [1/x1, 1/x2, ..., 1/xn]T . Hence, at optimality we have (⌃x)

i

= c

x

i

, 8i, which
leads to

x
i

(⌃x)
i

= x
j

(⌃x)
j

, 8i, j. (2.9)

It is now easy to see that (2.9) is equivalent to x
i

· @�

@x

i

= x
j

· @�

@x

j

, 8i, j and that risk parity is achieved

at the unique optimal solution of (2.8).
There is no guarantee that the weights in the solution of (2.8) will sum to one, so the result

may represent a levered or an under-invested portfolio. Fortunately, we have the following result
showing the existence and uniqueness of the risk parity solution in the long-only case if we impose
the additional constraint that the sum of all weights equals to one.

Lemma 2.1. Let ⌃ be a positive semidefinite covariance matrix. Then there exists a unique solution
x which satisfies:

x
i

(⌃x)
i

= x
j

(⌃x)
j

, 8i, j (2.10)
nX

i=1

x
i

= 1, x
i

> 0, 8i. (2.11)

In fact, any two long-only risk parity solutions di↵er by a constant factor.
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Proof. Since (2.8) is strictly convex, it has a unique solution, say, xc for any given c > 0. Consider
the following optimization problem:

min
x

1
2x

T⌃x� ↵c
P

n

i=1 lnxi
s.t. x

i

> 0,
(2.12)

where ↵ is a positive scalar. It is easy to verify that
p
↵xc is the unique solution for this problem

since
p
↵xc

i

[⌃(
p
↵xc)]

i

= ↵c. Hence, as ↵ varies from 0 to 1,
P

n

i=1

p
↵xc

i

varies from 0 to 1.
Further, for ↵⇤ = 1

(
P

n

k=1

x

c

k

)2 , the solution of (2.12), denoted as x⇤, satisfies
P

n

i=1 x
⇤
i

= 1. It is easy

to see that x⇤
i

= x

iP
n

k=1

x

c

k

and x⇤ is unique and independent of initial choice of c.

2.2 Risk parity solutions over orthants

In this subsection, we explore the set of risk parity solutions when the long-only restriction on
weights is removed. The approach discussed in Section 2.1 identifies only the solution in the
nonnegative orthant. To find solutions in other orthants, we consider the following modified log-
barrier approach:

min
x

1
2x

T⌃x� c
P

n

i=1 ln�ixi
s.t. �

i

x
i

> 0,
(2.13)

where � = [�1,�2, . . . ,�n]T 2 {�1, 1}n, defines the orthant in which we are seeking a solution.
If �

i

= 1, then x
i

2 (0,+1); otherwise, x
i

2 (�1, 0). For each choice of �, (2.13) is a convex
optimization problem and thus it has a unique solution x� . Since there are 2n such di↵erent �,
there are 2n such solutions. Let �̄ = �� define the complementary orthant of the orthant defined
by �. Then, it is easy to see that x� = �x�̄ . We are primarily interested in scaled solutions to
have the following lemma.

Lemma 2.2. Let ⌃ be a positive semidefinite covariance matrix. Then there exist at most 2n�1

solutions which satisfy x
i

(⌃x)
i

= x
j

(⌃x)
j

, 8i, j; and
P

n

i=1 xi = 1.

Proof. For each � and x� , x�
N

= x

�

P
n

i=1

x

�

i

is a normalized risk parity solution satisfying (2.7) as long

as
P

n

i=1 x
�

i

6= 0. Note that x

iP
n

i=1

x

i

= �x

iP
n

i=1

(�x

i

) . Also note that for all (unnormalized) risk parity

solutions in the same orthant we either have
P

n

i=1 x
�

i

= 0 or
P

n

i=1 x
�

i

< 0 or
P

n

i=1 x
�

i

> 0. Hence,

for every choice of �, �̄ = �� generates the same scaled risk parity solution x�
N

, and thus there are
at most 2n�1 such solutions. In other words, for each orthant, the normalized risk parity solution
exists if and only if

P
n

i=1 x
�

i

6= 0 for any of the (unnormalized) risk parity solutions in that orthant.

In case when
P

n

i=1 x
�

i

< 0 then the normalized risk parity solution lies in the complementary
orthant.

Remark. Note that a scaled risk parity solution does not exist if
P

n

i=1 x
�

i

= 0 in Lemma 2.2 (hence

there may be fewer than 2n�1 normalized solutions). However, when
P

n

i=1 x
�

i

= 0, the portfolio
is “market-neutral” i.e., the aggregate exposure to the market is zero. This case is independently
interesting and can sometimes be desirable in portfolio selection.
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To illustrate Lemma 2.2 with a simple example, let us consider the simple case when the
covariance matrix is diagonal, i.e.

⌃ =

2

664

�2
1

�2
2

...
�2
n

3

775 .

Then risk parity is equivalent to the following system which contains (n� 1) linearly independant
equations:

�1�1x1 = �2�2x2
�1�1x1 = �3�3x3

...
�1�1x1 = �

n

�
n

x
n

,

(2.14)

where �
i

2 {�1, 1}, 8i 2 {1, ..., n}. Suppose ��1
i

+
P

j 6=i

�

j

�

i

��1
j

6= 0. Then (2.14), together withP
n

i=1 xi = 1, leads to a set of closed form solutions

x
i

=
��1
i

��1
i

+
P

j 6=i

�

j

�

i

��1
j

. (2.15)

Note that there are at most 2n�1 di↵erent solutions (since there are 2n di↵erent �, and each pair
(�,��) give the same system of equations (2.14)). Additionally, in (2.14), if �

i

= 1, 8i 2 {1, ..., n},
then (2.15) becomes x

i

=
�

�1

iP
j

�

�1

j

, which is simply the “naive risk parity” solution discussed previ-

ously.
Given that there may be exponentially many di↵erent risk-parity solutions in the long-short

case, additional preferences (e.g., the risk-parity solution with the least volatility) or restrictions on
the weights (e.g., lower/upper bounds on weights) can be used to narrow down these choices. If, for
example, investors know a priori which assets are desirable to short, then the log barrier approach
of Section 2.1 can be easily extended to find the desired long-short risk-parity portfolio by selecting
the appropriate � in (2.13). In the next two subsections, we discuss e�cient methods for finding
solutions satisfying additional preferences or restrictions without resorting to enumeration.

2.3 Least-square model with general bounds

The log-barrier approach to finding risk parity solutions in the long-only setting does not imme-
diately extend to scenarios with additional constraints or preferences. In particular, when general
bounds are added, risk parity solution may not exist, however, up to 2n�1 di↵erent instances of
(2.13) may have to be solved before infeasibility can be established. Moreover, the log barrier for-
mulation gives no guidance on how to produce feasible solution which may be “close to risk parity”.
Simple approaches, such as projecting infeasible normalized risk parity solutions onto the feasible
region defined by the constraints may generate solutions that largely deviate from risk parity. In
addition, it is not clear how to extend this approach to the cases when risk parity is desirable not
for individual assets but for groups of assets (e.g., grouped by industry).

In this section we propose a least-squares formulation for solving the risk parity problem. Our
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formulation is similar to the following formulation proposed in [9]:

min
x

P
n

i=1,j=1(xi(⌃x)i � x
j

(⌃x)
j

)2

s.t. a
i

 x
i

 b
iP

n

i=1 xi = 1.
(2.16)

Above, a
i

and b
i

are arbitrary constants representing the bounds on the weight of ith asset (a
i

can
be less than zero if we allow short sales). The objective function of (2.16) introduces a penalty term
for each pair of risk contribution terms x

i

(⌃x)
i

and x
j

(⌃x)
j

that are di↵erent from each other.
Alternatively, one can consider using penalty terms for deviations of risk contributions from their
average value:

min
x

nX

i=1

(x
i

(⌃x)
i

�
P

n

j=1 xj(⌃x)j

n
)2.

Our formulation is based on this second objective function, but replaces the average risk contribu-
tion term with a free variable ✓ that is also optimized:

min
x,✓

P
n

i=1(xi(⌃x)i � ✓)2

s.t. a
i

 x
i

 b
iP

n

i=1 xi = 1,
(2.17)

For future reference, we denote by F (x, ✓) the objective function of (2.17):

F (x, ✓) :=
nX

i=1

(x
i

(⌃x)
i

� ✓)2. (2.18)

If the optimization problem (2.17) has an optimal value of zero, then risk parity is achieved.
Otherwise, the value of the objective function F (x, ✓) can be regarded as a minimum variance
measure towards our goal.

The two formulations (2.16) or (2.17) are equivalent in the sense that any risk parity solution
is a solution to both optimization problems. However, our formulation (2.17) o↵ers a much simpler
form of the objective function containing only n elements in the sum, while the formulation from
[9], contains an order of n2 elements. Hence, our formulation is computationally less demanding,
is easier to analyze and contains fewer nonlinearities. Moreover it allows us to develop e�cient
optimization approaches as will be seen in Section 5. The auxiliary variable ✓ can always be set to
its optimal value based on the following lemma, however, allowing ✓ to be a free variable significantly
simplifies the formulation.

Lemma 2.3. Given a solution x, there exists one and only one ✓⇤ such that (2.17) is minimized,
and ✓⇤ = (

P
n

i=1 xi(⌃x)i)/n.

Proof. With a given x, (2.17) is a strictly convex unconstrained function of ✓. Further, the function
is minimized when first-order optimality is satisfied, which implies ✓⇤ = (

P
n

i=1 xi(⌃x)i)/n.

Example 2.1. Consider three assets with volatilities �1 = 1,�2 = 1,�3 = 2, respectively and
correlation matrix is given by

Cor =

2

4
1.0

1.0
1.0

3

5
.
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Thus, the covariance matrix is

⌃ =

2

4
1.0

1.0
4.0

3

5
.

The normalized risk-parity solution in the positive orthant is x0 = [0.4; 0.4; 0.2]. Now, suppose
we have a restricted feasible region: 0.5  x1  1, x2, x3 2 R+. If we project x0 onto the feasible
region, we obtain xp = [0.5; 0.35; 0.15]. This solution is not “optimal” from the perspective of risk
parity solution and the objective of (2.17). To see that, consider another solution which is obtained
by optimizing (2.17): xopt = [0.5; 0.333; 0.167]. We see that the objective function value at xp

equals 0.0143, while at xopt it equals 0.0128.
Hence, in terms of risk parity, xopt is preferable to xp. Let us compare the two solutions in terms

of risk concentration. For instance, we can compare the highest risk contribution and Herfindahl
index. The highest risk contribution is defined as

HRC(x) := max
i

x
i

(⌃x)
i

xT⌃x
. (2.19)

Then, HRC(xp) = 0.5405, while HRC(xopt) = 0.5292. Another widely used measure for risk
concentration is Herfindahl index, which is a method measuring risk concerntration [9]. Herfindahl
index is defined as

h(x) =
nX

i=1


x
i

(⌃x)
i

xT⌃x

�2
. (2.20)

Hence, if Herfindahl index is 1, it stands for a perfectly concentrated portfolio; if Herfindahl
index is 1

n

, then risk is perfectly separated and parity is achieved. We observe that h
x

p = 0.4002,
and h

x

opt = 0.3909. While the di↵erences are small, both measures indicate that xopt is a better
solution in terms of risk concentration, hence optimizing the objection function of (2.17) is desirable.

Note that, unlike probelms (2.1) and (2.8), (2.17) is a non-convex problem, hence in theory
it is harder to solve and may produce local solutions. However, as we will show it is a useful
formulation, as simple practical and fast optimization schemes can be developed for this problem
and this formulation can be extended to include additional optimization criteria and di↵erent
variants of risk parity. Moreover, as we show in the next section, if the constraints of (2.17) are
removed (as is done when (2.8) is applied), then any local optimal solution is a global one. Hence
our model finds the global risk parity solution whenever approach using (2.8) can find it.

3 Local/global optima issues

Let us consider the first-order optimality conditions for (2.17). The Lagrangian can be written as

L(x, ✓) =
nX

i=1

(x
i

(⌃x)
i

� ✓)2 � �T

a

(x� a)� �T

b

(b� x) + �(
nX

i=1

x
i

� 1), (3.1)
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where �
a

,�
b

2 Rn

+, � 2 R. Now, we can write down the KKT conditions as follows

@L
@x

i

= @F

@x

i

� (�
a

)
i

+ (�
b

)
i

+ � = 0, 8i
@L
@✓

= @F

@✓

= 0P
n

i=1 xi � 1 = 0
a
i

 x
i

 b
i

, 8i
�
a

,�
b

� 0
(�

a

)
i

(x
i

� a
i

) = 0, (�
b

)
i

(x
i

� b
i

) = 0.

(3.2)

The gradient of F with respect to x is

r
x

F (x, ✓) = 2
nX

i=1

(x
i

(⌃x)
i

� ✓)(e
i

⌃
i

+ (e
i

⌃
i

)T )x, (3.3)

where e
i

2 Rn⇥1 is the ith column of the identity and ⌃
i

2 R1⇥n is the ith row of the covariance
matrix.

We have the following lemma.

Lemma 3.1. A solution pair {x, ✓} is a global optimum with F (x, ✓) = 0 if and only if r
x

F =
0, @F

@✓

= 0.

Proof. 1) If F = 0, then x
i

(⌃x)
i

� ✓ = 0, 8i, from which r
x

F = 2
P

n

i=1(xi(⌃x)i � ✓)(e
i

⌃
i

+
(e

i

⌃
i

)T )x = 0 holds trivially.
2) If r

x

F = 0, then xTr
x

F=0 ; hence

2
nX

i=1

(x
i

(⌃x)
i

� ✓)xT (e
i

⌃
i

+ (e
i

⌃
i

)T )x = 2
nX

i=1

(x
i

(⌃x)
i

� ✓)(x
i

(⌃x)
i

+ (x
i

(⌃x)
i

)T ) = 0. (3.4)

Let B
i

= x
i

(⌃x)
i

, note that B
i

= BT

i

. Then, ignoring the constant factor, we have

nX

i=1

(B
i

� ✓)B
i

= 0. (3.5)

Applying the second condition @F

@✓

= 0, which implies ✓ =
P

n

i=1

B

i

n

, we have

n
nX

i=1

B2
i

= (
nX

i=1

B
i

)2. (3.6)

On the other hand, from Cauchy–Schwarz inequality we know that n
P

n

i=1B
2
i

� (
P

n

i=1Bi

)2. Fur-
thermore, (3.6) holds only when B

i

= B
j

for all i, j 2 {1, ..., n}. Hence, F (x, ✓) = 0.

Lemma 3.1 implies that if constraints of (2.17) are not considered then first order optimality
conditions determine the global optimal solution. On the other hand, when constrains are imposed
local optima and local stationary points can occur.

The following simple example shows that a local stationary point can be caused by the equality
constraint.
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Figure 3.1: The function value in Example 3.2 with respect to x

1

. Note that, in this 2⇥ 2 case, x
2

= 1� x

1

, and

✓ =
�

2
1x

2
1+�

2
2x

2
2

2

=
�

2
1x

2
1+�

2
2(1�x1)

2

2

. Hence, the figure here shows y = (x2

1

� x

2
1+4(1�x1)

2

2

)2 + (4(1� x

1

)2 � x

2
1+4(1�x1)

2

2

)2

when x

1

� 1.2. It shows that x
1

= 1.2 is a local optimum on the boundary.

Example 3.1. Consider an example of two assets with volatility �1 = 1,�2 = 2, respectively, and
the covariance matrix

⌃ =


1 0
0 4

�
.

Suppose there are no bounds on x1 and x2 but we have
P

n

i=1 xi = 1. Then it is easy to solve
the system of equations that satisfies KKT conditions. There are three solutions, two of which,
x1 = [23 ,

1
3 ] and x2 = [2;�1] are risk parity solutions. The third stationary point is x3 = [43 ,�

1
3 ],

which is not a risk parity solution. However, this point is a local maximum. So far we have not
seen an example where the equality constraint alone can cause a local minimum.

We now show that a local minimum can be caused by the bound constraints in (2.17), even if
there is a risk parity solution (and thus, a global optimum) in the same orthant.

Example 3.2. Consider Example 3.1 but with additional bounds 1.2  x1  1,�1  x2  �0.2
(which enforces short sales of Asset 2). x1 = 2, x2 = �1 is the risk parity solution that satisfies the
bounds. But as Figure 3.1 shows, x1 = 1.2, x2 = �0.2 is a local optimum which is not a global one.

4 Modified least-square models

In this section, we discuss several useful extensions of the risk parity problems that can be easily
included in our least-square model.

12



Algorithm 1 Sequential min-variance risk parity algorithm

1. Choose ⇢0 > 1, � 2 (0, 1) and x0;
2. for k = 0, 1, ...

(a) xk+1 := argminF (x), where F (x) is defined as (4.1), given that xk is a starting point.
(b) If ⇢k  ✏, then xk+1 := argminF (x) with ⇢k+1 = 0, given that xk is a starting point.

STOP.
Else ⇢k+1 := ⇢k�.

4.1 Minimum variance with risk parity

As we discussed above, permissibility of short positions creates the possibility of finding multiple
risk parity solutions. In such cases, the investors have the option to define additional criteria on
their portfolio preferences to narrow down the choices for risk parity solutions, and possibly pick a
“best” one. Introducing preferences about expected returns is one option, but we do not consider
that here as we are focused on risk-based strategies. Instead, we focus on finding the risk-parity
solution with the least variance. Hence we consider the following problem where the objective
function is a weighted sum of total variance and least-squares risk parity term:

min
x,✓

P
n

i=1(xi(⌃x)i � ✓)2 + ⇢xT⌃x
s.t. a

i

 x
i

 b
iP

n

i=1 xi = 1,
(4.1)

where ⇢ � 0 is the weight parameter. Note that, in the above we simply added a convex term to
the objective function of (2.17). We propose an approach, described in Algorithm 1, of finding a
risk parity solution with the smallest variance, where we simply solve a sequence of problems (4.1)
with decreasing values of ⇢.

As ⇢ grows towards infinity, problem (4.1) converges to the minimum variance portfolio problem.
It is easy to show that for a large enough ⇢ problem (4.1) is convex in the feasible domain, if this
domain is bounded. By setting initial ⇢ to a large value, we initiate Algorithm 1 with a potentially
easy to solve problem and a solution that is close to the minimum variance solution but may be
far from risk parity. Then, the algorithm solves a sequence of subproblems of the form (4.1) with
decreasing values ⇢, initializing each new subproblem with the solution of the previous subproblem.
The goal is to converge to the risk parity solution that has the smallest variance among all risk parity
solutions. Recall that each orthant contains at most one normalized risk parity solution. Algorithm
1 attempts to identify the correct orthant where the minimum variance risk parity solution lies.
Hence, once ⇢ is small enough (for instance smaller than some tolerance, or once the convergence
in terms of orthant is apparent), we can drop the minimum variance term and solve the problem in
the right orthant, i.e., we have a risk parity problem and can obtain the exact risk parity solution
that has small volatility.

Note that due to the nonconvexity of the objective function, there is no theoretical guarantee
that Algorithm 1 will always converge to the minimum variance risk parity solution. However,
in our experiments the performance of Algorithm 1 appears to be quite reliable. The numerical
approach is much more e�cient than an enumerative approach computing 2n�1 possible solutions.

Example 4.1. Often, the long-only portfolio is conservative in terms of risk, but it may not be
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the least risky one among all risk parity portfolios.
Consider three assets with volatility to be �1 = 1,�2 = 1,�3 = 2, respectively. Moreover, the

correlation matrix is given by

Cor =

2

4
1.0 �0.9 0.3

�0.9 1.0 �0.1
0.3 �0.1 1.0

3

5
.

Thus, the covariance matrix is

⌃ =

2

4
1.0 �0.9 0.6

�0.9 1.0 �0.2
0.6 �0.2 4.0

3

5
.

By setting ⇢ to be 1000, 10, 1, 0.01 and 10�6, Algorithm 1 finds a risk parity solution [0.574; 0.531;�0.105],
after solving five subproblems. Since this is a small instance, it is not hard to empirically check
that Algorithm 1 finds the risk parity solution that has the least volatility. There are 4 normalized
risk parity solutions in total. We list these solutions in Table 4.1.

Table 4.1: A comparison of strategies, with the lower and upper bounds to be a = �1, b = 2.

Items for comparison x

i

RC

i

Volatility

Risk parity portfolio (1) [0.455;0.481;0.064] [0.333;0.333;0.333] 0.289

Risk parity portfolio (2) [-1.912;1.605;1.307] [0.333;0.333;0.333] 3.840

Risk parity portfolio (3) [1.784;-1.999;1.215] [0.333;0.333;0.333] 4.805

Risk parity portfolio (4) [0.574;0.531;-0.105] [0.333;0.333;0.333] 0.238

In fact, our method is very robust with respect to the starting point. More results and larger
instances are considered in numerical experiments in Section 6.

It is clear that similar strategy can be applied to select best risk parity portfolio based on
another criterion, such as expected return or value at risk, etc.

4.2 Group risk parity

Another interesting extension of the risk parity problem is the case of group risk parity where we
seek parity of risk contributions from groups of assets instead of individual assets. This variation
is useful in the case when there are a large number of assets, for instance, in the context of equity
investing. The assets can be grouped using a common risk factor such as industry membership
or market capitalization and we look for equal risk contribution from each factor instead of each
individual asset.

Another reason to apply group risk parity is to avoid fully dense solutions (which are enforced
by individual risk parity) when the number of assets is large. This could be useful when investors
would like to set an upper bound in the number of positions taken, or when transaction cost is of
concern. To achieve that, one may consider adding a cardinality constraint in the group risk parity
model. This approach brings additional computational di�culty and we do not discuss cardinality
constraints here in the risk parity context. Interested readers can refer to [3] for more details.
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For group risk parity, we solve the following nonconvex problem:

min
x,✓

P
l

j=1(
P

i2G
j

x
i

(⌃x)
i

� ✓)2

s.t. a
i

 x
i

 b
iP

n

i=1 xi = 1,

(4.2)

where G
j

stands for the jth group, and l is the total number of groups. Here we make two
assumptions: 1) we invest in all groups (i.e., we do not aim to pursue group sparsity); 2) there is no
overlap (i.e., each asset can only lie in one of the groups). Risk parity between groups is achieved if
the optimal value of the objective function is zero. In Section 6 we show how group risk parity may
produce a desirable portfolio using sector membership for grouping di↵erent assets in an equity
portfolio. In the next section we introduce an e�cient algorithm that can handle problem (2.17),
as well as the variations (4.1) and (4.2).

5 Algorithms solving second order least-square problems

In this section, we briefly introduce an algorithm for solving a class of second order least-square
problems, namely Alternating Linearization Method (ALM). Details of this algorithm and others
for this class of problems can be found in [1], including convergence analysis and additional numer-
ical results. This algorithm was initially inspired by an alternating linearization algorithm in [7].
However, here it is applied to a nonconvex problem and in a substantially di↵erent setting.

Consider optimizing the following function

min
x2X ,✓

F (x) =
X

i

((A
i

x)T (B
i

x)� ✓)2, (5.1)

where x 2 Rn, A
i

, B
i

2 Rm⇥n and X is a set defined by linear constraints.
Note that our previous risk parity models can be embedded into this formulation. The objective

function of risk parity problem, in the formulation of (5.1), has A
i

= ⌃
i

2 R1⇥n as the ith row
of the covariance matrix, and B

i

= e
i

2 R1⇥n is the ith column of the identity. In case of 4.2,
A

j

2 Rm

j

⇥n is defined by a submatrix of ⌃ which correspond to rows with indices from set G
j

.
B

j

2 Rm

j

⇥n is defined as follows: suppose the ith row in A
j

is the corresponding (k
i

)th row of ⌃,
then

(B
j

)
i,k

=

(
1, k = k

i

0, otherwise.

Note that (5.1) is equivalent to

min
x2X ,✓

F (x, ✓) =
nX

i=1

F
i

(x) =
nX

i=1

(xTM
i

x� ✓)2, (5.2)

where M
i

= AT

i

B
i

2 Rn⇥n. Clearly M
i

is not generally symmetric or positive semidefinite. Hence
we have a nonconvex function F in the form of (5.2). We consider a variable splitting approach
which replaces F (x, ✓) by F (x, y, ✓) =

P
n

i=1(x
TM

i

y � ✓)2, y = x. For brevity, let us omit ✓ from
the variables of F and use F (x, y). Our method generates two sequences {xk} and {yk} in such a
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Algorithm 2 Alternating linearization method (ALM)

1. Choose µ0, and x0 = y0;
2. for k = 0, 1, ..., do

xk+1 := argmin
x

Q1
µ

k

1

(x, yk);

yk+1 := argmin
y

Q2
µ

k

2

(xk+1, y);

choose new penalty parameter µk+1 2 (0, µk).

way that xk ! x⇤ and/or yk ! x⇤ where x⇤ is a local optimal solution of (5.1).
Given yk

F (x, yk) ⌘
nX

i=1

(xTM
i

yk � ✓)2, (5.3)

and given xk we have

F (xk, y) ⌘
nX

i=1

((xk)TM
i

y � ✓)2, (5.4)

Both F (x, yk) and F (xk, y) are convex functions of x and y, respectively, for any given yk and
xk. Let r

i

F denote the partial derivative of F with respect to either x (i = 1) or y (i = 2). In,
particular, using the form of (5.2), we have

r1F (x, y) =
P

n

i=1 2(x
TM

i

y � ✓)M
i

y
r2F (x, y) =

P
n

i=1 2(x
TM

i

y � ✓)MT

i

x.
(5.5)

We now construct the following two approximations of F (x, y):

Q1
µ

(x, yk) , F (x, yk) +
⌦
r2F (yk, yk), x� yk

↵
+ 1

2µ ||x� yk||22
Q2

µ

(xk+1, y) , F (xk+1, y) +
⌦
r1F (xk+1, xk+1), y � xk+1

↵
+ 1

2µ ||x
k+1 � y||22,

(5.6)

where µ is some choisen positive scalar. The following is the simple version of our ALM algorithm,
shown in Algorithm 2.

In practice backtracking strategies should be applied to choose values of parameter µ at each
iteration. A practical backtracking scheme is shown in Algorithm 3. Note that in each minimization
step, we check whether a su�cient reduction has been obtained. If so, the minimization step is
accepted and µ may be increased, otherwise is is decreased and a new candidate step is computed.
Each minimization step in Algorithms 2 and 3 is a solution of a strictly convex quadratic program-
ming problem, which can be done e�ciently by many methods. We will discuss the implemented
method in the next section.
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Algorithm 3 Alternating linearization method with backtracking (ALM-bktr)

1. Choose µ0, and x0 = y0;
2. for k = 0, 1, ..., do

(a) xk+1 := argmin
x

Q1
µ

k

1

(x, yk);

(b) if F (xk+1)  Q1
µ

k

1

(xk+1, xk) then

Choose µk+1
1 � µk

1;
else

find the smallest n s.t. µ̄ := µk

1�
n, x̄ := argmin

x

Q1
µ̄

(x, yk) and F (x̄)  Q1
µ̄

1

(x̄, yk);

µk+1
1 := µ̄/�, xk+1 := x̄;

(c) yk+1 := argmin
y

Q2
µ

k

2

(xk+1, y);

(d) if F (yk+1)  Q2
µ

k

2

(xk+1, yk+1) then

Choose µk+1
2 � µk

2;
else

find the smallest n s.t. µ̄ := µk

2�
n, ȳ := argmin

y

Q2
µ̄

(xk+1, y) and F (ȳ)  Q2
µ̄

2

(xk+1, ȳ);

µk+1
2 := µ̄/�, yk+1 := ȳ;

6 Numerical results

6.1 A comparison between strategies

We compare several asset allocation strategies on a small data set to illustrate the benefits of the
risk parity strategy. Consider the following example with 5 assets and the covariance matrix of
percentage returns (returns multiplied by 100) given by:

⌃ =

2

6664

94.868 33.750 12.325 �1.178 8.778
33.750 445.642 98.955 �7.901 84.954
12.325 98.955 117.265 0.503 45.184
�1.178 �7.901 0.503 5.460 1.057
8.778 84.954 45.184 1.057 34.126

3

7775
.

The covariance matrix above suggests that Asset 4 is a low risk asset while Asset 2 is a high
risk asset. The other assets are in the middle of the risk spectrum. First, we consider the long-only
risk parity case, when the lower and upper bound of the weights are set to be 0 and 1, respectively.
As we have proved in Lemma 2.1, in this case, there is a unique risk parity solution.

Table 6.1: A comparison of strategies, with the lower and upper bounds to be a = 0, b = 1.

Items for comparison x

i

RC

i

Volatility

1/n rule [0.200;0.200;0.200;0.200;0.200] [0.119;0.524;0.219;-0.002;0.139] 7.07%

Minimum variance portfolio [0.050;0.006;0.000;0.862;0.082] [0.050;0.006;0.000;0.862;0.082] 2.16%

Risk parity portfolio [0.125;0.047;0.083;0.613;0.132] [0.200;0.200;0.200;0.200;0.200] 3.04%

Table 6.1 shows a comparison of di↵erent strategies in terms of volatility and risk concentration.
We compare three strategies: 1/n rule, minimum variance portfolio, and risk parity portfolio. The
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risk contribution factor RC
i

is calculated as

RC
i

:=
x
i

(⌃x)
i

xT⌃x
,

which can be viewed as the percentage contribution for the ith asset to the total risk (variance of
the portfolio). By design, the minimum variance strategy has the least volatility. However, the
distribution of the risk contributions for the minimum variance portfolio is very skewed – more than
86% of the total risk comes from Asset 4. From Table 6.1 it can be observed that risk parity strategy
also puts a high weight on the Asset 4, but is much more balanced in terms of risk contribution
(equally weighted risk contribution). Meanwhile, the portfolio volatility of risk parity portfolio is
between that of minimum variance portfolio and equally weighted portfolio, which indicates that
risk parity could be viewed as a compromise between the other two strategies.

Risk parity portfolio does not always exist, as discussed in previous sections, if there are binding
constraints on the asset weights. For instance, if we change the bounds to be a = 0.05, b = 0.35,
there is no risk parity solution. Asset 4, given its much lower risk profile, requires a much higher
weight than other assets to match their risk contributions. Since the upper bound on all the assets
prevents this, risk parity cannot be achieved. Instead, we seek approximate parity by solving (2.17).

Let us call the optimal solution to (2.17) the “optimal parity” solution. From Table 6.2, we
observe that the risk contribution of Asset 4 is lower than other assets and the resulting excess is
shared roughly evenly among the remaining assets. No asset has risk contribution more than 30%.

Table 6.2: A comparison of strategies, with the lower and upper bounds to be a = 0.05, b = 0.35.

Items for comparison x

i

RC

i

Volatility

1/n rule [0.200;0.200;0.200;0.200;0.200] [0.119;0.524;0.219;-0.002;0.139] 7.07%

Minimum variance portfolio [0.200;0.050;0.050;0.350;0.350] [0.280;0.178;0.086;0.034;0.421] 4.13%

Optimal parity portfolio [0.204;0.060;0.130;0.350;0.256] [0.256;0.198;0.234;0.027;0.284] 4.44%

Next, let us consider the long-short case. We know that our method finds a stationary point
for nonconvex risk parity optimization problem (2.17). In particular, long-short case is interesting
because there might be multiple solutions that attain risk parity. In Lemma 2.2, we showed that
there could be as many as 2n�1 risk parity solutions when the bounds are loose enough. Table
6.3 shows that, provided di↵erent x0, our alternating direction algorithm may converge to di↵erent
solutions. We observe that all of them are in fact risk parity solutions and global optima for problem
(2.17).

Given only the covariance information, risk averse investors can pick the risk parity solution with
the lowest variance. As discussed in Section 4.1, we can apply Algorithm 1 to achieve this. In Table
6.3, it can be seen that the portfolio computed by Algorithm 1 (denoted as Risk parity portfolio*
in Table 6.3) has the least volatility (and, in this case, it happens to be the long-only portfolio).
Other risk parity solutions are generated by solving (2.17), with di↵erent random starting points. If
investors choose to solve (2.13) and enumerate through all orthants, they are able to obtain 24 = 16
solutions.
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Table 6.3: A comparison of strategies, with the lower and upper bounds to be a = �1, b = 2.

Items for comparison x

i

RC

i

Volatility

1/n rule [0.200;0.200;0.200;0.200;0.200] [0.119;0.524;0.219;-0.002;0.139] 7.07%

Minimum variance portfolio [0.050;0.006;-0.012;0.856;0.100] [0.050;0.006;-0.012;0.856;0.100] 2.16%

Risk parity portfolio * [0.125;0.047;0.083;0.613;0.132] [0.200;0.200;0.200;0.200;0.200] 3.04%

Risk parity portfolio (2) [-0.223;0.074;0.125;0.820;0.204] [0.200;0.200;0.200;0.200;0.200] 4.26%

Risk parity portfolio (3) [0.154;0.073;-0.285;0.717;0.340] [0.200;0.200;0.200;0.200;0.200] 3.48%

Risk parity portfolio (4) [0.165;-0.118;-0.255;0.537;0.671] [0.200;0.200;0.200;0.200;0.200] 3.38%

6.2 Strategic asset allocation

In this subsection, we backtest four di↵erent static investment strategies using real-world data.
We consider the following commonly used indices to represent di↵erent asset classes: S&P 500,

MSCI World (Net), Russell 2500, Russell 2000 Growth, Russell 2000 Value, HFRI Equity Hedged
Index, MSCI Emerging Markets (Net), HFRI Emerging MKTS Total, HFRI FoF (Conservative
Index), BC Treasury 5-10 Yr, BC US Corporate High Yield Index, JPMorgan GBI-EM Index,
JPMorgan EMBI+ Index, S&P Global Natural Resources - Energy Index. Here, we use a monthly
sampling frequency, and the sampling period is from Nov. 2002 to Aug. 2012. The excess return
and volatility are both annualized1 and the risk-free rate is assumed to be the 3-month T-bill rate
(the average is about 1.8% annually). For this test, we do not consider time varying covariance.

We compare the performance of 4 di↵erent strategies: 60/40 rule, 1/n rule, minimum variance
portfolio, and risk parity portfolio. For each strategy, the weights and risk contribution of di↵erent
asset classes are shown in Figure 6.1 and 6.2, respectively. We compare the excess return, volatility,
Sharpe ratio, 5% nonparametric value-at-risk of these strategies. In addition, we compare two risk
concentration metrics, namely the HRC and the Herfindahl index that are defined by (2.19) and
(2.20), respectively.

It can be observed that for both of 60/40 rule and the equally weighted portfolio, the volatility
and 5% VaR are high. For instance, for 1/n rule, there are 5% chances that we lose (more than)
5.80% of the money monthly. In terms of Sharpe ratio, risk parity portfolio is the best among all.
For risk concentration, the traditional 60/40 rule is dominated by equity risk (more than 95%),
as expected. As in the example of the previous section, the minimum variance portfolio, also has
a high risk concentration: almost two third of the risk is contributed by the least risky asset,
namely the HFRI FoF Conservative Index. This can be clearly observed from Figure 6.2, showing
risk contribution of di↵erent assets. Overall, the risk parity portfolio provides a good compromise
between balancing risk contributions and achieving reasonable amount of returns.

6.2.1 Asset level US equity portfolio

In this section, we consider US equity portfolio in the asset level. We porform a long-run simulation
and compare di↵erent strategies. Similar experiments or simulated examples can be found in, for

1The return and covariance data can be found at the author’s website: http://phd.ie.lehigh.edu/˜xib210/
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Figure 6.1: Weights of di↵erent asset classes in the asset allocation example (14⇥ 14)

Figure 6.2: Risk contribution of di↵erent asset classes in the asset allocation example (14⇥ 14)
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Table 6.4: A comparison of strategies, with the lower and upper bounds to be a = 0, b = 1.

Items for comparison Excess return Volatility Sharpe Ratio VaR 5% Highest RC Herfindahl index

60/40 rule 4.33% 9.36% 0.462 4.43% 95.49% 0.8783

1/n rule 8.59% 12.39% 0.693 5.80% 13.12% 0.0900

Minimum variance portfolio 2.59% 3.55% 0.730 1.17% 61.79% 0.5278

Risk parity portfolio 6.57% 7.72% 0.851 3.13% 7.14% 0.0714

instance, [5, 9].
Consider the equity universe with 17 industry sectors (food, mines, oil, clths, durbl, chems

cnsum, cnstr, steel, fabpr, machn, cars, trans, utils, rtail finan, other) for the US market. The data
is obtained from Kenneth French’s data library2.

We run the simulation based on the monthly return from Oct. 1972 to Sep. 2012. Since the
sampling period is relatively long, we cannot assume the second moment parameters to be constant
over time and we take into consideration the time varying of the risk parameters. For each year,
we estimate the covariance matrix based on the returns of the previous j years (we thus do not
account for the results in the beginning j years). Here we apply the rolling window to be 36, 60 or
120 months. The risk free rate is assumed to be the 3-month T-bill rate. Meanwhile, considering
the rebalance cost, we apply annual rebalancing. The average annualized excess return, volatility,
Sharpe ratio and risk contribution are reported. We also plot the excess return and cumulative
excess return over time (Figure 6.3 - 6.5).

It can be observed from Table 6.5, 6.6 and 6.7 that minimum variance portfolio has less volatility
(and sometimes enjoys a slightly higher Sharpe ratio) than the other two, while its risk concentration
is much higher as well. As a comparison, very often the volatility of risk parity portfolio lies between
the other two, which once again shows that risk parity is a compromise between equally weighted
and minimum variance portfolio. Moreover, risk parity portfolio has higher returns than minimum
variance portfolio, which can be clearly seen from Figure 6.3, 6.4 and 6.5.

Table 6.5: A comparison of strategies, on asset level US equity portfolio (3 years rolling window)

Items for comparison Excess return Volatility Sharpe Ratio Highest RC Herfindahl index

1/n rule 8.04% 15.30% 0.525 9.76% 0.0674

Minimum variance portfolio 6.39% 11.67% 0.547 51.79% 0.4089

Risk parity portfolio 8.59% 13.77% 0.624 14.72% 0.2034

Table 6.6: A comparison of strategies, on asset level US equity portfolio (5 years rolling window)

Items for comparison Excess return Volatility Sharpe Ratio Highest RC Herfindahl index

1/n rule 7.97% 15.46% 0.516 9.83% 0.0676

Minimum variance portfolio 6.65% 11.66% 0.570 49.67% 0.3738

Risk parity portfolio 7.08% 14.11% 0.507 14.11% 0.1329

2For more details, please go to http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Table 6.7: A comparison of strategies, on asset level US equity portfolio (10 years rolling window)

Items for comparison Excess return Volatility Sharpe Ratio Highest RC Herfindahl index

1/n rule 8.90% 15.15% 0.588 9.98% 0.0684

Minimum variance portfolio 7.59% 11.39% 0.667 54.90% 0.4072

Risk parity portfolio 9.57% 14.54% 0.658 16.11% 0.1542

6.3 Group risk parity portfolios based on S&P 500

In this section, we study the investment strategy based on historical stock prices in S&P 500, from
Aug. 21, 2009 to Aug. 20, 2010 (see: http://pages.swcp.com/stocks/). We ignore those stocks with
less than 200 trading days of data. In total there are 482 stocks and 245 trading days considered.
We now compare the simple “1/n” and minimum variance strategy with group risk parity.

The groups are determined by Global Industry Classification Standard (GICS Sector) and are
found at the following site: http://en.wikipedia.org/wiki/List of S%26P 500 companies. Here, by
GICS, we have ten sectors: Consumer Discretionary, Consumer Staples, Energy, Financials, Health
Care, Industrials, Information Technology, Materials, Telecommunication Services and Utilities.
Note that there is no overlap between groups, which means there exists one and only one group
that each stock belongs to.

Since the sample size is small within a short period of time (only one year of data), we ignore
the clustering with respect to the time series when testing the performance of the strategies. Here
we have 244 daily returns in the sample data. Since, very often, we use much more data (5-10
times) in training the parameters than that is used to test our model, we divide the data into 2
groups, with the first 220 returns in the training set and the rest 24 as validation/testing data. The
risk-free rate is assumed to be the 3-month t-bill rate.

The results are shown in Table 6.8. The highest group risk contribution is defined as HGRC :=

max
j

P
i2G

j

x

i

(⌃x)
i

x

T⌃x

. Also, the group Herfindahl index is defined as

hG =
pX

j=1

"P
i2G

j

x
i

(⌃x)
i

xT⌃x

#2

.

Since we are testing on the validation data, we cannot expect to achieve perfect risk parity, but
it can be seen from Table 6.8 that the group Herfindahl index is not far from the perfect one
(which is 1/10 = 0.1 since we have 10 groups). Also, the group risk parity portfolio enjoys a higher
Sharpe ratio than both 1/n rule and minimum variance portfolio, which indicates it might be a
good compromise of the other two strategies. As a comparison, 1/n rule has less excess return
and higher volatility, and thus is dominated. Moreover, minimum variance portfolio, while having
the least volatility, su↵ers from risk concentration both on stock level and group level. Its highest
group risk contribution is 48.34%: almost half of total risk lies in the group “Consumer Staples”
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Figure 6.3: Excess returns and cumulative excess returns of three strategies on US equity market over time

(estimation window with a length of 36 months)
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Figure 6.4: Excess returns and cumulative excess returns of three strategies on US equity market over time

(estimation window with a length of 60 months)
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Figure 6.5: Excess returns and cumulative excess returns of three strategies on US equity market over time

(estimation window with a length of 120 months)
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Figure 6.6: Risk contribution of di↵erent groups based on testing data

(this can be clearly seen in Figure 6.6). Furthermore, there are three stocks (out of 482), each of
which has a risk contribution more than 10 percent (Johnson & Johnson - 10.47%, Southern Co. -
15.93%, and Wal-Mart Stores - 14.26%). Recall that we have hundreds of stocks in the investment
pool: that is quite high risk concerntration.

Table 6.8: A comparison of strategies, with the lower and upper bounds to be a = 0, b = 1.

Items Excess return Volatility Sharpe Ratio Highest RC Highest Group RC Group Herfindahl index

1/n rule 12.42% 20.84% 0.596 1.62% 20.20% 0.133

Min. var. 7.70% 11.89% 0.648 15.93% 48.34% 0.293

Group risk par. 18.69% 19.09% 0.979 3.96% 13.60% 0.102

6.4 E�ciency of algorithms

In this section, we briefly discuss the e�ciency of the algorithms shown in Section 5, in application
to the instances discussed so far in this section. This paper is not aimed at algoritmic details, more
discussion on algorithms and corresponding numerical experiments can be found in [1].

Our implementation is written in MATLAB and experiments performed in MATLAB R2010b
on a laptop with Intel Core Duo 1.8 GHz CPU and 2GB RAM. We apply Mosek 6.0 to solve the
QP subproblems in Algorithm 3, when optimizing Q1 and Q2.

In Table 6.9, we show the e�ciency of the algorithms on di↵erent data sets. An arbitrary
symmetric positive semidefinite matrix can be generated by ⌃ = AAT , where A

ij

is uniformly
distributed within the interval [0, 1]. Recall that the main computational cost of each algorithm
lies in the number of quadratic models it solves as the subproblem. Hence, in each table we
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report the number of iterations, the total number of QP solved. To show that our algorithms can
find a stationary point, we compared the performance of the algorithms by recording the number
of iterations they took when largest KKT violation (computed in absolute value) is below some
thresholding ✏’s. We terminate the algorithm when the largest KKT violation is below 10�6. It
can be seen that, after the largest KKT violation is less than 10�6, very often the function value is
less than 10�14, which is close to machine epsilon in MATLAB. Thus, since these are “long-only”
cases, we can say that all algorithms can indeed find a global optimum with the objective function
value to be zero.

Table 6.9: A comparison of algorithm ALMs with backtracking on di↵erent instances. The starting point is chosen

to be equally weighted portfolio, i.e., x

0

i

= 1/n. Due to testing data’s scaling, we allow some parameter tuning for a

large starting µ.

Instance (size) Starting µ Bounds k (✏ = 10

�4
) QP F-value k (✏ = 10

�6
) QP F-value

Random I (20) 0.01 a = 0; b = 1 6 14 1.01 ⇥ 10

�11
7 17 8.86 ⇥ 10

�15

Random II (200) 0.0001 a = 0; b = 1 5 12 1.59 ⇥ 10

�12
7 18 6.58 ⇥ 10

�18

5 assets example (5) 1000 a = 0; b = 1 1 6 1.21 ⇥ 10

�6
11 16 1.01 ⇥ 10

�9

5 assets example (5) 1000 a = 0.05; b = 0.35 1 6 1.21 ⇥ 10

�6
6 20 1.63 ⇥ 10

�7

5 assets example (5) 1000 a = �1; b = 2 1 6 1.21 ⇥ 10

�6
11 16 1.01 ⇥ 10

�9

Asset allocation (14) 10000 a = 0; b = 1 1 2 2.68 ⇥ 10

�8
6 12 3.89 ⇥ 10

�9

US equity (482) 1000 a = 0; b = 1 1 2 1.11 ⇥ 10

�11
2 4 1.10 ⇥ 10

�11

Results showing lower and upper bounds to be 0 and 1, respectively, can be seen in Table 6.9.
Moreover, Table 6.9 shows the case when much tighter bounds are considered. Recall that there
might be no zero-parity solution and when that is the case, the global optimum does not lie in the
interior of the box constraints.

Investors might use MATLAB optimization toolbox to solve (2.17), but may not obtain a
satisfying result, especially when the number of assets becomes large. This may be due to the scale
of the data or to the smooth feature of the function, which leads to a small function decrease per
iteration. For instance, for the above 14⇥14 strategic asset allocation example, we can solve (2.17)
using MATLAB fmincon with selected algorithms. We set the function tolerance (which relates
to both the size of the latest change in the objective function value and the first-order optimality
measure) as 10�8 and the maximum function evaluation number as 10000. Table 6.10 compares
our ALM with the results MATLAB fmincon obtained. We can observe that, in this example,
fmincon-SQP completely fails, as it does not goes far from the starting point. fmincon-interior
point seems to perform better but still not as good as our algorithm (it takes longer to find a
far worse solution than ALM). For ALM, given the tolerance, it finds a solution which is close
to optimum by taking only 12 iterations and by solving 30 QPs. Again, such result shows the
e�ciency of the algorithm we proposed.

7 Conclusion and future work

In this paper, we discuss the problem of finding portfolios that satisfy risk parity as of either
individual assets or groups of assets as closely as possible. We analyze the limitations convex
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Table 6.10: A comparison of algorithms strategic asset allocation instance (14 ⇥ 14) in Section 6.2. The starting

point is chosen to be equally weighted portfolio, i.e., x

0

i

= 1/n.

Algorithm ALM fmincon - SQP fmincon - interior point

Function value 1.69⇥ 10�11 2.89⇥ 10�8 4.99⇥ 10�9

x

1

⇠ x

7

[0.042 0.037 0.034 0.033 0.035 0.069 0.027] [0.071 0.071 0.071 0.071 0.071 0.071 0.071] [0.055 0.052 0.048 0.043 0.048 0.091 0.038]

x

8

⇠ x

14

[0.052 0.159 0.284 0.064 0.054 0.077 0.034] [0.071 0.071 0.071 0.071 0.071 0.071 0.071] [0.068 0.119 0.113 0.089 0.075 0.109 0.050]

RC

1

⇠ RC

7

[0.072 0.072 0.073 0.073 0.073 0.071 0.075] [0.081 0.092 0.104 0.111 0.104 0.048 0.131] [0.075 0.081 0.084 0.080 0.083 0.075 0.086]

RC

8

⇠ RC

14

[0.071 0.067 0.067 0.071 0.071 0.071 0.073] [0.063 0.019 0.004 0.049 0.057 0.036 0.101] [0.075 0.039 0.013 0.076 0.076 0.072 0.086]

Succeed/Fail Succeed Fail Partially succeed

CPU time (s) 0.026 - 5.061

optimization approach which was proposed in prior literature. We then propose an alternative
nonconvex least-square model whose set of optimal solutions includes all risk parity solution, and
propose a modified formulation which aims at selecting the most desirable risk parity solution
(according to some criteria). Our model has many advantages, especially when general bounds
are considered or when other constraints are considered to be added. Furthermore, we propose an
alternating linearization framework to solve this nonconvex model. Numerical experiments indicate
the e↵ectiveness of our technique. Faster and more e�cient algorithms remain a topic of future
research.
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