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Abstract. We address robust versions of combinatorial optimization
problems, focusing on the uncorrelated ellipsoidal uncertainty case, which
corresponds to so-called mean-variance optimization. We present a branch
and bound-algorithm for such problems that uses lower bounds obtained
from Lagrangean decomposition. This approach allows to separate the
uncertainty aspect in the objective function from the combinatorial struc-
ture of the feasible set. We devise a combinatorial algorithm for solv-
ing the unrestricted binary subproblem efficiently, while the underlying
combinatorial optimization problem can be addressed by any black box-
solver. An experimental evaluation shows that our approach clearly out-
performs other methods for mean-variance optimization when applied
to robust shortest path problems and to risk-averse capital budgeting
problems arising in portfolio optimization.

Keywords: Robust combinatorial optimization, mean-risk optimization,
Lagrangean decomposition

1 Introduction

Decision making under uncertainty is a challenge both from an economical and a
mathematical perspective. In combinatorial optimization, where the constraints
describe some problem-specific structure, the uncertainty usually appears in the
objective function, i.e. the costs of the variables. We assume that a set U of
potential cost vectors is given and aim at minimizing the value of a solution in
its worst case scenario from this uncertainty set, i.e. we take a risk-averse attitude
and consider the min-max criterion [1] to define solutions that are robust against
variation of costs. That is we consider problems of the form

min max
c∈U

c⊤x

s.t. x ∈ X ,
(R)

with X ⊆ {0, 1}n defining the combinatorial structure of the feasible set. We
focus on problems whose deterministic versions are easy to solve, i.e. where a
linear objective function can be optimized quickly over the set X.
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Reasonable choices of scenario sets U depend on the application at hand,
but also on the (theoretical and practical) tractability of the resulting problems.
Among the popular types of uncertainty we find interval uncertainties, discrete
scenario sets and the so-called ellipsoidal uncertainty. In the latter case the set
of all possible scenarios forms an ellipsoid in R

n and each point in this ellipsoid
represents a possible cost vector.

In this paper we address uncorrelated ellipsoidal uncertainties. Compared
with interval uncertainty, which is more commonly used and easier to deal with
computationally, using ellipsoidal uncertainties can avoid overly pessimistic so-
lutions. In fact, the worst-case scenario in Problem (R) always corresponds to
an extreme point of U , so that in the interval case all coefficients are at their
extremes, which is very unlikely in practice. In the ellipsoidal case this is ex-
plicitely excluded. More precisely, when assuming that the objective function
coefficients are jointly normally distributed, the confidence regions form ellip-
soids. Under the additional assumption that the distributions are independent,
we obtain axis-parallel ellipsoids.

Interest in robust optimization under ellipsoidal uncertainty has been steadily
growing in recent years, with a focus on the special case of axis-parallel ellipsoids,
where the problem is equivalently reformulated to a mean-variance optimization
problem. Depending on the underlying combinatorial structure efficient algo-
rithms for Problem (R) may exist. As an example, the mean-risk spanning tree
problem can be solved in polynomial time, as shown by Nikolova [4], who also
proposes general-purpose approximation schemes. For other underlying prob-
lems, such as the shortest path problem, the complexity of (R) is unknown.

Another general solution approach has been to solve the problem as a general
mixed-integer quadratic program. Atamtürk and Narayanan [2] propose a SOCP-
based branch and bound-algorithm for the robust knapsack problem with axis-
parallel ellipsoidal uncertainty that additionally exploits the submodularity of
the objective function.

In this paper we develop a new exact approach for min-max problems of
type (R). We propose a branch and bound-algorithm using lower bounds ob-
tained from Lagrangean decomposition, allowing to separate the uncertainty
aspect in the objective function from the combinatorial structure of the feasible
set. In particular, we present an efficient algorithm to solve (R) for X = {0, 1}n
in the case of uncorrelated ellipsoidal uncertainty. The combinatorial subproblem
in the decomposition can be addressed by any black box-solver.

This paper is organized as follows. In Section 2 we present our Lagrangean
decomposition approach for general binary nonlinear minimization problems.
The special case of mean-variance combinatorial optimization is discussed in
Section 3; we study the unconstrained binary optimization problem arising in
the decomposition and devise an efficient algorithm that can deal with fixed
variables. This allows us to embed the decomposition approach into a branch
and bound-algorithm to compute provably optimal solutions. In Section 4 we
evaluate our algorithm for the robust shortest path problem and the risk-averse
capital budgeting problem. Extensive experimental studies show that our new
algorithm clearly outperforms other approaches described in the literature.



2 A Lagrangean Decomposition Approach

Lagrangean decomposition can be considered a special case of Lagrangean relax-
ation, applied to a set of artificial constraints. Its aim is to decompose a problem
into auxiliary problems that can be easily computed. We use Lagrangean de-
composition to separate the nonlinear objective function from the combinatorial
constraints. Starting from the problem

min f(x)
s.t. x ∈ X ⊆ {0, 1}n ,

(P)

we introduce new variables y ∈ R
n along with artificial linking constraints and

express the original set of combinatorial constraints in the new variables:

min f(x)
s.t. x = y

x ∈ {0, 1}n
y ∈ X .

Lagrangean relaxation of the linking equations yields

min f(x) + λ⊤(y − x)
s.t. x ∈ {0, 1}n

y ∈ X ,

where λ ∈ R
n is the vector of Lagrangean multipliers. Since the original objec-

tive function and the set of constraints are now independent of each other, the
problem decomposes into

min f(x)− λ⊤x + min λ⊤y

s.t. x ∈ {0, 1}n s.t. y ∈ X .
(L(λ))

The two minimization problems in (L(λ)) can be solved independently. The
left problem is an unconstrained nonlinear minimization problem over binary
variables, whereas the problem on the right is a linear instance of the underlying
combinatorial problem. For any λ ∈ R

n, (L(λ)) is a relaxation of the original
problem (P) and yields a lower bound on its optimal value. The best possible
bound is obtained by computing the Lagrangean dual

max
λ∈Rn

L(λ) , (1)

for example with a subgradient algorithm. In each iteration the two subproblems
of (L(λ)) have to be solved for a given λ. Note that

L(λ) =

{

min z − λ⊤x + min λ⊤y

s.t. (z, x) ∈ conv(F ) s.t. y ∈ conv(X)

where F := {(z, x) | x ∈ {0, 1}n, z ≥ f(x)}. By general results on Lagrangean
relaxation we obtain



Lemma 1.

max
λ∈Rn

L(λ) =











min z

s.t. (z, x) ∈ conv(F )

x ∈ conv(X) .

Note that

min z

s.t. (z, x) ∈ conv(F )
x ∈ conv(X)

≥
min f(x)
s.t. x ∈ conv({0, 1}n)

x ∈ conv(X)
=

min f(x)
s.t. x ∈ conv(X) ,

and that the inequality is strict in general if f is nonlinear. This is due to the
fact that the objective function f is minimized over {0, 1}n in the left problem
of (L(λ)), instead of over [0, 1]n. In other words, the bounds we obtain are
potentially stronger than those obtained from convexifying the feasible set in
Problem (P).

Instead of solving the decomposition (L(λ)) exactly, it is possible to solve re-
laxations of the subproblems. This might be advantageous when the subproblems
are computationally hard or no exact algorithm is known. Even if the relaxation
may decrease the quality of the resulting lower bounds and hence increase the
number of nodes in the branch and bound-algorithm, this effect might be com-
pensated by the shorter time required to compute the bounds.

When embedding the computation of the Lagrangean dual into a branch and
bound-algorithm, in order to obtain exact solutions, the problem solved in the
root node of the branch and bound-tree is (1), but in deeper levels of the tree
variable fixings have to be respected. This means that the algorithms for both
the (formerly) unconstrained nonlinear subproblem and the linear combinatorial
subproblem have to be adapted to handle fixed variables.

Within a branch and bound-scheme our approach can be improved signifi-
cantly by reoptimization: in order to compute the Lagrangean dual (1) quickly,
a good starting guess for the multipliers λ is crucial. The choice of the initial
multipliers in the root node should depend on the objective function, i.e. on the
type of uncertainty set considered. In the remaining nodes of the branch and
bound-tree, we use the optimal multipliers of the parent node for warmstart.

An important advantage of the Lagrangean decomposition approach is that
we get a primal heuristic for free: each time we solve (L(λ)) we obtain a feasible
solution y ∈ X for Problem (R). In particular, we can use f(y) as an upper
bound in our algorithm.

In robust optimization, the function f is defined as the worst case solution
quality of a vector x ∈ X over all scenarios c in a given set U . More formally, we
consider objective functions of the form

f(x) := max
c∈U

c⊤x

where U ⊂ R
n is a compact set. In many applications, linear optimization over

the feasible set X is only possible (or at least easier) if the objective function



satisfies certain additional constraints such as, e.g., non-negativity or triangle
inequalities. In the following, we argue that our approach also works in this
case. More precisely, we claim that any homogeneous inequality that is valid for
all scenarios c ∈ U can be assumed to be valid also for each vector λ appearing
in the subproblem on the right in (L(λ)). To this end, one can show

Theorem 2. Let cone(U) denote the closed convex cone generated by U and let
cone(U)∗ be its dual cone. Then

min max
c∈U

c⊤x

s.t. x ∈ X
=

min max
c∈U

c⊤x

s.t. x ∈ {0, 1}n
y ∈ X

x− y ∈ cone(U)∗ .

Due to space restrictions the proof is omitted here. By Theorem 2 we can apply
the Lagrangean relaxation approach directly to the problem

min max
c∈U

c⊤x

s.t. x ∈ {0, 1}n
y ∈ X

x− y ∈ cone(U)∗ ,

meaning that the dual multipliers have to be chosen from cone(U). It remains
to investigate whether this restriction on λ yields the same bound as (1).

Theorem 3. Assume that C is a polyhedral cone with U ⊆ C. Then

max
λ∈C

L(λ) = max
λ∈Rn

L(λ) .

Again, we have to omit the proof. By Theorem 3, any finite number of conditions
on the objective function of one of the following types can be carried over from U
to λ without weakening the lower bound:

– non-negativity or non-positivity of a given objective function coefficient;
– the triangle inequality on a given triple of coefficients;
– if variables correspond to edges of a graph, the non-negativity of the total

cost of a given cycle.

Depending on the underlying combinatorial structure, such conditions may be
crucial for linear optimization over X. This is true, e.g., when the underlying
optimization problem asks for a shortest path or a minimum cut in a graph.

3 Uncorrelated Ellipsoidal Uncertainty

We now focus on the case of ellipsoidal uncertainty, i.e. the set U of all possible
scenarios has the form of an ellipsoid in R

n,

U =
{

c ∈ R
n| (c− c0)

⊤
A−1 (c− c0) ≤ 1

}

,



with c0 ∈ R
n denoting the center of the ellipsoid and A ∈ R

n×n being a positive
definite symmetric matrix. In this case the objective function

f(x) = max
c∈U

c⊤x

of (P) can be replaced by a closed formula: for a given x ∈ R
n, the value f(x)

is obtained by a linear maximization over an ellipsoid. The KKT optimality
conditions yield

f(x) = c⊤0 x+
√
x⊤Ax .

Thereby the unconstrained min-max problem arising in the left part of prob-
lem (L(λ)) in the ellipsoidal uncertainty case reads

min
x∈{0,1}n

(c0 − λ)
⊤
x+

√
x⊤Ax. (2)

Here, c0 and A can be interpreted as the mean values and the covariance matrix
of a set of random variables.

In the following, we restrict ourselves to the case of uncorrelated random
variables. In this case, the ellipsoid U is axis-parallel or equivalently the matrix A

is diagonal. Exploiting the binarity of x we can simplify Problem (2) to

min
x∈{0,1}n

(c0 − λ)
⊤
x+

√
a⊤x, (3)

where A = Diag(a) for some non-negative vector a ∈ R
n.

3.1 An Efficient Algorithm for the Unconstrained Problem

Problem (3) is an unconstrained variant of the so-called mean-risk optimization
problem. It can be solved to optimality in polynomial time since the objective
function is submodular [2]. As minimization algorithms for general submodular
functions are too slow to be applied in practice, we aim at a faster algorithm
exploiting the special structure of Problem (3).

To this end, consider two solutions of (3) which differ in exactly one variable i.
The difference between the corresponding objective values is

∆if(J) = (c0 − λ)i +

√

∑

j∈J

aj + ai −
√

∑

j∈J

aj , (4)

with J denoting the set of variables which are 1 in both solutions. The value (4) is
also known as the discrete derivative of variable i [6]. It describes the contribution
of setting variable i to 1, which clearly depends on the set J or, more precisely,
on the quantity

∑

j∈J aj . We hence define for each variable i its contribution
function by

Ci(z) = (c0 − λ)i +
√
z + ai −

√
z .

The functions Ci are strictly decreasing and therefore have at most one root
each. The root ri of Ci is the value which

∑

j∈J aj must reach such that setting



variable i to 1 becomes profitable. Note that setting a variable to 1 never has
a negative effect on the contributions of other variables, since the objective
function of (3) is submodular.

Our basic idea for the construction of an optimal solution of (3) is that, due
to the definition of ri, a variable i cannot be 1 in an optimal solution while
another variable having a smaller root is 0. This leads to an obvious sorting
algorithm. However, in a first step we have to eliminate variables i for which Ci

has no root, using the following observation.

Lemma 4. There exists an optimal solution x∗ of Problem (3) with the following
properties:

(i) if (c0 − λ)i ≥ 0, then x∗
i = 0.

(ii) if (c0 − λ)i ≤ −√
ai, then x∗

i = 1.

Proof. The condition in (i) implies that the function Ci is positive everywhere,
as ai > 0. This implies that any solution with xi = 1 can be improved by
setting xi = 0. The condition in (ii) implies that Ci is non-positive everywhere,
as

(c0 − λ)i +
√
z + ai −

√
z ≤ (c0 − λ)i +

√
ai ≤ 0

by concavity of the square-root function. The contribution of variable i to the
value of an arbitrary solution is therefore non-positive, so that it may be fixed
to 1 without loss of generality. ⊓⊔

For each i such that −√
ai < (c0 − λ)i < 0, the function Ci has exactly one

positive root

ri =

(

ai − (c0 − λ)2i
2(c0 − λ)i

)2

.

The algorithm for solving the unconstrained problem proceeds as follows: first
variables are fixed according to Lemma 4, then the remaining non-fixed vari-
ables xi are sorted by non-decreasing roots ri. Finally, all binary vectors where
the non-fixed entries have values that are non-increasing in the resulting order
are enumerated and the best such solution is reported.

Theorem 5. Problem (3) can be solved in time O(n log n).

Proof. The algorithm can be implemented to run in linear time except for the
sorting of variables which takes O(n log n) time. It thus remains to prove cor-
rectness. By Lemma 4 we may assume that no variable is fixed, then it suffices to
show that (after sorting) every optimal solution x∗ satisfies x∗

1 ≥ x∗
2 ≥ · · · ≥ x∗

n.
Assume on contrary that x∗ is an optimal solution with x∗

j = 0 and x∗
j+1 = 1

for some j < n. Consider the two solutions x0 and x1 defined by

x0
i =

{

0 for i = j + 1

x∗
i otherwise,

x1
i =

{

1 for i = j

x∗
i otherwise.



By optimality of x∗ we have

0 ≥ f(x∗)− f(x0) = Cj+1

(
∑

i∈I ai
)

for I = {i ∈ {1, ..., n} \ {j + 1} | x∗
i = 1} and hence by definition of rj+1 and rj

∑

i∈I

ai ≥ rj+1 ≥ rj . (5)

Then using the concavity of the square-root function we have

f(x1)− f(x∗) = (c0 − λ)j +

√

∑

i∈I

ai + aj+1 + aj −
√

∑

i∈I

ai + aj+1

< (c0 − λ)j +

√

∑

i∈I

ai + aj −
√

∑

i∈I

ai

(5)

≤ (c0 − λ)j +
√

rj + aj −
√
rj = 0 ,

which contradicts the optimality of x∗. ⊓⊔

Note that a similar algorithm for Problem (3) using a different sorting rule has
been devised by Shen et al. [5].

It is easily verified that the fixings of variables arising in the branch and
bound-scheme for the min-max problem do not affect the validity of our algo-
rithm. The roots can be computed using the same formula, because an additional
constant under the root does not change the order of the roots.

3.2 A Mixed-Integer SOCP Formulation

Due to the nonlinearity of the set U , there is no straight-forward mixed-integer
linear formulation of Problem (R) in the ellipsoidal uncertainty case. However,
the problem can be modeled as a mixed-integer second-order cone program
(SOCP), even in the correlated case: the objective function in (2) can be mod-
eled by an SOCP constraint, while the feasible set X has to be modeled by a
polyhedral description of conv(X). In practice, mixed-integer SOCPs are much
harder to solve than mixed-integer linear programs, making this approach much
less competitive than similar linearization approaches used for min-max prob-
lems in the discrete scenario case. Moreover, if the polytope conv(X) does not
have a compact outer description, separation algorithm might be needed.

4 Applications

The Lagrangean decomposition approach presented in Section 3 is applicable
to a wide range of robust combinatorial optimization problems. In the follow-
ing we present numerical results for the robust shortest path problem and the



robust knapsack problem. We compare the performance of the decomposition
algorithm with the standard mixed-integer SOCP approach as explained in Sec-
tion 3.2, using CPLEX 12.5 to solve the resulting programs. The left subproblem
of the decomposition (L(λ)), i.e. the unconstrained nonlinear binary minimiza-
tion problem, was solved with the algorithm discussed in Section 3.1. The initial
Lagrangean multipliers were chosen as the center of the ellipsoid.

All experiments were carried out on a machine running SUSE Linux on an
Intel Xeon CPU at 2.60 GHz. All running times are stated in CPU-seconds; the
time limit for each instance was one CPU-hour.

4.1 The Shortest Path Problem With Ellipsoidal Uncertainty

For the uncorrelated ellipsoidal uncertainty variant of the shortest path problem,
no polynomial time algorithm is known [4]. Here each arc in the graph is asso-
ciated with a mean and a variance value. The uncertain part of the objective
function is weighted with a parameter Ω ∈ {1, 1

2 ,
1
3 ,

1
5 ,

1
10}, the resulting problem

of minimizing

f(x) = c⊤0 x+Ω
√
a⊤x

over the set of shortest s, t-paths in a given directed graph falls into the class
of problems considered in Section 3. The factor Ω leads to a scaling of the
ellipsoid U by Ω−2.

We solved the combinatorial subproblem of the decomposition (L(λ)) with
the network simplex optimizer of CPLEX 12.5, allowing to deal with fixed vari-
ables easily. For the left subproblem of (L(λ)) the algorithm proposed in Sec-
tion 3.1 is directly applicable.

All tests were done on directed grid graphs having the following form: n× n

nodes are arranged on a grid, where n ranges from 100 to 500. Each node is
linked by an arc to the node to the right and to the node below. The start
node s is the node in the upper left corner of the grid, the end node t is in
the lower right corner. In these graphs the total number of arcs is 2n(n − 1)
and each path consists of 2(n − 1) arcs. The ellipsoid center was generated by
randomly choosing coefficients in the interval [0, 100], then the variances were
determined as squares of randomly chosen numbers in the interval between 0
and the ellipsoid center. We generated 10 instances of each size and type.

Table 1 shows our results compared to the SOCP solver of CPLEX. Our
approach could solve all but 2 instances within the time limit of 1 hour while
the CPLEX solver reached its limit at 500×500 grids. Instances with smaller
ellipsoid volume turned out to be easier to solve in both cases, which can be
seen in all performance indicators. While the number of subproblems is not
substantially different in both approaches, CPLEX obviously spent a lot more
iterations than our approach. Overall, our approach was faster than CPLEX by
a factor of 10 to 100.



Table 1. Results for the shortest path problem with ellipsoidal uncertainty on n × n

grid graphs with n ∈ {100, 200, 300, 400, 500}. The number of edges is m = 2n(n− 1)

decomposition approach CPLEX SOCP

vars
1

Ω
#s subs iter time/s #s subs iter time/s

19800 10 10 4.0 17.4 0.20 10 1.5 6774.1 8.98
5 10 4.6 24.5 0.25 10 5.0 6874.4 11.43
3 10 5.6 33.2 0.33 10 16.4 7033.9 12.83
2 10 6.8 45.6 0.48 10 57.6 7337.5 15.03
1 10 7.2 85.0 0.83 10 902.7 12405.1 35.45

79600 10 10 4.0 24.4 1.52 10 3.4 27482.8 91.51
5 10 6.6 34.9 1.77 10 6.7 27725.9 109.95
3 10 8.2 56.4 2.77 10 19.4 28076.3 130.95
2 10 24.8 176.3 7.29 10 166.1 29214.9 159.11
1 10 164.2 1165.8 42.93 8 4895.0 89498.8 637.97

179400 10 10 6.4 22.1 5.58 10 5.0 62455.9 369.34
5 10 8.6 34.2 6.23 10 12.4 62903.1 405.86
3 10 8.4 44.4 7.54 10 51.1 63674.3 453.39
2 10 14.6 101.7 14.58 10 205.0 65409.2 529.34
1 10 198.0 1390.6 144.99 5 9142.8 141693.6 2217.49

319200 10 10 5.6 25.4 14.11 10 4.3 112330.9 1168.52
5 10 8.4 45.8 19.62 10 14.5 113040.9 1205.93
3 10 14.6 84.5 24.75 10 67.4 114185.6 1364.80
2 10 58.4 411.6 107.47 10 513.9 120765.1 1565.60
1 9 323.2 2296.0 579.62 1 5324.0 160764.0 3350.32

499000 10 10 6.4 26.0 27.02 10 3.9 177395.6 2710.71
5 10 7.8 38.6 31.54 10 21.6 178383.3 3076.77
3 10 26.4 157.4 79.92 8 112.9 180086.5 3260.07
2 10 92.2 638.7 285.77 2 52.5 180432.0 2970.01
1 9 237.2 1704.0 849.53 0 – – –

Table 2. Results for the knapsack problem with ellipsoidal uncertainty

vars vars

ε #s subs iter time/s ε #s subs iter time/s

1000 4000

0.10 10 11970.4 26085.8 9.15 0.10 10 87337.6 200149.1 297.48
0.05 10 11999.0 26441.9 9.21 0.05 10 76084.4 173606.0 257.95
0.03 10 18363.6 40781.0 14.29 0.03 10 129048.6 296989.3 440.18
0.02 10 17761.0 40074.8 13.98 0.02 10 156201.2 355627.5 528.33
0.01 10 17861.4 38516.4 13.65 0.01 10 170836.2 397621.9 589.41

2000 5000

0.10 10 39777.8 88595.8 63.12 0.10 10 128904.8 295368.9 558.42
0.05 10 43534.4 96112.8 68.76 0.05 9 243370.6 567948.6 1071.93
0.03 10 80259.2 182641.9 129.76 0.03 9 273028.8 629101.6 1200.04
0.02 10 57073.6 126914.7 90.43 0.02 10 217465.6 512935.8 972.53
0.01 10 46486.4 106990.0 76.42 0.01 10 380360.4 894375.6 1712.76

3000 6000

0.10 10 72851.0 164835.7 185.49 0.10 10 214092.4 494438.2 1143.04
0.05 10 65032.8 147170.3 165.58 0.05 8 303761.0 701917.5 1632.30
0.03 10 73101.8 167410.3 187.52 0.03 9 294969.7 690688.8 1606.99
0.02 10 198490.0 461660.2 514.55 0.02 7 327128.7 754971.9 1754.51
0.01 10 127533.0 297333.5 332.10 0.01 9 258226.6 611664.8 1421.17



4.2 The Knapsack Problem With Ellipsoidal Uncertainty

In portfolio theory an important concept is to not only consider the expected
return when choosing a set of investments but also take into account the risk
associated with investments. Such mean-risk optimization problems can be mod-
eled using stochastic objective functions. Potential investment decisions are rep-
resented by independent random variables that have an associated mean value
as well as a variance. The mean value stands for the expected return of the in-
vestments, and the variance models the uncertainty inherent in the investment,
i.e. the risk that the real return deviates from the expected. The case of contin-
uous variables is well studied whereas the case of discrete variables has received
relatively little attention yet [3].

We concentrate on the risk-averse capital budgeting problem with binary
variables [2]. In this variant of the mean-risk optimization problem we are given
a set of possible investments characterized by their costs w, expected return
values c0 and variances a, as well as a number ε. The number ε > 0 characterizes
the level of risk the investor is willing to take. Investment decisions are binary.
The only constraint is a limit on the available budget. The choice of investments
guarantees that with probability 1− ε the portfolio will return at least a profit
of the objective value.

The corresponding nonlinear IP-model is

max c⊤0 x−
√

1− ε

ε
a⊤x

s.t. w⊤x ≤ b

x ∈ {0, 1}n ,

(6)

which can easily be converted into a minimization problem of the form considered
in Section 3. In this case the underlying combinatorial optimization problem is a
knapsack problem. Note that here the scaling factor for 0 < ε < 1

2 isΩ = 1−ε
ε

> 1,
whereas for the shortest path problem with ellipsoidal uncertainty it was Ω ≤ 1.

We generated the objective function for our instances as described in Sec-
tion 4.1. The constraints were created as follows: the (certain) rational weights w
were chosen randomly and uniformly distributed from [0, 100], while the thresh-
old b was determined as 1

2

∑n

i=1 wi. This choice of the right-hand side was pro-
posed in [2] to avoid trivial instances. We generated 10 instances of each size
between 1000 and 6000 and solved each instance for the values of ε given in
Table 2. The legend of the table is as in Table 1.

Also here we compared the performance of the decomposition approach with
the performance of the SOCP solver of CPLEX. However, we do not state the
results of the SOCP solver because it was not competitive: already for n = 75
not all instances could be solved within the time limit of 1 hour.

Atamtürk and Narayanan [2] present an approach to improve the second-
order cone program using additional cutting planes to strengthen the relaxation
in each node of the enumeration tree. The cutting planes are derived from the
submodularity of the objective function of Problem (6). Their results show that
the additional cutting planes significantly improve the dual bounds and lead



to a much lower number of subproblems and faster solution times. Still, their
approach is not competitive with the Lagrangean decomposition approach pre-
sented here: it takes more than 800 seconds on average for solving the instances
with n = 100 and ε = 0.01.

In the decomposition approach the dependence of the number of subproblems
or the running times on the balance between the linear and the nonlinear parts
of the objective function, i.e. the scaling factor ε, is nearly absent, which was
not the case for the SOCP solver. If we take a closer look at the ratio between
the number of calls to the combinatorial algorithms for the two parts of the
decomposition and the number of subproblems in the branch and bound-tree,
we see that only few calls per subproblem are necessary, showing the importance
of reoptimization. For all n this ratio is less than three. Additionally, the algo-
rithms applied to solve the subproblems are very fast in theory and in practice.
In combination with strong primal bounds this leads to very moderate overall
running times.

In summary we could show that the decomposition algorithm is well suited
for the risk-averse capital budgeting problem. It dramatically outperforms both
standard SOCP solvers and more problem-specific approaches found in the lit-
erature.
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