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Abstract

We propose the bound-optimal cutting plane method. It is a new paradigm for
cutting plane generation in Mixed Integer Programming allowing for the simultaneous
generation of k cuts which, when added to the current Linear Programming relaxation,
yield the largest bound improvement. By Linear Programming duality arguments and
standard linearization techniques we show that, for a large family of cutting planes,
the cut generating problem of our cutting plane method can be formulated as a Mixed
0-1 Integer Program.

We highlight the potential of our technique by presenting computational exper-
iments on the generation of bound-optimal stable set inequalities for the fractional
clique number problem. We compare our method to the standard generation of maxi-
mally violated cuts, to the generation of cutting planes corresponding to a steepest-edge
pivot in the dual, and to coordinated cutting plane generation. With respect to the
standard algorithm, the bound-optimal cutting plane method allows for a substantial
reduction in the number of cutting plane iterations and/or cuts needed to achieve ei-
ther a given bound or an optimal solution. This reduction is still substantial also in
comparison to the other techniques.

1 Introduction

Consider an Integer (Linear) Program (IP) over n variables, namely: P;p := max{cz : Az <
b,x € Z%}. For all the developments of this paper, the extension to the mixed-integer case
is straightforward. Let Ppp := max{cx : Av < b,z € Q" } be the Linear Programming (LP)
relaxation of P;p. Let FPr be the relaxation obtained when adding to Ppp all the valid
inequalities ax < g belonging to a family C. Throughout the paper, we will adopt the



notation (a, ap) € C. Assume that, rather than solving P to optimality, we focus on solving
Pe, where Pip C P C Prp.

We tackle Py via a cutting plane algorithm where the inequalities in C are introduced
one at a time by solving a cut generating problem. As the solutions to P are not integer
constrained, we never resort to branching, thus considering a pure cutting plane method.
Typically, the cut generating problem amounts to a separation problem where, given an
optimal solution x* to the current relaxation (a superset of P containing the inequalities
from C added so far), we look for an inequality in C which is violated (that is, a cut), if
any. Even though the introduction of any violated inequality is sufficient to guarantee the
convergence of a cutting plane method, it is usual to solve a separation problem where
we generate one which is maximally violated, that is, which maximizes the linear function
az* — ag. We will refer to such separation problem (and to the corresponding cutting plane
method) as to the standard one. Note that the current practice for cut generation in state-
of-the-art solvers, like CPLEX, Gurobi, or SCIP, is somewhat more involved. More families
of cuts are usually considered, separation is typically carried out heuristically, and more cuts
are introduced into the LP relaxation at the same time. Such cuts are usually only a fraction
of those that have been generated, due to being filtered by some cut selection procedure.
In this work, so to better understand the impact of the cutting plane algorithm that is
adopted, we opt for a cleaner setting which is not affected by the influence of branching or
other components of a typical integer programming solver.

This paper belongs to a larger stream of work, started in [ZFB11] and continued in [ACG12],
where alternative paradigms for cutting plane generation are sought. The aim is of exploring
alternatives to the maximization of the cut violation to obtain an improvement in, at least
in the first place, the number of iterations needed to achieve a certain bound.

In this work, we do not directly look for a method which reduces the computing time
needed to solve a problem. Rather, we propose a cutting plane method which, in practice,
requires substantially less iterations and cuts than the standard one to achieve a given
bound. Our method, as implemented and applied in the paper, is not time efficient. Even
if heuristic procedures could be adopted to produce a faster algorithm, we do not resort to
them here, so to better understand the full potential of the method. With this work, we
aim at showing that there is vast room for improvement over cutting plane algorithms based
on cut violation, hopefully motivating future developments of efficient techniques which are
based on our proposal.

1.1 Motivation

To convince the reader that there are better options than looking for maximally violated cuts,
we exploit a simple relationship: the correspondence between, in the primal simplex method,
pivoting on a nonbasic column and, in a cutting plane method, generating a cutting plane
among those that are in C. Indeed, one can clearly look at the cutting plane algorithm as
to a method which solves an LP with a (possibly exponentially) large number of inequalities
which are introduced one at a time into the formulation. In this sense, the method precisely
amounts to solving Pr with the dual simplex method where the introduction of a new violated



inequality in the former amounts to pivoting on the corresponding (violated) row in the latter.
When adopting a dual point of view, the cutting plane method corresponds, equivalently,
to solving the dual of P. The latter is an LP with a (possibly exponentially) large number
of columns, which is solved by introducing them one at a time into the formulation (as
in a column generation method). What is more, as we will recall in Section 2, adding a
maximally violated cutting plane among those in C and reoptimizing amounts to pivoting,
in the primal, on a row with the most negative slack or, in the dual, on a column with the
most negative reduced cost. Most importantly, in the simplex method such pivoting rule is
usually considered a poor one, as reported, among other sources, in [Har73]:

At the very inception of linear programming, Dantzig realized that the criterion
of most negative reduced cost for selecting a new basic variable, chosen for com-
putational ease, was not necessarily the best. He preferred the ”greatest change”
criterion |[...].

The first part of the quotation is backed up by computational experience, which suggests
that pivoting on the column with the most negative reduced cost, which in the cutting plane
case amounts to introducing the most violated inequality, is in practice as poor a choice as
pivoting on a random column with a negative reduced cost, see [Bix09]. Curiously, such
pivoting rule often goes by the name of Dantzig’s rule. The second part of the quotation
refers to pivoting on a column which yields the largest improvement in the objective function.
In this sense, the “greatest change” criterion yields a greedy simplex method where, iteration
by iteration, the best improving solution within a pivoting operation is sought. To the best
of our knowledge, efficient ways to find such an improving pivot are not known. Nevertheless,
the underlying idea has given rise to alternative pivoting rules which, although only providing
an approximation of the actual objective function improvement, are very effective in practice.
As we will remark in Section 2, steepest-edge pricing, see [GR77] and [FG92], is one such
rule.

In the case of linear programming, when the LP is fully available a priori in an ex-
plicit form of manageable size, the pivot yielding the “greatest change” could be found by
tentatively pivoting on every nonbasic variable and then backtracking to choose the most
improving one. Besides the obvious inefficiency of such an implementation, it cannot be
applied in a cutting plane setting where the cuts are not available a priori.

1.2 Contribution and outline of the paper

Inspired by Dantzig’s “greatest change” criterion, in this work we propose a way to generate,
at the same time, a set of k cutting planes which simultaneously yield the largest bound
improvement. We refer to the cutting plane method arising from this paradigm as to the
bound-optimal cutting plane method.

The paper is organized as follows. In Section 2, we recall some preliminary notions con-
cerning pivoting in the simplex method and formalize the relationship between reduced-cost
pivoting and the generation of maximally violated cuts. In this context, we review some



alternative cutting plane paradigms from the literature, among which cut coordination, re-
cently proposed in [ACG12]. We also discuss how to apply steepest-edge pricing in the
context of a cutting plane method. In Section 3, we formally introduce the bound-optimal
cutting plane method. We show how to generate bound-optimal cuts with a Quadratically
Constrained Mixed-Integer Program in the general case and, for cuts with binary coeffi-
cients, via a Mixed-Integer Linear Program (MILP). In Section 4, we adapt our method to
the Fractional Clique Number problem for which, in Section 5, computational results are
reported. We conclude with Section 6, summarizing our contribution and and highlighting
some future developments. A preliminary, partial version of this work appeared in [Conl3].

2 On the relationship between cutting plane genera-
tion and pivoting, and alternatives to cut-violation

In this section, we formalize the connection between cutting plane generation and pivoting,
first analyzing the case of reduced-cost pivoting. We then consider that of steepest-edge
pricing, illustrating its adaptation to the context of cutting plane generation. Lastly, we
review other alternatives to maximizing the cut violation in the separation problem, as
proposed in the recent cutting plane literature.

2.1 Maximally violated cuts and reduced-cost pivoting

Consider an LP in standard form, namely: P := min{cz : Az = b,z > 0}, where A € Q"*"
and m < n. Its dual reads D := max{by : yA < ¢,y € Q™}. We partition the columns of A as
(B | N) for a nonsingular, square matrix B € Q™*"™ and z into (zp | xy). The standard form
system brought to basic form reads Bxg+Nxy = b, i.c., x5 = B~ 'b— B 'Nxy. Substituting
for x5, the objective function becomes cpxp +cyry = cgB b+ (cn —cBB_lN)xN. Letting
xn = 0, we obtain the corresponding basic solution xp = B~'b, xx = 0, of value cg B~ 'b.
When looking at the problem from the current basis B, the vector of reduced costs, i.e., the
new vector of objective function coefficients for the nonbasic variables (or, stated differently,
the derivative of the former w.r.t. each of the latter ones), reads ¢y := ¢y — cgB™'N. The
basis B yields an optimal solution if and only if ¢y, > 0 for all nonbasic variables of index j.

It is easily shown that, if B is optimal, y* := cgB~! is an optimal solution to the
dual D. To observe this, partition the dual system yA < c¢ into yB < ¢ and yN <
cy. By construction, y*B < cg becomes cg B~'B < cp, thus being trivially satisfied. By
substitution, yN < ¢y becomes cg B~!N < ¢y, i.e., cy—cgB™'N > 0. Since cy—cgB™'N =
¢y and ¢y > 0 by the assumption of optimality of B, y* satisfies yN < cy. This allows to
rewrite ¢y as ¢y = ¢y — y*N. The jth component reads cy; = cy;, — y*N.;, where N.; is
the jth column of N. From a dual point of view, ¢y, amounts to, if negative, the violation
of the jth constraint yN.; < cy; at y*. Thus, the correspondence between cut violation and
dual reduced costs is formally made clear.

When considering a cutting plane method to solve P (as defined in Section 1), D becomes
the primal problem, to which rows are added. The previous derivations can be straightfor-
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wardly applied after introducing the sign constraints y > 0 into the system yA < ¢ of D.
Nonbasic columns N.; of P (which are rows of D) are now the inequalities ax < o in C.
Thus, solving D with the standard cutting plane method which introduces a maximally
violated inequality at a time precisely amounts to solving P adopting Dantzig’s pivoting
rule. Hence, according to the quotation from [Har73|, we can expect the standard cutting
plane method to be as inefficient as the naive version of the simplex method employing
reduced-cost pivoting.

2.2 An alternative from the simplex method literature: steepest-
edge pricing

In the simplex method, each reduced cost ¢y, provides the exact improvement per unit in-
crease of the nonbasic variable xy, only if the edge n; of the polyhedron on which we move
when pivoting on such variable is parallel to one of the axes. An alternative yielding the
exact unit improvement in the general case is given by the so-called steepest-edge pricing
rule, see [GR77] and [FG92]. Rather than reduced-costs, the rule considers the directional
derivative of the objective function ¢ along n;, which is obtained by a simple projection of
c onto n;. According to [Bix02] and [BGRWO04], such pricing rule (when efficiently imple-
mented) is the most important reason why “implementations of the dual simplex algorithm
have become so powerful”.

More formally, assume that a feasible (but not optimal) solution = to P is given. Let
us assume a nondegenerate case where we pivot on a nonbasic variable xy,, increasing it
from its nonbasic value of 0 to # > 0. Given the current standard form representation of the
problem, i.e., g + B~'Nxzy = B~'b, by increasing ry; to 0, zy becomes e;0, where ¢; is
the unit vector with n —m components and a nonzero jth entry. The standard form system
becomes x5+ B ' Ne;6 = B~'b, from which we deduce that 2 is updated, from x5z = B~'b,
toxp = B~'b— B~'N. ;0. From a polyhedral point of view, this corresponds to moving from
the current solution x onto the direction n; := (—B~'N.; | e;) with a step-length of 6.

By basic trigonometry, the steepness of the edge n; (projection of ¢ onto 7;) can be

c .
obtained as s; := oy steepest-edge pricing, pivoting is thus carried out on the column

Il
yielding the smallest s;. Figure 1 illustrates the difference between such rule and reduced-cost

pivoting and the limits of the two.

Let us consider the cutting plane point of view. Although steepest-edge pricing has been
used in the context of column generation methods, see [Liib10] and the references therein, it
has not yet been adapted, to our knowledge, to the context of cutting plane generation. We
provide such an adaptation, albeit straightforward, in the following. When pivoting on the
column N.; of P, a new cutting plane yN.; < cy; is introduced into D. With the notation
of Section 1, this is equivalent to introducing the cut axr < «q into Fe. In the expression
for the steepness measure s;, the numerator cn; reads ¢(—=B~'N.; |e;) = —cgB™'N.; +cy;,.
When considering the dual, since y* = ¢pB~!, we obtain —y*N.; + cn, which, if s; < 0,
is equal to the violation of the jth constraint. Adopting again the notation of Section 1,
where N.; = «, the numerator reads o — 2*a whereas, in the denominator, we have ||n;||, =




Figure 1: Consider the problem z = max{2z; + x5 : 1 — x5 <
\ . 0,21 € [0,1],29 € [0,4]}. Starting from (0,0), both z; and x5
\ ", are nonbasic, with reduced costs ¢; = 2,¢, = 1. With reduced-
o . cost pricing, we pivot on z7, increasing it by 1 (6 = 1). Due to
Lo \ moving the solution from (0,0) (value z = 0) to (1,1) (value z =
3), we have an improvement of 3, although ¢,0 = 2 (reduced-
O cost estimation). With steepest-edge pricing, the edges are 1, =
Ay (1,1) and 7y = (0,4), with steepness s; = \% and s, = 1. By
P pivoting on 1, we move onto the direction of 7, by 6 = /2
‘ s T units, reaching (1,1), with an improvement of 3, with s;0 =
3. Unfortunately, regardless of which rule we use, the best-
improving pivot is that on z,, leading to (0,4) (value z = 4).

\/ HBBlN. j||§ + 1, which is an increasing function of the Euclidean norm of « induced by
the inverse of the optimal basis matrix Bp of the dual. We refer to a cut generated by
maximizing the steepness measure of the corresponding dual column as a dual-steepest-edge
cut. Formally, we can obtain it by minimizing s; or, equivalently, maximizing —s;. In the
latter version, we obtain the following cut generating problem:

max ra— o (1a)
ViBstal;+1
s.t.(a, ap) € C. (1b)

Unfortunately, as we will mention in Section 5, solving Problem (1a)—(1b) is typically very
hard in practice.

By the aforementioned correspondence between cut generation and pivoting, one would
expect, by generating dual-steepest-edge cuts rather than maximally violated ones, an im-
provement similar to that of steepest-edge pricing in the simplex method. This is hinted at
by our computational experiments, as reported in Section 5.

2.3 Coordinated cutting planes as an alternative from the cutting
plane literature

As we briefly mentioned in Section 1, many successful implementations of a cutting plane
algorithm, both in a pure setting, such as [BCC93] and [ACF07], as well as in a branch-
and-cut one, see [BCCI6] and [Ach09], adopt the following two-phase technique. First,
many cutting planes are gathered by solving a separation problem where the cut violation is
maximized (either to optimality or, more often, heuristically). Then, a so-called cut selection
procedure is used to identify a subset of promising inequalities by considering different cut
quality measures. The most frequently used ones include the Euclidean distance between
the facet currently induced by the cut into the relaxation and the current infeasible solution,



the sparsity of the cut (usually for numerical reasons), and, most importantly, a measure
of parallelism w.r.t. the previously generated cuts. Being employed to discard cuts which
are too similar to those that were previously found, the latter measure introduces a form of
diversity among the cutting planes. In the context of a branch-and-cut algorithm such as
SCIP, see [Ach09], the cut selection procedure is also guided by many practical reasons such
as, e.g., managing the trade-off between the tightness of the bounds and the size of the LP
relaxations, so to avoid spending an excessively large computing time in each branch-and-cut
node, or keeping the numerical error under control.

More recently, a number of papers have proposed the adoption of diversification strate-
gies, often reminiscent of the way cut parallelism is used in cut selection, even in the context
of a pure cutting plane method, and in a more direct way. Indeed, computational experience
shows that the generation of a diversified set of cuts usually allows for a faster convergence,
as addressed, e.g., in [FLO7, BS08], and [ACG12|. Differently from the many cases where the
practice of generating diverse cuts is addressed heuristically, the authors of [ACG12] address
it in a formally precise way, proposing the so-called coordinated cutting plane generation. Ex-
ploiting the (often natural) presence of many maximally violated inequalities, their method
looks for a maximally violated one which also maximizes a diversity measure between itself
and the average of the previously generated cuts. As diversity measure, the authors exploit
the 1-norm distance, which is a linear function for cuts with binary coefficients. They show
that, for inequalities with binary coefficients and a constant right-hand side, a coordinated
cutting plane can be found by just changing the primal solution x* that is about to be sepa-
rated in an appropriate way. More precisely, for a family of cutting planes with « € {0, 1}"
and a constant «q (that is, which take a given, constant value throughout the family), a
coordinated cut can be found by solving, for a sufficiently small constant € > 0, the problem:

max ar® — ap + € ||a — a|, (2a)

s.t. (o, ) € C, (2b)

where @ € [0,1] is, component wise, the average of the left-hand sides of the previously
generated cuts. For a € {0,1}", the function ||a — &l|; can be rewritten as the linear
function (e — 2&)a + e, where e is the all-one vector. Overall, this amounts to separating
the new point & := x* + €(e — 2&) rather than z*.

3 Bound-optimal cutting planes

In this section, we outline our main contribution. Inspired by Dantzig’s “greatest change”
criterion, we propose a cut generating problem capable of producing one or more cutting
planes which, when introduced into the current relaxation, yield the largest possible bound
improvement.

Formally, we introduce the following:

Definition 1 (Bound-optimal cutting plane). Consider an integer program P, its continuous
relazation Ppp = max{cz : Ax < b,z € Q"}, and a family of valid inequalities C. For
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A e Q™ and b € Q™, assume that Ax < b contains lower and upper bounds on the
components of x as well as any previously introduced valid inequality from C. Let x* be the
corresponding continuous solution yielding a bound of zpp. A bound-optimal cutting plane is
a valid inequality ax < ag in C which maximizes the bound improvement zpp — 25 p, where
25 p is the optimal value of Ppp after ax < oy has been added to it.

In the rest of the section, we first show how to construct a mathematical program which
generates a bound-optimal cutting plane. Then, we extend the definition to the generation
of k£ cuts which, jointly, yield the largest bound improvement. We conclude by discussing
some important properties of our bound-optimal cutting plane method, also comparing it to
other cut generation techniques.

3.1 Generation of bound-optimal cutting planes

With the following theorem, we show how a bound optimal cutting plane as defined in
Definition 1 can be derived via mathematical programming:

Theorem 1. Assuming that C can be represented as a mathematical program, a bound-
optimal cutting plane as in Definition 1 can be found by solving the following problem:

minz c;x; (3a)
j=1

s.t.Zaij:vj S bz Vi = 1,...,m (3b)
j=1

Z ajz; < o (3c)
j=1

xz; >0 Vi=1,....n (3d)
Z ;Y + QlYmy1 = Cj Vi=1,...,n (36)
i=1

(T Vi=1,...,m+1 (3f)
Z Gy = Z biyi + A0Ym+1 (3g)
j=1 i=1

(e, ag) € C. (3h)

Proof. By (3b)—(3d), P} p is rewritten as an LP of variable x € R™, which is a parametric
LP due to the dependence on the coefficients («, ) of the new cut axr < «p (which are
variables in this case). The validity of the cut is imposed in (3h). The optimality of z for
P} is enforced by introducing the dual of P]p in (3e)—(3f), which is a parametric LP of
variable y € R™*1. The variable y,, is the dual variable of the new inequality in (3c). The
strong LP duality relationship imposed in (3g) further links the two problems, yielding a
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primal-dual optimal pair. Since, for any given (o, ap) € C, every x which is feasible for (3b)—
(3h) is optimal for Pjp, a bound-optimal cut is thus found by minimizing the objective
function of Pj p, rather than by maximizing it. O

Problem (3a)—(3h), which is of polynomial size w.r.t. m and n (the numbers of, respec-
tively, constraints and variables in the problem), is quadratic and nonconvex because of the
bilinear products a;z; in (3¢), @jym+1 in (3e), and agyms1 in (3g). To arrive at a MILP
formulation, we exploit the well-known McCormick envelope of the bilinear product of two
(different) variables, see [McC76]. Consider two continuous bounded variables z € [z, zV],
y € [y",yY]. The bilinear feasible set {(z,z,y) € R® : z = xy}, which is a nonconvex
nor concave surface, admits a unique and compact convex envelope which is a polyhedron
described by the following four inequalities:

z > aty 4+ ayt —atyt (4)
2> 2%y +ay?’ — 2%y (5)
z < zly+ay” —atyY (6)
2z < Yy + ayt — ¥yl (7)

Due to its pointwise minimality, pointed out in [AKF83], the envelope meets the nonlinear
surface defined by z = zy at its borders. Therefore, whenever one of the two variables takes
binary values, the envelope amounts to a reformulation of the bilinear product xy rather than
to a relaxation. By linearizing each bilinear product in Problem (3a)—(3h), the following
result is directly obtained:

Corollary 1. If a € {0,1}" for all j = 1,...,n and g is an affine function of «, provided
that C can be expressed as a mized-integer set, then problem (3a)—(3h) can be cast as a Mized
0-1 Integer Program of polynomial size in m,n.

Proof. The products a;x; and «;y,,+1 can be directly linearized via the McCormick envelope.

If ap = Z?Zl wja; + wy for some wy,...,w, € Q, the product agy,+1 in (3g) becomes
Y Wi Yme1 + WoYms1 and, thus, the McCormick envelope can be directly applied to
j=1 g Im+ +

each product w;0;¥m+1. O

This result encompasses many families of combinatorial cutting planes, such as clique or
stable set inequalities (where oy = 1), cut-set inequalities (where g = 1 for connectivity or
ap = 2 for biconnectivity), and knapsack cover inequalities (where ag = Z;;l a; — 1), which
are valid for many integer programming problems. See [NW88| and the references therein.

Note that, in theory, the corollary can be extended to any bounded (o, aq) € Z"'.
Indeed, assuming o; < M for all j =1,...,n, and ap < M, for some M € Q7 it suffices to
rewrite each variable a;; and g as the sum of at most M 0-1 variables, thus transforming
all the bilinear products between an integer and a continuous variable in (3c), (3e), and (3g)
into the sum of M bilinear products between a binary and a continuous variable. Each
of them can then be rewritten in a linear fashion by employing the McCormick envelope.
Unfortunately, in the general case this procedure yields a Mixed 0-1 Integer Program of a



size which is polynomial w.r.t. m and n, but pseudopolynomial w.r.t. M —a problem which
is likely too hard to be solved in practice. The size of the problem can be substantially
reduced by binary encoding, namely, by rewriting each variable a; as a; = Zi‘foM 22,
where z € {0, 1}1°¢M+1 although the problem might still be excessively large in practice.

3.2 Extension to £ bound-optimal cuts at a time

One of the most interesting features of bound-optimal cutting planes is that a slight modifi-
cation of Problem (3a)—(3h) allows for the generation of any number k of cuts which, jointly,
yield the largest bound improvement. Formally:

Definition 2 (k Bound-optimal cutting planes). Consider the continuous relaxation Ppp as
wn Definition 1, admitting an optimal solution of value zpp. A set of k bound-optimal cutting
planes is a collection of k valid inequalities oz < b in C, for h = 1,...,k, which jointly
mazximize the bound improvement zpp — 27 p, where 2} p is the optimal value of Prp after
ax <af, forallh=1,....k, have been added to it.

We can extend Problem (3a)-(3h) to generate such a set of k bound-optimal cutting
planes, obtaining the following:

min Z c;ix;j (8a)
j=1

S.t.zai]ﬂT]’ S bz Vi = 1,...,m (8b)
j=1
z; >0 Vi=1,....n (8¢)
Za?a:jgag Vh=1,...,k (8d)
j=1
m k
Z a;jYi + Z Oé?ymﬂz > ¢ Vi=1,...,n (8e)
i=1 h=1
y; >0 Vi=1,....m+k (8f)
n m k
Z CiT; = Z blyz + Z Oégym+h (8g)
j=1 i=1 h=1
(" ab)eC Yh=1,... k. (8h)

Problem (8a)—(8h) can be linearized similarly to Problem (3a)—(3h). The impact of gener-
ating k£ bound-optimal cuts at a time is highlighted in the following.

3.3 The bound-optimal cutting plane method

Given a positive integer k, the bound-optimal cutting plane method amounts to iterating over
two steps:
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1) Solve Problem (3a)-(3h) for kK =1 or Problem (8a)-(8h) for k > 2;
2) Add the k new inequalities oz < of, for h=1,... k, to Az < b,

until Step 1 yields a solution of 0 objective value.

Differently from a standard cutting plane algorithm, the bound-optimal cutting plane
method does not require to reoptimize the LP relaxation, which is embedded in the separation
problem and automatically reoptimized in Step 1. Secondly, the bound-optimal cutting plane
method does not involve the concept of separation of an infeasible solution z*. The new
optimal solution of the LP relaxation, obtained when the cuts are added to it, is represented
only implicitly in the cut generating problem by means of strong duality, wheres the previous
infeasible solution x* is entirely not needed.

Most importantly, and differently from other cutting plane algorithms, the bound-optimal
cutting plane method does not account for cut violation at all. Note that the generation of
a cut with a strictly positive cut violation suffices to guarantee the convergence of a cutting
plane method. It is the case both of dual-steepest-edge cuts (where the steepness of the dual
edge is strictly positive if and only if the cut violation is) and of cut coordination, as well as
of the standard method.

When adopting bound-optimal cutting planes though, the corresponding cutting plane
method may not converge to an optimal solution of Pr. This is the case of problems where
the current LP relaxation admits an optimal facet but, for a given k, C does not contain any
set of k cuts which, jointly, allow to cut the entire facet. An example for £k = 1 is shown in
Figure 2, where the case of case of &k = 2, for which the method converges, is also illustrated.

As Figure 2 illustrates, the generation of a single cut & times is not equivalent to that
of k cuts at the same time. Typically, as we will show in Section 5, the bound at which
the bound-optimal cutting plane method halts becomes better for larger values of k. This is
because, for a larger k, there are more chances of finding a set of k cuts which simultaneously
allow to entirely cut the optimal facet of the current relaxation, thus preventing the issue
shown in the figure.

Note that, in principle, any problem Fp, regardless of the number of inequalities contained
in C, can be solved in a single iteration of the bound-optimal cutting plane method by solving
Problem (8a)—(8h) to optimality for & = n. This is because, for any problem in Q", exactly
n inequalities are needed to uniquely identify a vertex and, hence, no more than n cutting
planes from the family C are needed. Unfortunately, computational experiments show that
Problem (8a)—(8h) is extremely hard to solve for large values of k whereas, for lower values,
it can still be solved in a reasonable amount of computing time.

To easily obtain a fast and converging method, a lucrative option is that of coupling the
bound-optimal cutting plane method with another one where strictly violated cutting planes
are introduced. We will experiment with such a technique in Section 5.
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Figure 2: Consider a problem P where C contains four cuts, two of which, (a) and (b), have
already been added to the LP relaxation. Assume that the objective function gradient is
orthogonal to the current facet AD. The primal bound cannot be improved by introducing
any single cut because, if cut (c¢) (resp. cut (d)), is added, the segment C'D € AD (resp.
AB € AD) remains feasible. As a consequence, the bound-optimal cut generation problem
for k = 1, as defined in (3a)—(3h), admits four optimal solutions (all with objective function
0), namely the four cuts (a), (b), (c¢), and (d), regardless of the fact that cuts (a) and (b)
have already been generated. Hence, the method does not converge to the optimal solution
S of P for k= 1. On the contrary, it does when solving (8a)—(8h) for k£ = 2, where cuts (c)
and (d) are simultaneously generated.

4 Case study

In this section, we show an adaptation of bound-optimal cutting planes to the problem of
finding the fractional clique number (FCN) of a graph, which we will consider in Section 5
for our computational experiments.

4.1 Adaptation to the fractional clique number problem

Given an undirected graph G = (V, E), we look for a fractional clique, namely, for a nonneg-
ative real function on V' where the sum of its values on the vertices of any stable set in the
graph is bounded from above by 1 and where the sum of the values it assigns to the vertices
is maximized. This conforms to the definition of P that is given in Section 1. The problem
amounts to an LP relaxation of the maximum clique problem where we look for a clique in
G (a complete subgraph) of maximum cardinality. Denoting by & := {Si,..., S} the set
of all (maximal) stable sets of G, the FCN problem can be solved via the following LP with,
in the general case, exponentially many constraints:

max Z x; (9a)

JEV

sty a; <1 VS, €S (9b)
JES;
z; >0 vVjeV. (9¢)
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For simplicity, we will assume (also in the computational experiments) that, at the first
iteration, only the trivial stable sets S; = {j}, for all j € V, are present in the relaxation.
The dual of Problem (9a)—(9¢), which is later used to construct the program which generates
a bound-optimal cutting plane, reads:

min Z Yi (10a)

S; €S

st Y wi>1 VieV (10b)
S;€S:j€S;
yi >0 Vi€ S. (10c)

It amounts to an LP relaxation of the graph coloring problem where each vertex has to be
covered (fractionally) by stable sets.

Let z* be the current solution to the relaxation of (9a)—(9c) containing only the stable
set inequalities generated so far. The standard separation problem looking for a maximally
violated stable set inequality can be cast as the following 0-1 IP:

v= maXZx;aj (11a)
jev

st +a; <1 V{i,j} € E (11b)

a; € {0,1} Vjev. (11c)

A valid violated inequality is found for any solution where v > 1. Otherwise, any optimal
solution where v < 1 certifies that 2* is an optimal solution to the FCN. A dual-steepest-edge
cutting plane can be found by solving the following 0-1 Nonlinear Program:

*
ZjeV riog — 1

max - (12a)

VIBo'all, +1
s.t.a; + Q; <1 \V/{’L,j} cF (12b)
o5 € {0, 1} VjeV, (12C)

where Bp' is the inverse matrix of an optimal solution to the restriction of (10a)-(10c)
containing only the columns corresponding to the stable sets generated so far.

Assume that m stable set inequalities have been generated. Applying Theorem 1 and
Corollary 1, a bound-optimal stable set inequality is obtained as a solution to the following

13



Mixed 0-1 IP:

min Z T (13a)

JeV
sty x; <1 Vi=1,...,m (13b)
JES;
Zaj:cj <1 (13c¢)
jev
zj >0 VjievV (13d)
Z Yi + QjYmer > 1 VieV (13e)
i=1:5;37
y; >0 Vi=1,...,m+1 (13f)
Z Tj= Zyz + Ym1 (13g)
JEV i=1
a; € {0,1}" VjeV. (13i)
The problem is linearized, for each j = 1,...,n, by substituting two new variables z; > 0

and h; > 0 for, respectively, ojz; and oy, +1. The linearization for each j € V' contains the
following six McCormick envelope constraints:

zj 2zt a; =1 (14a)
z; < xj (14b)
2 < (14c)
(14d)

)

)

hj Z Ym+1 + a5 — 1 14d
hj < Yms (14e
hj S a;. (14f

Due to the direction of the Constraints (13c) and (13e) and the nonnegativity of the variables
a; and Y41, the Constraints (14b), (14c), and (14d) can be dropped. The extension to the
case of k bound-optimal cuts is straightforward.

4.2 A note on the issue of cut domination

Stable set inequalities are facet-defining for problem (9a)—(9¢) (and, thus, not dominated
by other stable set inequalities) if and only if they are inclusion-wise maximal, see for in-
stance [NW88]. From a practical point of view, ensuring that the cuts that are generated
are nondominated is paramount to have a successful cutting plane algorithm. In [ACG12],
the maximality of the inequalities is enforced via a simple technique by which, rather than
looking for a stable set S with an incidence vector o« maximizing » jev Tja, we look for one

14



which maximizes ) jev(x;f +€)a; for a sufficiently small e. This way, given any nonmaximal
stable set S, any other stable set S5 which is a superset of the previous one will have a
larger objective function value, thus preventing the generation of the inequality for S;. In
the paper, the authors describe how to find a suitable value for e which guarantees that
any solution to their separation problem be lexicographically optimal w.r.t., first, the cut
violation and, then, the cardinality of the stable set.

In this paper, rather than modifying the objective function, we propose a family of
inequalities which directly guarantees the stable set maximality. Given any stable set S with
incidence vector a € {0,1}", S is maximal if and only if, for each vertex j € V' \ S, at least
one of the vertices ¢ € §(j), where 6(j) := {{v,w} € E : v =3}, isin S. This is because,
if it is not the case, then S is not maximal since S U {j} is a valid stable set containing S.
This is reflected by the following constraint:

Y wzl-q; VjeV (15)
{i.}€8())

5 Computational experiments

In this section, we evaluate the impact of the bound-optimal cutting plane method on the
FCN problem. Computational experiments are carried out to compare our cutting plane
paradigm to the other algorithms discussed in the paper, aiming at assessing their difference
w.r.t. the total number of iterations and/or cutting planes required to achieve a certain
bound. As we mentioned, we refrain from resorting to heuristics so to obtain a clearer
picture of the impact of the different techniques.

We consider a set of 39 instances taken from the second DIMACS challenge on max
clique, coloring, and satisfiability, see [JT96], and from the Treewidth library, described
in [BvdB04]. Throughout the data set, complemented instances are denoted with a name
ending in c¢. The instance petersen_t is equivalent to petersen with different vertex labels.
All the experiments are carried out with CPLEX 12.4, adopting AMPL as modeling language.
They are run on three identical machines equipped with 3.40GHz Intel i7-3770 CPUs and
32GB of RAM, using a single thread.

We consider the following cutting plane algorithms:

e STD: standard generation of a maximally violated inequalities;

COORD: generation of coordinated cutting planes, as in [ACG12];

STEEP: generation of dual-steepest-edge cutting planes;

BOC-k: generation of k bound-optimal cuts at time, with k = 1,2, 3;

BOC-k-COORD: generation of k£ bound-optimal cuts at time, with £ = 1, 2, 3; conver-
gence to an optimal solution to the FCN problem is guaranteed by generating coordi-
nated cutting planes after the bound-optimal cutting plane method halts.

15



In all cases, except for BOC-k and BOC-k-COORD for k£ > 2, we generate a single cutting
plane at a time. For BOC-k, a time limit of 7200 seconds (two hours) is imposed. For
BOC-k-COORD, in order to always achieve an optimal solution, coordinated cutting planes
are generated even if the time limit is exceeded.

Unfortunately, solving the dual-steepest-edge cut generating problem as stated in (1a)—
(1b) with state-of-the-art mixed-integer nonlinear solvers like SCIP turns out to be compu-
tationally prohibitive for most of the instances. Similarly, a reformulation which gets rid of
the nonconvexities in the problem (except for its discreteness) suffers from major numerical
issues and premature convergence to not optimal solutions. As a consequence, in the follow-
ing experiments for STEEP we resort to an a priori enumeration of all the maximal stable
sets in the graph via the algorithm proposed in [BK73], as implemented in the Boost Graph
Library, see [SLLO1]. At each iteration, the cut maximizing the dual-steepest-edge measure
is simply found by evaluating the measure on all the not yet introduced cuts and selecting
that yielding the largest value. Although inefficient, this technique permits to tackle more
than half of the instances (all those with, roughly, less than 3000 maximal stable sets), thus
allowing for some interesting comparisons.

In all cases, the inequalities that we generate are guaranteed to be nondominated by
means of Constraint (15). For STEEP, the maximality is guaranteed by construction via the
Bron-Kerbosch algorithm.

In the upcoming tables, for each instance and algorithm, we report two main figures: the
number of iterations (Iter) and the number of cuts (Cuts), the values of which only differ if
adopting BOC for k£ > 2, and the achieved bound (Bound). Due to the way the experiments
are carried out, the latter figure is the same for all the methods. Computing times in seconds
are also reported (Time). For STEEP, the latter does not account for the time invested in
the enumeration.

To facilitate the comparisons, we also report aggregate figures via the so-called geometric
mean of ratios. More specifically, let R be the algorithm whose figures are reported in the
left-most part of each table. We compare to R each other algorithm A in the table for all
of its figures I (Iter, Cuts, and Time) by first computing the ratio, for all the instances,
between I’ for A and F' for R. Then, we aggregate such ratios via the shifted geometric
mean, with a shift of 0.01. Such mean is then reported, for each figure and algorithm, in the
last two lines of each table, considering all the instances in the Aggregate-All line and only
those for which a result obtained with STEEP is available in the Aggregate-Partial line.

5.1 Comparisons for a given bound

We first illustrate an important feature of bound-optimal cutting planes, namely, that re-
gardless of the bound at which BOC-k halts, such bound is achieved by our method in
substantially less iterations and cuts than any of STD, COORD, and STEEP.

The three Tables 1, 2, and 3, one per value of k£ = 1,2, 3, report a comparison between
BOC-k and STD, COORD, and STEEP (when available) when halting the latter three
algorithms as soon as the bound provided by BOC-k is reached. In the last two lines of the
three tables, aggregate results are reported when comparing the algorithms w.r.t. BOC-k.
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As to the number of iterations, STD, COORD, and STEEP are increasingly slower than
BOC for increasing values of k. We register the largest difference for k = 3 where, considering
all the instances, STD and COORD require, respectively, more than six and more than four
times the number of iterations needed by BOC-3 to achieve the bound. For STEEP, again
for £ = 3 but only considering the instances solved by it, the method takes almost four times
the number of iterations needed by BOC-3.

STD, COORD, and STEEP also generate more cutting planes than BOC-k, although
without a clear trend for increasing values of k. When considering all the instances, STD
generates between 1.81 and 2.20 times the number of cuts produced by BOC-k, whereas
COORD generates between 1.36 and 1.44 times such number. For STEEP, on the instances
solved by it, the number of cutting planes is between 1.21 and 1.33 times that for BOC-k.

As expected, the computing time required to find bound-optimal cutting planes grows
very fast for increasingly larger values of k. Without considering STEEP, for which the
enumerative procedure is clearly inefficient, BOC-1 is slower than both STD and COORD
by a factor of 2 (with both STD and COORD being more than 50% faster than BOC-1).
For BOC-3, the difference in running time ranges over two orders of magnitude.

On average, BOC-1 stops at a bound that is, in geometric mean of ratios, 22% larger
than the value of an optimal solution to the FCN problem. Such difference decreases to 15%
for BOC-2 and to 13% for BOC-3, thus confirming the observation reported in Section 3,
namely, that for larger values of k we are more likely to prevent the method from halting
prematurely. Note that, even if this holds on average on our computational experiments,
there are still cases where, for a larger k, the bound achieved by BOC-k is worse than that
for a lower k. This is the case, for instance, of queen7_7, for which we obtan an optimal
solution of value 7 for £ = 1,2 but, for £ = 3, BOC halts at a worse bound of 8. This
is likely due to the presence of many sets of k bound-optimal cutting planes yielding the
largest bound variation. Due to such multiplicity of optimal solutions to our cut generating
problem, the choice of one such set of cuts over another one typically determines a different
sequence of cutting planes, thus influencing the method up to, in some cases, the bound at
which it halts.

To better emphasize the substantially smaller number of iterations needed by the bound-
optimal cutting plane method to achieve the bound at which it halts, Figure 3 reports a
graphical illustration of the typical evolution of the bounds for BOC-k (for £ = 1,2,3),
STD, COORD, and STEEP for four instances, as a function of the number of iterations.
Overall, COORD and STEEP are mostly comparable, with COORD being faster on the first
three instances and STEEP being faster on the last one. In particular, the charts illustrate
the large improvement provided by BOC-k, especially in the earlier cutting plane iterations.
The bound that it provides is, for all values of k and at every iteration, always tighter than
that given by STD and, for £ = 2,3, always tighter than that given by any of the other
methods.
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5.2 Overall comparisons

We now compare BOC-k-COORD (the extension of BOC-k coupled with COORD) to STD,
COORD, and STEEP. Overall results are reported in Table 4. In the two final lines which
provide aggregate results, comparisons are carried out w.r.t. STD. All problems for which
the results are reported are solved to optimality.

On average, on the instances solved by STEEP, COORD and STEEP yield the same
reduction of 16% in the number of iterations (and thus of cutting planes) w.r.t. STD. The
reduction for COORD when considering all the instances is comparable, being only 2%
larger. Recalling the correspondence with pivoting rules, this confirms the experience with
the simplex method on the superiority of steepest-edge pricing when compared to reduced-
cost pricing. Interestingly, on average, coordinated cutting plane generation matches such
an improvement.

Let us now consider BOC-k-COORD. As to the number of iterations, the method is
increasingly faster, for increasing values of k, than STD, COORD, and STEEP, with a
reduction w.r.t. STD, on average and when considering all the instances, of 22% for k = 1,
35% for k = 2, and 43% for k = 3. The average improvement w.r.t. COORD is of 4%,
18%, and 25% for, respectively, k = 1,2,3. That w.r.t. STEEP, when only considering the
instances which are solved by the latter, is of 9%, 13%, and 32% for, respectively, k = 1,2, 3.

As to the number of cutting planes that are generated, we still have a reduction w.r.t.
STD for all values of k, although such reduction decreases for increasing values of k. On
average, over all the instances, it is of 22% for k = 1, 18% for k = 2, and 16% for k = 3. It
amounts to an improvement w.r.t. COORD of 4% for k = 1 whereas, for k& = 2, the number
of cutting planes is, on average, the same and, for k& = 3, it is slightly increased, by 2%.
Similarly, w.r.t. STEEP and only for the instances which it solves, we have an improvement
of 9% for k = 1 and of 1% for k = 2, whereas we observe a slightly larger number, increased
by 1%, for k = 3. This is likely because, in some iterations, the number of new cutting
planes that are active in the new optimal primal solution is strictly smaller than k. As a
consequence, the bound-optimal cutting plane method introduces extra cutting planes that
are not needed to improve the bound, thus resulting in a number of cuts which is not as
small for £k = 2 and k = 3 as that for £ = 1.

As expected, even in this setting where BOC-k is coupled with COORD, the computing
times for BOC-k-COORD are larger than those for STD and COORD. They are of the same
order of magnitude for k& = 1, but roughly 50% larger than those of STD when considering all
the instances, and they quickly become much larger for larger values of k, up to, on average,
one to two orders of magnitude larger for k = 3.

We remark that, while both COORD and STEEP improve over STD w.r.t. the num-
ber of iterations and cuts, the improvement given by BOC-k-COORD is, for the appropri-
ate k, larger. When aiming for the smallest number of cutting planes, one would choose
BOC-1-COORD, yielding a further improvement of, on average, 4% w.r.t. COORD (when
considering all the instances) and of 9% w.r.t. STEEP (when considering those solved by
the latter). When aiming for the smallest number of iterations, one would choose BOC-3-
COORD, yielding an extra improvement of 24% on the instances solved by STEEP, which
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goes up to 32% w.r.t. COORD when considering all the instances.

Overall, the results obtained with our bound-optimal cutting plane method for k =
1 confirm Dantzig’s preference for the “greatest change” rule in the simplex method, as
reported in the quotation from [Har73] in Section 1, especially when our method is compared
to the standard cutting plane generation based on cut violation. They also show that,
regardless of the lack of a theoretical guarantee linking an increased bound improvement
per iteration to a reduced total number of iterations, the latter is, in practice, more than
favorably affected by the former.

6 Concluding remarks

This work proposed the bound-optimal cutting plane method, a new paradigm for cutting
plane generation which produces, at each iteration of the algorithm, k£ cuts which, jointly,
yield the largest bound variation.

We have compared this paradigm to other relevant methods, namely the standard sep-
aration of maximally violated inequalities and the generation of a cut corresponding to a
steepest-edge in the dual, as well as to the generation of coordinated cutting planes. Ex-
periments on the fractional clique number problem have shown that, with our method, we
can obtain a given bound within a much smaller number of iterations when compared to the
other techniques, and typically with fewer cuts. While the improvement over the standard
cutting plane method is significant, that over the other methods is still substantial. Unfor-
tunately, but as expected, the computing time needed to find bound-optimal cutting planes
is typically quite large.

This work suggests that our method might be a promising alternative to the other tech-
niques, hopefully motivating further developments in this direction. Future work includes
looking for more efficient ways to solve our cut generating problem, possibly via the devel-
opment of fast and efficient heuristics (such as, e.g., those based on rounding procedures).
When considering the fractional clique number problem, better formulations for the set C
of valid inequalities could be adopted by, e.g., introducing some heuristically generated,
nontrivial clique inequalities.
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BOC-1 STD COORD STEEP

Bound | Iter Cuts Time |Iter Cuts Time |Iter Cuts Time |Iter Cuts Time
1-Fulllns_3 4.00 4 4 0.05 5 5 0.00 4 4 0.00 4 4 39.00
1-Fulllns_4 5.00 5 5 0.22 6 6 0.05 5 5 0.04 - - -
1-Insertions_4 5.00 4 4 0.12 4 4 0.02 4 4 0.02 - - -
2-Fulllns_3 5.00 4 4 0.07 7 7 0.03 4 4 0.02 - - -
2-Insertions_3 4.00 3 3 0.03 3 3 0.00 3 3 0.00 - - -
3-Fulllns_3 6.00 5 5 0.16| 10 10 0.05 5 5 0.03 - - -
3-Insertions_3 4.00 3 3 0.06 3 3 0.00 3 3 0.00 - - -
c-fat200-1 13.00] 14 14 0.84] 67 67 0.39] 27 27 0.16 - - -
c-fat200-2 24.000 22 22 098] 70 70 0.76| 22 22 0.26 - - -
c-fat200-5 84.001 58 58 5.73| 164 164 4.21| 65 65 1.65 - - -
david 12.00 8 8 0.16| 21 21 0.12] 16 16 0.12 - - -
hamming6-2 32.00| 32 32 1.03] 91 91 1.65| 80 80 1.50| 48 48 344.00
huck 11.00 9 9 011 22 22 009 23 23 0.10 - - -
jean 10.00 8 8 0.101 25 25 0.10] 20 20 0.08 - - -
johnson16-2-4 14.00 14 14 1586| 16 16 2.84| 16 16 3.51] 17 17 473.00
johnson8-2-4 6.00 6 6 0.10 8 8 0.03 8 8 0.03 8 8 24.00
johnson8-4-4 17.00f 18 18 3.67| 31 31 149 24 24 1.20] 28 28 120.00
mugl88_1 4.00 5 5 017 13 13 0.05 4 4 0.01 - - -
mug88_25 4.00 4 4 014 24 24 0.01 4 4 0.02 - - -
myciel3 4.00 3 3 0.02 3 3 0.00 3 3 0.00 3 3 3.00
myciel4 5.00 4 4 0.06 5 5 0.01 5 5 0.01 4 4 17.00
mycielb 6.00 5 5 0.17 5 5 0.02 5 5 0.02 5 5 221.00
petersen 3.00 3 3 0.01 3 3 0.00 3 3 0.00 3 3 2.00
petersen_t 3.00 3 3 0.00 3 3 0.00 3 3 0.00 5 5 3.00
queend_5 5.00 5 5 0.03 5 5 0.00 5 5 0.00 5 5 15.00
queen6_6 9.00] 10 10 0.25| 14 14 0.06] 12 12 0.05| 14 14 208.00
queen7_7 7.00 7 7 017 54 54 0.36| 31 31 0.16 7 7 585.00
queen8_12 13.00] 14 14 0.79] 45 45 0.57] 39 39 0.49 - - -
queen8_8 10.00f 10 10 0.73| 10 10 0.08, 26 26 0.26 - - -
queen9_9 11.00f 11 11 0.88] 38 38 0.38] 28 28 0.34 - - -
r125.1c 49.00 35 35 33.53| 49 49 24.77| 50 50 86.48| 42 42 117.00
r250.1c 70.00| 51 51 704.09| 73 73 580.70| 81 81 2113.09 - - -
sudokuc 9.00 9 9 249 16 16 1.14 9 9 0.76 9 9 11.00
ship-shipc 20.00 16 16 149, 18 18 0.52| 27 27 1.04] 22 22 28.00
knights8_8c 39.001 25 25 292 63 63 237 26 26 1.54] 49 49 300.00
kneser8-3c 33.000 23 23 552 67 67 3.53| 23 23 2.43| 43 43 459.00
barleyc 20.00| 12 12 051 23 23 048 18 18 0.56| 17 17 30.00
alarmc 20.00 9 9 028 13 13 0.18| 11 11 0.16| 10 10 10.00
lubqc 36.000 21 21 4.18| 35 35 2.28| 34 34 3.000 25 25 90.00
Aggregate-All 1.00 1.00 1.00{1.81 1.81 0.44|1.36 1.36 0.42 - - -
Aggregate-Partial 1.00 1.00 1.00{1.56 1.56 0.49|1.30 1.30 0.4811.24 1.24 105.83

Table 1: Comparison between BOC-1 and STD, COORD, and STEEP when halting the

latter three algorithms as soon as they reach the bound at which BOC-1 halts.
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BOC-2 STD COORD STEEP

Bound | Iter Cuts Time |Iter Cuts Time |Iter Cuts Time |Iter Cuts Time
1-Fulllns_3 3.33 4 8 0.40| 13 13 0.02 9 9 0.00] 15 15 122.00
1-Fulllns_4 3.63| 11 22 108.87| 44 44 1.18| 34 34 0.88 - - -
1-Insertions_4 5.00 2 4 2.51 4 4 0.02 4 4 0.02 - - -
2-Fulllns_3 5.00 2 4 0.50 7 7 0.03 4 4 0.02 - - -
2-Insertions_3 2.67 4 8 0.95] 29 29 0.02] 15 15 0.01 - - -
3-Fulllns_3 6.00 3 6 1.38] 10 10 0.05 5 5 0.03 - - -
3-Insertions_3 3.00 3 6 1.81] 19 19  0.02 6 6 0.00 - - -
c-fat200-1 13.00 7T 14 3.65| 67 67 0.39] 27 27 0.16 - - -
c-fat200-2 24.00] 11 22 3.84| 70 70 0.76] 22 22 0.26 - - -
c-fat200-5 76.000 34 68 19.13| 205 205 5.28] 128 128 3.28 - - -
david 11.00 4 8 0.51] 31 31 0.18] 22 22 0.17 - - -
hamming6-2 32.00| 17 34 14.74| 91 91 1.65| 80 80 1.50| 48 48 344.00
huck 11.00 5 10 0.52] 22 22 0.09] 23 23 0.10 - - -
jean 10.00 4 8 0.48| 25 25 0.10] 20 20 0.08 - - -
johnson16-2-4 14.00 7 14 26030 16 16 2.84| 16 16 3.51 17 17 473.00
johnson8-2-4 6.00 3 6 0.36 8 8 0.03 8 8 0.03 8 8 24.00
johnson8-4-4 17.00 8 16 2721 31 31 149 24 24 1.20] 28 28 120.00
mug88_1 4.00 2 4 3.10) 13 13 0.05 4 4 0.01 - - -
mug88_25 4.00 2 4 1.96] 24 24 0.01 4 4 0.02 - - -
myciel3 4.00 2 4 0.06 3 3 0.00 3 3 0.00 3 3  3.00
myciel4 5.00 2 4 0.24 5 5 0.01 5 5 0.01 4 4 17.00
myciel5 6.00 3 6 1.54 5 5 0.02 5 5 0.02 5 5 221.00
petersen 3.00 2 4 0.04 3 3 0.00 3 3 0.00 3 3  2.00
petersen_t 3.00 2 4 0.04 3 3 0.00 3 3 0.00 5 5 3.00
queend_5 5.00 3 6 0.18 5 5 0.00 5 5 0.00 5 5 15.00
queen6_6 8.00 5 10 0.78 16 16 0.07| 17 17 0.07] 16 16 235.00
queen7_7 7.00 4 8 1.82] 54 54 0.36| 31 31 0.16 7 7 585.00
queen8_12 13.00 7 14 16.81| 45 45 0.57] 39 39 0.49 - - -
queen8_8 10.00 5 10 8.32] 10 10 0.08] 26 26 0.26 - -
queen9_9 11.00 6 12 11.21| 38 38 0.38] 28 28 0.34 - - -
r125.1c 46.000 19 38 360.79| 54 54 26.32| 54 54 93.61| 53 53 134.00
r250.1c 66.001 30 60 7199.26| 100 100 675.94| 104 104 2753.35 - - -
sudokuc 9.00 5 10 19.71] 16 16 1.14 9 9 0.76 9 9 11.00
ship-shipc 19.00f 10 20 833 28 28 077 29 29 1.12] 24 24 30.00
knights8_8c 33.001 18 36 46.89] 93 93 3.33] 51 51 2.66| 57 57 338.00
kneser8-3c 29.00] 14 28 154.41| 8 8 4.40| 36 36 3.45| 55 55 571.00
barleyc 20.00 7T 14 2901 23 23 0.48]| 18 18 0.56| 17 17 30.00
alarmc 18.00 6 12 0.80| 15 15 0.20| 16 16 0.23] 16 16 13.00
lubqc 33.000 12 24 46.71| 45 45 290 39 39 3.43] 32 32 109.00
Aggregate-All 1.00 1.00 1.0013.85 1.93 0.07/2.80 1.40 0.06 - - -
Aggregate-Partial 1.00 1.00 1.00(2.99 1.50 0.08(2.53 1.26 0.0812.41 1.21 17.84

Table 2: Comparison between BOC-2 and STD, COORD, and STEEP when halting the
latter three algorithms as soon as they reach the bound at which BOC-2 halts.
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BOC-3 STD COORD STEEP

Bound | Iter Cuts Time |Iter Cuts Time |Iter Cuts Time |Iter Cuts Time
1-Fulllns_3 3.33 3 9 1.53| 13 13 0.02 9 9 0.00f 15 15 122.00
1-Fulllns_4 3.67 5 15 45931 36 36 050 24 24 0.29 - - -
1-Insertions_4 3.07 7 21 7199.41| 45 45 0.20] 24 24 0.10 - - -
2-Fulllns_3 4.25 4 12 6.80| 27 27 0.12] 17 17 0.07 - - -
2-Insertions_3 2.50 6 18 104.47| 48 48 0.05] 29 29 0.02 - - -
3-Fulllns_3 5.20 6 18 57.12| 36 36 0.20| 18 18 0.10 - - -
3-Insertions_3 2.67 3 9 234.03| 3 35 0.04] 14 14 0.01 - - -
c-fat200-1 13.00 5 15 2195 67 67 0.39| 27 27 0.16 - - -
c-fat200-2 24.00 8 24 18.04| 70 70 0.76] 22 22 0.26 - - -
c-fat200-5 67.001 27 81 722.28| 248 248 6.47| 189 189  4.85 - - -
david 11.00 3 9 4441 31 31 0.18] 22 22 0.17 - - -
hamming6-2 32.000 11 33 186.82] 91 91 1.65| 80 80 1.50| 48 48 344.00
huck 11.00 3 9 2391 22 22 0.09| 23 23 0.10 - - -
jean 10.00 3 9 2,58 26 25 0.10f 20 20 0.08 - - -
johnson16-2-4 60.00 2 6 7199.75 5 5 131 5 5 1.56 5 5 161.00
johnson8-2-4 4.00 3 9 1.65 8 8 0.03 8 8§ 0.03] 12 12 33.00
johnson8-4-4 14.00 6 18 282.60| 56 56 2.64| 56 56  2.68| 58 58 207.00
mugl88_1 3.33 3 9 7199.54| 94 94 0.27| 21 21 0.05 - - -
mug88_25 3.33 3 9 7199.04| 58 58 0.04| 30 30 0.09 - - -
myciel3 3.00 3 9 0.23 9 9 0.00 6 6 0.00 9 9 6.00
myciel4 3.50 3 9 2.18| 14 14 0.02 7 7 002 13 13 44.00
myciel5 4.00 4 12 1521 25 25 0.13| 15 15 0.08] 18 18 720.00
petersen 2.50 2 6 0.08 13 13 0.00 6 6 000 14 14 6.00
petersen_t 2.50 2 6 0.09] 12 12 0.00 6 6 0.00 5 5 3.00
queend_5 5.00 2 6 0.39 5 5 0.00 5 5 0.00 5 5 15.00
queen6_6 7.00 5 15 5.61| 49 49 0.51| 42 42 0.43| 48 48 630.00
queen7_7 8.00 4 12 1494 40 40 0.25 8 8 0.05 7 7 585.00
queen8_12 12.50 6 18 1597.23| 55 55  0.74| 48 48 0.66 - - -
queen8_8 9.33 6 18 906.72| 47 47 0.35| 38 38 0.39 - - -
queen9_9 10.50 5 15 226.86| 49 49 0.55| 34 34 0.40 - - -
r125.1c 46.001 13 39 7197.13| 54 54 26.32| 54 54 93.61| 53 53 134.00
r250.1c 180.00 4 12 7200.84| 13 13 269.77| 13 13 302.42 - -
sudokuc 9.00 3 9 19261| 16 16 1.14 9 9 0.76 9 9 11.00
ship-shipc 19.00 8 24 11293 28 28 077 29 29 1.12] 24 24 30.00
knights8_8c 32.001 12 36 707.48| 103 103 3.64| 53 53 2.73| 58 58 342.00
kneser8-3c 47.00 3 9 7199.41| 12 12 0.64 9 9 1.12| 11 11 134.00
barleyc 20.00 4 12 1765 23 23 048 18 18 0.56| 17 17 30.00
alarmc 18.00 4 12 7.04) 15 15 0.20f 16 16 0.23| 16 16 13.00
lubqc 32.00 9 27 584.62| 48 48 3.09| 41 41 3.58] 36 36 119.00
Aggregate-All 1.00 1.00 1.0016.59 2.20 0.01/4.32 1.44 0.00 - - -
Aggregate-Partial 1.00 1.00 1.0015.03 1.68 0.01/3.58 1.19 0.01|3.97 1.33 2.63

Table 3: Comparison between BOC-3 and STD, COORD, and STEEP when halting the

latter three algorithms as soon as they reach the bound at which BOC-3 halts.
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Figure 3: Graphical representation of the bound improvement yielded by BOC, STD, COORD, and STEEP for the
instances lebqgc, barleyc, hamming-6-2, and knights8-8c, as a function of the number of iterations.
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STD COORD STEEP BOC-1-COORD BOC-2-COORD BOC-3-COORD

Bound | Iter Cuts Time | Iter Cuts Time |Iter Cuts Time |Iter Cuts Time |Iter Cuts Time |Iter Cuts Time

1-Fulllns_3 3.33] 13 13 0.02] 11 11 0.01| 15 15 122.00f 14 14 0.07 9 13 0.41 9 15 1.54
1-Fulllns_4 3.63| 44 44 1.18| 34 34 0.88 - - -l 34 34 1.17] 18 29 109.35| 25 35 460.06
1-Insertions_4 2.77] 218 218 24.27| 188 188  22.47 - - -1 198 198  23.62| 197 199  26.99| 203 217 7225.08
2-Fulllns_3 4.25| 27 27 012 17 17 0.07 - - -1 20 20 0.15| 16 18 0.59 4 12 6.81
2-Insertions_3 2.42| 101 101 2.05| 79 79 1.75 - - -| 8 85 1.82] 87 91 2921 79 91 106.53
3-Fulllns_3 520 36 36 0.20] 19 19 0.11 - - -1 22 22 0.28| 23 26 1.54 9 21 57.14
3-Insertions_3 2.33] 202 202 8.57| 181 181 8.65 - - -| 186 186 8.03| 167 170 9.58| 171 177 241.41
c-fat200-1 12.00| 186 186  1.39| 166 166 1.35 - - -| 1563 153 1.96| 150 157 4.85] 139 149 23.01
c-fat200-2 24.00 70 70 0.76| 44 44 0.51 - - -| 65 65 148 60 71 4.43| 54 70  18.59
c-fat200-5 66.67 | 254 254  6.62| 204 204 5.23 - - -1 202 202 9.53| 166 200 22.56| 147 201 725.47
david 11.00| 31 31 0.18| 24 24 0.18 - - -1 21 21 0.25| 12 16 0.56| 18 24 4.55
hamming6-2 32.00| 105 105 1.90| 82 82 1.53| 84 84 545.00f 75 75 1.88] 56 73 1550 49 71 187.58
huck 11.00 26 26 0.11| 23 23 0.10 - - -| 18 18 0.15| 13 18 0.56| 17 23 2.45
jean 10.00| 25 25 0.10| 20 20 0.08 - - -1 15 15 0.13| 13 17 0.52| 11 17 2.62
johnson16-2-4 .00 20 20 3.44| 20 20 5.68| 23 23 627.00| 22 22 19.67| 15 22 263.86| 16 20 7203.64
johnson8-2-4 4.00/ 10 10 0.04| 10 10 0.04| 12 12  33.00 9 9 0.11 6 9 0.37 3 9 1.65
johnson8-4-4 14.00| 56 56 2.64| 56 56 2.68| 60 60 211.00| 56 56 556 45 53  29.09| 38 50 284.02
mugl8_1 3.03| 364 364 3.95| 270 270 3.08 - - -1 259 259 3.31| 272 274 6.41| 268 274 7203.11
mugl8_25 3.03| 333 333  3.38| 256 256 2.34 - - -| 276 276 2.98| 301 303 5.33| 293 299 7202.57
myciel3 290 14 14 0.01| 12 12 0.02| 13 13 7.00] 14 14 0.03| 12 14 0.07 9 15 0.25
myciel4 3.24| 33 33 044 29 29 0.31| 30 30 86.00f 29 29 0.40f 29 31 0.60] 25 31 2.58
mycield 355 77 77T  4.64| 69 69 441 70 70 2431.00| 64 64 4.56| 62 65 5.84| 63 71  20.40
petersen 2,500 13 13  0.00 7 7 0.00| 14 14 6.00 6 6 0.01 5 7 0.04 4 8 0.08
petersen_t 2,501 12 12 0.00 7 7 0.00 6 6 4.00 6 6 0.00 7 9 0.04 3 7 0.09
queenb_5 5.00 5 5 0.00 5 5 0.00 5 5 15.00 5 5 0.03 3 6 0.18 2 6 0.40
queen6_6 7.000 49 49 0.51| 42 42 0.43| 48 48 630.00] 41 41 0.54| 39 44 1.19| 37 47 5.81
queen’7_7 7.00/ 58 58 0.38| 37 37 0.21 7 7 585.00 7 7 0.17) 20 24 191 37 45 15.15
queen8_12 12.00| 103 103 1.50| 91 91 1.49 - - -1 99 99 2.04| 8 91 18.01| 83 95 1598.46
queen8_8 8.44| 123 123  3.44| 112 112 3.07 - - -| 115 115 3.81| 128 133  12.28| 108 120 909.96
queen9_9 9.00| 252 252 12.12| 256 256  12.83 - - -1 238 238 13.06| 265 271 24.94| 244 254 240.88
r125.1c 46.00| 54 54 26.32| 54 54 93.61| 54 54 136.00| 51 51  59.72| 28 47 375.46| 21 47 7209.77
r250.1c 64.00| 116 116 725.95| 114 114 3045.95| 114 114 866.00| 106 106 2287.97| 80 110 8596.49| 93 101 9634.00
sudokuc 9.00] 20 20 1.34| 22 22 2.08) 22 22 19.00f 23 23 3.76| 18 23 20.89| 15 21 193.78
ship-shipc 19.001 29 29 0.80| 30 30 1.16| 27 27 31.00| 27 27 195 20 30 8.76| 16 32 113.26
knights8_8c 32.00| 110 110 3.87| 67 67 3.30| 77 77 420.00| 72 72 4.98| 56 74 4850 43 67 708.92
kneser8-3c 28.000 96 96 4.92| 59 59 537 76 76 753.00] 59 59 8.50| 44 58 156.58| 53 59 7203.63
barleyc 20.00f 27 27 0.55] 26 26 0.84] 21 21 34.00| 16 16 0.61| 10 17 299 10 18 17.81
alarmc 18.00 19 19 0.23] 19 19 0.27| 19 19 14.00| 17 17 0.39 9 15 0.84 7 15 7.08
lubqc 30.50| 57 57 3.67| 49 49 4201 49 49 148.00| 53 53 6.72| 40 52 49.02| 36 54 586.73
Aggregate-All 1.00 1.00 1.00|0.82 0.82 1.00 - - -10.78 0.78 1.47]10.65 0.82 5.7110.57 0.84 70.11
Aggregate-Partial 1.00 1.00 1.00/0.84 0.84 1.07/0.84 0.84 194.67|0.75 0.75 1.70/0.61 0.83 7.7710.52 0.85  54.45

Table 4: Comparison of BOC-k-COORD, for k = 1,2, 3, with STD, COORD, and STEEP.
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