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Abstract. This paper develops some mathematical models arising in psychology and some other areas

of behavioral sciences that are formalized via general preferences with variable ordering structures. Our

considerations are based on the recent “variational rationality approach” that unifies numerous theories in

different branches of behavioral sciences by using, in particular, worthwhile change and stay dynamics and

variational traps. In the mathematical framework of this approach, we derive a new variational principle,

which can be viewed as an extension of the Ekeland variational principle to the case of set-valued mappings

on quasimetric spaces with cone-valued ordering variable structures. Such a general setting is proved to be

appropriate for broad applications to the functioning of goal systems in psychology, which are developed in

the paper. In this way we give a certain answer to the following striking question: in the world, where all

things change (preferences, motivations, resistances, etc.), where goal systems drive a lot of entwined course

pursuits between means and ends—what can stay fixed for a while? The obtained mathematical results and

new insights open the door to developing powerful models of adaptive behavior, which strongly depart from

pure static general equilibrium models of the Walrasian type that are typical in economics.
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1 Introduction and Motivations

In this introductory section, we first describe the major features of some stability/stay and change

dynamical models in behavioral sciences and the essence of the “variational rationality” approach to

them. Then we show the need for new mathematical developments concerning variational principles

and tools of variational analysis for valuable applications to such models. Finally, we discuss the

main goals and contributions of this paper, from both viewpoints of mathematics and applications.

Stability/Stay and Change Dynamics in Behavioral Sciences. Recent developments

on the modeling in various branches of behavioral sciences (including artificial intelligence, eco-

nomics, management sciences, decision processes, philosophy, political sciences, psychology, soci-

ology) mainly focus on the functioning/behavioral dynamics of agents, groups, and organizations.

Analyzing these models, two very simple observations come to mind. First, all these disciplines,

except static models in microeconomics via the classical Walrasian general equilibrium approach

[1], advocate that human behaviors are driven by adaptive processes. Second, the vast majority of
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models in these areas (called sometimes “theories of stability/stay and change”), advocate that we

live in a world where at the same time many things “stay” (e.g., habits and routines, equilibria,

traps, etc.) while many other things “change” (e.g., creations, destructions, learning, innovation,

attitudes as well as beliefs formation and revision, self regulation, goal setting, goal striving and

revision, breaking and forming habits, etc.). As stated by Bridges [2], “we are always stuck in the

middle between a current status quo position and future ends.” We refer to [3] for a brief survey on

stability and change theories. This may help convincing the reader that dynamical models inherent

in behavior sciences are essentially different from more traditional static equilibrium models of the

Walrasian type, and thus they require developing appropriate tools of analysis.

Variational Rationality in Behavioral Sciences. Since in behavioral sciences all things

change (as is often said: “the only thing that does not change is change itself”), the main question

in models of stability and change dynamics is: why, where, how, and when behavioral processes stop

or start to change and how transitions work. To describe these issues, Soubeyran [4, 5] introduced

two main variational concepts: worthwhile changes and variational traps as the end points of a

succession of worthwhile single changes. The notion of variational traps includes both aspiration

points and equilibria and, roughly speaking, reflects the following. Starting from somewhere and

not being precisely in a trap, agents want and try approaching such traps in some feasible and

acceptable ways (in the case of aspiration points), while being there, prefer to stay than to move

away (in the case of equilibria). The notion is crucial in the variational rationality approach to

modelize human behavior suggested in [4, 5]. This approach helps us to answer the aforementioned

main question as well as to unify and modelize various theories of stability/stay and change. It

shows how to model the course of human activities as a succession of worthwhile changes and stays,

i.e., a succession of actions balancing at each step between the following:

(i) Motivation to change involving the utility/pleasure of advantages to change, where these

advantages represent the difference between the future payoff generated by a new action and the

future payoff generated by the repetition of the past action.

(ii) Resistance to change involving the desutility/pain of inconveniences to change, where these

inconveniences are the difference between costs to be able to change and costs to be able to stay.

All these concepts, including those of actions, states, transitions, means (resources and capabil-

ities), ends (performances, payoffs, intentions, goals, desires, preferences and values), judgments,

attitudes and beliefs, require lengthy and quite intricate discussions to be fully justified in each

different discipline, which have its particular points of view.

At each step we say that changes are worthwhile if the motivation to change is larger than a

chosen fraction of resistance to change. This fraction represents an adaptive satisficing-sacrificing

ratio, which helps us to choose at each step the current level of satisfaction or accepted sacrifice.

As argued by Simon [6], being “bounded rational,” the agent is not supposed to optimize during

the transition even if he/she can or cannot reach the optimum at the end. The primary aim of

the variational rationality approach is to examine the more or less worthwhile to change transition,

which can lead to the desired end/goal points via a succession of worthwhile changes and stays.

The major questions are as follows:

(a) When do such processes make small steps, have finite length, converge?
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(b) What is the speed of convergence?

(c) Do such processes converge in finite time?

(d) For which initial points do they converge?

(e) Are such processes efficient, i.e, what are the characteristics of end points, which may be

critical points, optima, equilibria, Pareto solutions, fixed points, traps, and others?

These questions become mathematical provided that adequate mathematical models within

variational rationality approach are created and suitable tools of mathematical analysis are selected.

As advocated in the aforementioned papers by Soubeyran, variational analysis, a relatively new

mathematical discipline based on variational principles, potentially contains an appropriate and

powerful machinery to strongly progress in these directions.

Variational Analysis. Modern variational analysis has been well recognized as a rapidly

developed area of applied mathematics, which is mainly based on variational principles. It is

much related to optimization in a broad sense (being an outgrowth of the classical calculus of

variations, optimal control, and mathematical programming) while also applying variational prin-

ciples and optimization techniques to a wide spectrum of problems that may not be of any vari-

ational/optimization nature. The reader can find more details on mathematical theories of varia-

tional analysis and its many applications in the now classical monograph by Rockafellar and Wets

[7] as well as in more recent texts by Attouch, Buttazzo and Michaille [8], Borwein and Zhu [9],

and the two-volume book by Mordukhovich [10] with the numerous references therein.

While there are powerful applications of variational analysis to important models in engineer-

ing, physics, mechanics, economics4, etc., not much has been done on applications of variational

analysis to psychology and related areas of behavioral science involving human behavior. Within

the variational rationality approach, some mathematical results and applications have been recently

obtained in the papers [11, 12, 13, 14, 15]. However, much more is needed to be done in this di-

rection to capture the dynamical nature of human behavior reflected in the variational rationality

approach. Among the most important dynamical issues, which should be adequately modelized

and resolved via appropriate tools of variational analysis, we mention the following settings:

(i) Periods of the required change including:

• course of motivation (e.g., variable preferences, aspirations, hopes, moving goals, goal setting);

• dynamics of resistance to change (e.g., successive obstacles to overcome, goal striving), which

require new concepts of distances, dissimilarity, and spaces of paths because actions can be defined

as succession of operations;

• dynamics of adaptation concerning mainly self-regulation problems such as feedbacks, goal

revision, goal pursuit, etc.

(ii) Periods, where nothing is required to change, namely: temporary or permanent ends as

optima, stationary, equilibrium points, fixed points, traps, habits, routines, social norms, etc.

Having these dynamical issues in mind, we need to revisit available principles and techniques

4We particularly refer the reader to the book [10] and the more recent paper [16] with the vast bibliographies

therein for applications of modern techniques of variational analysis and set-valued optimization to models of welfare

economics, which are typical in microeconomics modeling.
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of variational analysis and to develop new mathematical methods and results, which could be

applied to solve adaptive dynamic problems arising the aforementioned goals systems of behavioral

sciences. Then variational rationality and variational analysis can gain to co-evolve. Variational

analysis aims to provide the main tools for the study of variational rationality, which in turn offers

a variety of valuable applications for variational analysis in behavioral sciences.

Main Objectives and Contributions of the Paper. The primary objective of this paper

is to study goal systems in psychology by using variational rationality approach and developing an

adequate dynamic technique of variational analysis. To achieve this aim, we establish a new and

nontrivial extension of the fundamental Ekeland variational principle (abbr. EVP) to a special class

of set-valued mappings on quasimetric spaces with cone-valued ordering variable structures, which

becomes the key for our applications to psychology.

The EVP, as first formulated by Ekeland [17] for extended-real-valued lower semicontinuous

functions on metric spaces, is one of the most powerful results of variational analysis and its

applications. It is worth mentioning that the original proof in the seminal paper by Ekeland [18]

is complicated and not constructive, involving transfinite induction via Zorn’s lemma. The much

simplified proof of the EVP, presented in [19] as a personal communication from Michael Crandall,

is remarkable for our purposes, since it is given by a dynamical process that itself (besides the

result) contains significant information for applications to behavioral sciences. However, neither

the setting and proof of the latter paper nor their subsequent numerous extensions given in the

literature fully fit the main objectives of this paper required by applications to goal systems in

psychology. To proceed successfully in this direction, we develop the (dynamical) approach to

set-valued extensions of the EVP implemented by Bao and Mordukhovich [20, 21] for mappings

in metric spaces with constant Pareto-type ordering preferences to the significantly more involved

case of variable ordering structures in quasimetric spaces.

Then we establish valuable applications of the obtained mathematical results to the goal systems

in psychology using and enriching the framework of variational rationality approach by Soubeyran

[4, 5]. This allows us, in particular, to shed new light on the explanation, via successions of

worthwhile actions and variational traps leading to the underlying dynamical relationships between

means and ends in psychological goal systems.

Organization of the Paper. The rest of the paper is organized as follows. Section 2 is devoted

to the qualitative description and mathematical modeling of the major goal system in psychology

from the viewpoint of variational rationality. Besides these issues, we justify here the importance

of an appropriate extension of the EVP and the purposes we intend to meet in this way.

Section 3 is pure mathematical containing the formulation and detailed proof of the main

mathematical result of this paper, which is the variational principle discussed above. We also

present here an important consequence of this result used in what follows.

Section 4 is devoted to the major applications of the developed mathematical theory to the

psychological goal system under consideration. Here we present psychological interpretations of

the obtained mathematical results and show that they lead us to rather striking psychological

conclusions largely discussed in this section with adding more mathematical details. Section 5

contains some concluding remarks.
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2 Goal Systems in Psychology

2.1 Formalization of Goal Systems via Means-End Chain

In what follows, we define a goal system consisting of four ingredients; see [3] for more details.

(i) Means formalized via elements x ∈ X belonging to the space of means X.

(ii) Ways formalized via elements ω ∈ Ω(x) ⊂ Ω that depend on the given means x ∈ X, where

Ω(x) is a subset of feasible ways belonging to some space Ω.

(iii) “Means-ways of using these means” pairs formalized as φ = (x, ω) ∈ X × Ω = Φ. Their

collection is denoted by Φ :=
{
φ = (x, ω) ∈ Φ| ω ∈ Ω(x)

}
.

(iv) Ends as vectorial payoffs. Let P be a space of payoffs. These payoffs can be gains g ∈ P
to be increased (e.g., proximal goals like performances, revenues, profits, utilities, and pleasures as

well as distal goals like wishes, desires, and aspirations). These payoffs can also be costs, unsatisfied

needs, desutility, or pains f ∈ P to be decreased. For instance, g ∈ P can be a vector of different

gains g = (g1, . . . , gm) ∈ P = IRm, or can be a vector f = (f1, f2, . . . , fm) ∈ P = IRm of unsatisfied

needs. We denote by g : (x, ω) ∈ X × Ω(x) 7−→ g(x, ω) ∈ P a vectorial payoff function and by

f : (x, ω) ∈ X × Ω(x) 7−→ f(x, ω) ∈ P a vectorial cost or unsatisfied need function.

Taking the above into account, goal systems can be modelized as set-valued mappings of the

following type. For gains we have the mapping G(·) : x ∈ X 7−→ G(x) = {g(x, ω)| ω ∈ Ω(x)} ⊂ P

whose values are subsets of payoffs the agent can get given a vector of means x ∈ X. Similarly, for

unsatisfied needs we have the mapping F (·) : x ∈ X 7−→ F (x) = {f(x, ω)| ω ∈ Ω(x)} ⊂ P whose

values are subsets of unsatisfied needs.

The simplest example we can imagine for a goal system is the least interconnected one, where

the unique interconnection between goals comes from the resources constraint (3) described below.

To proceed, consider the following data involving j = 1, . . . ,m activities:

(1) x ∈ X = IRd is a vector of means to be chosen first.

(2) ω = (ω1, . . . , ωj , . . . , ωm) is an allocation of the given means x, where ωj ∈ IRd for j =

1, . . . ,m will be chosen later.

(3) ω1 + . . .+ωj + . . .+ωm = x is a resource constraint. It defines the way in which the agent

allocates the given means x to each activity, namely: the different allocations of means, which can

be identified to ways of using means, ωj ∈ X, aim to reach the goal gj in the activity j. It tells us

that this allocation is feasible (without slack). This resource constraint can be written in the form

ω1 + . . .+ ωj + . . .+ ωm = x ⇐⇒ ω ∈ Ω(x).

(4) g = (g1, . . . , gj , . . . , gm) ∈ P = IRm is a vector of goals.

(5) gj = gj(xj , ωj) ∈ IR as j = 1, . . . ,m represents, relative to the activity j, the goal level

function gj(·, ·) : (xj , ωj) ∈ X ×Ω 7−→ gj = gj(xj , ωj) ∈ IR. It tells us that the means ωj ∈ X help

to reach the goal level gj = gj(xj , ωj). Then G(x) = {g(x, ω), ω ∈ Ω(x)} defines a goal system as

the set-valued “gain function” G(·) : x ∈ X 7−→ G(x) ⊂ P . Similarly, F (x) = {f(x, ω), ω ∈ Ω(x)}
defines a goal system as the set-valued “costs or unsatisfied needs function” F (·) : x ∈ X 7−→
F (x) ⊂ P , where f = (f1, . . . , f j , . . . , fm) ∈ P = IRm and f j = f j(xj , ωj) ∈ IR, j = 1, . . . ,m.
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2.2 Variational Rationality Model of Human Behavior

Simplest Adaptive Variational Rationality Model. The core of the variational rationality

approach [4, 5] can be summarized by the following basic adaptive prototype, which allows a lot of

variants and extensions.

(A) Adaptive processes of worthwhile changes and stays. Agent’s behavior is defined

as a succession {x0, . . . , xn, . . .} ⊂ X of actions entwining possible stays xn ∈ X y xn+1 ∈ X,

xn+1 = xn and possible changes xn ∈ X y xn+1 ∈ X, xn+1 6= xn. This behavior is said to be

variational rational if at each step n + 1 the agent chooses to change or to stay, depending on

what he/she accepts to consider as the worthwhile change. Then the agent follows a succession of

worthwhile stays and changes xn+1 ∈Wξn+1(xn), ξn+1 ∈ Υ as n ∈ IN . Let us be more precise.

At step n, the agent performs the action xn, given the degree of acceptability ξn ∈ Υ (to be

defined later) he/she has chosen before. At step n+ 1, given the past action xn done right before

and the previously given degree of acceptability ξn ∈ Υ, the agent adapts his/her behavior in the

following way. He/she chooses a new degree of acceptability ξn+1 ∈ Υ (which can be the same as

before) of a next worthwhile change xn+1 ∈ Wξn+1(xn). This degree of acceptability (satisficing

with some tolerable sacrifices) represents how much worthwhile the agent considers that a change

must be to accept to change this step, rather than to stay. There are two cases:

(i) A temporary worthwhile stay xn y xn+1 = xn. It is the case when Wξn+1(xn) = {xn}. Then

the agent will choose, in a rational variational way, to stay at xn = xn+1 this time. If at the next

steps n+ 2, n+ 3, . . ., the agent does not change the degree of acceptability, he/she will choose to

stay there forever. This defines a “worthwhile to stay” trap, which is a permanent worthwhile stay.

(ii) A temporary worthwhile change xn y xn+1 6= xn. It is the case if Wξn+1(xn) 6= {xn} and if

the agent can find xn+1 ∈Wξn+1(xn) with xn+1 6= xn. Then the agent will choose to move from xn

to xn+1 ∈Wξn+1(xn), and so on.

(B) Transition phase: the definition of a worthwhile to change step. Consider step n+ 1,

and let x = xn be the preceding action. At step n+ 1, the agent will choose the acceptability ratio

ξ′ = ξn+1 ∈ IR+ and a new action x′ = xn+1. Let M(x, x′) ∈ IR be the motivation to change from x

to x′, and let R(x, x′) ∈ IR+ be the resistance to change from x to x′. Then the agent will consider

that, from his/her point of view, it is worthwhile to move from x to x′ if the agent’s motivation

to change is bigger than his/her resistance to change up to the acceptability ratio ξn+1, i.e., under

the validity of the condition M(x, x′) ≥ ξ′R(x, x′).

Motivation to change M(x, x′) = U [A(x, x′)] is defined as the pleasure or utility U [A] of the

advantage to change A(x, x′) ∈ IR from x to x′. In the simplest (separable) case, advantages to

change are defined as the difference A(x, x′) = g(x′)− g(x) between a payoff to be improved (e.g.,

performance, revenue, profit) g(x′) ∈ IR when the agent performs a new action x′ and the payoff

g(x) ∈ IR when he/she repeats a past action x supposing that repetition gives the same payoff as

before. On the other hand, advantages to change A(x, x′) = f(x)− f(x′) can also be the difference

between a payoff f(x) to be decreased (e.g., cost, unsatisfied need) when the agent repeats the same

old action x and the payoff f(x′) the agent gets when he/she performs a new action x′. The pleasure

function U [·] : A ∈ IR 7−→ U [A] ∈ IR is strictly increasing with the initial condition U [0] = 0.
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Resistance to change R(x, x′) = D [I(x, x′)] is defined as the pain or disutility D [I] of the

inconveniences to change I(x, x′) = C(x, x′) − C(x, x) ∈ IR+, which is the difference between the

costs to be able to change C(x, x′) ∈ IR+ from x to x′ and the costs C(x, x) ∈ IR+ to be able to

stay at x. In the simplest case, costs to be able to stay are supposed to be zero, C(x, x) = 0 for all

x ∈ X, and costs to be able to change are defined as the quasidistances C(x, x′) = q(x, x′) ∈ IR+

satisfying: (a) q(x, x′) ≥ 0, (b) q(x, x′) = 0 ⇐⇒ x′ = x, and (c) q(x, x′′) ≤ q(x, x′) + q(x′, x′′) for

all x, x′, x′′ ∈ X. The pain function D [·] : I ∈ IR+ 7−→ D [I] ∈ IR+ is strictly increasing with the

initial condition D [0] = 0.

Thus, in this simplest case, the worthwhile to change and stay process satisfies the conditions

g(xn+1)− g(xn) ≥ ξn+1q(xn, xn+1) or f(xn)− f(xn+1) ≥ ξn+1q(xn, xn+1) for each n. This yields

Wξ′(x) =
{
x′ ∈ X

∣∣ g(x′)− g(x) ≥ ξ′q(x, x′)
}

or Wξ′(x) =
{
x′ ∈ X

∣∣ f(x)− f(x′) ≥ ξ′q(x, x′)
}
.

(C) End points as traps. Given the final worthwhile to change rate ξ∗ > 0, we say that the

end point x∗ ∈ X of the process under consideration is a stationary trap if Wξ∗(x∗) = {x∗}. In the

simplest case above, x∗ ∈ X is a stationary trap if g(x′) − g(x∗) < ξ∗q(x∗, x
′) or f(x∗) − f(x′) <

ξ∗q(x∗, x
′) for all x′ 6= x∗. The definition of a variational trap requires more. It involves the given

initial state x0 and requires that the final stationary state (trap) can be reachable from this initial

state via a worthwhile and feasible transition of single worthwhile changes and temporary stays.

(D) Variational rationality problems include the following major components.

Starting from any given x0 ∈ X and depending on the motivation and resistance to change

functions, we want to find a path of worthwhile changes so that:

(i) the steps go to zero and have finite length;

(ii) the corresponding iterations converge to a variational trap;

(iii) the convergence rate and stoping criteria are investigated;

(iv) the efficiency or inefficiency of such worthwhile to change processes are studied to clarify

whether the worthwhile to change process ends at a critical point, a local or global optimum, a local

or global equilibrium, an epsilon-equilibrium, a Pareto solution, etc.

2.3 Ekeland’s Variational Principle (EVP) in the Simplest Nonadaptive Model

of Variational Rationality

Let us discuss here how the variational rationality approach of [4, 5] interprets the classical EVP

[18] in the case of the simplest nonadaptive model. First recall the seminal Ekeland’s result.

The classical EVP. Let (X, d) be a complete metric space, and let f(·) : x ∈ X 7−→ f(x) ∈
IR∪{∞} be a lower semicontinuous (l.s.c.) function not identically to ∞ and bounded from below.

Denote f := inf {f(x)| x ∈ X} > −∞. Then for every ε > 0, λ > 0, and x0 ∈ X with f(x0) < f+ε

there exists x∗ ∈ X satisfying the conditions:

(a) f(x0)− f(x∗) ≥ (ε/λ)d(x0, x∗),

(b) f(x∗)− f(x′) < (ε/λ)d(x∗, x
′) for all x′ 6= x∗,

(c) d(x0, x∗) ≤ λ.
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By taking f(x) := −g(x), we can immediately reformulate the EVP for the case of maximization

of g(.) : x ∈ X 7−→ g(x) ∈ IR ∪ {−∞}. Let us next present a variational rationality interpretation

of the latter result by using terminology and notation of Sections 2.1 and 2.2.

Variational rationality interpretation of the EVP. Consider the maximization formulation

for a payoff to be improved. Then the EVP variational rationality framework tells us the following.

Impose the assumptions:

• the worthwhile to change process xn+1 ∈ Wξn+1(xn) is nonadaptive, which means that the

“satisficing-sacrificing” ratio ξn+1 is constant along the process ξn+1 ≡ ξ = ε/λ > 0 for all n ∈ N ;

• advantages to change are separable, i.e., A = A(x, x′) = g(x′)− g(x), where g(·) : x ∈ X 7−→
g(x) ∈ IR is a payoff function to be improved (in the sense of maximization);

• costs to be able to change C = C(x, x′) ∈ IR+ represent a distance C(x, x′) = d(x, x′), which

implies that costs to be able to change are symmetric C(y, x) = C(x, y), costs to be able to stay

are zero C(x, x) = 0 for all x ∈ X, and costs to be able to change satisfy the triangular inequality;

• pleasure and pain are identified with advantages to change and inconveniences to change,

respectively, i.e., U [A] = A for all A ∈ IR, and D [I] = I for all I ≥ 0.

Then we have the conclusions:

(a) There exists an acceptable one step transition from any initial position x0 to the end x∗ ∈
Wξ(x0). This means that it is worthwhile to move directly from x0 to x∗.

(b) The end is a stable position, which means that Wξ(x∗) = {x∗}. In other words, it is not

worthwhile to move from x∗ to any different action x′ 6= x∗.

(c) The end can be reached in a feasible way C(x0, x∗) ≤ λ. This means that if the agent cannot

spend more than the λ > 0 amount in terms of costs, then the move from x0 to x∗ is feasible

in the model under consideration.

2.4 Variational Traps and Behavioral Essence of the Ekeland Principle

As stated by Alber and Heward [22], the essence of a trap, given in behavioral terms, is that only

“a relatively simple response is necessary to enter the trap, yet once entered, the trap cannot be

resisted in creating general behavior changes.” Let us give (among many others) a short list of traps

we can find in different disciplines.

(A) Psychology. Baer and Wolf [23] seem to be the first to use the term of behavioral trap in

describing “how natural contingencies of reinforcement operate to promote and maintain general-

ized behavior changes.” Plous [24] lists five behavioral traps defined as more or less easy to fall

into and more or less difficult to get out: investment, deterioration, ignorance, and collective traps.

Behavioral traps have been shown to end reinforcement processes [25]. Ego-depletion can generate

behavioral traps due to fatigue costs, in the context of self regulation failures [26, 27]. Among

several cognitive and emotional traps we can list all-or-nothing thinking, labeling, overgeneraliza-

tion, mental filtering, discounting the positive, jumping to conclusions, magnification, emotional

reasoning, should and shouldn’t statements, personalizing the blame, etc.
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(B) Economics and decision sciences. Making traps in decision represents hidden biases,

heuristics, and routines; e.g., anchoring, status quo, sunk costs, confirming evidence, framing, esti-

mation, and forecasting traps; see [28] and the references therein.

(C) Management sciences. The importance of success and failure traps within organizations

due to the so-called “myopia of learning” is emphasized in [29, 30].

(D) Development theory. To explain the formation of poverty traps, Appadurai [31] defines

aspiration traps, which describe the inability to aspire of the poor; see also [32, 33].

Variational approach of [4, 5] shows that, from the viewpoint of behavioral sciences dealing with

essentially dynamic models of human behaviors (contrary to pure static developments in general

equilibrium theory of economics), the very essence of the EVP concerns variational traps. More

precisely, conditions (a) and (c) of the Ekeland theorem presented above define a variational trap,

which is rather easy to reach in an acceptable and feasible way, while is difficult to leave due to

condition (b). This corresponds to the intuitive sense of variational traps in behavioral sciences

given in [24]. From this viewpoint, the EVP not only ensures the existence of variational traps, but

also indicates (particularly in its proof) the dynamics of how to reach a variational trap.

It is worth mentioning that the usage and understanding of the EVP in the variational ratio-

nality approach to behavioral sciences is different from those in mathematics. Indeed, in behavioral

sciences (where inertia, frictions, and learning play a major role), natural solutions are variational

traps that are reachable in a worthwhile way as maximal elements of certain dynamic relationships

for worthwhile changes. In this way, the exact solutions become variational traps, since they include

costs to be able to change in their definition. The approximate solution becomes optimum, since

they ignore costs to be able to change in their definition.

In mathematics, the treatment of the EVP is actually opposite. Variational traps resulting

from the EVP are seen as approximate solutions to the original problem while providing the exact

optimum to another optimization problem, with a small perturbation term.

2.5 Variationally Rational Model of Goal Systems

Variational Rationality Concepts: Worthwhile to Change Payoffs. In the context of goal

systems, we define the following variational concepts following [4, 5].

1. Changes. We say that φ = (x, ω) ∈ Φ y φ′ = (x′, ω′) ∈ Φ signifies a change from the old

feasible “means-way of using these means” pair φ ∈ Φ to the new feasible pair φ′ ∈ Φ, where

Φ :=
{
φ = (x, ω) ∈ Φ such that ω ∈ Ω(x)

}
stands for the set of all the feasible pairs.

2. Advantages to change. Consider now a change from the present feasible means-end pair

(x, g) with g ∈ G(x) to the next one (x′, g′) with g′ ∈ G(x′). Then A := A(φ, φ′) = g(φ′)−g(φ) ∈ P
is the advantage to change from the old feasible pair φ ∈ Φ to the new feasible pair φ′ ∈ Φ.

3. Costs to be able to change and costs to be able to stay. Denote by C(·, ·) : (φ, φ′) ∈
Φ 7−→ C [φ, φ′] ∈ P the costs to be able to change from the old feasible pair φ ∈ Φ to the new

feasible pair φ′ ∈ Φ. It is worth mentioning here that, in the context of our new version of the EVP
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for variable ordering structures developed in Section 3, the costs to be able to change exhibit the

following two specific properties:

(i) They do not depend on the ways of using means C [φ, φ′] = C(x, x′) ∈ P . This signifies that

they actually behave as if the ways of using means are free.

(ii) They have a directional shape C(x, x′) = q(x, x′)ξ, where ξ ∈ P and q(x, x′) ∈ IR+ is a

scalar quasidistance, which represents the total cost to be able to change from the old means x to

the new means x′. In the case where P = IRJ , the vector ξ = (ξ1, . . . , ξJ) ∈ P with ξj ∈ IR+,

j = 1, . . . , J , and ‖ξ‖ = 1 represents the internal shares of this scalar total cost q(x, x′) among the

different activities. In general these shares ξj = ξj(x, x′) > 0 can change along the process.

The detailed justification that the total costs to be able to change can be modelized as a

quasidistance q(x, x′) ∈ IR+ is given in [4]. To save space, let us just mention that this comes from

the definition of the costs to be able to change as the infimum of the costs to be able to perform

a succession of operations of deletions, conservations, and acquisitions. The fact that the costs to

be able to stay satisfy C(x, x) = 0 for all x ∈ X must also be carefully justified. In the general

case, the costs to be able to change modelize inertia, i.e., the resistance to change. There are

two extreme cases. Strong resistance to change is modelized by the costs to be able to change as

scalars or cone quasidistances. This is the case of variational principles of Ekeland’s type. On the

other hands, weak resistance to change is modelized by the costs to be able to change via convex

increasing functions of scalar or cone quasidistances. This is the case of proximal algorithms; see

[34, 15] for more details and discussions.

4. Inconveniences to change. They represent the difference I(φ, φ′) = C(x, x′) − C(x, x)

between the costs to be able to change C(x, x′) and the costs to be able to stay C(x, x).

5. Worthwhile to change payoffs. Consider the difference between the advantages to change

and the costs to be able to change given by

∆ := ∆
[
(x, ω), (x′, ω′)

]
= ∆

[
φ, φ′

]
= A(φ, φ′)− ξI(φ, φ′) =

(
g(φ′)− g(φ)

)
− ξq(x, x′) ∈ P.

This defines the worthwhile to change payoff for the change φ = (x, ω) y φ′ = (x′, ω′), where

φ, φ′ ∈ Φ. Then the change φ := (x, ω) y φ′ = (x′, ω′) is worthwhile if ∆ [φ, φ′] ≥K[f(φ)] 0.

6. Pleasure and pain. To simplify our model of goal systems in this paper, we will not consider

the pleasure and pain functions in full generality, i.e., defined as the utilities U [A(φ, φ′)] ∈ U of

the advantages to change and the pains D [I(φ, φ′)] ∈ D as the disutilities of inconveniences to be

able to change. We simply identify the pleasures with the advantages to change U [A] = A and the

pains with the inconveniences to be able to change D [I] = I. However, the variable cones K [f(φ)]

or K [g(φ)] represent these variable pleasures and pains feelings. They define variable preferences in

the payoff space P . Then the change φ = (x, ω) y φ′ = (x′, ω′) is worthwhile if ∆ [φ, φ′] ≥K[f(φ)] 0.

This defines the corresponding variable preference on feasible “means-way of using these means”

pairs in the following way, respectively:

φ′′ ≥φ φ′ ⇐⇒ ∆
[
φ, φ′′

]
≥K[f(φ)] ∆

[
φ, φ′

]
,

φ′′ ≥φ φ′ ⇐⇒ ∆
[
φ, φ′′

]
≥K[g(φ)] ∆

[
φ, φ′

]
,

where the reference point is the current feasible pair φ = (x, ω) ∈ Φ.
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3 Variational Principle for Variable Ordering Structures

The preceding section describes in detail the primary adaptive psychological model of this paper

and also discusses the importance of variational analysis (particularly an appropriate variational

principle of the Ekeland type) as the main mathematical tool of our study and applications. In

comparison with the original version of the EVP presented above, the following three requirements

are absolutely mandatory for an appropriate extension of the EVP for its possible application to

the psychological model under consideration:

(a) vectorial (actually set-valued) nature of the cost function;

(b) quasimetric (instead of metric) structure of the topological space of arguments;

(c) variable preference structure of ordering on the space of values.

By now, a great many of numerous versions and extensions of the EVP are known in the

literature; see, e.g., [9, 10, 20, 21, 35, 36, 37, 38, 39] and the references therein for more recent

publications. Some of them address the above issues (a) and (b) while none of them, to the

best of our knowledge, deals with variable structures in (c), which is the main issue required for

applications to adaptive models in psychology and other branches of behavioral sciences.

Note that problems with variable preferences have drawn some attention in recent publications

(see, e.g., [14, 40, 41, 42, 43, 44], but not from the viewpoint of variational principles.

In this section, we derive a general variational principle that addresses all the three issues

(a)–(c) listed above. Furthermore, we consider a general parametric setting when the mapping

in the variational principle depends on a control parameter, which allows us to take into account

the “ways of using means” providing in this way a kind of feedback in adaptive psychological

models; see Section 4 for more discussions. Our approach and main result extend those (even in

nonparametric settings of finite-dimensional spaces) from the papers by Bao and Mordukhovich

[20, 21], which dealt with nonparametric mappings between Banach spaces in the standard (not

variable) preference framework. Addressing the new challenges in this paper requires a significant

improvement of the previous techniques, which is done below.

To describe the class of variable preferences invoking in our main result, take vectors p1, p2 ∈ P
from some linear topological decision space P , denote d := p1 − p2, and say that p2 is preferred by

the decision maker to p1 with the domination factor d for p1. The set of all the domination factors

for p1 together with the zero vector 0 ∈ P is denoted by K[p1]. Then the set-valued mapping

K : P →→ P is called a variable ordering structure. We define the ordering relation induced by the

variable ordering structure K by

p2 ≤K[p1] p1 if and only if p2 ∈ p1 −K[p1]

and say that p∗ ∈ Ξ is Pareto efficient/minimal to the set Ξ in P with respect to the ordering

structure K if there is no other vector p ∈ Ξ \ {p∗} such that p ≤K[p∗] p∗, i.e.,(
p∗ −K[p∗]

)
∩ Ξ = {p∗}.

It follows from the definition that p∗ ∈ Min (Ξ;K[p∗]) in the sense of set optimization with the

ordering cone K[p∗]; see, e.g., [35, 45]. This order reduces to the one in set optimization when
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K[p] ≡ Θ for some convex ordering cone Θ ⊂ P .

Fixing a direction ξ ∈ P and a threshold/accuracy ε > 0, we say that p∗ is an approximate

εξ-minimal point of Ξ with respect to K if(
p∗ −K[p∗]− εξ

)
∩ Ξ = ∅.

Next we recall the definition of quasimetric spaces and the corresponding notions of closedness,

compactness, and completeness in such topological spaces.

Definition 3.1 (quasimetric spaces). A pair (X, q) with the collection of elements X and the

function q : X ×X 7−→ IR on X ×X is said to be a quasimetric space if the following hold:

(i) q(x, x′) ≥ 0 for all x, x′ ∈ X;

(ii) q(x, x′) = 0 if and only if x′ = x for all x, x′ ∈ X;

(iii) q(x, x′′) ≤ q(x, x′) + q(x′, x′′) for all x, x′, x′′ ∈ X.

Definition 3.2 (left-sequential closedness). A subset S ⊂ X is said to be left-sequentially

closed if for any sequence {xn} ⊂ X converging to x∗ ∈ X in the sense that the numerical sequence

{q(xn, x∗)} converges to zero, the limit x∗ belongs to S.

Definition 3.3 (left-sequential completeness). A sequence {xn} ⊂ X is said to be left-

sequential Cauchy if for each k ∈ IN there exists Nk such that

q(xn, xm) < 1/k for all m ≥ n ≥ Nk.

A quasimetric space (X, q) is said to be left-sequentially complete if each left-sequential

Cauchy sequence is convergent.

Let f : T → P be a mapping from a quasimetric space (T, q) to an ordered vector space P

equipped with a variable ordering structure K : P ⇒ P , and let S ⊂ T . Then:

• f is (left-sequentially) level-closed with respect to K if for any p ∈ P the p-level set of f with

respect to K defined by

levp(f,K) :=
{
t ∈ X

∣∣ f(t) ≤K[p] p
}

=
{
t ∈ X

∣∣ f(t) ∈ p−K [p]
}

is left-sequentially closed in (T, q).

• f is quasibounded from below on S ⊂ dom f := {t ∈ T | f(t) ∈ P} with respect to a cone

Θ, or it is Θ-quasibounded from below for short, if there is a bounded subset M ⊂ P such that

f(S) ⊂M + Θ for the image set f(S) := ∪{f(t) ∈ P | t ∈ S}.
• t∗ ∈ S is a Pareto minimizer (resp. approximate εξ-minimizer) of f over S with respect to

K if f(t∗) is the corresponding Pareto minimal point (resp. approximate εξ-minimal point) of the

image set f(S) ⊂ P .

Note that our applications in Section 4, x ∈ X represents actions, states, or some means; g ∈ P
represents vectors of ends to be increased (e.g., performances, payoffs, revenues, profits, utilities,
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pleasures) while f ∈ P represents vectors of ends to be decreased (a vector of costs, unsatisfied

needs, disutilities, pains, etc.). Until arriving at applications, in the mathematical framework here

we consider for definiteness the “minimization” setting (instead of the “maximization” one), which

is more appropriate for certain applications. Correspondingly, f ∈ P as a vector of ends to be

decreased and K [f ] ⊂ P is the cone of vectorial costs lower than the given cost vector f . We say

that the vectorial payoff f2 (a vector of payoffs to be decreased) is smaller than f1 with respect to

K and write f2 ≤K[f1] f1 if f2 ∈ f1 −K [f1].

Consider now a set-valued mapping Ω : X →→ Ω from a quasimetric space (X, q) to a compact

subset Ω ⊂ Y of a Banach space Y . Let P be a linear topological space (of payoffs) equipped with

some variable cone-valued ordering structure K : P →→ P (called variable preference on payoffs),

and let {0} 6= Θ ⊂ P be a nontrivial cone. Our standing assumptions are as follows.

Now let us formulate our standing assumptions on the initial data of the problem under con-

sideration needed for the proof of the new variational principle in Theorem 3.4. Recall that a cone

K ⊂ P is proper if we have K 6= {0} and K 6= P .

(H1) The quasimetric space (X, q) is left-sequentially complete. Furthermore, the quasimetric

q(x, ·) is (left-sequentially) l.s.c. with respect to the second variable for all x ∈ X.

(H2) All the values of K : P →→ P are closed, convex, and pointed subcones of P . Furthermore,

the common ordering cone of K, denoted by ΘK := ∩f∈PK [f ], also has these properties.

(H3) The mapping K : P →→ P enjoys the transitivity property in the sense that(
f1 ∈ f0 −K [f0] , f2 ∈ f1 −K [f1]

)
=⇒

(
f2 ∈ f0 −K [f0]

)
.

(H4) The mapping Ω : X ⇒ Ω is (left-sequentially) closed-graph.

(H5) The cone Θ ⊂ P is closed and convex.

It is easy to check that the relation f1 ≤K[f0] f0 implies that K [f1] ⊂ K [f0] with the equality

K [f1] +K [f0] = K [f0] under assumption (H2).

Theorem 3.4 (parametric variational principle for mappings with variable ordering

structures). Let f : X × Ω 7−→ P be a mapping with dom f = gph Ω in the setting described

above. In addition to the standing assumptions (H1)–(H5), suppose that:

(A1) f is quasibounded from below on gph Ω with respect to the cone Θ.

(A2) f is (left-sequentially) level-closed with respect to K on gph Ω.

(A3) f(x, ·) is continuous for each x ∈ dom Ω.

Then for any ε > 0, λ > 0, (x0, ω0) ∈ gph Ω, and ξ ∈ ΘK \ (−Θ − K [f0]) with ‖ξ‖ = 1 and

f0 := f(x0, ω0), there is a pair (x∗, ω∗) ∈ gph Ω with f∗ := f(x∗, ω∗) ∈ Min
(
F (x∗);K [f∗]

)
and

F (x∗) := ∪{f(x∗, ω)| ω ∈ Ω(x∗)} satisfying the relationships

f∗ + (ε/λ)q(x0, x∗)ξ ≤K[f0] f0, (3.1)

f + (ε/λ)q(x∗, x)ξ �K[f∗] f∗ for all (x, ω) ∈ gph Ω with f := f(x, ω) 6= f∗. (3.2)

If furthermore (x0, ω0) is an approximate εξ–minimizer of f over gph Ω with respect to K [f0], then

x∗ can be chosen so that in addition to (3.1) and (3.2) we have

q(x0, x∗) ≤ λ. (3.3)
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Proof. Without loss of generality we assume that ε = λ = 1. Indeed, the general case can be

easily reduced to this special one by applying the latter to the mapping f̃(x, ω) := ε−1f(x, ω) and

the left-sequentially complete quasimetric space (X, q̃) with q̃(x, x′) := λ−1q(x, x′).

Define now a set-valued mapping W : X × Ω ⇒ X by

W (x, ω) :=
{
x′ ∈ X

∣∣ ∃ ω′ ∈ Ω(x′) with f(x′, ω′) + q(x, x′)ξ ≤K [f ] f(x, ω)
}
, (3.4)

where f := f(x, ω). It is easy to check that for such a pair (x′, ω′) satisfying the inequality in (3.4)

we get, by denoting f ′ := f(x′, ω′), that

f(x′, ω′) ≤K[f ] f(x, ω) and K
[
f ′
]
⊂ K [f ] (3.5)

under the imposed assumptions for K. Indeed, the inclusion in (3.5) follows directly from the

inequality therein while the latter is valid by

f(x′, ω′) + q(x, x′)ξ ≤K[f ] f(x, ω)

⇐⇒ f(x′, ω′) + q(x, x′)ξ ∈ f(x, ω)−K [f ]

⇐⇒ f(x′, ω′) ∈ f(x, ω)− q(x, x′)ξ −K [f ]

=⇒ f(x′, ω′) ∈ f(x, ω)−K [f ] ,

where the implication holds due to the choice of ξ ∈ ΘK ⊂ K [f ] and the convexity of the cone

K [f ]. In fact K [f ] + q(x, x′)ξ ⊂ K [f ] +K [f ] = K [f ].

Next we list some important properties of the set-valued mapping W used in what follows.

• The sets W (x, ω) are nonempty for all (x, ω) ∈ gph Ω due to (x, ω) ∈W (x, ω).

• The sets W (x, ω) are left-sequentially closed in (X, q) for all (x, ω) ∈ gph Ω. To verify this

property, it is sufficient to show that the limit of any convergent sequence {xk} ⊂ W (x, ω) with

xk → x∗ as k →∞ belongs to the set W (x, ω). By definition of W , find a sequence {ωk} ⊂ Ω with

ωk ∈ Ω(xk) for all k ∈ IN satisfying

f(xk, ωk) + q(x, xk)ξ ∈ f(x, ω)−K [f ] .

Since Ω is a compact set, extract (without relabeling) a convergent subsequence from {ωk} that

converges to some ω∗ ∈ Ω. This gives us (x∗, ω∗) ∈ gph Ω by the (left-sequential) closedness

assumption on gph Ω. Then passing to limit with taking into account the level-closedness and

lower semicontinuity assumptions imposed on f and q tells us that

f(x∗, ω∗) + q(x, x∗)ξ ∈ f(x, ω)−K [f ] , i.e., x∗ ∈W (x, ω).

• The sets W (x, ω) are bounded from below with respect to Θ + K [f ] for all (x, ω) ∈ gph Ω,

where f = f(x, ω). Indeed, it follows from

W (x, ω) ⊂
{
x′ ∈ X such that q(x, x′)ξ ∈ f(x, ω)−M −Θ−K [f ]

}
,

where the bounded set M is taken from the definition of the assumed quasiboundedness from below

of the mapping f with respect to the cone Θ.

• We have the inclusion W (x′, ω′) ⊂W (x, ω) for all x′ ∈W (x, ω) and ω′ ∈ Ω with

f(x′, ω′) + q(x, x′)ξ ≤K[f ] f(x, ω)

14



To verify it, pick x′′ ∈W (x′, ω′) and by construction of W (x, ω) in (3.4) find ω′′ ∈ Ω(x”) satisfying

the inequality f(x′′, ω′′) + q(x′, x′′)ξ ≤K[f ′] f(x′, ω′). Summing up the last two inequalities and

taking into account the triangle inequality for the quasimetric q(x, x′′) ≤ q(x, x′) + q(x′, x′′), the

choice of ξ ∈ ΘK as well as the transitivity and convexity properties of K ensuring that K [f ] +

K [f ′] + ΘK = K [f ], we get the relationships

f(x′′, ω′′) + q(x, x′′)ξ

=
(
f(x′, ω′) + q(x, x′)ξ

)
+
(
f(x′′, ω′′) + q(x′, x′′)ξ

)
+
(
q(x, x′′)− q(x, x′)− q(x′, x′′)

)
ξ − f(x′, ω′)

∈ f(x, ω)−K [f ] + f(x′, ω′)−K [f ′]−ΘK − f(x′, ω′)

⊂ f(x, ω)−K [f ] .

This clearly implies that f(x′′, ω′′)+q(x, x′′)ξ ≤K[f ] f(x, ω), i.e., x′′ ∈W (x, ω). Since x′′ was chosen

arbitrarily in W (x′, ω′), we conclude that W (x′, ω′) ⊂W (x, ω).

To proceed further, let us inductively construct a sequence of pairs {(xn, ωn)} ⊂ gph Ω and

denote fn := f(xn, ωn) for all n ∈ IN∪{0} by the following iterative procedure: starting with (x0, ω0)

given in the theorem and having the n-iteration (xn, ωn), we select the next one (xn+1, ωn+1) by
xn+1 ∈W (xn, ωn),

q(xn, xn+1) ≥ sup
x∈W (xn,ωn)

q(xn, x)− 1

n+ 1
,

ωn+1 ∈ Ω(xn+1), f(xn+1, ωn+1) + q(xn, xn+1)ξ ≤K[fn] f(xn, ωn)

(3.6)

It follows from construction (3.4) of the sets W (x, ω) and their properties listed above that this

iterative procedure is well defined. By (3.5) the sequence {fn} with fn := f(xn, ωn) is nonincreasing

with respect to the ordering structure K in the sense that fn+1 ≤K[fn] fn for all n ∈ IN ∪ {0}.
Furthermore, the cone sequence {K(fn)} is nonexpansive, i.e.,

K [fn+1] ⊂ K [fn] for all n ∈ IN ∪ {0} ,

which implies together with the convex-valuedness of K that

m∑
n=0

K [fn] = K [f0] for all m ∈ IN ∪ {0}.

Summing up the last inequality in (3.6) from n = 0 to m, we get with tm :=
∑m

n=0 q(xn, xn+1) that

tmξ ∈ f0 − fm+1 −K [f0] ⊂ f0 −M −Θ−K [f0] for all m ∈ IN ∪ {0}. (3.7)

Let us next prove by passing to the limit in (3.7) as m→∞ that

∞∑
n=0

q(xn, xn+1) <∞. (3.8)

Arguing by contradiction, suppose that (3.8) does not hold, i.e., the increasing sequence {tm} tends

to ∞ as m −→∞. By the first inclusion in (3.7) and the boundedness of the set M taken from the

quasiboundedness of f from below, find a bounded sequence {wm} ⊂ f0 −M satisfying

tmξ − wm ∈ −Θ−K [f0] , i.e., ξ − wm/tm ∈ −Θ−K [f0] , m ∈ IN.
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Passing now to the limit as m −→∞ and taking into account the closedness of Θ, the boundedness

of {wm}, and that tm → ∞, we arrive at ξ ∈ −Θ − K [f0] in contradiction to the choice of

ξ ∈ ΘK \ (−Θ − K [f0]). Thus (3.8) holds and allows us for any ε > 0 find a natural number

Nε ∈ IN so that tm − tn =
∑m−1

k=n q(xk, xk+1) ≤ ε whenever m ≥ n ≥ Nε. Hence

q(xn, xm) ≤
m−1∑
k=n

q(xk, xk+1) ≤ ε for all m ≥ n ≥ Nε,

which means that {xk} is a (left-sequential) Cauchy sequence in the quasimetric space (X, q). Since

X is left-sequentially complete, there is x∗ ∈ X such that xk −→ x∗ as k −→ ∞. Taking into

account that W (xk+1, ωk+1) ⊂W (xk, ωk) and the choice of xk+1, we get the estimate

radiusW (xk, ωk) := sup
x∈W (xk,ωk)

q(xk, x) ≤ q(xk, xk+1) +
1

k + 1

ensuring that radiusW (xk, ωk) ↓ 0 as k → ∞. It follows from the left-sequential completeness of

X and the left-sequential closedness of W (xk, ωk) that

∞⋂
k=0

W (xk, ωk) = {x∗} for some x∗ ∈ X. (3.9)

Now we justify the existence of ω∗ ∈ Ω(x∗) such that f∗ := f(x∗, ω∗) ∈ Min
(
F (x∗),K [f∗]

)
satisfies the relationships in (3.1) and (3.2). For each pair (xk, ωk) ∈ gph Ω, define a subset of Ω by

R(xk, ωk) :=
{
ω ∈ Ω(x∗)

∣∣ f(x∗, ω) + q(xk, x∗)ξ ≤K[fk] f(xk, ωk)
}
, k ∈ IN. (3.10)

Then we have the following properties:

• The set R(xk, ωk) is nonempty and closed for any k ∈ IN ∪ {0} under the assumptions

made. Indeed, the nonemptiness follows directly from x∗ ∈ W (xk, ωk) and the definition of W in

(3.4). The closedness property holds since R(xk, ωk) is the (f(xk, ωk)− q(xk, x∗)ξ)-level set of the

mapping f(x∗, ·) with respect to the closed and convex cone K [fk] and since f(x∗, ·) is assumed

to be continuous. Furthermore, it follows from the inclusion R(xk, ωk) ⊂ Ω(x∗) ⊂ Ω and the

compactness of Ω that R(xk, ωk) is a compact subset as well.

• The sequence {R(xk, ωk)} is nonexpansive. To verify it, pick any w ∈ R(xk+1, ωk+1) and get

f(x∗, w) + q(xk+1, x∗)ξ ∈ f(xk+1, ωk+1) +K [fk+1] .

Combining this with (3.6) and then using the quasimetric triangle inequality together with the

equality K [fk+1] +K [fk] = K [fk] tell us that

f(x∗, w) + q(xk, x∗)ξ ∈ f(xk, ωk) +K [fk] , i.e., w ∈ R(xk, ωk),

which therefore justifies that w ∈ R(xk+1, ωk+1) ⊂ R(xk, ωk).

It follows from the properties of R(·, ·) established above and the compactness of Ω that there

exists ω ∈ Ω satisfying the inclusion

ω̄ ∈
∞⋂
k=0

R(xk, ωk). (3.11)
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Denoting fω̄ := f(x∗, ω̄) and forming the fω̄–level set of f(x∗, ·) over Ω(x∗) by

Ξ :=
{
ω ∈ Ω(x∗)

∣∣ fω := f(x∗, ω) ≤K[fω̄ ] f(x∗, ω̄) =: fω̄
}
, (3.12)

we obviously have that Ξ is compact with ω̄ ∈ Ξ. Employ now [45, Corollary 5.10], which ensures

in our setting the existence of ω∗ ∈ Ξ such that

f∗ = f(x∗, ω∗) ∈ Min
(
f(x∗,Ξ),K [fω̄]) with f(x∗,Ξ) :=

⋃
ω∈Ξ

{fω := f(x∗, ω) ∈ P} .

This reads by the definition of Pareto efficiency that(
f∗ −K [fω̄]

)
∩ f(x∗,Ξ) = {f∗} .

Since f∗ ≤K[fω̄ ] fω̄, we have K [f∗] ⊂ K [fω̄]; cf. the justifications for (3.5). Thus we get

(f∗ −K [f∗]) ∩ f(x∗,Ξ) = {f∗} , i.e., f∗ ∈ Min (f(x∗,Ξ),K [f∗]).

Actually the following stronger conclusion holds:

f∗ ∈ Min (F (x∗),K [f∗]) with F (x∗) = f
(
x∗,Ω(x∗)

)
⊃ f(x∗,Ξ). (3.13)

Arguing by contradiction, suppose that (3.13) does not hold and find ω ∈ Ω(x∗) \ Ξ such that

fω ≤K[f∗] f∗. Since ω∗ ∈ Ξ, we have f∗ ≤K[fω̄ ] fω̄. Then the transitivity assumption (H3) ensures

that fω ≤K[fω̄ ] fω̄, and so ω ∈ Ξ contradicting the choice of ω ∈ Ω(x∗) \ Ξ. This justifies (3.13).

Now we are ready to show that the pair (x∗, ω∗) satisfies the conclusions (3.1) and (3.2) of our

variational principle. The inequality in (3.1) immediately follows from ω∗ ∈ R(x0, ω0). To verify

(3.2), suppose the contrary and find a pair (x, ω) ∈ gph Ω with f(x, ω) 6= f(x∗, ω∗) satisfying

f(x, ω) + q(x∗, x)ξ ∈ f(x∗, ω∗) +K [f∗] . (3.14)

Fix k ∈ IN ∪ {0} and sum up the three inequalities: (3.14), (3.12) with ω = ω∗, and (3.10) with

ω = ω̄. This gives us, by taking into account the triangle inequality as well as the relationships

f∗ ≤K[fω̄ ] fω̄ ≤K[fk] fk, K [f∗] ⊂ K [fω̄] ⊂ K [fk], and K [f∗] +K [fω] +K [fk] = K [fk], that

f(x, ω) + q(xk, x)ξ ∈ f(xk, ωk)−K [fk] , i.e., x ∈W (xk, ωk), k ∈ IN.

This means that x belongs to the set intersection in (3.9), and thus x = x∗. Substituting it into

(3.14), we obviously get f(x∗, ω) + q(x∗, x∗)ξ ∈ f(x∗, ω∗) +K [f∗] and reduce it to

f(x∗, ω) ∈ f(x∗, ω∗)−K [f∗] , i.e., f(x∗, ω) ≤K[f∗] f(x∗, ω∗).

The latter shows that f(x∗, ω) = f(x∗, ω∗) ∈ Min (F (x∗),K [f∗]), which contradicts the assumption

of f(x, ω) 6= f(x∗, ω∗) and hence justifies (3.2).

To complete the proof of the theorem, it remains to estimate the distance q(x0, x∗) in (3.3)

when (x0, ω0) is an approximate εξ–minimizer of f over gph Ω. Arguing by contradiction, suppose

that (3.3) does not hold, i.e., q(x0, x∗) > λ. Since x∗ ∈W (x0, ω0), we have

f(x∗, ω∗) + (ε/λ)q(x∗, x0)ξ ∈ f(x∗, ω∗)−K [f∗] ,
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which together with f(x∗, ω∗) ≤K[f0] f(x0, ω0) yields f(x∗, ω∗) + εξ ∈ f(x∗, ω∗) − K [f0] . This

contradicts the approximate minimality of (x0, ω0) and thus ends the proof. 4

Finally in this section, we present a direct consequence of Theorem 3.4 for the case when

the mapping f does not depend on the control variable ω, which also provides a new variational

principle for systems with variable ordering structures and is used in what follows.

Corollary 3.5 (variational principle for parameter-independent mappings with respect

to variable ordering). Let f = f(x) be a mapping from X to P with dom f 6= ∅ in the setting

of Theorem 3.4 under the assumptions made therein. Then for any ε > 0, λ > 0, x0 ∈ gph Ω, and

ξ ∈ ΘK \ (−Θ−K [f(x0)]) with ‖ξ‖ = 1 there is a point x∗ ∈ dom f satisfying the relationships

f(x∗) + (ε/λ)q(x0, x∗)ξ ≤K[f(x0)] f(x0), (3.15)

f(x) + (ε/λ)q(x∗, x)ξ �K[f(x∗)] f(x∗) for all x ∈ dom f with f(x) 6= f(x∗). (3.16)

If furthermore x0 is an approximate εξ–minimizer of f with respect to K [f(x0)], then x∗ can be

chosen so that in addition to (3.15) and (3.16) we have the estimate (3.3).

Proof. It follows from Theorem 3.4 applied to the mapping f̃ : X × Ω → P with f̃(x, ω) = f(x)

and a (compact) set Ω consisting of just one point, say {ω∗}. 4

4 Applications to Goal Systems in Psychology

4.1 What Our Variational Principle Add to Goal System Theory

(A) Variational rationality via variational analysis. In the context of the variational ratio-

nality framework of [4, 5], the new variational principle in Theorem 3.4 shows that, considering

an adaptive goal system endowed with variable cone-valued preferences in the payoff space and a

quasimetric on the space of means under (fairly natural) hypotheses of the theorem and starting

from any feasible “means-way of using these means” pair φ0 = (x0, ω0) ∈ Φ, there exists a suc-

cession of worthwhile changes φn+1 ∈ W (φn) with n ∈ IN , which ends at some variational trap

φ∗ = (x∗, ω∗) ∈ Φ, where the agent prefers to stay than to move. The meaning of this is as follows;

see the notation and psychological description in Section 2.

(i) Reachability and acceptability aspects along the transition: we have φ∗ ∈ W (φ0),

i.e., it is worthwhile to move directly from the starting means-end pair φ0 to the ending one φ∗.

(ii) Stability aspect at the end: we have W (φ∗) = {φ∗} ⇐⇒ φ /∈ W (φ∗) for any φ ∈ Φ,

φ 6= φ∗, meaning that it is not worthwhile to move from the means-end pair φ∗ to a different one.

(iii) Feasibility aspect along the transition: if φ0 = (x0, ω0) ∈ Φ is any εξ–approximate

minimizer of G(·), then x∗ can be chosen such that in addition to (i) and (ii) we have C(x0, x∗) ≤ λ.

(iv) The end is efficient as a Pareto optimal solution. This is shown in the proof of

Theorem 3.4 and discussed above.

(B) When proof says more than statement. Analyzing the statement and the proof of our
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variational principle in Theorem 3.4, we can observe that–besides the variational trap interpreta-

tions, which are discussed above in (A) and follow from the statement of the theorem–the proof

itself offers much more from the psychological point of view. Indeed, the statement of Theorem 3.4

is an existence result while the proof provides a constructive dynamical process, which leads us to a

solution. From the mathematical viewpoint, the situation is similar to the classical Ekeland prin-

ciple with the proof given in [19]. From the psychological viewpoint, this is in accordance with the

message popularized by Simon [6]: decision and making process matters and can determine the end.

It is also a major point of the variational rationality approach [4, 5]: to explain human desirable

ends requires to exhibit human behavioral processes that can lead to them. It senses that desirable

ends must be reachable in an acceptable way by using feasible means. In other words, if the agent

starts from any “means-way of using these means” pair, pursues his/her goals by exploring enough

each step and performing a succession of worthwhile changes or stays, then he/she will end in a

strong behavioral trap, i.e., a Pareto solution more preferable to stay than to move even without

any resistance to change. The given proof of Theorem 3.4 reveals at least four very important

points discussed below in the rest of this subsection.

(C) Worthwhile to change processes. Parallel to [4] with using [19] in the case of nonadaptive

models, the proof of Theorem 3.4 for the adaptive psychological models under consideration shows

how the agent explicitly forms at each step a “consideration set” to evaluate and balance his/her

current motivation and resistance to change “exploring enough” within the current worthwhile to

change set trying to “improve it enough” by inductively constructing a sequence of feasible pairs

{(xn, ωn)} ⊂ gph Ω. This nicely fits the famous concept of “consideration sets” in marketing sci-

ences defined first as “evoked sets” by Howard and Sheth [46]. The idea is that, at any given

consumption occasion, consumers do not consider all the brands available while the current consid-

eration/relevant set represents “those brands that the consumer considers seriously when making a

purchase and/or consumption decision” as discussed, e.g., in [47, 48]. The size of the consideration

set is usually small relative to the total number of brands, which the consumer could evaluate.

Then, using various heuristics, the consumer tries to simplify his/her decision environment.

(D) Variational traps as desirable ends. The worthwhile to change dynamical process given in

the proof of Theorem 3.4 allows the agent to reach a variational trap by a succession of worthwhile

changes. In this model, it is a Pareto “means-way of using these means” pair. Such a variational

trap is related to two important concepts, aspiration points and efficient points, at the individual

and collective levels discussed as follows.

(a) Aspiration points and Pareto points. The Pareto point achieved in Theorem 3.4 is an

aspiration point as defined in [4, 5] and then further studied and applied in [13, 14]. An aspiration

point is such that, starting from any point of the worthwhile to change process, it is worthwhile to

move directly (in an acceptable way) to the given point of aspiration. It represents the “rather easy

to reach” aspect of a variational trap while the other one (“difficult to leave”) is more traditional

as an equilibrium or stability condition.

(b) Optimal solutions. The proof developed in Theorem 3.4 allows to study other types of

optimal solutions/minimal points; compare, e.g., [20, 21, 35, 39] for various notions of this kind and
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employ iterative procedures to derive for them variational principles of the Ekeland type.

(c) Individual or collective aspects: agents versus organizations. In this paper we fo-

cus on the individual aspects of goal systems. The case of organizations requires to consider bilevel

optimization problems with leaders and followers. This will be a subject of our future research.

(E) Variable preferences and efficiency for course pursuit processes. Variable preferences

can take different forms; see [3] for more discussions. In this paper we pay the main attention to

ordering structures defined by variable cone-valued preference. Among other types of variable pref-

erences we mention attention based preferences discussed, e.g., in [49, 50]. Such variable preferences

can also be modelized and resolved by the approach developed in the proof of Theorem 3.4.

(F) Habituation processes as ends of course pursuit problems. Our results help to modelize

the emergence of multiobjective habituation processes with variable preferences. Such a formulation

can represent agents who follow a habituation process with multiple goals as well as an organi-

zation, where each agent can have different goals. Then the procedure developed in the proof of

Theorem 3.4 ends in a variational trap, which is a goal system habit for agents or a bundle of

routines for organizations. This represents a habituation process in various areas of life, which is

characterized by several properties such as repetitions, automaticity, control and economizing, etc.;

see [4, 5, 51] for more details and discussions.

4.2 When Costs to Be Able to Change “Ways of Using Means” Do Matter

Consider a more general problem to change from a “means-way of using these means” feasible pair

φ = (x, ω) with ω ∈ Ω(x) ⊂ Ω to a new pair φ′ = (x′, ω′) with ω′ ∈ Ω(x′) ⊂ Ω. In this general

behavioral case, the full costs C [(x, ω), (x′, ω′)] = C [φ, φ′] to be able to change from a feasible pair

φ = (x, ω) with ω ∈ Ω(x) to another feasible pair φ′ = (x′, ω′) with ω′ ∈ Ω(x′) must include the

two kinds of costs in the sum: C [(x, ω), (x′, ω′)] = CX(x, x′) + CΩ(ω, ω′) ∈ P .

Suppose now in the line of Theorem 3.4 that such vectorial costs are proportional to a vector

ξ ∈ P , i.e., C [(x, ω), (x′, ω′)] = q [φ, φ′] ξ, where q [φ, φ′] ∈ IR+ is a quasidistance on Φ := X × Ω.

This quasidistance modelizes the total costs to be able to change from one pair to another.

Let Φ := {(x, ω), ω ∈ Ω(x)} ⊂ Φ be the subset of feasible “means-way of using these means”

pairs. Then the worthwhile to changes preference over all the “means-way of using these means”

pairs φ = (x, ω) ∈ Φ is

φ′ ≥K[f(φ)] φ ⇐⇒ (x′, ω′) ≥K[f(x,ω)] (x, ω)

⇐⇒ f(x′, ω′) + C
[
(x, ω), (x′, ω′)

]
≤K[f(x,ω)] f(x, ω)

⇐⇒ f(φ′) + C
[
φ, φ′

]
≤K[f(φ)] f(φ),

where C [(x, ω), (x′, ω′)] = q [(x, ω), (x′, ω′)] ξ while the pairs φ = (x, ω) ∈ Φ ⊂ Φ and φ′ = (x′, ω′) ∈
Φ ⊂ Φ are feasible, i.e., ω ∈ Ω(x) ⊂ Ω and ω′ ∈ Ω(x′) ⊂ Ω. In this general case, the previous

worthwhile to change sets read as follows:

W (x, ω) =
{
x′ ∈ X

∣∣ ∃ ω′ ∈ Ω(x′) with (x′, ω′) ≥K[f(x,ω)] (x, ω)
}

=
{
x′ ∈ X

∣∣ ∃ ω′ ∈ Ω(x′) with f(x′, ω′) + C
[
(x, ω), (x′, ω′)

]
≤K[f(x,ω)] f(x, ω)

}
.
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Instead, we consider now the new worthwhile to change set defined by

W (φ) : =
{
φ′ ∈ Φ

∣∣ φ′ ≥K[f(φ)] φ
}

=
{
φ′ ∈ Φ

∣∣ f(φ′) + q
[
φ, φ′

]
ξ ≤K[f(φ)] f(φ)

}
=

{
(x′, ω′) ∈ Φ

∣∣ f(x′, ω′) + q
[
(x, ω), (x′, ω′)

]
ξ ≤K[f(x,ω)] f(x, ω)

}
.

In this setting, we can apply Corollary 3.5, where we replace the means x ∈ X by the “means-

way of using these means” pairs φ = (x, ω) ∈ Φ ⊂ X×Ω to modelize such a situation. This variant

has the following two advantages: (i) it helps to modelize goal systems, where changing the ways of

using means is costly; (ii) it allows us to drop the compactness assumption on the set Ω of ways as

in Theorem 3.4. Now the state space is that of pairs φ = (x, ω) ∈ Φ, the vectorial payoff mapping

is that of unsatisfied needs f : φ ∈ Φ 7−→ f(φ) ∈ P , and the real function q(φ, φ′) ∈ IR+ denoted

the quasidistance between two pairs of “means-way of using these means.” Then, in this context of

“means-way of using means” pairs, we reformulate Corollary 3.5 as follows.

Corollary 4.1 (variational principle in “means-way of using these means” setting). Let

(Φ, q) be a left-sequentially complete quasimetric space, and let K : P ⇒ P be a cone-valued ordering

structure satisfying assumptions (H2) and (H3). Consider a mapping f : Φ→ P with dom f 6= ∅
being a left-sequentially closed subset of Φ. Assume also that:

(A1) f is quasibounded from below on dom f with respect to a convex cone Θ.

(A2) f(·) + (ε/λ)q(φ, ·) is (left-sequentially) level-closed with respect to K for all pairs φ ∈ Φ

and positive numbers ε, λ > 0.

Then for any ε, λ > 0, φ0 ∈ dom f , and ξ ∈ ΘK \ (−Θ −K [f0)]) with ‖ξ‖ = 1 and f0 := f(φ0)

there is a point φ∗ ∈ dom f , satisfying the relationships

f(φ∗) + (ε/λ)q(φ0, φ∗)ξ ≤K[f0] f(φ0),

f(φ) + (ε/λ)q(φ∗, φ)ξ �K[f∗] f(φ∗) for all φ ∈ dom f with f(φ) 6= f(φ∗),

where f∗ := f(φ∗). If furthermore φ0 is an approximate εξ–minimizer of f with respect to K [f0],

then φ∗ can be chosen so that in addition to (3.15) and (3.16) we have the estimate (3.3).

Comments. From the psychological point of view, Corollary 4.1 can be interpreted as follows.

Starting from any “means-way of using these means” pair φ0 ∈ Φ, the agent who manages several

goals by enduring costs to be able to change both the means used and the way of using them and

whose next preference over the relative importance of each goal changes with the current pair φ,

can reach, in only one worthwhile to change step, a certain variational trap φ∗, where it is not

worthwhile to move. Moreover, given the desirability level ε > 0 of the initial pair φ0 ∈ Φ and the

size λ > 0 of the limited resource, the agent accomplishes this worthwhile change in a feasible way,

since the costs to be able to change q(φ∗, φ) are lower than the resource constraint λ.

5 Conclusion

The main mathematical result of this paper, Theorem 3.4, as well as its consequences provide a

far-going extension of the Ekeland variational principle aimed, first of all, to cover multiobjective
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problems with variable ordering structures. This major feature allows us to obtain new applications

to adaptive psychological models within the variational rationality approach. Following this way, we

plan to develop in our future research further applications of variational analysis to qualitative and

algorithmic aspects of adaptive modeling in behavior sciences. One of our major attention in this

respect is to extend the variational rationality approach and the corresponding tools variational

analysis to decision making problems, where “all things can be changed”, i.e., with changeable

decision sets, payoffs, goals, preferences, and contexts/parameters. Note that in a different setting,

where decision sets and parameters can change along some Markov chain, another approach to

similar issues has been developed in the context of habitual domain theory; see [52, 53, 54, 55, 56].

A detailed comparison between the variational rationality approach and that of habitual domain

theory has been recently given in [34].
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