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Abstract. We consider a class of `0-minimization problems, which is to search for the

partial sparsest solution to an underdetermined linear system with additional constraints. We

introduce several concepts, including lp-induced quasi-norm (0 < p < 1), maximal scaled spark

and scaled mutual coherence, to develop several new uniqueness conditions for the partial spars-

est solution to this class of `0-minimization problems. A further improvement of some of these

uniqueness criteria has been also achieved through the so-called concepts such as maximal scaled

(sub)coherence rank.
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1 Introduction

Sparse representation, using only a few elementary atoms from a dictionary to represent data

(signals, images, etc.), has been widely used in engineering and applied sciences recently (see,

e.g., [15, 17, 14, 11, 4, 9, 8, 10, 22, 20, 21] and the references therein). For a vector x, let ‖x‖0
denote the ‘`0-norm’ of x, namely, the number of nonzero components of x. In this paper, we

consider the following model for the sparse representation of the vector b ∈ Rm :

min

{
‖x‖0 : M

(
x
y

)
= b, y ∈ C

}
, (1)

where M = [A1, A2] ∈ Rm×(n1+n2), m ≤ n1, is a concatenation of A1 ∈ Rm×n1 and A2 ∈ Rm×n2 ,

and C is a convex set in Rn2 which can be interpreted as certain constraints on the variable

y ∈ Rn2 . Throughout the paper, we assume that the null space of AT2 is nonzero, namely,

N (AT2 ) 6= {0}. The solution to the system

M

(
x
y

)
= b, y ∈ C, (2)
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includes two parts: x ∈ Rn1 and y ∈ Rn2 . The `0-minimization problem (1) is to seek a solution

z = (x, y) to the system (2) such that the x-part is the sparsest one, but there is no requirement

on the sparsity of the y-part of the solution. Such a sparsest solution x can be called the sparsest

x-part solution to the system (2). The `0-minimization problem (1) is NP-hard (see Natarajan

[16]), and can be called a partial `0-minimization problem, or partial sparsity-seeking problem.

Problem (1) is closely related to partial sparsity recovery theory (see, e.g., Bandeira et

al.[1], and Jacques [13]), and partial imaging reconstruction (Vaswani and Lu [18]), and the

sparse Hessian recovery (Bandeira et al. [2]). Problem (1) is general enough to include some

importance sparsity seeking problems as special cases. For instance, the normal `0-minimization

min{‖x‖0 : Ax = b} (3)

is an important special case of (1). In fact, Problem (1) is reduced to (3) when A2 = 0.

The uniqueness of the standard `0-minimization (3) has been widely investigated, and has

been established by using the so-called spark of a matrix A (see Donoho and Elad [6]), denoted

by Spark(A), which is the smallest number of columns of a matrix that are linearly dependent.

It was shown in [6, 5, 4] that for a given linear system Ax = b, if there exists a solution x

satisfying ‖x‖0 < 1
2Spark(A), then x is necessarily the unique sparsest solution to (3).

Since the computation of spark is generally intractable, some other verifiable conditions have

been developed in the literature, for instance, by the mutual coherence [7], the largest absolute

value of inner products between different normalized columns of A, i.e.,

µ(A) = max
1≤i 6=j≤n

|〈ai, aj〉|
‖ai‖2 · ‖aj‖2

,

where ai is the i-th column of A, i = 1, ..., n. The mutual coherence gives a computable lower

bound for the spark [6], i.e., Spark(A) ≥ 1 + 1
µ(A) , which yields following uniqueness condition

(see, e.g., [6, 5, 4]): For a given linear system Ax = b, if there exists a solution x satisfying

‖x‖0 < 1
2(1 + 1

µ(A)), then x is necessarily the unique sparsest solution to (3). However, the

mutual coherence condition might be very restrictive in some situations, and fails to provide a

good lower bound for the spark. In order to improve the lower bound for spark, Zhao [19] has

introduced the concept of coherence rank, submutual coherence and scaled mutual coherence,

and has developed several new and improved uniqueness sufficient conditions for the solution to

`0-minimization (3).

So far, the uniqueness of the sparsest x-part solution to the general sparsity module (1)

has not well developed. The main purpose of this paper is to study such uniqueness and to

establish some criteria under which the problem (1) has a unique sparsest x-part solution.

These results will be established through some new concepts such as the lp-induced quasi-norm,

the (maximal) scaled spark, coherence, and coherence rank associated with a pair of matrices

(A1 ∈ Rm×n1 , A2 ∈ Rm×n2). These concepts can be seen as a generalization of those in [19].

This paper is organized as follows. In Section 2, we develop sufficient conditions for the

uniqueness of x-part solutions to the `0-minimization problem (1) in terms of lp- induced quasi-

norm, and such concepts as maximal scaled spark, and minimal or maximal scaled mutual

coherence. A further improvement of these conditions is provided in Section 3.
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2 Uniqueness criteria for the `0-minimization problem (1)

The uniqueness of the sparsest x-part solution to the system (2) can be developed through

different concepts and properties of matrices. One of such important concept is spark together

with its variants, which provides a connection between the null space of a matrix and the sparsest

solution to linear equations. In this section, we show that the method used for developing

uniqueness claims for the `0-minimization (3) can be used for the development of similar claims

to the system (2), while the extra variable y in the system M

(
x
y

)
= b increases the complexity

of the problem (1). Our first sufficient uniqueness condition for the sparsest x-part solution to

(1) can be developed by using the so-called lp-induced quasi-norm, as shown in the following

subsection.

2.1 An lp-induced quasi-norm-based uniqueness condition

For any 0 < p < ∞ and a vector x ∈ Rn, let ‖x‖p = (
∑n
i=1 |xi|p)

1/p . When p ∈ (0, 1), ‖x‖p is

called the lp quasi-norm of x. We now introduce the following concept.

Definition 2.1 For any given matrix A ∈ Rm×n, when 0 < p < 1, the lp-induced quasi-norm

of A, denoted by ψp(A), is defined by

ψp(A) = sup
06=z∈Rn

‖Az‖pp
‖z‖pp

= sup
‖z‖pp≤1

‖Az‖pp. (4)

Clearly, for a fixed p ∈ (0, 1), ψp(A) satisfies the following properties: ψp(A) ≥ 0, ψp(A) > 0

for any A 6= 0, and ψp(A + B) ≤ ψp(A) + ψp(B) for any matrices A,B with same dimensions.

It is worth mentioning that the triangle inequality above follows from the property: ‖x+ y‖pp ≤
‖x‖pp + ‖y‖pp (see, e.g., [12]). We see that for α > 0, ψp(αA) 6= αψp(A) in general. So ψp(A) is

a quasi-norm of A. Note that, for every entry zi, as p tends to zero, |zi|p approaches to 1 for

zi 6= 0 and 0 for zi = 0. Thus for any given z ∈ Rn, we have

lim
p→0
‖z‖pp = lim

p→0

n∑
i=1

|zi|p = ‖z‖0, (5)

which indicates that the ‘`0-norm’ ‖z‖0 can be approximated by ‖x‖pp with sufficiently small

p ∈ (0, 1). Note that for a given matrix A, ψp(A) is continuous with respect to p ∈ (0, 1).

Thus there might exists a positive number η such that η = limp→0+ ψp(A). We assume that the

following property holds for the matrix M = [A1, A2] when p tends to 0.

Assumption 2.2 Assume that matrices A1, A2 satisfy the following properties: (i) AT2 A2 is a

nonsingular matrix, and (ii) there exists a positive constant, denoted by ψ0(A†2A1), such that

ψ0(A†2A1) = lim
p→0+

ψp(A
†
2A1),

where A†2 = (AT2 A2)−1AT2 , the pseudo-inverse of A2.
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Under Assumption 2.2 and by (4) and (5), we immediately have the following inequality:

‖(A†2A1)z‖0 = lim
p→0+

‖(A†2A1)z‖pp ≤ lim
p→0+

ψp(A
†
2A1)‖z‖pp = ψ0(A†2A1)‖z‖0 (6)

for any z ∈ Rn. We now state a uniqueness condition for Problem (1) under Assumption 2.2.

Theorem 2.3 Consider the system (2) with A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , and m < n1. Let

Assumption 2.2 be satisfied. Then if there exists a solution (x, y) to the system (2) satisfying

that

‖x‖0 <
1

2

Spark(M)

(1 + ψ0(A†2A1))
, (7)

x must be the unique sparsest x-part solution to the system (2).

Proof. Assume the contrary that there is another solution (x(1), y(1)) to the system (2) such

that x(1) is the sparsest x-part and x(1) 6= x and ‖x(1)‖0 ≤ ‖x‖0 < 1
2

Spark(M)

(1+ψ0(A†2A1))
. Since both

(x, y) and (x(1), y(1)) are solutions to the linear system M

(
x
y

)
= b, we have

A1(x− x(1)) +A2(y − y(1)) = 0. (8)

Since AT2 A2 is nonsingular, y − y(1) can be uniquely determined by x− x(1), i.e.,

y(1) − y = A†2A1(x− x(1)), (9)

where A†2 is the pseudo-inverse of A2 given by A†2 = (AT2 A2)−1AT2 . From (8), we know that(
x− x(1)

y − y(1)

)
is in the null space of the matrix M = [A1, A2]. This implies that the Spark(M)

is a lower bound for

∥∥∥∥∥
(
x− x(1)

y − y(1)

)∥∥∥∥∥
0

, i.e.,

‖x− x(1)‖0 + ‖y − y(1)‖0 =

∥∥∥∥∥
(
x− x(1)

y − y(1)

)∥∥∥∥∥
0

≥ Spark(M). (10)

Substituting (9) into (10) leads to

‖x− x(1)‖0 + ‖A†2A1(x− x(1))‖0 ≥ Spark(M). (11)

Under Assumption 2.2, one has

‖A†2A1(x(1) − x)‖0 ≤ ψ0(A†2A1) · ‖x− x(1)‖0.

Merging (11) and the inequality above leads to

(1 + ψ0(A†2A1))‖x− x(1)‖0 ≥ Spark(M),

Therefore,

2‖x‖0 ≥ ‖x(1)‖0 + ‖x‖0 ≥ ‖x− x(1)‖0 ≥
Spark(M)

1 + ψ0(A†2A1)
.
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Thus ‖x‖0 ≥ 1
2

Spark(M)

(1+ψ0(A†2A1))
, contradicting with (7). Therefore x must be the unique sparsest

x-part solution to system (2).

The above result provides a new uniqueness criteria for the problem (1) by using lp-induced

quasi-norm. However, the above analysis relies on the nonsingularity of AT2 A2 which might not

be satisfied in more general situations. Thus we need to develop some other uniqueness criteria

for the problem from other perspectives.

2.2 Uniqueness based on scaled spark and scaled mutual coherence

In this section, we develop uniqueness conditions for problem (1) by using the so-called scaled

spark and scaled mutual coherence.

Lemma 2.4 ([4]) For any matrix M and any scaling matrix W , one has

Spark(WM) ≥ 1 +
1

µ(WM)
.

We use N (·) to denote the null space of a matrix. Our first uniqueness criterion based on

scaled spark is given as follows.

Theorem 2.5 Consider the system (2) where A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and m < n1. If there

exists a solution (x, y) to the system (2) satisfying

‖x‖0 <
1

2
Spark(BTA1), (12)

where B is a basis of N (AT2 ), then x is the unique sparsest x-part solution to the system (2).

Proof. Assume that (x(1), y(1)) 6= (x, y) is a solution to the system (2) satisfying that x(1) 6= x,

and ‖x(1)‖0 ≤ ‖x‖0 < 1
2Spark(BTA1), where B is a basis of N (AT2 ). Note that

(
x(1) − x
y(1) − y

)
is

in the null space of M = [A1, A2], so

A1(x(1) − x2) = −A2(y(1) − y). (13)

Note that the range space of A2 is orthogonal to the null space of AT2 , namely,

R(A2) = N (AT2 )⊥.

Let B be an arbitrary basis of N (AT2 ). Since the right-hand side of (13) is in R(A2), by multi-

plying both sides of the equation (13) by BT , we get

BTA1(x(1) − x) = 0,

which implies that

‖x(1) − x‖0 ≥ Spark(BTA1). (14)

Therefore,

2‖x|0 ≥ ‖x(1)‖0 + ‖x‖0 ≥ Spark(BTA1).
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i.e., ‖x‖0 ≥ 1
2Spark(BTA1), leading to a contradiction. Therefore, the system (2) has a unique

sparsest x-part solution.

Let F be a set of all bases of N (AT2 ), namely,

F = {B ∈ Rm×q : B is a basis of N (AT2 )},

where q is the dimension of N (AT2 ).

From the definition of the spark, we know that Spark(BTA1) is bounded. Hence, there exists

the supremum of Spark(BTA1), defined as follows.

Definition 2.6 For any matrix A1 ∈ Rm×n1 with m < n1, let

Spark∗A2
(A1) = sup

B∈F
Spark(BTA1). (15)

Spark∗A2
(A1) is called the maximal scaled spark of A1 over F (the set of bases of N (AT2 )).

The inequality (14) in the proof of Theorem 2.5 holds for all bases B of N (AT2 ). Therefore,

the spark condition (12) can be further enhanced by using Spark∗A2
(A1).

Theorem 2.7 Consider the system (2) where A1 ∈ Rm×n1 and A2 ∈ Rm×n2 and m < n1. If

there exists a solution (x, y) to the system (2) satisfying

‖x‖0 <
1

2
Spark∗A2

(A1), (16)

where Spark∗A2
(A1) is given by (15), then x is the unique sparsest x-part solution to the system

(2).

From Lemma 2.4, the scaled mutual coherence may provide a lower bound for the scaled

spark. An immediate consequence of Theorem 2.5 is the corollary below.

Corollary 2.8 For a given system (2) where A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and m < n1. If there

exists a solution (x, y) to the system (2) satisfying

‖x‖0 <
1

2

(
1 +

1

µ(BTA1)

)
, (17)

where B is a basis of N (AT2 ), then x is the unique sparsest x-part solution to the system (2).

Note that Corollary 2.8 holds for any bases B of N (AT2 ). So it makes sense to further enhance

the bound (17) by introducing the following definition.

Definition 2.9 For any matrix A1 ∈ Rm×n1 (m < n1) and A2 ∈ Rm×n2 , let

µ∗A2
(A1) = inf

B∈F
µ(BTA1), µ∗∗A2

(A1) = sup
B∈F

µ(BTA1). (18)

µ∗A2
(A1) is called the minimal scaled coherence of A1 over F, and µ∗∗A2

(A1) is called the maximal

scaled coherence of A1 over F.
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Based on Lemma 2.4 and the above definition, we have the following result.

Lemma 2.10 For any basis B of N (AT2 ), we have

1 +
1

µ(BTA1)
≤ 1 +

1

µ∗A2
(A1)

≤ Spark∗A2
(A1), (19)

Proof. The first inequality holds by the definition of µ∗A2
(A1). From Lemma 2.4, we have

1 +
1

µ(BTA1)
≤ Spark(BTA1) for every basis B of N (AT2 ).

By (15), we see that Spark(BTA1) ≤ Spark∗A2
(A1), thus

1 +
1

µ(BTA1)
≤ Spark∗A2

(A1) for all B ∈ F.

Since the right-hand side of the above is fixed, which is an upper bound for the left-hand side

for any B ∈ F, we conclude that

Spark∗A2
(A1) ≥ sup

B∈F

{
1 +

1

µ(BTA1)

}
= 1 +

1

infB∈F {µ(BTA1)}
= 1 +

1

µ∗A2
(A1)

.

By Theorem 2.7 and Lemma 2.10, we have the next enhanced uniqueness claim.

Theorem 2.11 For a given system (2) with A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and m < n1. If there

exists a solution (x, y)T satisfying

‖x‖0 <
1

2

(
1 +

1

µ∗A2
(A1)

)
, (20)

where µ∗A2
(A1) is the minimal scaled coherence of A1 over F, then x is the unique sparsest x-part

solution to the system (2).

Remark. The uniqueness criteria established in this section can be seen as certain general-

ization of that of sparsest solutions to systems of linear equations. For instance, when A2 = 0,

the null space of AT2 is the whole space Rm. Hence, by letting B = I, the corresponding scaled

mutual coherence and scaled spark become

µ(BTA1) = µ(A1), spark(BTA1) = spark(A1).

The results in this section are reduced to the existing ones [6, 5, 4]. It is worth noting that

the spark type uniqueness conditions are derived from the property of null spaces. It is worth

mentioning that the null space based analysis is not the unique way to derive uniqueness criteria

for sparsest solutions. Some other approaches such as the so-called range space property (see,

e.g., [19, 20, 21]) and orthogonal projection from Rn1+n2 to N (AT2 ) [1] can be also used to

develop uniqueness criteria.

7



3 Further Improvement of some uniqueness conditions

Since spark conditions are difficult to verify, the mutual coherence conditions play an important

role in the uniqueness theory for the `0-minimization problem (1). As shown in Lemma 2.10,

1 + 1
µ∗A2

(A1) is a good lower bound for Spark∗A2
(A1) which is an improved version of the bound

(17). In this section, we aim to further enhance the uniqueness claim (20) by further improving

the lower bound of Spark∗A2
(A1) under some situations. Following the discussions in [19], we

introduce the so-called scaled coherence rank, scaled sub-coherence and scaled sub-coherence

rank to achieve certain improvement on uniqueness conditions developed in section 2.

3.1 Maximal (sub) coherence and rank

Let us first recall several concepts which were introduced by Zhao [19]. For a given matrix

A ∈ Rm×n with columns ai, i = 1, ..., n, consider the index set

Si(A) :=

{
j : j 6= i,

|aTi aj |
‖ai‖2 · ‖aj‖2

= µ(A)

}
, i = 1, ...,m.

Let αi(A) be the cardinality of Si(A), and α(A) be the largest one among αi(A)’s, i.e.,

α(A) = max
1≤i≤m

αi(A) = max
1≤i≤m

|Si(A)|.

α(A) is called the coherence rank of A. Let i0 be an index such that α(A) = αi0(A) = |Si0(A)|.
Define

β(A) = max
1≤i≤m, i 6=i0

αi(A) = max
1≤i≤m, i 6=i0

|Si(A)|,

which is called the sub-coherence rank of A. Also we define by

µ(2)(A) = max
i 6=j

{
|aTi aj |

‖ai‖2 · ‖aj‖2
:

|aTi aj |
‖ai‖2 · ‖aj‖2

< µ(A)

}
,

the second largest absolute value of the inner product between two normalized columns of A.

µ(2)(A) is called the sub-mutual coherence of A.

Consider the sub-mutual coherence µ(2)(BTA1) with a scaling matrix B ∈ F. We introduce

the following new concept.

Definition 3.1 Let A1 ∈ Rm×n1 (m < n1) and A2 ∈ Rm×n2 be two matrices, and F is the set

of bases of N (AT2 ).

(i) The maximal scaled sub-mutual coherence of A1 on F, denoted by µ
∗∗(2)
A2

(A1), is defined

as

µ
∗∗(2)
A2

(A1) = sup
B∈F

µ(2)(BTA1). (21)

(ii) The maximal scaled coherence rank of A1 on F, denoted by α∗A2
(A1), is defined as

α∗A2
(A1) = sup

B∈F
{α(BTA1)}. (22)
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(iii) The maximal scaled sub-coherence rank on F, denoted by β∗A2
(A1), is defined as

β∗A2
(A1) = sup

B∈F
{β(BTA1)}. (23)

It is easy to see the following relationship between α(BTA1), β(BTA1), α∗A2
(A1) and β∗A2

(A1) :

For every basis B of N (AT2 ), we have

1 ≤ β(BTA1) ≤ α(BTA1) ≤ α∗A2
(A1), 1 ≤ β(BTA1) ≤ β∗A2

(A1) ≤ α∗A2
(A1). (24)

3.2 Improved lower bounds of Spark∗A2
(A1)

Following the method used to improve the lower bound of Spark(A) in [19], we can find an

enhanced lower bound of Spark∗A2
(A1) via the concepts introduced in Section 3.1. We will make

use of the following two lemmas.

Lemma 3.2 (Brauer [3]) For any matrix A ∈ Rn×n with n ≥ 2, if λ is an eigenvalue of A,

there is a pair (i, j) of positive integers with i 6= j (1 ≤ i, j ≤ n) such that

|λ− aii| · |λ− ajj | ≤ ∆i∆j ,

where ∆i :=
∑n
j=1,j 6=i |aij | for 1 ≤ i ≤ n.

Merging Theorem 2.5 and Proposition 2.6 in [19] yields the following result.

Lemma 3.3 (Zhao [19]) Let A ∈ Rm×n, and let α(A) and β(A) be the coherence rank and sub-

coherence rank of A, respectively. Suppose that one of the following conditions holds: (i) α(A) <
1

µ(A) ; (ii) α(A) ≤ 1
µ(A) and β(A) < α(A). Then µ(2)(A) > 0 and

Spark(A) ≥ 1 +
2[1− α(A)β(A)µ̄(A)2]

µ(2)(A){µ̄(A)(α(A) + β(A)) +
√
µ̄(A)2(α(A)− β(A))2 + 4}

> 1 +
1

µ(A)

where µ̄(A) = µ(A)− µ(2)(A) and µ(2)(A) is the subcoherence of A.

Based on Lemma 3.3, we can construct an enhanced lower bound of Spark∗A2
(A1) under some

conditions, in terms of the scaled coherence rank and scaled sub-coherence rank.

Theorem 3.4 Consider the system (2) where A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and m < n1. Sup-

pose that one of the following conditions holds: (i) α(BTA1) < 1
µ(BTA1)

for all B ∈ F ; (ii)

α(BTA1) ≤ 1
µ(BTA1)

and β(BTA1) < α(BTA1) for all B ∈ F. Then for any B ∈ F , we have

that µ(2)(BTA1) > 0 and

Spark∗A2
(A1) ≥ sup

B∈F

{
1 +

2[1− α(BTA1)β(BTA1)µ̄(BTA1)2]

µ(2)(BTA1){µ̄(BTA1)(α(BTA1) + β(BTA1)) +
√

∆}

}
≥ 1 +

1

µ∗A2
(A1)

.

where µ̄(BTA1) = µ(BTA1)− µ(2)(BTA1) and ∆ = [µ̄(BTA1)]2(α(BTA1)− β(BTA1))2 + 4.
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Proof. Under conditions (i) and (ii), by Lemma 3.3, for anyB ∈ F we have that µ(2)(BTA1) >

0 and

Spark(BTA1) ≥ ϕ(BTA1)

=: 1 +
2[1− α(BTA1)β(BTA1)µ̄(BTA1)2]

µ(2)(BTA1){µ̄(BTA1)(α(BTA1) + β(BTA1)) +
√

∆}
, (25)

where µ̄(BTA1) = µ(BTA1)−µ(2)(BTA1) and ∆ = [µ̄(BTA1)]2(α(BTA1)−β(BTA1))2 +4. The

above inequality holds for any basis B ∈ F. By the definition of Spark∗A2
(A1), we have

Spark∗A2
(A1) ≥ Spark(BTA1) for any B ∈ F.

Thus it follows from (25) that

Spark∗
A2

(A1) ≥ ϕ(BTA1) for all B ∈ F (26)

Inequality (26) implies that the value of ϕ(BTA1) is bounded by the constant Spark∗A2
(A1).

Hence, the supremum of ϕ(BTA1) over F should be bounded by Spark∗A2
(A1), namely,

Spark∗A2
(A1) ≥ sup

B∈F
ϕ(BTA1).

By Lemma 3.3 again, under conditions (i) and (ii), we see that ϕ(BTA1) > 1 + 1
µ(BTA1)

. There-

fore, the superimum of ϕ(BTA1) should be greater than the value of 1 + 1
µ(BTA1)

for any basis

B ∈ F , i.e.,

sup
B∈F

ϕ(BTA1) > 1 +
1

µ(BTA1)
for any B ∈ F .

This in turn implies that

sup
B∈F
{ϕ(BTA1)} ≥ sup

B∈F

{
1 +

1

µ(BTA1)

}
= 1 +

1

µ∗A2
(A1)

,

where the last equality follows from the definition of µ∗A2
(A1). Therefore, under conditions (i)

and (ii), we conclude that

Spark∗A2
(A1) ≥ sup

B∈F
{ϕ(BTA1)} ≥ 1 +

1

µ∗A2
(A1)

,

as claimed.

Conditions (i) and (ii) in Theorem 3.4 rely on B ∈ F. A similar condition without relying

on B can be also established as shown by the next result.

Theorem 3.5 Consider the system (2) with A1 ∈ Rm×n1 , A2 ∈ Rm×n2 and m < n1. Let

µ∗∗A2
(A1), and µ

∗∗(2)
A2

(A1), α∗A2
(A1), β∗A2

(A1) be four constants defined by (18), (21)-(23), re-

spectively. Suppose that one of the following conditions holds: (i) α∗A2
(A1) < 1

µ∗∗A2
(A1) ; (ii)

α∗A2
(A1) ≤ 1

µ∗∗A2
(A1) and β∗A2

(A1) < α∗A2
(A1). Then µ

∗∗(2)
A2

(A1) > 0 and

Spark∗A2
(A1) ≥ ϕ∗ = 1 +

√
ρ− (α∗A2

(A1) + β∗A2
(A1))µ̄∗

2µ
∗∗(2)
A2

(A1)
,

where µ̄∗ = µ∗∗A2
(A1)− µ∗∗(2)

A2
(A1) and ρ =

(
α∗A2

(A1)− β∗A2
(A1)

)2
(µ̄∗)2 + 4.
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Proof. Note that α(BTA1) ∈ {1, ..., n1 − 1} for any B ∈ F. By the definition of α∗A2
(A1)

which is the maximum value of α(BTA1) over F, this maximum is attainable, that is, there

exists a B̂ ∈ F such that

α∗A2
(A1) = α(B̂TA1).

For such a basis B̂ ∈ F , without loss of generality, we assume that all columns of B̂TA1 are

normalized in the sense that the l2-norm of every column of B̂TA1 is 1. Note also that the spark,

mutual coherence, sub-coherence, coherence rank, and sub-coherence rank are invariant under

normalization.

Let p = Spark(B̂TA1) and {c1, · · · , cp} be the set of p columns from B̂TA1 that are linearly

dependent. Denote Cp the submatrix consisting of these p columns. Then the Gram matrix of

Cp, Gpp = CTp Cp ∈ Rp×p, is singular. Since all diagonal entries of Gpp are 1’s, and the absolute

value of off-diagonal entries are less than or equal to µ(B̂TA1). Under either condition (i) or (ii)

of the theorem, we have

α∗A2
(A1) ≤ 1

µ∗∗A2
(A1)

≤ 1

µ(BTA1)
for any B ∈ F.

In particular, we have

α∗A2
(A1) ≤ 1

µ(B̂TA1)
≤ Spark(B̂TA1)− 1 = p− 1. (27)

Since Gpp is a p× p matrix, in each row of Gpp, there are at most α∗A2
(A1) = α(B̂TA1) entries

whose absolute values are equal to µ(B̂TA1), and the absolute values of the remaining (p− 1−
α∗A2

(A1)) entries are less than or equal to µ(2)(B̂TA1). By the singularity of Gpp, we know that

λ = 0 is an eigenvalue of Gpp. By Lemma 3.2, there exist two rows of Gpp, say, the ith row and

the jth row (i 6= j), satisfying that

|0−Gii| · |0−Gjj | ≤ ∆i ·∆j =
p∑

t=1,t6=i
|cTi ct| ·

p∑
t=1,t 6=j

|cTj ct|. (28)

By the definitions of coherence rank and sub-coherence rank, if there are α∗A2
(A1)(= α(B̂TA1))

entries whose absolute values are µ(B̂TA1) in the ith row, then for the jth row, there are at most

β(B̂TA1) entries whose absolute values are µ(B̂TA1). And the absolute values of the remaining

entries in either row are less than or equal to µ(2)(B̂TA1). Therefore, from (28), we have that

1 ≤ [α∗A2
(A1)µ(B̂TA1) + (p− 1− α∗A2

(A1))µ(2)(B̂TA1)] · (29)

[β(B̂TA1)µ(B̂TA1) + (p− 1− β(B̂TA1))µ(2)(B̂TA1)].

Let p∗ = Spark∗A2
(A1). Since Spark∗A2

(A1) is the supremum of Spark(BTA1) over F, we have

p ≤ p∗. Thus it follows from (29) that

1 ≤ [α∗A2
(A1)µ(B̂TA1) + (p∗ − 1− α∗A2

(A1))µ(2)(B̂TA1)] · (30)

[β(B̂TA1)µ(B̂TA1) + (p∗ − 1− β(B̂TA1))µ(2)(B̂TA1)].
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By the definition of β∗A2
(A1), we have β(B̂TA1) ≤ β∗A2

(A1). This, together with µ(B̂TA) ≥
µ(2)(B̂TA1), implies that

β(B̂TA1)µ(B̂TA1) + (p∗ − 1− β(B̂TA1))µ(2)(B̂TA1)

≤ β∗A2
(A1)µ(B̂TA1) + (p∗ − 1− β∗A2

(A1))µ(2)(B̂TA1).

Combining (30) with the inequality above yields

1 ≤ [α∗A2
(A1)µ(B̂TA1) + (p∗ − 1− α∗A2

(A1))µ(2)(B̂TA1)] ·

[β∗A2
(A1)µ(B̂TA1) + (p∗ − 1− β∗A2

(A1))µ(2)(B̂TA1)]. (31)

Note that

β∗A2
(A1) ≤ α∗A2

(A1) ≤ p− 1 ≤ p∗ − 1, µ(B̂TA1) ≤ µ∗∗A2
(A1), µ(2)(B̂TA1) ≤ µ∗∗(2)

A2
(A1).

So from (31), we obtain

1 ≤ [α∗A2
(A1)µ∗∗A2

(A1) + (p∗ − 1− α∗A2
(A1))µ

∗∗(2)
A2

(A1)] ·

[β∗A2
(A1)µ∗∗A2

(A1) + (p∗ − 1− β∗A2
(A1))µ

∗∗(2)
A2

(A1)].

Denote by µ̄∗ := µ∗∗A2
(A1)− µ∗∗(2)

A2
(A1). The above inequality can be written as[

(p∗ − 1)µ
∗∗(2)
A2

(A1)
]2

+ (p∗ − 1)(α∗
A2

(A1) + β∗
A2

(A1))µ̄∗µ
∗∗(2)
A2

(A1) + α∗
A2

(A1)β∗
A2

(A1)(µ̄∗)2 ≥ 1. (32)

By the definition of µ
∗∗(2)
A2

(A1), we know that µ
∗∗(2)
A2

(A1) ≥ 0. We now prove that µ
∗∗(2)
A2

(A1) > 0.

In fact, if µ
∗∗(2)
A2

(A1) = 0, then the quadratic inequality (32) becomes

α∗A2
(A1)β∗A2

(A1)
(
µ∗∗A2

(A1)
)2 ≥ 1,

which contradicts to either condition (i) or condition (ii) of the theorem. Thus µ
∗∗(2)
A2

(A1) must

be positive. Consider the following quadratic equation in variable t :

h(t) := t2 + t(α∗A2
(A1) + β∗A2

(A1))µ̄∗ + α∗A2
(A1)β∗A2

(A1)(µ̄∗)2 − 1 = 0

which has only one positive root under conditions (i) and (ii). This positive root is given by

t∗ =
−(α∗A2

(A1) + β∗A2
(A1))µ̄∗ +

√
ρ

2
,

where ρ = (α∗A2
(A1)−β∗A2

(A1))2(µ̄∗)2 +4. Let γ = (p∗−1)µ
∗∗(2)
A2

(A1). The inequality (32) shows

that h(γ) ≥ 0. Thus γ ≥ t∗, that is,

(p∗ − 1)µ
∗∗(2)
A2

(A1) ≥
−(α∗A2

(A1) + β∗A2
(A1))µ̄∗ +

√
ρ

2
.

Therefore,

Spark∗A2
(A1) = p∗ ≥ 1 +

√
ρ− (α∗A2

(A1) + β∗A2
(A1))µ̄∗

2µ
∗∗(2)
A2

(A1)
,

as desired.

By Theorem 2.7 and Theorem 3.5, we immediately have the next uniqueness condition.
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Corollary 3.6 Consider the system (2) where A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , and m < n1. Under

the same condition of Theorem 3.5. If there exists a solution (x, y) to the system (2) satisfying

that

‖x‖0 <
1

2
ϕ∗ =:

1

2

1 +

√
ρ− (α∗A2

(A1) + β∗A2
(A1))µ̄∗

2µ
∗∗(2)
A2

(A1)

 ,
then x is the unique sparsest x-part solution to the system (2).

The above corollary may also provide a tighter lower bound of Spark∗A2
(A1) than Theorems

2.11 under some conditions, as indicated by the following proposition.

Proposition 3.7 Let ϕ∗ be a lower bound of Spark∗A2
(A1) given in Theorem 3.5. Assume that

α∗A2
(A1) = 1 and α∗A2

(A1) < 1
µ∗∗A2

(A1) . If µ
∗∗(2)
A2

(A1) < µ∗A2
(A1)(1 − µ̄∗) where µ̄∗ = µ∗∗A2

(A1) −

µ
∗∗(2)
A2

(A1), we have ϕ∗ > 1 + 1
µ∗A2

(A1) .

Proof. Under condition α∗A2
(A1) < 1

µ∗∗A2
(A1) , by Theorem (3.5) we get the following lower

bond of Spark∗A2
(A1) :

ϕ∗ = 1 +

√
ρ− (α∗A2

(A1) + β∗A2
(A1))µ̄∗

2µ
∗∗(2)
A2

(A1)
. (33)

By (24), we see that α∗A2
(A1) = 1 implies that β∗A2

(A1) = 1. Thus (33) is reduced to ϕ∗ − 1 =
1−µ̄∗

µ
∗∗(2)
A2

(A1)
. Note that

1− µ̄∗

µ
∗∗(2)
A2

(A1)
=

1

µ∗A2
(A1)

+

 1− µ̄∗

µ
∗∗(2)
A2

(A1)
− 1

µ∗A2
(A1)


=

1

µ∗A2
(A1)

+
µ∗A2

(A1)(1− µ̄∗)− µ∗∗(2)
A2

(A1)

µ
∗∗(2)
A2

(A1)µ∗A2
(A1)

,

Thus if µ
∗∗(2)
A2

(A1) < µ∗A2
(A1)(1− µ̄∗), we must have ϕ∗ > 1 + 1

µ∗A2
(A1) .

The discussion in this section demonstrates that the concepts introduced in this section such

as maximal scaled coherence rank and sub-coherence rank, and minimal/maximal scaled mutual

coherence are quite useful in the development of uniqueness criteria for the `0-minimization

problem (1).

4 Conclusion

In this paper, we have established several uniqueness conditions for the solution to a class of

`0-minimization problems which seek sparsity only for part of the variables of the problem.

This problem includes several important sparsity-seeking models as special cases. To obtain

uniqueness conditions, several concepts such as maximal/minimal scaled coherence, maximal

scaled coherence rank, and maximal scaled spark have been introduced in this paper. Also

the lp-induced quasi-norm has been defined and used to establish a sufficient condition for the

uniqueness of the solution to the underlying `0-minimization problems as well.
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