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ABSTRACT. In this paper the turnpike property is established for convex optimal control
problems, involving undiscounted utility function and differential inclusions defined by
multi-valued mapping having convex graph. Utility function is concave but not neces-
sarily strictly concave. The turnpike theorem is proved under the main assumption that
over any given line segment, either multi-valued mapping is strictly convex or utility
function is strictly concave. In this way, the strictly convexity/concavity assumption is
distributed between the mapping and utility function.

1. INTRODUCTION

The following problem is considered in this paper:

(1) i € a(x), 2(0) = 2°,

T

(2) Maximize : Jr(z(-)) = /u(x(t))dt.

0

Here multivalued mapping a is defined on a given compact set 2 C R", has compact
images and is continuous in the Hausdorff metric. The graph of a is denoted by

grapha = {(z,y) : z € Q, y € a(z)}.

Utility function wu: € — R!is continuous. z° € Q is a given initial point.

The main purpose of this paper is to establish the turnpike property for convex prob-
lems. Accordingly we will assume that the graph of mapping a is a convex set and function
u is concave. Some strict convexity /concavity assumptions that are inevitable will be “dis-
tributed” between a and w; that is, it will be assumed that over any line segment either
a is strictly convex or function u is strictly concave.

The turnpike property describes stability of all optimal trajectories when T goes to
infinity. The first result in this area is obtained by John von Neumann ([33]) for discrete
time systems. The phenomenon is called the turnpike property after Chapter 12, [4] by
Dorfman, Samuelson and Solow. Simply saying this property states that, regardless of
initial conditions, all optimal trajectories spend most of the time within a small neigh-
borhood of some optimal stationary point when the planning period 7' is long enough.

1991 Mathematics Subject Classification. (2000) 49J24, 37C70.
Key words and phrases. optimal control; convex problem; turnpike property; asymptotic stability;
differential inclusion.
1



2 M.A. Mammadov

This property was further investigated by many authors (Radner [36], Makarov and
Rubinov [20] , McKenzie [31] etc). Quite strong results have been obtained for discrete-
time systems, in particular, for a von Neuman-Gale model. In all these studies the turnpike
property was established under some convexity assumptions.

For a classification of different definitions for the turnpike property, we refer to [1, 20,
31, 44], as well as [3] for so called ezponential turnpike property. Possible applications in
Markov Games can be found in a recent study [15].

A number of powerful theoretical approaches have been suggested for both continuous
and discrete systems. Some convexity assumptions are sufficient for discrete systems
[20, 31]; however, rather restrictive assumptions are usually required for continuous time
systems. We briefly mention here some approaches developed for continuous time systems.

A special class of terminal functionals, defined as a lower limit at infinity of utility
functions, is turned out to be the most “suitable functional” enabling to prove the turn-
pike property for a wide range of optimal control problems in continuous time. This
approach is introduced in [21] (see [28] for more references) where the turnpike property
is established for a broader class of non-convex problems. In [26], [35] such functionals are
used for discrete-time systems involving the notion of Statistical Convergence, where it
is proved that all optimal trajectories have the same unique statistical cluster point ([6]).
Recently, the turnpike property is established for a special class of time-delay systems
arisen from applications in medicine and biology ([13, 27, 29]). Note that considering
integral (discounted or undiscounted) functionals in the above applications will be an
important advance in the field.

The majority of approaches in the literature involve optimal control problems with
(discounted and undiscounted) integral functionals (see [1, 44] and references therein).
Among the most successful approaches developed we mention here the approach developed
by Rockafellar [37, 38] that applies related techniques from convex analysis, and the
“direct” approach developed by Scheinkman, Brock and collaborators (see, for example,
[19, 40]) that applies the Maximum principle and then reduces the main problem to the
study of stability of ordinary differential equations with un-known terminal values for
costate variables. We also mention approaches by Cass and Shell [2], Leizarowitz [17],
Mamedov [22, 23], Montrucchio [32], Zaslavski [42, 43, 44, 45, 46, 47, 48].

There are also several approaches developed for a special class of problems (e.g. [12,
34, 41, 49]). An interesting class of control problems considered in [7, 8] involves long run
average cost functions where the asymptotic behavior of optimal solutions is defined in
terms of a probability measure.

When considering discounted integral functionals, Rockafellar’s approach is the most
successful one as it can be seen from a recent publication [39] where for a special class of
convex problems (i.e. Ramsey’s problem) the turnpike property is established without any
additional restrictive assumptions. Another successful approach for discounted integral
functionals is developed in [30, 32].

In this paper we consider undiscounted integral functionals that have recently attracted
significant attention. [14] provides a short overview in this area together with the dis-
counted deterministic case. In a recent paper [15] (see also [16]) the turnpike property
is established Markov games involving undiscounted functionals. This property is also
useful in the study of stability in Model Predictive Control. In several recent publications
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[3, 9, 10, 11] strict dissipativity assumptions, similar to (3) below, are used to establish the
exponential turnpike property in discrete time systems involving undiscounted integrals.

Among the most successful studies for undiscounted integral functionals, we mention
the approach developed by Carlson, Haurie and Leizarowitz (see, for example, [1, 18]).
In terms of problem (1),(2), when utility u is a function of x only, the main assumption
employed in these studies can be formulated as follows:

There is p such that for any € > 0 there is d > 0 such that
(3) u(z®) > u(z) + pz + 9, Vz € a(z), Vo with ||z —z*|| > e.

A broader class of optimal control problems involving undiscounted integral functionals
that possess the turnpike property have been introduced in [22, 23, 24, 25]. Since this
paper builds upon the approach developed in [22, 25], more details are provided below.

The main assumption used is based on the following inequality (see Assumption H in
Section 2.1), where ¢(z) = max{pz : z € a(z)} :

There is p such that for any x and y satisfying pr = py, c(x) < 0 and c(y) > 0, the
following inequality holds:
u(@) —u(@”) | uly) —u(z”)

@) @ T )

Clearly, if condition (3) holds then (4) is also satisfied. Indeed, if we rewrite (3) at two
different points x and y with ¢(z) < 0, ¢(y) > 0, then for all z € a(z) we have

< 0.

u(z) —u(z*) < —pz — 0 < —pz, and u(y) —u(z*) < —pz — 6 < —pz

and therefore

c(y)

This means that in this case the inequality (4) is satisfied for all x,y with ¢(z) < 0,
c(y) > 0 (not requiring pxr = py). On the other hand it is not difficult to provide an
example for which condition (3) does not hold but (4) still holds.

We provide here the geometric interpretation of condition (4). It describes a relation
between u and a that forces “good” trajectories to converge to x*. It is applied in a “worse”
case only, when at two different points z and y, a trajectory under consideration may cross
the hyperplane {z : pz = pz (= py)} in two different directions expressed by ¢(z) < 0 and
c(y) > 0, where, for the sake of simplicity we let u(z) > u(z*) > u(y). Now, 7, = m and
T, = le) are the “longest” and the “shortest” times that any trajectory could “spend” at
the “good” state = and at the “bad” state y, respectively. Then, inequality (4) says that,
over the total time period (7, + 7,), the average contribution to the functional Jr(); that
is, u(x)7, +u(y)y, should be strictly less than the corresponding contribution if trajectory
stayed at the stationary point z*; that is, u(z*)(7, + 7). In other words, condition (4)
forces “good” trajectories to prefer staying closer to the stationary point z*, rather than
crossing the above hyperplane in different directions “infinitely many” times that could
lead to instability (like a cyclic behavior).

For the above problem (1),(2), turnpike theorems based on condition (4), are provided
in [22, 25] when optimal stationary point z* is unique. [24] considers the case when there
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are a finite number of different optimal stationary points. For more references and details
we refer to [28].

In this work we study the turnpike property for the convex problems. We mention here
two approaches developed for convex problems.

In [37], for the convex problem (1),(2) with u = wu(x,), the turnpike property is
established assuming that the Hamiltonian

H(z,p) = sup{pv +u(z,v) : v € a(x)}

is strictly concave-convex in a neighborhood of a saddle point. Clearly in our case when
u = u(z) this assumptions does not hold; in this case, H(z,p) = sup{pv : v € a(x)} +u(z)
and the first term is positively homogeneous; that is, is not strictly convex.

Another approach for convex problems is developed in [1], where the turnpike property
is established for overtaking optimal and finitely optimal trajectories. In both cases
trajectories are functions defined on [0, +00) and the optimality criteria applies to the
finite parts of trajectories related to intervals [0, 7] where 7' — oo. In this case optimal
trajectory, say z*(t), is in some sense a “fixed” function defined on [0, +00); for different
values for T, say for T} # I, we are just considering different portions of the same
trajectory; that is, {z*(t), t € [0,T1]} and {z*(¢), t € [0, T3]}

In this paper optimality is defined in an ordinary way; as a result, we are dealing with
a more complicated situation by considering a set of optimal trajectories x%.(t), t € [0, T].
For example if T < T, trajectories z7, () and z7, () do not necessarily coincide on the
interval [0, 71]. The main purpose is to establish the turnpike property for convex problems
without involving any additional restrictive assumptions, like assumptions imposed on the
Hamiltonian, dissipativity assumptions, (3) or (4). An important result here is that utility
function u does need to be strictly concave if map a processes some strictly convexity
properties.

2. DEFINITIONS AND MAIN ASSUMPTIONS

We call problem (1), (2) convex if, in addition, 2 is convex, the graph of mapping a is
convex and function u: 2 — R is concave.

Initial point 2° € Q is fixed throughout the paper, though it will be used only for the
existence of “good” trajectories starting from that point (Assumption Al below).

Roundedness of €2 is used for the sake of simplicity; € is assumed to be with non-empty
interior and large enough to accommodate all trajectories starting from z°, as well as all
stationary points of mapping a.

An absolutely continuous function z(-) is called a trajectory (solution) to the system (1)
if z(0) =2° and almost everywhere on the interval [0,7] the inclusion Z(t) € a(z(t))
is satisfied.

We assume that given any 7" > 0 there is a trajectory to the system (1). Moreover, all
trajectories starting from 2° are bounded and the set € is large enough to satisfy

(5) z(t) e Q C it Q, Ve €[0,T], z(-) € Xp, T >0,
where ' is a closed set. The set of trajectories defined on the interval [0,T] will be

denoted by X, and let
Ji = sup Jr(z(-)).

x(')EXT
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Throughout the paper || - || stands for the Euclidean norm, | - | stands for the absolute
value. The notation d() denotes the boundary of the enclosed set. The scalar product of
two vectors z,y € R" will be denoted by xy.

Definition 2.1. Trajectory x(-) € Xr is called
e optimal if Jr(xz(-)) = J3;
o &-optimal if Jp(xz(-)) > J5 — & where £ > 0.

Note that if z(-) € Xr is an optimal trajectory, part of this trajectory z(t), t € [0,7"]
(T" < T) may not be optimal. This means that we are dealing with a set of optimal
trajectories corresponding to different values T' > 0. The notion &-optimality describes
“good” trajectories. Parameter £ will be a fixed number for all 7'

Stationary points play an important role in the study of asymptotical behavior of
optimal trajectories. We denote the set of stationary points by M:

M={zeQ: 0€a(x)}.
For the sake of simplicity we assume that M is a bounded set and M C int (). The
existence of stationary points will be guaranteed by Assumption Al introduced below

(see Lemma 4.1). It is clear that M is a closed set since mapping a is continuous. Thus,
for convex problem (1), (2) M will be a compact convex set.

Definition 2.2. x* € M is called an optimal stationary point if
A

¥ % 2
u(z*) =u racrgé(u(:v)

If M # (), then there exists an optimal stationary point; it is also unique under some
strictly convexity/concavity assumptions provided below.
Now we introduce the main assumptions.

Assumption Al: ([25]) There exists b < +oo such that for every T > 0 there is a
trajectory x(-) € Xr satisfying the inequality

Jr(z(-)) > u'T —b.

This assumption in particular means that given any 7" > 0, the set of trajectories X
is not empty. On the other hand, the satisfaction of Assumption A1l mainly depends on
initial point z°. For example, if

(6) there exists a trajectory z(t) such that z(T}) = z* for some T} < o0;

that is, if there exists a trajectory starting from z° that hits z* in finite time, then
Assumption Al is satisfied. Thus, in some sense, it can be considered as an assumption
for the existence of trajectories defined on [0, 00) that converge to (but not necessarily
reach) the optimal stationary point x*.

Assumption A2: Given any x1,z9 € Q and any number « € (0,1), at least one of
the following inequalities hold:

ulaxy + (1 —a)zy) > au(xy) + (1 —a)u(z);
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(7) int alax; + (1 —a)z2) DO aa(zr)+ (1 — a)a(xs).

Mapping a is said to be strictly convex on the interval [z, xs] if the inclusion (7) is
satisfied for all « € (0,1). Thus, Assumption Al means that over any line interval [x7, 4]
either function u is strictly concave or mapping a is strictly convex. We provide one
example where Assumption A2 is satisfied but nether a nor u is strictly convex/concave.

Example 2.3. Q = [-1,+1] x [-1,+1], a(z1,22) = {(y1,92) : ¥? +v3 < 1 — 23},
u(wy, o) = —a3 — To.

Clearly, for this example Assumption A2 is satisfied, however a is not strictly convex
in x; and w is not strictly concave in x,.

Remark 2.4. It should be noted that strictly convexity of mapping a does not necessarily
mean strictly convezity of the graph a. This can be seen from the following example.

Q= {l’ - (61762) : é_% +£§ < 1}7 CL(I) - [—S(ZE'),S(I)] X [—S(ZE),S(QT”,
where s(x) is any strictly concave function satisfying s(x) > 0; for example s(x) = 1 —
£ — &2, 1t is not difficult to show that (7) is satisfied for all 1,z € €; however the
images of mapping a are not strictly convex sets (they have a square shape in R?).

Assumption A3: There exists 2’ € Q such that u(z’) > u*.

This assumption is natural for utility functions that are usually increasing. If it does
not hold then there are two possibilities:

1. x* is the unique optimal stationary point. In this case u(x) < u* for all = # z* and
the turnpike property can be easily proved without any additional assumptions (see also
Theorem 3.3 below and its proof). Note that this case still has some important practical
applications (e.g. [34]).

2. Optimal stationary point is not unique. In this case the set of optimal stationary
points is a convex set and the turnpike property should be understood in terms of conver-
gence of optimal trajectories to the set {z € : u(xz) = w*}. This set can be much larger
than the set of optimal stationary points; therefore the turnpike property may easily be
violated (e.g. if u(x) = constant). Note that it is in order quite difficult to study stability
of optimal trajectories when the set of optimal stationary points is not unique.

Assumption A4: There exists a stationary point £ € M such that 0 € int a(Z).

We note that in some special ceases Assumptions A3 and A4 can be eliminated (The-
orems 3.3 and 3.5).

Some implications of Assumptions A1-A3 will be provided in Section 4; here we just
mention that under these assumptions optimal stationary point z* exists, is unique and
x* € OM. In particular, (z*,0) is not an interior point of the graph of mapping a that is
the most challenging case.

This is an important issue that should be mentioned, as in many studies the assumption
(z*,0) € int grapha; that is, 0 € inta(x*), is essential (see for example [32]). In some
studies (e.g. [1, 12]), the assumption (6) is used. In fact, such an assumption might be
quite restrictive if (z*,0) is not an interior point of graph a.



Turnpike theorems for convex problems (draft) 7

For example, if a(z) = {—z} and z° # 0, z* = 0, there is no trajectory that reaches

*

x* in finite time although the graph of mapping a is convex (in this case trajectories
are z(t) = 2% " — 0). The same situation we observe for another example a(x) =
[-1,—x], z € Q = [-1,+1] with 2° < 0, 2* = 0. On the other hand, in both cases

Assumption Al is satisfied for all 2°.

2.1. Theorem 2.5 from [25]. In this section we formulate Theorem 2.5 from [25] where
the turnpike property is established without involving any convexity-concavity assump-
tions imposed on (), mapping a and function u. Instead this theorem uses another as-
sumption (called Assumption H) that is provided below.

Consider (not-necessarily convex) problem (1), (2) with the main definitions and no-
tations introduced above. Let, in addition, the set a(z) be uniformly locally connected
for each x and mapping a be Lipschitz continuous in the Hausdorff metric. Assume that
optimal stationary point z* is unique. Therefore no assumptions are required about the
concavity of function v and the convexity of graph a.

For a given non-zero vector z € R", consider the following support function

c(z,r) = max zy.
y€a(x)
Then, for all z,y, for which ¢(z,z) < 0 and ¢(z,y) > 0, define function p(z,y) as follows
(8) p(r,y) =

u(zr) —u*  u(y) —u
ez, )] c(2,9)

The main assumption is formulated next where, as mentioned above, x* is the unique
optimal stationary point and B = {x € Q: wu(z) > u(z*)}

Assumption H: There exists a vector z € R™ such that

H1: ¢(z,2) <0 for all z € B, = # x*;

H2: there exists a point T €  such that zZ = za* and ¢(z,z) > 0;
H3: for all points x,y, for which

zx = zy, c(z,x) <0, ¢(z,y) >0,
the inequality o(z,y) < 0 is satisfied; and, moreover, if
T — $*7 Yk — y, 7é 'I*v 2Tk = ZYk, C(Zawk) < 07 C(zayk‘) > 07

then limsup,_, . ¢(xr, yr) < 0.

Now we formulate Theorem 2.1 from [25].

Theorem 2.5. ([25]) Consider problem (1), (2). Assume that optimal stationary point

x* is unique and Assumptions A1 and H are satisfied. Then
1) there exists C' < +00 such that

/(u(m(t))—u*)dt <C

0
for all T > 0 and for all trajectories x(-) € Xr;
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2) given any £ > 0, for every € > 0 there exists a number K. < +00 such that

meas{t € [0,T]: ||z(t) —z*|| > e} < K.

for all' T > 0 and for all £-optimal trajectories x(-) € Xr;
3) if x(-) is an optimal trajectory and x(t,) = x(ta) = x*, then x(t) = x* for t € [t,ts].

The first assertion states that functional Jr(z(+)) is linearly bounded; that is, Jr(z(+)) <
Tu* + C for all T > 0. The second assertion of the theorem is the turnpike property. It
should be noted that this property is true not only for optimal but also for all “good”
(that is, {-optimal) trajectories. The third assertion states some additional information
about the behavior/structure of optimal trajectories.

3. MAIN RESULTS

In this section we formulate the main results of the paper. Theorem 2.5 in the previous
section describes the turnpike property in general case assuming Assumption H. In this
paper we concentrate on convex problems. The main goal is to show that this assumption
is not necessary for convex problems.

Theorem 3.1. Consider convex problem (1), (2). Assume that Assumptions A1-A/ hold.
Then there exists a unique optimal stationary point x* and all the assertions of Theorem
2.5 are true.

To prove Theorem 3.1 we will mainly be verifying the assumptions of Theorem 2.5,
although Theorem 3.1 is not a special case of Theorem 2.5 (see Example 3.2 below). We
will show that for the convex problems with Assumptions A1-A4, Assumptions H1 and
H3 hold.

In the following example all the assumptions of Theorem 3.1 are satisfied. However,
Assumption H2 does not hold. This, in particular, shows that Assumption A4 does not
necessarily “replace” H2. An inverse example can also be easily generated.

Example 3.2. Let Q = [-1,1], a(x) = [-1, —z], u(z) = —2? + 22 and 2° = 1.

Clearly, function w is strictly concave, the graph of mapping a is a convex set. We
have

M =[-1,0], v = maxu(z) =0 and z* = 0.
zeM

Assumption A4 holds for the point & = —0.5. It is not difficult to observe that given
any T > 0, the solution z(¢) = e™" is optimal and Assumption Al holds. All the other
assumptions of Theorem 3.1 are also satisfied.

Consider Assumption H. We have B = [0, 1]. Then Assumption H1 is satisfied only for
positive numbers z > 0.
Now we check Assumption H2. Take any z > 0. If 2z = z2* then T = 2* = 0 and

c(z,Z) = max zy = 2z max = 0.
(22) y€a(z) Y ye[—l,O}y

Therefore, H2 does not hold for any positive z.
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In what follows we consider two special cases assuming that function w is strictly concave
or mapping a is strictly convex. The aim is to investigate if it is possible to eliminate one
of the assumptions A3 and A4 in some special cases. We will show that Assumption A3
can be eliminated if function w is strictly concave. On the other hand, if mapping a is
strictly convex then the assertions 2 and 3 (that is, the turnpike property) of Theorem
2.5 are still valid without assuming Assumption A4.

3.1. Utility function u is strictly concave. Clearly, in this case the optimal stationary
point is unique and Assumption A2 is satisfied. Next theorem states that all the assertions
1-3 of Theorem 3.1 are valid without assuming Assumption A3. This result was first
presented in [22] without proof.

Theorem 3.3. Consider convex problem (1), (2). Assume that function wu is strictly
concave and Assumptions A1 and A4 hold. Then there exists a unique optimal stationary
point x* and all the assertions 1-3 of Theorem 2.5 are valid.

This theorem shows that if the utility function w is strictly concave Assumption A3 in
Theorem 3.1 can be removed. On the other hand Assumption A4 is still required in this
case. The following example shows that if Assumption A4 does not hold then Theorems
3.1 and 3.3 may not be true.

Example 3.4. Let Q= [-1,1] C R,

[—1,—2%, ifxel0,1]
a(x)Z{[_Lo}, if v e [—1,0];

and u(z) = —2% + 2z.

It is clear that function wu is strictly concave, the graph of mapping a is a convex set.
We have M = [—1,0], u* = max,ep u(z) = 0 and z* = 0.

It is not difficult to observe that Assumption A4 is not satisfied. We will show that,
Theorem 3.1 is not true in this case.

Take an initial point 2z° = 1 and consider the following (obviously optimal) trajectory

i =—a' 2(0) =1

1

We have z(t) = (3t +1)73. Clearly 0 <=z(t) <1 and x(t) - 0 ast— oo. Therefore
x(t) is a trajectory and
T
0/

as T' — oo. Thus, the first assertion of Theorem 3.1 is not true.

O\H
E%

T T
t) + 2x(t)|dt > /x /3t+1 ~3t — +00,
0 0
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3.2. Mapping a is strictly convex. In this case we assume that for all x;,25 € {2 and
a € (0,1), the following holds

int a(az; 4+ (1 —a)zy) O aa(zr) + (1 —a)a(zs).

As mentioned in Remark 2.4 this assumption does not necessarily mean strictly convexity
of the graph a; that is, the images a(z) may not be strictly convex sets.

In this case Assumption A2 holds. In addition if Assumptions Al, A3 and A4 hold,
then, according to Theorem 3.1, there exists a unique optimal stationary point z* and
all the assertions 1-3 are valid. The aim here is to investigate if it is possible to eliminate
Assumption A4 if mapping a is strictly convex.

It is not difficult to show that Assumption A4 holds if, for example, the set of stationary
points M is not a singleton; that is, there are x; # x5 with 0 € a(z;), i = 1,2. Thus, if
Assumption A4 does not hold then z* must be the only stationary point.

Example 3.4 shows that the first assertion of Theorem 3.1 may not be true in this case.
However, the following theorem states that the turnpike property (that is, the assertions
2 and 3 of Theorem 3.1) is still valid without assuming Assumption A4.

Theorem 3.5. Consider convex problem (1), (2). Assume that mapping a is strictly
convex, Assumptions A1 and A8 hold. Then there exists a unique optimal stationary
point x* and the assertions 2 and 3 of Theorem 2.5 are valid.

4. PRELIMINARY RESULTS

In this section we consider the convex problem (1), (2). For a given set A C R", we
denote a(A) = Ugeaa(x). First we show that there exists a stationary point.

Lemma 4.1. Assume that Assumption A1 holds. Then the set of stationary points M s
not empty.

Proof: Let M = (); thatis, 0 ¢ a(x) for all = € Q. This means that 0 ¢ a(Q).
Since the graph of mapping a is convex, the set a(2) is also convex. Therefore there is
a non-zero vector v € R™ and a number ¢ > 0 such that

vy > e forall y € a(Q).

Consider any solution z(-) to the system (1). The last inequality shows that for all ¢ we
have

t
va(t) = vx0+/ vi(s)ds > va®+te.
0

Thus |[|z(t)|| — oo as t — oo. Therefore, for large T' system (1) does not have any
bounded solutions remaining in §2. This contradicts Assumption Al. Lemma is proved.

Now consider the following set

(9) B={xeQ: u(x)>u"}.

Since u is concave, B is a convex compact set. Then, the set a(B) is also convex and
compact.
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Lemma 4.2. Assume that Assumption A3 holds. Then intB # () and
(10) x € 0B, for all x € int Q satisfying u(z) = u*.

Proof: By Assumption A3 there is 2’ such that u(z') > w*. Since u is continuous it
follows that this inequality is satisfied in a small neighborhood of z’; that is, int B # ().

Now consider any point = € int € satisfying u(x) = u*. Take an arbitrary small number
e > 0 and denote z. = x — e(2’ — ). We have x = ﬁ Te + 752 ' and since u is concave

() > () + —— u’
u =ulx u\xr u
“14e 1+¢ 14+e V° 1+¢

that yields u(x§) < u*. Thus for all sufficiently small € > 0 the relation =5 ¢ B holds; that
is, © € 0B.

Lemma is proved.

u(x.) + u(z') >

Lemma 4.3. Assume that Assumptions A1 and A3 hold. Then there exist a non-zero
vector q € R™ and a number v such that

(11) qr > ~, if z € B,

(12) qr < v, if z € M.

Proof: Assumption A1 ensures that the set of stationary points M is not empty (Lemma
4.1), on the other hand, Assumption A3 ensures that set B has a non-empty interior
(Lemma 4.2). Since these sets are convex compact, it is sufficient to show that

int BN M = (.

This relation is straightforward; if € int B then from Lemma 4.2 it follows u(z) > u*
that means x ¢ M. Therefore, the prof of the lemma follows from the linear separability
of disjoint convex sets int B and M.

Lemma is proved.

From Lemma 4.2 it follows that all all optimal stationary points are on the boundary
of the set of stationary points; that is,

(13) if u(z*) =" and 0 € a(z*) then 2™ € OM.

We fix the vector ¢, for which relations (11), (12) hold, and then consider the set

(14) B* = {ze€Q: qz > ~}.

It is clear that B C B* and B* is convex. Then, the set a(B*) = |J,cp- a(z) is also
convex.

Lemma 4.4. Assume that Assumptions A1 and A3 hold. Then there exists a non-zero
vector p € R™ such that

(15) py < 0, forall y € a(z), z € B".
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Proof: We note that 0 € a(B*), because optimal stationary points z* exist (Lemma
4.1) and z* € B C B*. Since the set a(B*) is convex, to prove the lemma it is sufficient
to show that 0 € Oa(B*).

Take any sequence &,, — 0 (g, > 0) and consider the sequence of sets

B., = {x€B": gz >v+e,}.

It is clear that B, is convex compact and 0 ¢ a(z) for all x € B, (see (12)). Therefore
0 ¢ a(B.,). Moreover, a(B.,) are convex compact and a(B.,,) C a(B;,) for ex > ep,.

Denote A = cl(Up>1a(B:,) . Clearly 0 ¢ int A. We show that A = a(B*).
Since a(B:) C a(B*) for all ¢ > 0 we have A C a(B*).

Let ¢ € a(B*); that is, ¥’ € a(2’) for some 2’ € B*. If g2’ > v then for sufficiently
large numbers n the inclusion 2’ € B, holds. Therefore in this case ¢y’ € A. Now consider
the case when g2’ =+. In this case there is a sequence x,, € B, such that =, — 2’ as
n — oo. Since mapping a is continuous there is a sequence y, € a(z,) C a(B.,) such
that vy, — /. As the set A is closed y € A. Thus a(B*) C A.

Therefore, A = a(B*). Since 0 € a(B*) and 0 ¢ int A we obtain 0 € 0 (a(B*)). Lemma
is proved.

Now we fix non-zero vector p for which relation (15) holds and define the following
support function

(16) ¢(x) = max
yeca(z)
For the sake of simplicity we will take ||p|| = 1. It is clear that ¢ is a concave function
and

(17) c(r) < 0forall z € B”.
Note that if 0 € inta(z) for some Z € Q, then ¢(z)> 0.

The following lemma directly follows from the definition of ¢(x) in (16).

Lemma 4.5. Given any points x1,xs € Q and any number « € (0,1), if
int alaxr; + (1 —a)xe) DO aa(zrr)+ (1 —a)a(zs)

then
clax;+ (1 —a)xs) > ac(xy) + (1 —a)c(xs).

In the next Lemma the uniqueness of the optimal stationary point x* is established.

Lemma 4.6. Assume that Assumptions A1, A2 and A3 hold. Then there exists a unique
optimal stationary point x*.

Proof: Note that the existence of stationary points follows from Lemma 4.1.

Assume that, together with z*, there exists another optimal stationary point =7 # x*,
with u(x}) = u(z*) = u*. Since 0 € a(z*) and 0 € a(z}), the relations c¢(z}) > 0 and
c(x*) > 0 hold. On the other hand, zi,2* € B C B* and, therefore, from (17) we have

(18) c(x]) = ¢(z*) = 0.
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Consider convex combinations of these points:
T, = ar]+(1—a)z*, ae (0,1).
Since M is convex we have x, € M. Therefore,
ut > u(z,) > au(z])+ (1 —a)u(z”) = u’;

that is, wu(z,) =u* for all a € (0,1).
The last equality means that z, € B C B* or ¢(z,) <0 for all & € (0,1) (see (17)).
On the other hand function ¢ is concave and therefore from (18) we have

c(za) > ac(z))+(1—a)c(z*) = 0,

for all @ € (0,1). Thus ¢(z,) = 0 for all @ € (0,1).

Therefore, functions u and ¢ are not strictly concave over the interval [z}, z*]. This
contradicts Assumption A2 and Lemma 4.5.

Lemma is proved.

4.1. Verifying Assumption H. In this section we assume that Assumptions A1-A4
hold. In this case we show that Assumptions H1 and H3 are satisfied for z = p, where p
is a nonzero vector defined in Lemma 4.4. Therefore, we deal with the support function
c(z,x) = c(x).

1. First we show that Assumption H1 holds; that is,
(19) clx) <O0foral x € B, z #x".

According to Lemma 4.2 the set B* has a non-empty interior. Take any point z’ €
int B*. From (17) it follows c¢(2’) < 0. We show that in fact ¢(z’) < 0.

By the contrary assume that ¢(z') = 0. From Assumption A4 there is a point & for which
the inclusion 0 € int a(Z) holds. Clearly ¢(z) > 0. Consider the points z, = aZ+(1—a) 2,
0 < a<1. We have

c(zq) > ac(z) + (1 — a)c(a).

From this inequality we obtain ¢(x,) > 0 for all @ > 0. Clearly, for sufficiently small
numbers « > 0, points z,, belong to the interior of the set B* and, therefore, from (17) it
follows that ¢(x,) < 0. This is a contradiction.

Therefore, the following is true

(20) c(xz) <0 for all x € int B*.
In particular this inequality holds for all points z € int B C int B*.

Now we show that the relation (20) is valid for all boundary points a’ # z* of the set
B. For such points =’ the relation u(2’) = u* holds.

Take any 2/ € 0B, with 2/ # z*, and assume by the contrary that c(z’) = 0. Note that
c(x*) =0 and
(21) c(ro) > ac(z)+(1—a)c(z®)=0
forall z, =o'+ (1—a)z*, 0<a <1

Since function wu is concave we have

(22) w(zy) > au(r)+ (1 —a)u(x®) =u* for all a € (0,1).
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This means that x, € B C B*. Then according to Assumption A2, the inequality in
(22) should be strong; that is, wu(z,) > u*. This means that z, € intB C int B*,
which leads to a contradiction thanks to ¢(z,) =0 and (20).

Therefore, c(x) <0 for all x € B, x # «*; that is, Assumption H1 holds.

2. Now we show that Assumption H3 holds.

Take any two points z,y for which ¢(x) < 0, ¢(y) > 0. Consider numbers «, 5 defined
as follows:

c c(x
= " e 7
Clearly a + g = 1. Let 2’ = ax + [y. Since function u is concave we have
(23) au(z) +Buly) < u(a).
On the other hand, ¢ is also concave and, therefore, we obtain
(24) c(z') > aclz)+Be(y) = 0.

This inequality shows that =’ ¢ int B; that is, u(z’) < u* (see (20)).
We show that

(25) au(x)+ fuly) < u”.

Consider two cases according to Assumption A2.

a). Let function w is strictly concave on [z,y]. In this case the inequality in (23) is
strong and therefore inequality (25) follows from u(z’) < u*.

b). Let function ¢ is strictly concave. In this case the inequality in (24) is strong:
c(z’) > 0. This means that 2’ ¢ B; that is, u(z’) < «*. Then from (23) we have (25).

Therefore (25) is true. Then

a(u(@) —u") + B (u(y) —u’) <0,
or
u(z) —u*  u(y) —u*
(26) olr.y) = ¥ <.
|e(x)] c(y)

Thus, for all points z,y for which ¢(x) < 0, ¢(y) > 0 the inequality ¢(z,y) < 0 is satis-
fied; i.e. the first part of Assumption H3 holds even for a larger set of points (x,y) (the
additional condition pz = py is not required in this case).

Now we check the second part of Assumption H3. By Assumption A4 the relation
0 € int a(Z) holds for some & and, therefore, ¢(z) > 0. We set y = Z in (26) and obtain

u(x) — u* u(x) — u*

—— < ————— < 4ooforall z, ¢(x)<0.
|c()] c(2)
Therefore
(27) u(x) — u < Aforall z, ¢(z) <0,
|c(x)]|
where .

z, c(x)<0 |C<l’)|
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Consider sequences xy, yx such that
(28) c(z) <0, x — 2" and c(yx) >0, yp — ¢ # 2™

First we note that z;, # * since ¢(z*) = 0. Moreover from Assumption H1 and inequal-
ity c(yx) > 0 it follows that y, ¢ B; that is u(yg) < u* for all k.

Let ¢(y') = 0. In this case u(y’) < u* holds. Indeed, otherwise u(y’) > u* and we obtain
u(@®) > pu(a®) + (1 — pu(y) > o', Y € (0,1).
This means z# # x* and z* € B C B* that contradicts (19). Therefore, u(y’) < u* and
u(ye) — u”
c(yr)
that is, Assumption H3 holds thanks to (27).

— —o0 as k — oo;

Consider the case ¢(y') > 0. From (26), (27) we have
u(y) —u”
c(y)
This inequality, in particular, is satisfied for all y = y;. Consider the limit point y = ¢/'.

(29) < —Xforall y, c¢(y) > 0.

First we show that the equality
(30) — =

is not possible.

Denote y* = px* 4+ (1 — p)y', p € [0,1]. As function ¢(y) is concave, ¢(z*) = 0 and
c(y') >0, for any given p’ € (0,1) the following holds
(31) c(y") = pe(@)+ A —pey) = Q1—p)ely’) > 0, forall pel0,n].
This in particular, means that (see Assumption H1) y* ¢ B or u(y*) — u* < 0. Moreover,
from (29) we obtain
u(y") —u

c(y*)
On the other hand function u(y) is concave. Then

u(y") = pu(e®) + (1= p)uly),

(32) < —Mforall pel0,u].

or
(33) (1—p) [uly’) —u] < u(y”) —u" <0, forall pel0,u].
Thus, if (30) is true, then from (31), (33) we have (note that u(y*) —u* is negative)
ut) —w Q- uly) —w]
cyr)  —  (A=pey)

This contradicts (32); i.e. the case (30) is not possible.
Therefore, at the limit point y = 3 the inequality
N *
)
c(y')
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holds. In this case, as y — %' and functions u and ¢ are continuous, there is a small
number € > 0 such that for sufficiently large numbers & the following holds
u(yr) — u”
(k)
Therefore, for sufficiently large numbers k from (27) we have

< —A—=c.

u(zg) —u* u(yg) — u
|e(k)] c(yr)
Then limsup, . ©(Tx, yr) < —e < 0; that is, Assumption H3 holds.

< —e < 0.

o(xk,yp) =

5. PROOF OF THEOREMS

5.1. Proof of Theorem 3.1. In the previous section we have shown that all the as-
sumptions of Theorem 2.5 are satisfied, except H2. For each z, the set a(x) is uniformly
locally connected as it is a convex set. Lipschitz continuity of mapping a is guaranteed
with relation (5) in a closed subset ' that contains all trajectories starting from z°. The
proof of Theorem 2.5 is based on the following lemmas, namely Lemmas 5.1, 5.2, 5.5 and
5.6 provided below. To prove Theorem 3.1 it sufficient to show that all these lemmas are
true under the assumptions of this theorem, without involving H2.

We start with some notations. Recall that B = {x € Q: u(z) > u*}. Denote
M ={xeQ: c(x) >0}

Clearly the set of stationary points M C M*. Denote by D C €2 a compact set for
which the following conditions hold:

a) z € int D for all x € B, x # z*, © # 0%;
b) ¢(x) < 0 for all x € D, = # x*;
O DAM: = {a°} and B € D.

It is not difficult to construct such a set D with properties a), b), ¢). For example, it
can be constructed as follows.

Let x € B, x # z*. Then ¢(z) < 0. Since mapping a is continuous in the Hausdorff
metric function ¢(z) is also continuous. Therefore there exists €, > 0 such that ¢(z’) <0
for all 2/ € V., (z) N Q2. Here the notion V.(z) stands for the open e-neighborhood of the
point z. In this case the set

D=cd{ |J Vi.@}nQ

rEBxF£x*
satisfies conditions a) - ¢).

The following lemma follows from the continuity of functions u and c.

Lemma 5.1. (Lemmas 1 and 2 in [25]) For every ¢ > 0 there exist v > 0 and n. > 0
such that
wz) <ut—v., Ve eQ, x¢int D, ||z — || > ¢
c(x) < —ne, Ve €D, ||z —a*|| > e



Turnpike theorems for convex problems (draft) 17

This lemma is used in the proof of the following lemma that is dealing with the trans-
formation of Assumption H3.

Lemma 5.2. (Lemma 3 in [25]) Assume that at the point ' € D,y € M* we have
pr' = py, c(x’) <0, c¢(y) > 0. Then for every point x and numbers 01,0, salisfying

z € cl (Vyw (@), c(z) <0,0< 6 <ér, 0< 02 < a(y),
the following inequality holds

u(z) u(y) . 1 1 -
lc(z)| +61  c(y) + 02 s u (\c(m)] 16 T c(y) + (52> 6(y).

Here functions n(z',y) and 6(y) such that 6(y) is continuous and for everye > 0, € > 0
there exist 6. > 0 and 7).z > 0 such that

5(y) = 0 and 1(z',y) > A, for all (¢/,y) satisfying ||z’ —2*|| > & ||y — 27| > e.

In the proof of this lemma, Assumption H2 is only used to show the existence of a finite
number b € (0, +00) such that the following inequality holds (see (5.6) in [25])

u(z) —u*
|e(2)]

For convex problems under Assumptions A1-A4, a similar inequality (27) is proved in the
previous section, where the required finite number is b = X\ and the inequality holds for all
x satisfying ¢(z) < 0. From definition of set D (part b) we know that for all z € D, x # z*,
the inequality ¢(x) < 0 holds and therefore (34) is also true. The rest of the proof remains
the same as the proof of Lemma 3 in [25].

(34) <b, VreD, x#a".

We define two types of sets.

Definition 5.3. m C [0, T is called a set of 1-st type on the interval [ps, p1] if the following
conditions hold:

a). The set m consists of two sets w and o, that is ©™ = m Uy, such that

z(t) € int D, Vt € my and xz(t) ¢ int D, Vt € 7.

b). The set m consists at most countable number of intervals Ay, with end-points
th <tk and the intervals (px(t5), px(th)), (k=1,2,...) are disjoint.

Clearly, in this case intervals AY = int Ay, = (tF,t5) are also disjoint.

c). p1 > sup,pr(th), py < infy px(th).

Definition 5.4. w C [0,7] is called a set of 2-nd type on the interval [pe,p1] if the
following conditions hold:

a). z(t) ¢ int D, Vt € w.

b). The set w consists at most countable number of intervals [sk, s¥], such that the
intervals (pr(s), px(sy)), (k=1,2,...) are nonempty and disjoint, and

pP1—p2 = Z[Z”U(Slf) —px(sg)].

k
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Lemma 5.5. (Lemma 7 in [25]) Assume that trajectory x(t) € Xr is a continuously
differentiable function, the sets m (= m Ums) and w are of 1-st type and 2-nd type on the
same interval [pa, p1], respectively. Then

/ u(z(t))dt < u* meas(rUw) — /[u* —u(z(t))]dt — /52(93(t))dt;

TUw Q E

Where
a) QUE=wUm={tenUw: z(t) ¢ int D}.
b). For every e > 0 there exists a number 6. > 0 such that

§*(x) > 6., Y, ||z —2*|| > e
c). For every § > 0 there exists a number K(J§) < oo such that
meas|(mr Uw) N Z;5] < K(J) meas [(QU E) N Zs],
here Zs = {t € [0,T] : |px(t) — p*| > 6}.

The proof of this lemma is based on Lemmas 5.1, 5.2 and Assumptions H1, H3. Since
they are true in our case Lemma 5.5 is also true.

Lemma 5.6. (Lemmas 13 and 14 in [25]) Assume that trajectory x(t) € Xr is a contin-
uously differentiable function. Then, interval [0,T] can be divided into at most countable
number of disjoint subsets such that

(35) 0, 7] =Up(mpUw,) UFLUFUE,

(36) /Tu(:v(t)) dt:; / u(z(t)) dt + / u(:r(t))dt—{—/u(x(t))dt.

Here

1. m, and w, are the sets of 1-st type and 2-nd types, respectively, on the intervals
P2, pl], n=1,2,....

2. Fy and Fy are the sets of 1-st type on the intervals [p3,pl] and [p3, pi], respectively,
and

(37) z(t) € int D, forall t € Fy U Fy,
(38) pl—p?<C <400, i=1,2.
3.
(39) x(t) ¢ int D, forallte E.
4. For every 6 > 0 there is a number C(6) such that
(40) meas [(F U Fy) N Z5] < C(9),

where the number C(§) < —+oo does not depend on trajectory xz(t), on T and on the
intervals in (35).
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5. There is a number L < +00 such that

(41) / () — u'] dt < L

and L does not depend on trajectory x(t) and on T.

Proof: The proof of all the assertions, except inequality (41), do not require Assumption
H2 (see the proof of Lemma 13 in [25]). This assumption is used only for the proof
of inequality (41). We show that this inequality is valid if Assumption A4, instead of
Assumption H2, is satisfied.

For the sake of simplicity consider just one of the sets in (41); say F' = F; and show
that

(42) /[u(x(t)) —u*dt < Ly
F
where L; does not depend on trajectory z(t) and on 7.

F is a set of 1-st type on some bounded interval. According to Definition 5.3 and
(37) this means that pi(t) < 0 for all ¢ € F. Moreover F = Up>14y, every set Ay

is an interval with endpoints t%,¢5, intA, N intA,, = 0 if k # m, the intervals
(pz(t8), px(t)), (k= 1,2,...) are disjoint. Since trajectories are bounded the inequality
(43) > lpx(th) — pa(th)] < L.

k

holds where L does not depend on trajectory z(t) and on T.

We show that the inequality (42) is true. Take any k and denote s = px(t). Let
sk = px(th),i = 1,2. Since pi(t) < 0 for all t € (t},t5) C Ay, there exists an inverse
function t = #(s). We have dt = ds/pi(t) and

o Fuee) = Fulal(s) —u
(44) A/ [“W”‘“]dt‘/ p(t(s)) ds‘/ pali(s >>

On the other hand, for all s € (s¥, s&) we have x(t(s)) € int D that means c(x(t(s))) < 0.
Then from px(t(s )) < ¢(z(t(s))) we have

—pa(t(s)) = —c(x(t(s))) = le(z(t(s)))] > 0.
Thus if u(z(t(s))) — u* > 0 for s € (s§, s5), then from relation (27) it follows that
u(z(t(s))) —u _ u(z(t(s))) — v’
RO I ) I
Now, if u(z(t(s))) — u* < 0 for some s € (sF, 3’2“) then

u(z(t(s))) —
ety <"

(45)
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Thus the relation (45) is true for all s € (s¥, s§) (note that A > 0) and therefore from (44)
it follows

/[u(x(t)) —ut]dt < Mst — sh].
Ay
Summing over k and taking into account (43) we obtain

/[u(a:(t))—u*] it — Z/[u(x(t))—u*] at < A Y [ —sh] < AL

F LN
This means that (42) holds for Ly = A L, and therefore (41) also holds.

We have shown that under the assumptions of Theorem 3.1 all the required preliminaries
for the proof of Theorem 2.5 (that is, Lemmas 5.1, 5.2, 5.5 and 5.6) are true without
involving H2. This completes the proof of Theorem 3.1.

We note that Lemmas 5.5 and 5.6 are for continuously differentiable trajectories. It is
known that (see, for example, Theorem 6 in [5], all conditions of this theorem hold in our
case) given any ¢ > 0 and any trajectory x(t) defined on [0, T, there exists a continuously
differentiable trajectory z(¢) such that £(0) = x(0) and

lz(t) — &(t)| < &, ¥t € [0,T].

The proof of Theorem 2.5 in [25] is first performed for continuously differentiable tra-
jectories. Then by using the above property the theorem is extended to any absolutely
continuous trajectory of the system (1).

5.2. Proof of Theorem 3.3. We assume that the function w is strictly concave. In this
case optimal stationary point xz* is unique and Assumption A2 holds. If Assumption A3
holds then Theorem 3.3 follows from Theorem 3.1.

Assume that Assumption A3 does not hold. Since u is strictly concave the set B =
{r € Q: u(x) > u(z*)}, defined in (9), consists of one point; that is B = {z*}, and

(46) u(y) < u*forally e, y#a”.

Moreover, given any € > 0 there is § > 0 such that

(47) uly) —u* < —=dforally e, [y —a*| >e.

In this case, for optimal and &-optimal trajectories meas{t € [0,T] : ||z(t) — *|| > ¢}

can not growth infinitely; that is the turnpike property is true. Assertions 1 and 3 are
also trivially satisfied in this case. Therefore Theorem 3.3 is true.

In what follows we provide another proof; we show that Assumption H holds in this
case and then Theorem 3.3 follows from Theorem 2.5.
Take any z € R" and consider a support function

c(z,x) = ylélaa(ic) zy.

Verifying H1. Clearly, Assumption H1 holds for all z € R™, since B\ z* = ().

Verifying H2. By the assumption A4 there is a point & € M such that 0 € inta(Z).
Since mapping a is continuous, the relation 0 € inta(z) holds for all points z in a small
neighborhood of #. Thus there is a point 2’ € M such that 0 € inta(z’) and 2’ # x*.
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Take any non-zero z such that the scalar product z(z* — 2’) = 0; that is, za* = 22/,
Since 0 € inta(z’) we have

c(z,2") = max zy > 0.
y€a(z')

Thus Assumption H2 is satisfied.

Verifying H3. Take any z satisfying Assumption H2. Consider points z,y €  such
that c¢(z,2) <0 and c¢(z,y) > 0. Clearly x # 2* and from (46) we have u(z) < u*,
u(y) < wu*. Thus the inequality

u(z) —u*  uly) —u
le(z,2)] e(zy)

(48) p(r,y) =

holds (see (8)). Now let
Tk — .T*, Y — y/ 7& 'I*7 Rl = ZYk, C(’vak) < 07 C(%?Jk) > 0.

We have u(xy) < v*, wu(yr) < v* and wu(y) < w*. Since function w is continuous
there is a number ¢ > 0 such that for all sufficiently large numbers £k the inequality
u(yg) < u* — e is satisfied. Then from (48) for sufficiently large k& we obtain

u(rg) — v ulyy) —u £
P\ Tk, Yk) = + < — .
B V) R ERTS R ENTY
Note that z is a fixed point and therefore ¢(z, i) is bounded above. Thus, limsup,_,.. ©(Tg, yx) <

0; that is, Assumption H3 is also satisfied.

Therefore Assumption H holds. Theorem is proved.

5.3. Proof of Theorem 3.5. Since mapping a is assumed to be strictly convex, Assump-
tions A1-A3 are satisfied. Then according to Lemma 4.6, there exists a unique optimal
stationary point z*. If Assumption A4 is also satisfied then Theorem 3.5 follows from
Theorem 3.1.

Consider the case when Assumption A4 is not satisfied; that is,
(49) 0 ¢ inta(zx), Vo € Q.

Clearly, in this case the set of stationary points M consists of one point x*. Indeed, if
0 € a(z’) for some 2’ # x*, then as mapping a is strictly convex, 0 € inta(2$%) that
contradicts (49). Consider the set

zeQ
Note that a(2) C R™ is a convex compact set. Indeed, if y;,y2 € a(Q); that is, y; €
a(x;),1 = 1,2, then from strictly convexity of mapping a we have
Ay + (1= Nya € inta(Azy + (1 — N)zy) C a(Q2), for all A € (0,1).

Clearly, 0 € a(2) since 0 € a(z*). Now we show that 0 is on boundary of the set a(f2).
By the contrary assume that 0 € int a(Q2). Then, there are points y; € a(z;), i = 1,...,m,
(m < n+ 1) and nonnegative numbers \;, satisfying A; + - -- + A,, = 1, such that
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In this case again, since mapping a is strictly convex,
0= )\13/1 +---+ )\mym € int &()\11‘1 + -+ )\miﬂm)

that contradicts (49).
Therefore, a(2) is a convex compact set and 0 € da(2). Then there is a non-zero vector
p such that

(50) py <0, Yy € a(z), = €.
Now we show that given any ¢ > 0 there is . > 0 such that
(51) py < —6., Yy € a(z),z € Q, ||z — 2*| > e.

If (51) is not true, then there is € > 0 for which p yx — 0 for some sequence y;, € a(zy),
|z — x*|| > e. Without loss of generality we can assume that y, — ' and z, — 2/, as
k — oo. Thus, taking into account the fact that mapping a is continuous,

py =0, v €alx), ' # 2"

In this case we obtain # € int a(xugx*). Then there is ¢ € a(xlzx*) such that py >

P y/TJrO = 0. This contradicts (50). Thus (51) is true.

Take any trajectory x(-) € Xr and denote
7. = {t€[0,T]: ||z(t) —z*|| > &}.

From (50) we have p&(t) < 0 for all ¢ where &(t) exists. Thus function p z(t) is decreasing
and

T
pa(T) —pa’ = / pi(t)dt < / pi(t)dt < —d. meas..
0 Te
From this inequality we obtain

px(T) —pa°

O

meas 7, <

Since z(T) € Q is bounded there exists K. < oo such that ’%;pxo < K. for all T.
Therefore the relation

meas {t € [0,T] : ||z(t) —z"|]| > e} < K.

holds for all trajectories, and in particular for all &-optimal trajectories. That is, the
assertion 2 of Theorem 3.1 is valid.

Now we show the third assertion. Let z(¢;) = z(t2) = z*. By the contrary, assume that
x(t') # a* for some t' € (t1,ty). Then, thanks to (50), (51) the following holds

pa(ty) < pxt') < pz(t)

that leads to a contradiction. Thus, the third assertion is also true for all trajectories,
and in particular for all optimal and &-optimal trajectories.
Theorem is proved.
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